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or
The closed fragment off the provability logic of

th 7. propositional constant for EXP

ABSTRACT: in this paper I give a characterization of the closed fragment of the provability logic of I00+EXP

with a propositional constantf6r EXP.

aris & Wilkie, in their paper Oil the scheme of induction for' bounded arithmetic formulas,tParis

& Will paint a gripping picture of the i -112 P Two
of their most memorable results are their Corollary 8.14: 1

Theorem 8.19: IOo+EXP+Con(I.®+Q1)VCon(I.o+EXP). In this paper I give a generalization of

theorems in this style. Consider the closed modal la glxa g e gatecl'-by .LT th&$rop isit onal

connectives and , with an additional logical constant EXP. We interpret the propositional

constants as themselves, as provability in ID®+01 and EXP as the arithmetical axiom EXP. In

this language Paris and Wilkie's results can be- reformulated. as ID0+Q1 V(EXP-30 T) [as usual

<? "ibbreviates -, ] and IA + i ((EXPAO T)->01c In this paper I character e all
principles of the c1o`sxed modal> language under the ggt ei iri erpretatiorr thA are provable in

IA0+S21.One special case of our result of a distinctly different flavour than the theorems, of`Paris

and Wilkie discussed above is: Itlo+Q1i-(OOT'>OEXP).

.. FOur=result can, be-desctbed as a° sbfiationt of 4"V Ant -f6ia speci=al ease. of P dnian's 35th

problem. Friedman original problem is to give a characterization of the formulas`of th closed

fragment of the language of modal propositional logic which are provable under the standard

provability interprets- tion in reasonable arithmetical theories like PA.Friedman''sproblen was

solved independently by van Benthem, Boolos (see Boolos[76]) and Magari (see Magari[75]).

Their result - works (modulo a' f ne ent in case a theory proves y its Town .n=iterated

inconsistetaey for to Tle°'t s) for b - , d t rubs cdntairiing a-'sufficiently large

fragment of I60+Q1 or even better Buss's S21. The reason that the result goes thi6ijif so- easily

in weak theories is that it doesn't require Rosser style arguments: to formalize Rosser style
one` errs=to need° XP. Ii cori st:Solovay's`pabof of

l ogi 4doesn`t 6+k11L = (or an e1ab6ratio t of this theme see

Verbrugge[88,89].) A solution of Friedmans problem for the case of I4eytiii 's Arithin e was
given in Visser[85].

Fiajek and Svejdar in Hajek & Svejdar[198?] prove a characterization of the, closed of
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(all extensions of) a modal system.Il, ELF is a systeid o it tgpr tability logic: the logic one gets

by adding an operator [> for relative interpretability to the language. For a given arithmetical

theory T, Ar-> B.mean s T+]3' is relatively interpretable in T+A. An immediate consequence of

I-Iajek and Svejdar's result is, that their cha acterizion describes the closed fragment of all logics

for interpretability and provability valid in Alb-axiomatized extensions of IAo+521 (again modulo

a slight refinement in case T proves its own n-iterated inconsistency). In section 6 of this paper I

prove a similar generalization of our main result.

The contents of the paper are as follows: in section 3 the necessary conventions and elementary

facts are introduced... Section 4 contains our main technical lemma. The lemma, is a ,variant of the

main lemma of Visse [90]. It is the result of formalizing a model theoretical argument due to Paris

and Wilkie. In Section 5 our main result is proved and section 6 gives the generalization to the

language also involving interpretability. Sections an, extended appendix containing sketches of

,the ,F, needed to provide the estimates that are essential for the proof of one of the most

important lemmas.

I thank the anonymous referee for spotting a gap in my earlier presentation..

,We presuppose some knowledge of either Boolos[79] or Smorynsl i[85],.and..of either I3uss[$5]

or Paris $ Will e(87]. At a few places results from Pudlak[85],[A6] and from Visser[9Q,89] are

used.

The reader who is not familiarwith° Buss[85] or Paris & Wilkie[87] and who is interested in the

modal material could > t .to-understand the statement of lemma. 4.1 and then proceed -immediately

to section 5.

In I 0+ ; ,we can.define.a1Lthe apparatus of.codi,ng needed for the purpose of arithmetization..

See = Buss[S5j or Paris & Willcie[,B7] The: aim of this subsection is give a few definitions and to

state a few elementary points.

Bennett, shows,, that -there is a A07-for i ula' exp()a-:y, such that IA® verifies-
((exp(x)=yhexp(x)- z) y yz),,exp(®)=j and exp(Sx)=2.e p(x). It is easy to see that 14,ve fies

((x<ynexp(y) z)-+3u exp(x)=u),

((exp(x)=u' A exp(y)=v) - exp(x+y)=u.v .

(Similar remarks hole for x
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We define 21o 1
:=21x1;1Yl. i "g(°' )), x#y x#x. 0 is the axiom "col `is total= :'BAs is

easily seen IAo does not prove Qi IA-6+0 1isyjust ri`ghtf6r treating syntax: e.g. guuara'ntees

that substitution of a term in a formula is possible.

We will code strings of symbols in an alphabet adequate for the language of arithmetic, with some

ox ras l lkcl sever l-.°kindsA c f brackets. e , function n(x) giving the number of symbols 'of the

str &c by. x is z 6 W,definable in I o+ d have: n(x) xl and lxl .n(x) for sdstandard
number k.

To every number x we can assign an efficient numeral n n (x) =iris gn to 0' and 1. `(the cod&s`of ) 0

and SO if we have assigned to x#O numeral t, assign to 2.x: SSO.t, and to 2x+1: (SSO.t+SO).

Num(x) is fl ,definable-in o+S We hate 'n u i(» kI, for some stand d'k

A' crucial fact about adding functions to, -is the following:

Theorem: (Gaifman & Dimitracopoulos[82]): If f has Ao-graph than IAo+"f is total and weakly

monotonioally nc °easing',-IAO(f)

Here 60(f) is the class of, (translations of) -formulas with only bounded quantifiers, where f is

allowed to occur in the bounding terms.

It follows thatIA6+01

the 1angage

+01, we can work as if t l >were a functions symbol in

A= secluefloe°°mf syntactical objects (lik forri ulis-' or terms) is coded as the 'string describing the

sequence as a°; y tactical of e :he.g. 0 is coded s- <44 '*7*T > '.-A se(jWRIce of
numbers coded asp the sequence of the numerals of those numbers, eg. -<0,2,3>'"is died by:

Y*ntt i(fl)* ruj2 ;' `nuin(3) Lei gth(x) ,dtbIbngth--of x eoti!sidd d as `a sequence is

Ao definable in IB-O+QI. Note that if x is a sequence. of numbers and z is the maximum fiber

occuring in x, then n(x)<_length(x).(n(num(z)) 2):fetgth(x).(izl+1)-fo she standard number
k.

3.2 Theories and Provability

Our basic theory in this paper is IAo+Q. It is (modulo some translation work) the same as
Buss's theory S. (see Buss[85]). The language of IA0+Q1 has constant 0 and function symbols

S,+:.. Sometirmes "especiallyia subscriptsi =t11a11 simply Q. We =wit also be

-looking at 1Ao+E , which we. will call sometimes -if riogconf asior. is possible- simply EXP.
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We will assume that the axiom-set of a theory T is given by a Olb-predicate (see Buss[1985]).

We. take .this predicate to be part of the- identity conditions of, the theory. Pr.°oo fT is,. *q A fb:, proof

predicate based on the predicate defining T"s axiou-set

We write par abus de langage 'ProofT(u, 4(x1,...,,x) )'for: ProofT(u, r0(X 1,...

i) 5 All free variables of,Farearrnongthpsc.ho-n

j ), here:

the Godelterm" for. (xl ;4, as defined in;S uoryr ski[85], p43. -Iere

we use instead o the= usual nuraaeral the efficient numt erals', of :section 3. 11, so that:

IA®+5 1t-b'x1,...,xn3y (X1,...,Xn)' =y.

will Pro

Occurrences of terms ;inside OT should be treated with some care. Is DT( tlx]) , intended

(DT4(x))[t/x]? We will always use the first, i.e. the small scope reading. In cases where:
proves that t is total and t..x the scopedistinction-tnay;be ignored within °U-w.r.t.

DV. We have: Uf- (DV$(x))[t/x] H DV($[t/x]).

We will use the same convention for occurrences of variables inside the interpretabilit°; predicate.

For some uses in section 4 -our conventions are: not.sucent.. Rather than introducing. a:heavier

notatona apparatu prefer to explain is going on-there in words.

Some -alternative,notions., of provability will be used in this paper: first we write TabproafU(x,A)

for is, a tabled proof of inconsistency from u mite subset: of the axioms of. U and. -4A,", Here

tableaux proofs are defined as in Paris & Wilkie[87]. l: efineAUA : Ix Tabprooff(x,A). ;'..

A ! ( A ) be defined as ,foil y: v(A) -Q if its to c, v(AA,-,B),,= ( ):=v(A: B )
Tnax(v( ,v(B))-a1, v( B) = n v(A)a .)) - 9 r ±( ) v(A)+I- v<rA):=v(A).

(Note that our, v : odd lc s--the, co a i®xtal anslations,of then connectives coincides with
1.1 (see :Sch. v chtenb rg[77]-, p871).,) Let be a pr .Defer v{P):=

p} {

oof . (P =ProefU(p,A)nv(p) ,

3p PioofU,(p,A)..,

Our notion of restricted provability is a little bit more flexible than that of Paris & Wilkie[87], but

serves the same purposes.

We follow the, d scussion,sof cuts of Paris c . dilkie[871. For reasons of convenience we use a

slightly idiosyncratic not on s ,cut ;.a cut i is given by at arithmetical predicate; is downwards

closed w.r.t. the standard ordering of the natural numbers, is closed under successor, addition,

An inside view of FXP
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multiplication and wl. The attentive reader of Paris & Wilkie[87] easily, see that our restricted

notion is not really, restrictive; because anycut: i;the, canbe'shoat ned i a
sense. We will say that I is a T-cut if T =p i %es the ai thn et zahori"of ' I- s`a t">.

We write AI for the result of relativizing the quantifiers of A to I. We will a in 3.5 that

relativization to a cut can be considered as a special-case=d terpr iadoin. Pt t T A

3.4 Some crucial facts

a,::We:state some of the vitally ndpottant arithmetical facts needed in this, paper.-

1, Fact:-Let- A -,range over of) seiitences'of the language of we have:

-cuts VA,(E] A - obi).

eference: See the proof of Cor 1la y 7.S Wiikie[87].

LN"

3 4.2 The aside Lemma:uIAo+S21 VIE U46uts3i Vx°-oi uxE1

The idea is sketched in the proof of Lemma 8.1 of Wi1kie[87] Suppose p

is the U-proof that I is a cut. We find that we can take u:=v(p). Let x be given. The U-proof q of

xe I can by lglSIxl.(alp1+bixt=), where .aza rd b a l-standard-num'b'ers. O

Define exp(x):=2x, itexp(x,O):=x, itexp(x,y+l):=exp(itexp(x,y)). The graph of texp sari be AO-

defined in IA +41 in such away-that the'recursive, clauses for itexp be verified.

3.4.3 Facts (Pudlak)a;
i) I00+Qi - Vy ( (itexp(y,y) exists) - 31E U-cuts i2b'xe I (itexp(x,y) exists)
ii) If the language of Q contains the connective t-->, then:

IAo+921F-- Vy ( (exp(y) exists) -+ Me S2-cuts QVxE I (itexp(x,y) exists) ),

Roofffsketch&° Remarks:
Part c fzthe idea of the proof can be found in the proof of &-W ie[87}. We

careful estimates on cuts as gi en;,inthe proofof a 2.2.o Pudl k[86]

A brief sketch: first extend the language of IA, r--With a predicate variable X. Let ((X) be the-

formula: 'dy(exp(y)E X->exp(x#y)e X). It is easy to find an IDo+S1-proofs n(X) of (X cut
Cr (X) cut) . azldr '(y X) 7yof -it'xp(.x,y-i-i )e.X'front he I umptiont itexp(x,y)E 46(X): Let
Io:={xlx=x}, I n+i:=(D(4). Not that iln it=-2.II l+i , for k. So

for standard m and n. So the code of Iy is < P-.(itexp(y,2)# q) for some standard p,q. Let no be the

proof,of,{x1x .}.cut;=Then=the}proof i5, of `(I}; cut)1o®kske this:

An inside view of EXP
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Xa, it(IO);...., t( Iv=17.'.

'Note y.i (Iy)I+r ! (s y. p(y)+c for some standard r,st, b;c. So .the rode of

ny will be <_ itexp(,-y, #exp(y)# fox' same standard d.

'Consider the- following proo

'_, XE'I_. 1tex ( ,Q)E `(`gy_Y)..=,;.,7P(D r texp(x, exists.

Clearly the code of 1t'Y can be estimated in a similar way as the code of ny.

These estimates suffice for the proof of (i). To get the sharpening (ii) it is sufficient to reduce the

double occurrence. of ut ( ) to a single one cn be done using a tack due to.Fer me &

Rackoff. In our case this trick works out like this: let F(x,y,z):=exp(x#y) if z=0,
F(x,y,exP(y) iff z 0. Take "I ( ):=' 'y (F(x,Y z)e z...0). It is easy to se kthat:IA0+01

shows O(X)-°P (X). The rest of the proof is similar to the one. above, biit with better estimates.

Note: it is essential for estimates ti (ii) that our language contains -l=don't know:>of any way to

get rid of this restriction for a standard language. One strategy to get the efficient definitions

would be to enrich the language .with,,-abstraction-. and represent formulas by ° acyclic graphs,

which are not necessarily trees. (In this way we get a syntax which allows sharing., See
rB.arendregt &ialit1, 6] for a treatment of synta.using graphs in a somevrltatdiffere ntext )

(Since it is somewhat unpleasant to wokn:aaisngu with a vv will use (i)

3x.4.4 Fact:
i) I6Q+ 21 bF c,y ((itexp(y,2) exists) (itex ;X),:et ts) )

If 'the language of Iz+S21 contains the connective <->:

IA0+S21f- Vx,y ( (exp(y) exists) oU (itexp(xx,y) exists) )

Proof: By 3.4.2, 3.4.3.

Our next fact. is a direct adaptation of Pudldk'.s strengthening of GSdels Second Incompleteness

Theorem in Pudlakf 85j. Let's say that a T-cut I is T-reasonable if according to_ T we have enough

instances of ®o-induction: in-- I to Verify the various inetaniathematica3 principles formalized by

Paris and Wilkie in-I& 1 Clearly every T-cut, can be shortened to a T-reasonable'.'T-cut.

Moreover if T proves 'enough' instances of Iio then automatically every T-cut is T-reasonable
(by preservation of II1-senatences).

3.:4.5 The Strzj,g1hened; La 's Principle (SLIP) :Let T exterid.Q.x We have:
I®o+Q1 F- for all T-reasonable T-cuts I TA -,;

Proof: Reason in IA0+921: Let I.be.a.T-reasonable,T-cut-apd{Suppose:,p.r(tTIA-.A). Bar the

An inside view of 1XP
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Diagon'alization_Len ma we can find, asentence k such that T(% (OT -We: so have
A)* (because in we :have 'enough'DTI 1 -( I -+A)) and hence D 13TI7, o

axioms of o j)..M r ov r: T 1--->o TIO =Ergo : o TO T _ * OTIA): and .hence

oT(®TI A) We`may; conclude: TX- Ti t llowsntl at:fog,some x 0TProofT(x4X): By 3.4.2:

TE I, hence °0'r 3 >ann so: TA. El

3.4.5 Cut 'h s r inn:: Let= p(p) be the cut-rank of proof F asYdefined in

Schwichtenberg[77]. For some standard k, we have:

1 A i' (P'roofuT(p,A)nitexp(P,:,F_;P 3g x''ablir fj (p* ).

Paris ' 11 ie[871 -a, th ,like-this=is claimed'twice s First on page r293. in

effect ,4 5 is given .v h'ciienFthat is standard. s`le is 8.18.

t i atethat is:t l a r g e forThis,however;uses,,an.e our we:need4hat-the is of

order 2.p(p)+k ratherthan-of tiri erxp. ntappenti 71, we sketch how the of cut elimination

in SchW'1ehtenberg{77] should be -adapted ttla t ounresult.

There is:an T 0-i-EXP-cut 5 such that I + XP}--VxVyE 3 itexp.(x,y) exists. We have:

3:.4.6 Fact: S

3.4.5 and thefact that p(p) v(p)+1,,. Note that A in `3

3.4.7 Reflection Principle I: For all formulas A(x)e 112:
1AO+EXP1t-'Vx(AQA( )

Miseassioi u: This is, lemma 8.10" of Paris:, & ilkc e[.87}-formulated for, a language. In

it is shown ;how :tc adaptthe proof 'o Par is & Iilkie[87]° for this `case. 0

3.40 1 ncdpl "'IIII: For A(

IAO+EXPa-VxVy 5(0 A(x):-=3 A(x) ).
112'

Proof:.Immediate by 3.4.6 and 3.4.7. Note that x need. not be in IS.-

3.5 gunterpret2bi-lity

Dnsic} r two 1anguage& , and N We for. the is r. e. it-conta is no

fanctionsymbols or constants.

Interpretations are in this paper: one dimensional global relative interpretations without parameters

(for a.diseussion`°see Pudlak [831 or isser[891)' A interpretationM'of N in =L is by (i) a

An inside view of EXP
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funnctiort° F from the relation s3 ibola of;.i -- td formulas of the language of , and (ii) a formula 6(a)

of L having just a-free ,Th(; image of alrelation sy mbol> has precisely a1, as free, where 'is the

-.,arity, of the; eland symbol. The image: of _ - need. not be a1..a'. ,The function F is canonically

extended in the following way: (l (b1,...,bn))M': ,A(bl, ., h: ), M, r e A (1 ). (To make

substitution of the b's possible we rename bound variables in A if,necessary .in°factt:would be

neater to set apart bound variables for the F(R) and for S that do not occur in the original N) (.)M

,cotbttiutes (`dbB)M:=Vb(6(b)--*BM). for 3

extend (,)M again to map proof ,(from assumptions) in N to,p)oof&:ttM from the

translated assumptions in L in the obvious way. As is easily seen for a given interpretation M the

lengths of the.translatedobjectsare given:by4t . xed he°iefigths :of`the originals.

The graphs of (considered sa:function in B dM).,and..of (considered as Ya function in nt

and M) can>be_: arithrnetized by. in such-ra=way,tha the recu sive,clauses are verifiable

in, the bound :orn; the ;off:the values it is .,easy: to verify that

IA +01 proves that these functions: are,-total(his is verified in -detail'iii I n sbeek[89]:)

.r

The demand that N is relational is unnecessarily To extend the notion of interpretation

we employ certain standard translations from the language with function symbols to an associated

relational language and back. The ma problemis to see, the pr°ope ties of these

translations can be verified. in Iio+SZi. The details of working with these translations are given in

appendix 7.3. In the body of the papery<we- will simply s involved in

going, from functional to relational and back.

Consider theories U (with language L) and V (with language 1 ): What does it to say that V

is interpretable in U via M? 'I think the obvious definition is this: for every Be aV there is a proof

in x T. of (I assume in this we`are dealing with sentences, the case of
formulas one should (6[ -a BM), where &[B;j is the conjunction of S(b)'s, for all free

variables b of B.) Given this definition the next step is to show: if V is interpretable in U via M

and if V proves C, say by n, thon there is a,proof 70 in ,U of CM. Roughly * is,XM with proofs

of the t #slated.r-axioms plugged in at, the <relevant ;places. Now here His a .probl : in a theory

like. II+Q1 we cannot exclude tthe proofs of the translated ` V-axioms. are cofirrral in the natural

numbers. In other worrds'`we: not prove-bar there is 3a bound for these The axiom that

would provide such bounds is )1-collection. (So we would get this basic property in BY'1+Q1,

where BY,,: = IAO+E1 collection.)

We evade the proble by a-defniationai, cove. We change the of interpretability

in such a way that the basic properties we want are guaranteed even in IAO+ i, but also a

way that our definition and the usual one collapse in the presence of BZ'1+Q1.

Define(`dx y) ,y) by: 'u ,vV <u .y v (,y;:-,Sim flatly for more We also write:

An inside view of EXP
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(Vxe OE for: Yu X a( ot== (ye` x- )))

Note that if (b'x3y)*A(x,y) and R(b'Y3 )*B('y, ), then: (fx3y, '*(A(x,y nB(y,z)).

`Defin'b

RU D* aV :tom Vxe avProvu(xK).

K:U[SV (Vxe av3p)*Proofu(p,xK).

K:U®tV :rte VxESentN(Prcvv(x)abU{xK)).

Our first notion is axioms interpretability; our second notion is smooth interpretability, our third

notion is them nt
Qshow that in BL;

interpretability.

e btibn. easily$ ility.'Axfoa ssintea dfa s it
smooth and theorems inte pretabili are equivalent to axioms

For our purposes both theorems interpretability and smooth interpretability are good choices. So

by; interpretability we will simply mesa either theorems or'smooth interpretability.

K:U DO V ca, be arithrnetized in such a way that K occurs`in the arithmetization=as a num

is possible to quantify overK iris he theory. Define;

K:A[>uB :a K:(U+A)[>(U+B)
A®UB

U=V :tom U®V A V[>U

AFB :,c* (U+A)=(U+B)

er; so it

In Visser[90 or 89] It is shown that he following prirrr.plesare valid in any sequential theory U

extenditag re p:_

L1 t-A = F- dA

a- 0(A-B) -* (OA-+QB)
L3 tx ,OA`s oDA

t4

a r(Ap'BA ,C) A:6-C'

f- (AD, CAB D' C) - (AvB) [> C

1-- A - (OA -40B)' v

- OA[>A
AFB--- A -(BAO-tA;

The principles _1-J5.make"up the theory II.. IL+=:1W. (In Visser[89]` it is shown that this set

An inside view of EXP
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of principles is incomplete for interpretations in any alb-axiomatized theory extending I® +521.)

in I =o4 Doing some simple model theorf..,

In this section we formalize a model theoretic argument from Paris and Wilkie[87]. The result will

be our main technical tool in sections 5 and 6.

4.1 Main Lemma: For every A( ,y E AO with only x,y free:

IO0+0 1F- (VIE S2-cuts* xe I Vy A(x,y))=Q(EXPA2xVy A(x,y)).

So in more traditional terms this lemma states, that AO-?-y 1 verifies the following:

IQ6 Q1+VIE Q-cuts Con(Ida+.21+3xe IYyA(

is equi-interpretable with

Ira+EXP+ 3xVyA(x,y)

Proof: Some details of the proof not glven ere are presented in Visser[9Q]. Let e irst;remark
that it is sufficient to prove our theorem for axioms interpretability: by Parikh's theorem we
automatically will have a bound on the length of the proof of the interpretation of an axiom C,

which is given by a polynomial in. the length<of.C.. 7['hepreseuce,o f this bound sufficient to

guarantee. both smooth: and theorems interpretability (see also, Visser{5,9 . We reason in I o+S 1.

"d" Let 1, be a. (standard) S2-cut such that ®C( fxEJ itexp(x,2) exists).

Reason, in IAa+Q1 (so this ,is really in Ii + 1 in,Y40 + as

Suppose that for every n-cut I: O xE IVy A(x,y). By 3.4.3:

Vu e J Mrs S2-cuts C (b'"v I, itexp(v,u) exists) tr ," z

It follows that: due J ®x (itexp(x,u) exists AT'--y A(xy)); L evc be new constant and let
V:=ILo+S 1+Vy A(c,y)+(itexp(c,u) exists I uE J). As is easily seen V is consistent.

We want to. formalize the following more or-less trivial vmc.de1.theoretical argument (keeping

in; mind that model =interpretation). For the moment read'cd for l Pick a model K of V. Say

D is the, domain, of K. Let D*={dEDI for some new Kid<_itexp(c in)), Let K* be the
restriction. of K to D*. Clearly K*iEXP. Because the I40-aioms are r11: K*; ID0;
similarly K*I==Vy A(c,y). We may conclude that K* IB64E +3xVyA(x,y).

We formalize the Henkin construction to produce an internal model K of V.

We proceed as follows: first define the usual Henkin tree for formulas in the language

extended with Henkin constants.. The formula, treated at depth x will be precisely the formula

with code x (if .there is such a formula). So, roughly, if q is in the tree (a): -..tells, us whether

An inside view of EXP: ,e Q
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we want A or not. Some care should be taken to make the Henkin constants not too big. We
infinite in the usualpick the leftmost path n in the tree. We cannot prove-thatr`our path is

sense, but we° can produce-an -cut-1 such that-for eachViii' I there is a sequence in n with

length x. Without loss of generality we may assume that 10c J. Let K be the set of formulas

given by elements off r with length in Ia. Note that'if`aE n, and if A 'occurs in d,--then

A<I 1E I0,1i'66e AEI . It follows that I : Let D tie the set kin constants in-IO. It

can be arranged' that if (the code ofB(u) is in K and *is the"Iienkin° constant of 3'xB(x),

then b is in'D. tWe can show.'°Vxe Io Provv(x)-=a K(x)

We ,use &dt, e,.: to range over D e,write e.g. K(B(d,d))wfor K(b(d,d') ,where"b(d d') is

a term for. the code of the sentence, obtained by'substftuting the 14 enki constants coded by d

and d` for u-' nd v in B(u;v): We write for`x iii 0 K(C(x)) for K(c x)) Owl er c(x) is a

term for: the code of the sentence obtained by substituting the efficient hi. meralMof x for u in

C(u).

K is one form "of appearance of the `model K we are looking for. Its other" ftrn of
appearence is as an interpretation (.)K. The domain of this interpretation is going to be D. Let

R bo areiationuof the language of, V we have: R'(d,...) :<-4 `KI(d,...)). For arbitrary
formulas B(d,:..) BK(d,...) is defined as usual. For vividness we will' write'K--B(d,.) for

As usual we can show Vx K(conj(x,y))H(K(x)AK(y)), etc.. By an external induction we

dan show:

t,For d,... in"D K(B;(d.... ))`*4 KlB(d,..

More on the meaning of * and its' proof below: see the discussion on

Finally we can define a homomorphism f from ID to the natural numbers of the 'internal

model' K. Consider x in Ia, f(x) will be the cod'of tl e Henkin constant of rru u=x . We will

have: K(f(x)=x). We can arrange it so (by shortening I -if necessary) that the range of f is

downwards closed in K.

Let c* be the Henkin constant of 3x x=c. We have K(c*=c). Moreover: VxE I0(V(itexp(c,x)

exists), ergo bxE I0 K(itexp-(c,x) exists), so Vxe Io K'(itexp(o*,f(x)) exists). We may
conclude: b'xe 10 Kl{itexp(c*,f(x)) exists). Let D*:= de DI3 xE40 Kid<_itexp(c*,f(x)) } .

Clearly: c*E D* and `dde D*3ee D* KI-- exp(d)=e.

Let (.)K* be like (.)K exept that we use D* instead: of D. We write for d, : `iii D*:

K*I--B(d.... ) for BK*(d,...). Because the graph of exp is OD it follows by a simple argument

that K* 1 [oreover by p (c `,y), A is AO -1" K* y`d'y A(c*,y) and thus
A( y .
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Finally we have for all codes z of instances Z of Do-induction: qfAs 10 and Provv(z), hence
so OQ(K Z). Because these Z have Hl form we may', conclude:

aris..& WilkieLet's..look, atythis last argument- a bit mo carefully. As is well known (see e.g.

[871) t4e roofs of ,ze 10 and Prow z can eo licitil terms in z thep o V(- Yr x
y g

). (A moment's reflection shows that 10 isusual arithmetical operations and w (te .-terms for short

Kz scan be bounded b term in z.given by pa standard formula.) Hence .the. roof of
r-'

: .

_we.rnove-to d (KlZ) using confusing formulas and the- codes):;
** 'dCD , (Vd,...E_ (K(,C( ...)) tK=C(d,....))

give the, proof for the- language without , and discuss an alternative strategy for the

language with .,afterwards.

Let's call the 92-proof of KI--C(d,...) from assumptions d,...e D and K(C(d.... ): rl(C). Call the

)roof of f r o m assumptions and K C(d,.. ): 8(C).

prove ** we use f 0(co1)-induction, which is, available in To do this must bound

the, ), ®(C) with cal-terms, in other wordsthe,.len the (=number of of these

proofs should be bounded by a polynomial in n(C),. i.e. the length of C. Let's call the length of

the rl(C).: X (C); the length of `8 (C): x(C).

1, consider a specific example: the relative estimate. of VC) for C=(F--G). To construct TI(C) we

give proofs it(C), n' ,of respectively C= pf(F,G.),, and b'x K(impl x,y)) (K(x)-aI (y)). The
length of is polynomially n.ded m n(C) and the length- of n 11(C) looks

... Wis. .

as follows:

Here the 1. indicates the cancelation of the assumption K=F. We find for some standard
polynomial P: tc(1 )+ (C8)±P(n( ))

,For each,.cgnneetive, we find such a Similarly for Let Q be a polynomial that

majorizes all polonomials corresponding to the connectives for both . 2 and.u .Noting that

An inside view of EXP
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n w easy to show.tha 9 (C) C) Q(n-( ) e.g. in the --case considered we

have e.g:

%(C)<ic(F)+%( (n('C))Cn(

n(C).Q(A(C));

In case the language contains iS"`argument-doe x tF Wbrk s nce'rf (F)y # (F), r){ ), 6(G) all

occur in e.g. rl(F-*G). This spoils our estimate. The alternative strategy is this: suppose we have

proofs " ' of )44 K F, K(Q) " K G ='Drove eK in the naive
`:way sag-`the proof -is 6: low remove ,frogn 6 the various occurrences ,f. X,n` leaving the
conclusions of ae,xe, as assumptions . Say the restalt of this operation,; t.-Cancel the. new

assumptions that =are the former conclusions of it as follows:

n L(1) c 1)

vE 1

Cancel the former conclusions f it iy This strategy is easily seen°-to yield the desired

estimates.

Finally we move to Here we use:
*** VCDQ( Vd,...E D* (K*f=C(d.... )

The proof shares many features with the proof of * gair the lengths otktheprroofs will be

polynomially bounded in n(C). Let t range over`, terms: `An impd ;. r t t-lenii ma is:

+ VtDQ( Vd,....E D*VeE D eE D*) ).

The lemma is proved by induction on -t using a boundong the
polynomial in n(t).

engths of the proofs that is

We ,may conclude: let AX be the set of axioms iif O0+EXP+3xVy A(x,y). We have for a
suitable rwl-term t: VCEAX 3p<t(C) ProofQ(p,rK*JC). By induction we find for a suitable
Coi-term u:

Vx'C<x (Pro`of(x,C)3z4u()=Proof(r C

"a Let 3 be an ILo+EXP-cut such that IAo+EXPI-VuESVv itexp(v,u) exists. We first show
,for 11 in Ad having onlyx y:free:

_:.IA-6LFE3M,Wb=IE.3(Q "Iisacut"q=,.((3ze3 D Vice-I3y-ff3(x,y)) +'Vx3y B(x

Reason in I®o+EXP: Suppose IE 3, 02"1 is a cut", zE 3 and DQ,Z`dxe 13y B(x,y). Let qE 3
be° the- Ido a1 proof= of -" -is a c rt'' ys the elaboration 0x .4:2 there s : u:5v(q)!54 ssdoh that

o ,h .El iClear1y"h1-3.t follows that for some we3:'VxDn W3y`B(,y).,By3. .S e°may
conclude::: Vx3y
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From the, above we have .by cozy pleten ss conp aposl onµand by weakening the statement a bit:

for A in AO having only x,y free:

n (3xb'yA(x,Y) (dI Q-cutsO xE I b` A{x,y)) )4

From this the result were looking for is immediate using 3 as our interpretation:-)'

4.2 Cor 1ary gFor_;,any 2 sen1enee. B: IA +Q , f- B r Q(B A.-EXP>. -

Proof: from 4.1 wewhave: IA -S l- .(BAFXP) C QOQB; hence by principle W: 1o-tQ1 t-

(BnE P) (.(4 An,(B-- --,E P },.s IL { (A P) ` < d3A-rE ),3 By. 35 we

may concede: 1 f- (B XF)P (BA-* XP). Also I®6+Qj t- BA I-') I>

o+S21 h- B ( ) ,
..hence by J3: 14

4.3 Corollary
i) Suppose A is A0 having only x,y free, then:

A(x,y) t-* 03 IE S2-cuts j2VxE I 3y A(x,y).
Suppose B. s a 27-sez tgnce, then I00- 1t- +EXP) - ,8.

Proof: (i) is immediate from 4.1 and (ii) is immediate from 4.2.

4A Corollary:- Suppose A is afE1-sentence-, then:

E %oA
E:

Proof: (i) is immediate frown 4.3(i), For (ti) we have:

8110+S21~ .3 Ie 92-cutsajj( A-W
-*

J7E

5 The closed.,, fragment of , v'ahillnty of JI®o+ 1. th tstant for .
EXP

A is the closed language of provability logic, Le. A is the smallest set containing 1.,T;: which is

closed -under and Q. If logical..constants- e, ;', : to A, eve' write A[c";;c',...I.

O abbreviates

The falsity 1 F are defined as follows: ©0_L= L, n+11:_Ot3 nj. , T
.the. degrees of truth defined by: <>0T:=T On+1.T:=OOnT, If X is a set of
formulas we write Boole(X) for the set of Boolean combinations of element of X.
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We will only consider a fixed interpretation of our languages: the propositional connectives are

interpreted as tlier"nselves-dis interi`ereb as o;gEX]P tsinterpreteci as the" arithmetical axiom

EXP. The fact that our interpretation>is constant makes that we can conveniently confuse modal

formulas °ardth in arithmetical counterparts. From now on ve will do so.

The system LC[EXP] in A[EXP] is given by the following principles:

Li F--A 1-,
.r L 2 1 C 1 aB) aA-cB)

_L3 -. ® QOA

IA F-

Cl F- (EXP-4B) H 0B, for BE Boole(DF)
EXP"= B)' for BE Boble(I3 )

We verify `the validity of LC[EXP1 for interpretations in IA0+Qr. C2' is immediate frog i=4.3( i).

In =our-verificatioa of fwe3will-,use=41 a "some notation, JAIIP(A) } means

approximately: some finite (possibly empty) subset of {AIP(A) ). When the notation is repeatedly

used however it will function in an anaphoric-wa 'so sometimes it means: subset we

were talking about; or even: the finite subset connected in the evident way with the finite subset

we talkingabou <.
yfr F 1.

C1 gin YEA-V+f'r°;Y ©s der B in . Bool+ (DF). =Clear1y B is qu' alent to a
sentence of the form 1X1 { al_oklllk<a 1. (Here: a ranges over, (o+l.) By 4.3(i) we have that:

I®o+S21F- (EXP-aB) <--D 3IE f2-cuts ®/A L1Ik<cc}

On the other hand:

IBa+f1F- CIE 2-cuts

MIE 92-cuts / v {0 (Qa11->bk"_L) ik<a} -a
(SLP)

IX\ { k+1111kE w} _+ (a*=inf{kIlke co})
1+a*1

AA\ { IIk<a } -*
2 Ie S2-cuts o° { 0 °C?1

L+
I k.1 Nk<a }':

a

5.1 Theorem
i) For every AE A[EXP]: LC[EXP]F- A H al, for some aE co+1.
ii) For every AE A[EXP] there is a Be Boole(DFu{EXP}): LC[EXP] F- A (--> B.

iii) For every Ae A[EXP]: LC[EXP]'i- OA S LC[EXP]F- A.

An inside view
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Proof: for {i) and (ii) it is sufficient to show that for Be Eoole(DF'u(EXP}), LC[ XP]}- ®B

a-L, fob sortie E +l The .rest of the argument is =a s induction. As is easily seen there

are C,D in Boole(DF)- suphxthgtLC[EXPII - B ( XP-C)A(--EXP-D)), hence LC[EXP] F-

B H so by Cl, C2: LC[EXP]f- B H So by the

usual reasoning the desired result follows

To prove (iii) suppose LC[EXP]F- A. We note that by (ii): A is LC[EXP] -equivalent to:
(EXP-+/X\ /X\ (D13 L- nl:lln j3}) YIfr th conjunctions are

empty- we are done. If not it follows that for some m LC[EXP]_ - m L- and hence
IAO+ 1i--Dm1, quod non

Consider two Kripke models K=<W,R,u.,-> and K'=<W' A -btjsim cla ion (3 between

K and K' is a relation between W and W such that: (i) for every k in W there is a k' in W' with

k(3k', (ii) for every k in°W there, is a kN n VV ,dvith kj3k; (iii) if kpk' and kRs then there is an s'

with k'R's' and sj3s'; (iv) if k(3k' and k'R's', then there is an s with kRs and s(3s'. As is easily

seen. if pis: A-bisitpulat on between K, and K and k(31 '9, then for A A: V-A k'ia- 'A.

5.2 Theorem: LC[EXP] E-A 1AO+521 p

Proof: has already been checked. For "t--" suppose 1A +01 F-& Suppose.:that, LC[EXP]

does not prove A, then LC[EXP] does not prove DA, so DA, must be. LC[EXP]-equivalent-to
0k,-L for: some, k =We find I ,+001 t- DA, hence, Quod non.

We define a Kripke model l [:..

An inside view of EXP
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"=>"

IDO+Q1 -k I .

<0,0> <0,1>

<1,0> <1,1>

<2,0> <2,1>

<3,0> <3,1>

<4,0> <4,1>

<5,0> N <J <5,1>

The model M
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The domain of M is { <n,i>Ine cu,ie { 0,1 } }; M has an accessib llty- relation given by:

<n,i>R<m,j> :p n>m+j. We stipulate <n,i>I--EXP :tom i=1. The forcing relation
I

'i§-"extended to

the whole language in the usual way. We show that LC[E P]` s"validni M. As is easily seen R is

transitive and upwards wellfounded. Hence thef'ptiiiciples Ll L4"are#val

Let N be the model with domain _ai sand accessibility relate njR i*en by nit n i `Define

a relation 0 between nodes of N and nodes of M by n(3<m,i> :p n=m. It is easily seen that is a

in A: Win,3iA.A-bisimulation between N and M. We may conclude that for--'

- erificat ®uu'xof C1 in I' i` ppose B s ayB661ean combination of degrees of falsity.

First suppose <n,i> Cj Band «;i>l <rri j> and =E ', i.e. j 1. hdv

<n,i>R<m+1,0>R<m,0>. Hence <m,0>l-B. B is in A, so <m,1>0-B. We may conclude:
<n,i>a- (EXP-.*B).

Suppose for the 'converse: <n,i>a-- o (EXP-aB) ancly°<n,i>R ?n,j>R<p k>. `Clearly` i% i j p+k,
so n>p+l and thus <n,i>R<p,l>. <p, l>r- EXP and so <p,.l>l-- B. B is in A so we may
conclude: <p,k>lI--B. Ergo <n,i>r-DEB

Verification of `C2 " in M: suppose B is a Boolean combination of degrees of falsity.

One direction is trivial. Suppose '!-<n, >f`= C] "( EXP-*B_)- and Clearly

<n,i>R<m,O>, so <m,0>F-B. B is in A so we may conclude: <m,j>l-B. Ergo <n,i>u-DB. o

Theorem. LC ,[E P] A M11-A.

Proof: entirely analogous to the proof of 5.2.

The closed r°g n4 ,.°of `the intEerp e bi1Ilty logic off ' I A, '

for EXP

The system ILC[EXP] is given by the following principles:'

Ll l-A > I--DA

L2 1- (A-*B) --4 (DA-DDB)

L3 F- OA -* DA
L4 1-- 0(bA Ak ._

J1 F- (A-.*B) -4 A®B
J2 - (AC>BABCC) -* A©C

An inside view of EXP
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We n>m+l,

<n,i>R<m,j>.

5.3 a
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J3 t- (A I> CAB C> C) --> (AvB) [> C

J4 t°.:A[B -*#(<>A-- B)
w.

J5 I--- OAA

C

1- C>B 4a

I- (EXPAB)=QBl where BE Boole(I F) ,,.

We verify the validity of I LC[EXP] for interpretations in IAO+S2

Verification f,_--j an 1L o-+S1:

Suppose Clearly W is equivalent to a of, the foar llk<a},
I'll 7

where a. ranges over w+l. By 4.1 we have that:

IA®+f211-7 (E Ie -,,-,cuts OW {OkTn®°-I flk< }):

By contraposition of the reasoning concerning the verification of Cl:

IA +Q (V IEo1 S2-cuts H OB.

For every AEA[[,EXP]: II:C[EXP]t OA for some aE-cu+1.

For everyA,.BE A[, rt,E I: JLC[EXP]t- A c +l
For every AEA [ [> ,EXP] there is a BE. Boole(DFu. { EXP }):. LC[EXP}"t-- A Fa

For every AE A[EXP].y LC[EXP} - A -I C[EXP]E A.

Proof: for (i), (ii), (iii) it is sufficient to show that for A,BE Boole(DFu{EXP}): ILC[EXP]i--

A *4 a.L, for some ae co+1 and ILC[EXP]t- Ap' D L,; -or some-aE,o+1:Thorest of
the argument is a simple induction. We can restrict ourselves to the case of [> noting that A is

equivalent to -,At? L.

First con§ der;C Boole F)..We show: II.C ?] S AC) °`T, for some °We have:

IEC[EXP]t (EXPAC)=O C ,O`aT.

Next weshow:1LC[EXP}t- (-E AC)e<RT, for some-P. First note:

ILC[EXP] F- (EXPAC) > O C

We conclude: IAo±S21 E- (EXPAB)EOB.

6.ll. Theorem

(OCAD(C- -EXP))
O (-EXPAC)

>(-=EXPAC)

Also: ILC[EXP] E- EXPAC) o (-EXPAC), hence ILC[EXP] I- Cl;?- (=EXPAC). We find:,

ILC[EXP] t- (,EXPAC) =C

===(Cv0 C)
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Consider A in Boole(DFu(EXP}). Clearly A is equivalent to (EXPAC)v(-;EXPnD)"for some C

and D in Boole(DF). By the above: ILC[EXP]F- (EXPAC)-OaT, for some a and ILC[EXP]F-

( 'EXPAI))-0 PT, for some j3. Iesiee Ig.C[ XP) - A-(O T v* fir some y. We
oonelude=for A°B' imooie Ft 7 'E' . I = XP u A'B= OYfi P O sT for some= S.may

If y>_S: ILC[EXPI E- A C> B H T, and we are done. If y<

ILC[EXP]E- A > B H OYT©OST
+4 OYT>(05TAO-41
H OYT I

E-> 07T ®1

+3 i+Yl

The proof of of (iv) is the same as the proof of 5. 1 (iii).

6.2 Theorem: ILC[EXP]}--A a IDa+01l-A.

"Prooir the same as the proof of 5.2.

,We define a Kripke model M as follows: the domain of i v I is {<n,i>In .co,i -{0',1 } }; IVY has an

two accessibility relations R an { S given by: <n, R<ni f> n>m+j and <n,i>S m j ` :a
n+i_m+j. We stipulate <n,i>--EXP :rte i=1. The forcing relation is extended to the whole

-languag in the usual way isingR as the accessibtlitreiauon for and:

for ail y:--axRy an dy`i A there is a'z with ySz and zI -B.

Asxbefore l is, aftsitivean`d upwards welit6 r i ded. We hive: RC 9, '8- is reflexive' andtransit i ve;

S-,satisfies property I ;pie ' RyS xFcz.

9 xeursion The property 'xRyS -makes li 'into, n IL -model (see Visser[S `or Visser[90] or De 7ongh

Ve1t an[901) This implies that the principle: AI>B - o'(A is°i+aiirl°on 1VI. There ate a`prrciti reasons,

giverigthe fact that M fully characterizes what is and what is not ptova11e i language andsee ng the

methods we used, that this should be so : Ooi suppose oirfi an3ple 'to the `'pr nciple ' This

shows or at least strongly suggests that IAO+S2,1 is not finitely axiomatizable. (The loophole here is that it might

that, yes, IAO+Ql is in `fact--finitelyyax omatizabte,but; no its, finite aXiomati ability is not'ver fiable

in ii + ) But the roblem of finite axio"zAilit5 6 1'&p ~i§ connected Ah'difficult complexity' theoreticd 1

,

problems and it seems clear that the Yi efhods`asedseetzor '4arc not 'heavy' enough to'solve such problems. So a

full characterization of the valid principles of A[EXP,I>] in Ia+S21 using light methods as in section 4 cannot but

satisfy principle P. #°
R. .

Verification of C in M1 °s ppose B is a Boolean cotiibgnation`of-degrees cr falsity.
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First suppose <n,i>l- o B and <n,i>R<m,j> and <mj>n-EXP, i.e. j=1. We have: n>m+l, so
<n,i>R<m+1,0>R<m,0>. Hence <m,0>1-B. B is in A, so <m,1>I-B. We may conclude:
<n,i> . D(EXP-+B,).

Suppose for the converse <n,i>,t-.p(EXP- B) and <n,i <m,j>R<p,k>. CCleariy, n>m+j>p+k,

so:n>p land. thus <ni>R<p,1>. -:and so pX,> -B. B is in A ,so we may
conclude: <p,k>u-B. Ergo <n,i>l-- .LB

6.3 Theorem: ILC[EXP] E-A r-*Q1Vff-A.

Proof: entirely analogous proof of 5.3.

7. Appendices

7. 1 Cut Elimination

In this section we provide an estimate on the rate of growth of the number of symbols of a proof

when we apply ycutelimination. To save space the presentation is parasitic on the, one in
Schwichtenberg[77]. The reader, should look up Schwichtenberg's, treatment: we just present the

additions to his paper.:that;are °necessa =to ;get onr_.,estimate. ,Locally in this' section we; follow

Schwichtenberg';s conventions, numbering of theorems, etc. .

n(o) is the° number of .symbols in 0. Similarly for n(d) p(T) Note that we must consider a
variable as complex: we stipulate that e.g. x5 is represented as x101 and thus n(x5)=4. Because

we ;want to G®deltze [he: proofs .it would be more natural to take a linearied version of the

system. Because linearization causes only a few inessential details we.refr* corn doing this.

We stipulate that sets of formulas are wr tteprt- { oij ..,0n }_. e empty set is represented by: U . Iny.

I40+01 we have: a.:recursivefunetion available that eliminates repetitions from representations of

utssets, and- P p;e men s,--,o tiler so we may assume that sets are
always. represented without repetitions and in =a fixed order=

Here, follow the additions to Schwichteoberg[77]: We work in the system described by
Sehwichtenberg with terms-but without extra rules for identity. (Identity will be .handled by

adding finitely many axioms,. These will be treated on= pa w;th oththe, axioms:); ,

2.3.1. WEAKENING LEMMA. n(d,I')<_n(d).(n(n+l).

PROOF:. d I7 has less symbols than the result of inserting IF after each symbol of d.
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2.4.1. SUBSTITUTION LEMMA. n(d(s))<_n(d(x)).n(s)

2.4.2. SUB STITUTION-WEAKENING'LEMMA. n(d(s),T)<_n(d(x)). (n(1l+n(s))

2.5. INVERSION LEMMA. (i) If 1, then we can find d*iHT,0i (i=0,1) with

Id*if<_Idl, p(d*i)<p(d), n(d*i)<n(d).n(00A 1).

(ii) ;If d tS-l',txV(x),:'tben we "cart find d*t I ;yr(x)}' with hld*I<ldl; p(d*) (d),

n(d*)<n(d).n(dxV(x)).

PROOF: We restrict ourselves tb (ii) t1 be ` ' d xy (t): If IF, ,' wee-tale d*

follows by the weakening lemma. Assume Oo F.

tar=result

Case 1: is a"not-a p.f.' in the-last d. Then this inference has the form

With m.f. y`j, p.f. ® and s.f. A,0 and I" A A. The cakse tha-t k=0 is trivial. In case =k>0 we apply

the induction hypothesis. Let the immediate subproofs df .d be dii. We.find dl 1-=A, t(x),yri with

Idi*I<_1dil, p(di*)<_p(di), n(di*)<_n(di).n(c¢). The result follows by the inference:

A,V(x),yli for all i<k

S.uppow-.e - k=2 have:

n(d*)<ai(dog+'. (1 `) l ti(I +n( (x))+1_<(n(d

(ri(do)+n(dl)+1+n(fl+:1 n( )) n(
The last lear1 equal to n(d)n().

Case 2: 0 is a p.f. in the last i dneeoffd.'If Y'rs'not a s

inference has the form:

With m.£; (x) p.f. 0 and s.f. where Oi F. Here we can =pick "simply the immediate

subp opf of d. If h is a s f. i thee of d, the inference has ,the form:,
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dith-m.f. yr(x);=p^ . 4 and .f. I' Here we find ;d*..byoappiyirkg.the duction Hypothesis to the

immediate subproof do of d. Note: n(d*)Sn(do).n(4))<_n(d).n(4).

TCTION LEMMA. n(d) ( d.-)+±n(di)) 'n(do)m(0).;

PROOF.

Cafe 1 k Ie treat.,thecase that k=2, the cases that k=Q;1 being easier or lar Let the immediate

subproofs of do be doo and dal. By the induction hypothesis the direct subproofs of d are going

to be <_(n(daa)+n(d1)).n(daa).n(d1)- .respecti-v ly <_(n(d01)+n(d1)).n(d01).n(d1). Hence:

n(d)5
')+n(dl)).n(dol).n(dt)+l+(n(do)-2)+n(d1)<_

< (n(do)+n(dl)-1).(n(doo)+n(d01)).n(d1)+n(do)+n(dl)-1<,

. (n{do)+ri(d1)-1}.(n(do)=1} n(dl.)+(n(da)+. n(d )-?)<.

(n(d0)±n(C 1)) n(d ).rl(d)

Case- 2.1.: n(F,i )5n(F,

Case, 2:2: Let the immedihte: subproof of do be doi. We split the cases that 0 is a s.f... in the last

inference of do and that 0 is not.

Suppose 0 is not a s.f in the last inference of do. The conclusion of do is," of the form F,4 . By

weakenin we get ddi with conclusion l ,fir 1 here n(doi,)Sn(doi).n(di) By the: inversion
lemma we get a proof d1i of A,-,4i with n(d1i)Sn(d1).ri(4). Clearly di ,F has conclusion

and n(d1i,I')Sn(d1).n(do}, By cuteiiminat on .we co bine do Ll a-n .d1i,I into a.,pro-f.d of £,B:

We have:

n(d)5 n doi).n(d) l+rl(da)+n(d'1)<

<_. (n(do)-1).n{dl)+n(di).n(0).n(do)+l+n(do)±n(dl)<

<_ (1+n(4)).n(do).n(dl)+(l+n(0)).n(do)+l<_

<_ (3+2.n(4)).n(do).n(d1)5

(Clearly for k=0,1: n(dk)>_n(0)+2,)

Suppose 0 is a s.f. in the last inference of do. The conclusion of doi is of the form F,0,Oi. Apply

tlt . Induction Hypothesis to - dal and dl, W obtain, rod fr d' of F,A,4 with (d')c
(n(doi)+n(d1)). n(d0 ).n(.di,). y, the: inversion lemma We get.-a= proof dli of A;- Pi with
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, -in(dli)<_n(dl).n(4). Weakening gives us d11;FFv ith conclusion F i

n(d1i,r)<_

We obtain our final proof 'by"y applying eutelim patio i to theconclusionsof d' acrd-d1i,

Clearly: , s

rt

(n(d0i)+n(dl)).n(doi).n(dl)+n(dl).n(o).n(d0)+l+n(do)+n(dl)<_

<_ (n(do)-n(o)-l+n(dl)).(n(d0)-n(o)-1).n(dl)+n(dl).n(o).n(d0)+1+n(do)+n(dl)=

(n cio)+n`(dl)).n(d0).n( ) ( do)= i 1))= n(-) n(cli)-(n{cp) 1) (d

+ (n(o)+1)2.n(dl)+n(dl).n(o).n(d0)+1+n(d0)+n(dl)=
=

(n(4)`r=1) i(dl)+1+n(d®

Note that n(4)+1<_n(dl) and hence (n+l)2ir(d

So:

(n(do)+n(d')).n(d0).n(dl) (d0).

)< ri(do)+n(d )) n(d1 .

Ibte that n(do)>_3 "aid n(dl)>3'anc hence n(d ra(ti)?ri(do

Case 42 3.: Let the immediate s ibproof of.do be dom. As bef6ie we, split the cases that As a .f. in

the asta 1iiferenee of'd0 isthe lastinference"of do aril at is not" ivnot `a`in
entirely analogous to d coirespdnd $ ease in2:2'.-Suppose s a s.f. in thelasttinferenee of do.

The .conclusion of doo is of the form F,4,yl(s). Apply= the Induction Hypothesis to doo and dl. We

obtaina proof d' of s) with n_d')` ( dn(dl))n(dool.ny 'the°ineision lemma
we get a proof d10(x) of A,-,jt(x), where x does not occur in A with n(d10(x))<_n(dl).n(4). We

form d10(s),F with conclusion By the Substiiudon ¢ eak nirg Lei

We obtain our-final proof d by applying cutelimination to the of d' 'arid d

Clearly:

<_

(n(doo)+n(dl)).n(d0o).n(dl)+n(dl).n(o) (db)+1+n(do)+n(d1)

From this point on the,re8oning' -proceeds as in 1.2.

Let exp(x):=2X; itexp(x,O):=x, itexp(x,y+1'):=exp(itexp(x,y)), exp2(x): itexp(x,y)

27 . C
T-ELLV[INAAT--ION..1

ORE . If dl-F- ate,p(d)>O `tken we can fired

An inside view ofEXP 11

and:

_

+ ...

... <_

So:

... <_ (n(do)+n(dl))n(do)n(dl)

0

0 The

0

I",0,-,V(s).

<_



p(d)<p(d') and nd..

PROOF. n(d:i)<_expl(n(di)). Let m:=sup(.n(do),n(dl) . We have:

n(d')S(n(d'o)+n(d'i)).n(d'o).n(d't)Sexp(exp(m)+1).exp2(m+1)<_exp2(m+2)_exp,,?(n(d)).

(I' could be empty, but by our convention the number of symbols representing- the empty set is is

non-zero.)

2.7.1., COROLLARY. if 11-T, then we. can. find a cut free proof d* f-f with /d*,/_<itexp(/d/, p(d))

and n(d*)Sitexp(n(d),2. p(d)).

Note. that, if we think of d and d* as coded as.numbers we,;M1 ind d* exp(k.n(d )) for some

standard k. So if d* is large enough we get d*<_exp2(n(d*)). Hence we get:

d*< ,Z.(p(d)+1)) (d)+1))

Our argument can be formalized in the ;usual way using the

induction. Hence we get:

ItO+EXPt-`dd,F,x:((Proof*(d,r)Aitexp(i 2 (p(d)+l))=x) -4:3d*Sx utfreepraof*(d*,I'))

Here. Proof* and Cutfreeproof* are formalizations of the action of proof. and cutfree proof as

treated above. Now note that. proofs in any ordinary reasonable proofsystem can be
multi-exponentially transformed in pr fs a.ber ' * yst .r(I t, I think, one can

du. much better.) Moreover cutffee proofs in Schwic tenberg"s systemfean:abe almost trivially

transformed in tableaux proofs as-in the system used by Paris & Wilkie. Hence for some standard

k we get for ieo °y U:

IA +" , i-,- x,p,Q (Proof (p -a 3p*Sx Tabproofu{p*,A)).

7.2 Satisfaction - & Refection

We construct a satisfaction relation SAT for too-formulas in It1o+EXP. SAT will be in Ao(exp)

.(this means that SAT is,the;tr .n, ataon into-our. official language of a formula, in our languag

enriched with a function symbol for e onentiation,.in which all quantifiers are, bounded by terms

possibly involving exponentiation). The fact that SATed (exp);; will derive its usefulness from

the, well.knownfact that I +EXPI-IA (exp).

We work in Iio+EXP. Let a code a finite partial function 0. By default we set 6(u):=O if
u e Dom(o). m((Y):=max(Range(c )u{2}).Call. {he set of assignments A S o[i/y] for
the unique d such that for all j and (d)i=y. In this section we write c for the
subformula/subterm relation..,

Asp .is wail known already: in ,, Ao+S1 wevhave an evaluation function tiAAL fC a'term. and
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sequences of numbers, such that VAL(t(vl.... ),,6)= t(6(i).... ). Note that VAL(t,a) S m((Y)n(t) _<
2(Im(o)1+1).n(t) < m(o)#t#m for a suitable standard m.

SAT(Aa) E ASS )SAE°80:A 3-' -e-

r is a sequence A (r) ength(tij=1 ` A 'i<ler gtl )

3s,tCA 3a'e ASS

( ) = < = , o > n VAL(s,d)=VAL(t,d)
v
s tCA 3o'E ASS.

(,,)i=< r Is=t,d> A VAL(s,d):#VAL(t,d)

v

v

B='b,vk<t Cf n (i)ce <B,d> A b'y<_VAL(t,(Y') 3j<i (,r)j=<C,d[k/y]>

3B c A 3C,t,VkcB ASS-

3E3C'A3CvjcB3d,EASS
B<t C' ^(ti)1 <},d> A 3y<_VAL

Clearly all quantifiers in the definition of SAT except Jr ,can be bounded by ti.

A First consider <B,o> iht andLet's give a rough estimate of x. Let t* be the biggest tera i 11,11,

animmediate predecessor <C,d'> in ti of <13 Wve estinater l(d') in terms of t* and (o):
the only interesting case is that of°tlre`gi ntifiers; heir We rc for sortie -tdITd tm(d')Smax(m(d),

VAL(t,d))<t#m((Y)#m_t*#m((T')#m.

Similarly it follows_ that the nur er fair aediate 'predeeessors, of is 5t*#rsi(d)#m.

Hence the sequence-length of ti will be <_ than

1+t*#m((Y)#m+t*#(t*#m(c);#m)#m+....

n(A).(m(6)#ao1(n(A))(t*#m)).

How long can <B,d> be? Clearly m(d):5m(c)#(a1('It '))(t*#m).,Also{_the codes of the elements

the f =_ Apo .s bstrings f. 'Me codes of.. 3( ) ilp` iave = length

<_ m( ) 1^(n( ? t `#n )l alength f < ;o'> ' cori idered; a 'a4 sting will be
<._1 n(A): ixit( )#ci t(n(A)>(t*#m)1 for some sta dard kJ of toi sidered as a string
will n(A) (zn(o)#cui{n(A))(t* )) {k. c (fi #rn)i+1) 2} _ ( )
So for sorrtt`standard r. ex (rr (A,a)). I frog that IIIpH ,3) we see that a

bound r m s o f A a n d o is in 1 +E
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Write a =A for: SAT(A,a)

7.2.1 Lemma: al== (.) commutes with the propas tional-connectives and the .,bounded

quantifiers. Moreover for every AE ab=a A or at-,A.

Proof: Entirely routine.

7.2.2 Lemma: Suppose t is substitutable forvk in t then: A[tly ]

Proof: Entirely routine. 11

7.2.3 Theorem: Let re w and A(x) be a 12-formula, then

I©o+EXPF-Vx ( a(x)- +Tabcon(IAO±SZr+°()) .

Proof: This is just a slight variant of the proof of lemma 8.10 of Paris & Wilkie[87]. Suppose

A(x)=3yVzB(x,y,z), where BE AO* Let M be model of IId+EXP t-A(a), where aE M and suppose

+S r aWork in M. (Of course wwe;also could give a straightforward

formalization of the proof in. IAo+E)CP, but thinking 'in, the model' is more pleasant from the,

heuristic point of view.)

Let p be a tableaux proof of a contradiction from Ido+S2r+A(aa), say Let t* be the

b i g e s t occiM, ng it p and let Cbe the occur ng in p. 'Vote that because

the of ,a nx,pt or some= b we have: V zB (a, ,z). et m be standard such that
VAL(t,a)<_t#m(a)#n : Define c:=-rriax:(b t*#x ),. , (2.s)(o).

is Xg-: 1 weLLdefine an ci;.with domain the free variables of and

range bounded by d, as follows:

ao,x is empty (for clearly in X no free variables occur)";

Consider of+i; =Suppose the predecessorof X `attstage i is ,Y. We consider

i)

ti)

if vE Dorn(Yi,') ,0i+i; (v):=0`othe rise;,

(a)-O do not introduce new variables. Put.al

Incase (e) some spurious new free variables may be introduced.. Put 6i+t,x(v):=al,Y(v)

m4.. ale ;turn to case (C) , we =get - (vk) frog --,,b'xE(x). Put ai+i,X(v ):=0j y(v) if

the-first existential in axiom This means VxE(x) is a,,translatiori of: 3x

Cwr(t)=x for some term t. Put ai+l,x(vk):=wr(VAL(t,oi,Y)). Thirdly -,V may stand for a

bounded quantifier, here a, 'Say ;.Put:

ai+i,X(vk):=the least z<_VAL(t;ai ), uch .:thatual y[k/z] - F(vi) fif such ate sts,

- existential quantifier-of AF
,

_ _ In Secondly rnay.starid for

vE Dom(: i Y).< For sv there ,-are three, possibiiities y firsut. -V,,, niiay -stand for tzhe. first
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7.2.4 Lemma: For all i<s m((Yi+

Proof: The "oniyt4setio'tisn g wth`" f'the elements of un e(ol X) occurs due= totclause (C). We

treat'thd su9 ase of tart : So suppose eve-get i+lXzb" applying the second subcase of Q.

Let' the -p iecessdr>stage be . Y ' `e find -(assuming i*O):

(u s.. t 6 t#ria t (2,i-2)( #m -re ° r( c# r O(2.i 2) c.)-Mrte..( (i,y))-=r(. r )'
< Cer((dr(2.i-2)(c)#(0r(2.i-2)(c))< wr(wl(wr(2.i-2)(c)))<wr(2.i)(c).

,,

- O theorem.i imrnediate from the follevaing lean

7. 1. 5 - Lemma: For al iSs there is an XE Fi such that

(i) - For all d0=forinulas Ce X diXPC n

(ii) For all i-fesrtri xIas ..C) =X , 1 3v <d C (where...C i );
(iii) For all fI1=formulas'(Vv,...C): X e;i cl C Cam;,

Proof: The roof is by induction oh I (Note that our induction predicate,is (exp))

i=0: Here xhe most natural ,thing s to as umerthat'there>is onlyone X it 1'a 'rho elementsTof X

are (a) standardly finitely many identity axioms,, -(b)'=statdardl tely many 4xicis-car erring
S,+ and.,.(c)I°noni=standardly finitelyuinaaiy indi ctiort axioms, (d) A, (e) Opt (a) and (b) give

no problems. Tie: claim does not apply to (d) and (e). Let's iconsde? (c).

Suppose E is an induction axiom in X (remember: E might be non-standard! ).,E has`the following

form:

/v,... /w((D(O,v.... )nVvi<w(D(vi,v...)--)D(S(vj),v...)))- Vvi<wD(vi,v...)).
Let V be the (non-standardly) finite ser--.t5f ivariables {v;...) of the block in the front of E-"(except

w). Write 6[V,d]d :tom 6 and d differ only on elements of V and the values assigned by a' to

the,elementsof. V ar, .,<_d... nb can shove using an easy induction' (ort 'the r nber of elements of

:V) that:3
_,

o Vv,...<_dbw<_d((D(O,v....)nb'vi<w(D(vj,v...)-*D(S (v)v. ..)))_*Vvj<wD(vj,v ..))

if and only if

bSd[ l x rl:(d .0]r-DNv) v...)nt ,Y-<X, (` (v 1J(v ,v ..)))

Wjjty

This last- formula is airinstax a of he. 0(exp

i -p+ 1:. Suppose Ye-,F i-satisfies the induction hypothesis. Let X be a successor of Y in ri. We

treat the cases that X is introduced by E and C.
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Let Vvk E(vk) and E(t) be the premiss and the conclusion involved. There aTey three possibilities:

dvk E(vk) is I12,I11 or 00. If it is r12, then b'vk E(vk)=521. So we have to check:

3vp<_dcor(t)=vp. This follows easily by the observation that: w s t

F a <° r( F 2=1)(c)# r(2.i)(e)):5 cor 2 (c)=c ,hml°
.u

.

In case b'v E(vk) is Il by. the induction hypothesis we ve.,,: v vk<d E*(vk) (where E* is

the result of bounding unbounded universal quantifiers in E by d). It follows that.:6i,X E*(t),

noting that by our"earner VA(tThe case thatb'vk E(ve) ills similar.

Let - Vvk E(vk) and -,E.(vp) be the premiss and the conclusion involved. There are three
possibilities: first -,b may stand for the first quantifier of A. In this case oX:(v1,):=b.

We leave it to the reader to verify that indeed B(avp,z). Secondly -,V may stand for

the first existential quantifier in axiom This means. a translation of: 3vk

yz- see 36i, -,E(vp), i.e.cur(t)=vk for some term t. ai,x(vp):=cor(VAL(.t,a.j As is. Basil

ai,x'=COr(t)=vp° Thirdly may ,stand fob a exis entta }nannfier, ,v here °=,V= k E(vk) is

D0, say _1dvk E(vk) -,wtlvk<t (k),. >the hypo:thesis..c 1,- t- V,vk<.t`F(vk). Hence

for some z<_VAL(t,al,y) aj,y[k/z] I-,F(vk) and thus for some z<VAL(t,ai,y) ai,y[p/z] t-,F(vp).

ai+i,x(yp) (:tie least .-V L(t,al y) al, [p /Z] ;. (p)) Ergo: al+;

argument hides; much more genera.lityxthan explicitely, stated., The reader: nia amuse

him/herself by proving the following

i) - co and (x) ,thenuI -Vx (a(x)e= bc+ 1'+cs ))> 1:

ii) Let A(x)e then iA0+S 1PE e- V x (_ ( on(1t 0+E +6 )) ")
The. principle in- (ii) is the uniform Principle UREF(It0+HXP,1 j2). By an easy

my;-(ii)qdi

iii) I00+SUPEXP and IA0+521+UREF(Q,r12) prove the same theorems.

03 From ;Fc rr .tiona 1- to and back

e or 'softie_ p o l y r Q . o the fom Xn
_a --an

standard: Moreover n will always be standard. P { x } will stand for: some PI { k}, for -standard

n,,.

Let ,,L he a language .with finitely sytnb l . function. bois, coast :ts. Let L* be

the relational variant of L. I.e. L* has the same relation gym bois as,L; for eae nary function

symbol, f in L there is an n+1-ary;relation;symbot,1F in L*; for each constant cin I> there is a unary

relation symbol C in L*. L* has only relation symbols corresponding to relation symbols,
function symbols, and constants in L. It ,con vent here to treat constants as O-gay. function

symbols. So we dont have to mention: the case-of constants separately.
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Let PL be predicate logic in L and let PL* be th6,c`o .bspoh .iin,gtheory in Lam, where PL* is

predicate logic + Vx.... 3!y F(x,...,y) (for all F corresponding to f and c in L). To fix ideas we

schati dentit ules-'mod reader iswork with a'1Vatura Ieductiori System with-the, ordinary' y

free to substitute his or her preferred system (with cuts!)kwfor,ours. f?piedic± he/s'he will ffid that

the proofs go through with minimal changes. (The use of-schetriatie identify rules is an
unessential simplification: if jri&approofihour systeta tit c be transformed in siiriple way into

a <proof it'. i the corresponding system. ithk.Ifinitely x .anya;(concrete) identity axioms, with

n(n')_<P3 (n (it) } .) We assume that in. otar languages is a defined symbol.

We provide a translation (.)* from L to L* and a translation (i ! 1 * to L such=that IAo+S21

verifies:

i) PL--A t -.PL*H

ii) PL-B° r> PL*F-B

iii) PLH(A+-->A**)

iv) PL*t-(B+_ B°*)

Both translations will, commute with'the logical connectives. We, will first show that ato, prove

^(i)v(iv).tsuffices:to;show lin: l + 1):
i') PL-A
ii') PL*t-B PL-Bs°'k.

iii) PLH(A+-*A*°)

iv) PL*t-(B+->B°*)

Proof:
(i)" Suppose PL*E-A*, then PLF-A** and hence PPLH.A.

(iii)" Suppose PLE-B°, then and hence PL*E-B.

Note that by Parikh's Theorem, there are explicit bounds to the:proii?s whose existence is `claimed

in (i)-(iv . E. g,". the. n zmlaer` f symbols f the .PL* proof k#,,"bf-A* in (i) wi11 bounded by
P {n(it) }, where it is the PL-proof of e t.. f' e4iizrse ours }roofs rill ixpliclte1y` 3rovidep such

polynomials.

(.)° is defined as follows: replace in formulas A of L atorrls of the form F(,...,y) by f( ,..:)=y.

To define (.)*, we first have to define the function t[x] from terms wand variables x .such that

1~V(t): to formula not L* as follavus:. We assume that our. variables .are vt,v1 v2,.... Their
officiaLfor s4 v v0, 4 11 'v11, v1O0, ;.. x; really- inetavariables running

over the variables. Define for xe FV(t):

y[x]:=(Y=x)

f(tl,...,tn)[x]:=3xl...3xn(ti[xl]-n...ntn[xn]nF(xl,...,xn,x)), where x1,...xn are the first n
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))v{x} (in ascending order).

We estimate enumber f}symbols n(t[x]) in t[x] in terms of n(t) .and=ren( t) Our estimate will

have; the for K(n(t))+n(x)x; Iefha !e

n(f(tl;::.,tn)[x])sI (n(tl))±.. ± (;n(Trs))+3 (n f)t-..+n(x ))±.5:n+3- nkx).

(There rare:= n existential quantifiers,; -a. conjunctions, In braokets..corresponding to "these

conjunctions, n commas after V. ;Finally-there;.are 'F' and two brackets,

nce? it suffices: if K satisfgs

K(n(y))>n(y)+3,
K(n(f(tl,...,tn)))>K(n(t1))+...+K(n(tn))+3. (n(xl)+...+n(xn.))+5:.,h.+3

We prove first that for some standard s not depending on the ti:

n(xl)+...+n(xn)<_n(tl)+...+n(tn)+s.

Suppose FV(f(tl,...,tn))U{x}={zo,...,zm}, where for j<zk n(zj)<_n(zk). Clearly n(xi)<n(vm+i),

because xi will be vj for some. j<_m+i. Now (z0)±,..±;n(zrn=1)-<n(t) +n(tn), hence
m_n(tl)+...+n(tn). We have: n(xi)<n(vm+n)<2+entier(ag(m+n+1))., - ergo n (x l) +. o.+n(xn) <_

n.(2+ entier(21og(n(tl)+..e+n(tn)+n+1))). Because n is fixed, we-find. Ft m

n(xl)+:..+n(xn) < n(t)+...+n(tn)+s, for some fixed, standard s.. - . "., .

So we can, find . a.standard c such. that it is sufficient if:

K(n(f(t1,...,tn)))> (n(tl))+...+K(n(tn))+3., n(tl)+...+n(tn))+c
Clearly we can take X(n)°° P2{n ,. fr

How many symbols does it take to write down a witnessing sequence . for t[x]=A? The length of

would be Wi(t). Each item in, -wouls ,,be a tripel <t', ', > m oment's.ref1ection shows that
kn(t')<n( ')9.n( ');<n'(A'), ;n( ')cn{ )ti .l ea e xeach item in. cs...counts less symbols than

3;(F?n(t):}tom?) n > ....s

By inspection of our argument we see that in IAO+21 we can define (the arithmetization of) the

function kt,x.t[x] with Y-1 ?-graph and prove it to be total.

gng ()., as fellows::

(R(xt,:.;In))*:: w.her.,xl,. mare the =first n
ariabies ,not in FV(R(t ,tn.)) ..(in ascending :order).. ( is treated just as the°, other

relations.)

(.)* commutes. with the logical connectives and the quantifiers.

An inside view of EXP 30

variables not in

n(y[x])=n(y)+n(x)+3,

6 a A



Let its write=tx[y] for: 't[ ) [y(x}. The~ notion "tX[y]" is slightly more flexible than

to make some of the necessary,inductioris work.

7.3.1 Lemma (in IO®+521):
a) For all t and all z,z'e FV(t), z' substitutable for z in t[z]: PL*- b'y...3z' t(y.... )z[z'],

b) For all: to and alit ;t FV (t), for- alll z',u' such that=z' is substitutable for z -"-in t[zj, and such that

u' `is substitutable fof`ti in t[ir]
,}yam

.,.- _

PL*F- V y': .,z'u. (t(s,...)u[u}<_4z=u'))

` c) For all t and all ze FV(t) °for all u;`suehthat u is tbstitutalile for z in

PL*H Vb ,z;ii¢ (t(y, ),[n] t

Proof: We leave it to the reader to show that Vy...3z' t(y,...)z[z'], has proof it, with
n(it)er(n(t)}+q n(z'), where q is standard (c) iS an immediate consequence of (b).

We prove (b). Let's call the proof from tz[z'] and tu[u] of and -the° proof

from tZ[z.] ai d z=u of=tu[ii']: 3(t,z,u,z;u ).The proof is
by.,induetioi

<©n t. `The atomic case is

trivial.

To simplify inesentiall r let us suppose that t is of the form f(v,w) for certain terns iland w. So

for certain variables a,b,d,e: f(v w)z[z']- s.r3a,b (v[a]°nw[bi,(a,b;z )) a u u'j is 3d,e
(v[d]nw[e]AF(d,e,u')). Let a',b',d',e' be distinct variables not eurrttig in PV(t)v{ z',u' }, such

that a' is substitutable for a in v[a], b' is substitutable for b in w[b], d' is substitutable for d in

v[d},.e is substitutabl ftlr-oin (e]:`We t`an°arrange it so-that: n(s.'),n(b'),n(d'Y,r (e')`are smaller

than n(t)+k for some fixed standard k. (This can be seen by an argument analogous to the one for

estimating i(, )+ .+n(x ;)" above:)

: Now xl(t,z,u, tx')NWill Took roughly as follows: assume 3a,b(v[a]nw[17} ,F(a;l ,z`)) and 3d,e

`. (v[d}nw{]<F(d,e,un)). By two-3-eliiniiiations acid four r=eliminanons it rs` sufficient to prove

:. oururesult a[a'] l'') we{o'j F(ri` e" a[a'j and vd[d']- give by

14 k f 1, 1 1 y °7 P ') [: 1 b1 f-d , w [b ndf:we[e ]:§give .by fl(v ,o e b ,e
`b1`=e r'orrr a =d ,

.

=e ,

F`(at,b', F(.,% ,u=) e have: z =u

So for certain standard k,m,n,p:

n(r(t,z,u,z',u')) <- n((v,a,d,a',d'))+n(Ti(w,b,e,b',e'))

k.(n(v[°a)+n(w[b1)#ri(vCd `5+n(v [e})+

n(va_W-})+n(*Jb1 +n( d[d']`) of e[ "])) +
m.(n(a)+n(b)+n(d)±n(e)+n(a')+n(b')+ n(d')+n(e')) +

:p.(n(z')+n(u")) +n.`

Note that n`(a) t{{ii(t)},h(a')<P1[;ii(t)};--et6t te- ra. Moreover1n(v[a])<_P2(n(v)°}"+n(a)<P2{ii(t)},
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etcetera. Suppose that our estimate; has the form:

n(t)

we n(t) } .

we do 8. Assume Ba,b(v[a]nw[b]AF(a b,z')), z'=u'. By one elimination nd.t o =n-eli-

minations it is sufficient to prove our conclusion from va[a], wb[b ]° First

show: 3d' d'=a' and 3e e'=b'. By two 3-eliminations it is sufficient to prove our conclusion

from 1 1 1 9 1 1 9 1 1 1Va.[a ], wo[bF( 1,b1,z1), 4-4% 51? v.Frotn Ya'[. ] and d. =a1_... we get by
e(v,a,d,a',d'): vd[d].

Similarly we get We[e'] Clearly, F(d',e',u'). So by two A introductions

and two 9-introductions we find: 3d,e(v[d]AW[e]AF(d,e,u')).

As is easily seen we ,get the same _ estunate. as
1,l "If

7.3.2 Lemma (in
a), For all terms t,w of, L, for all variables =-x4ze with z FV V (w[t/y])u( ;} and

xe FV(t)u(FV(w)\{y}), x substitutable for y in w[z]:

PL*F- 3x(t[x]Aw[z],[x/y]) *4 w[t/y][z].

j ). ,For all formulas ,terms t and variables x-of ;,. such that t is substitutable for

that x is substitutable for y in A* and. FV(t)v(FV(A)\{y}°)

PIE* 13 x(t [x]AA * [x/y] )) (A}t/Y]) *

and such.

variables is. certainly fullfilled if x#z and x,z FV(t)uFV(w).

Proof: (a) Induction on w. Call the proof from right to left r1(wt,x,z), and the proof from left to

right ®(w,t,x,z). First the atomic case. There are three possibilities: w is a constant, w is a
wva fable not equal tv y, w is y. In ease w is a constant, say c, we have to shgw 3x(t[x]AC(z)) <-4

(z)..; 9 is trivial. By 7 3.1(a) n(r1) can, be estimated by: P3:.{n(t)°}+q (n(x)+n{z)), .for some

standard q. The case *hat w is.ra variable. notequai to y is so ar. If wV is LLy, wer;getl' (t[x].nx=z)

t[z]S Clearly by 7 ,3.1(b).. n(@) is estimated by P3 {,n(t) +r n(x)+n(z)) for r. For Tj

reason as-follows: Clearly 3x x=z. Suppose t[z] anal t[x], hence 3X(t[X]AX=Z).

By 3:-elimination we. can cancer,, the assumption, x=z. So n(r1) can be estimated by:
P3{n(t))+s.(n(x)+n(z)) for: standard s.

Suppose e.g. that w=f(u,v) for terms u and v: We have to.show at

3x(t[x]A3a,b (u[a];x/y]Av[b [x/y]AF(a,b;z))) -a e;g (u[t/y][e]Av[t/y][g]AF(e,g,z))

Let's first do il: Assume 3e,g (u[t/y][e]AV[t/y][g]AF(e,g,_z))., By one 3-elimination and two

A-elimations it is sufficient to prove our result from: u[t/y]e[e'], v[t/y]g[g'], F(e',g',z). Here
e',g'. are chosen in such a.µ ay that.e',g' F 1{w)QIFV(t)vb} -arid e` . s substitutable for e
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in u t/yj e]` and g' s =substitutable for in t/y] [g] By 7 3.1(c) ive iay conclude: u[t/3 ] ['e'] and

v t/y [g' .°As is easily seen the conditions of the induction hypothesis a°=re`satisfied for u t x,e', so

by r1(u t,x,e) we may conclude x(t[x ^ e'}[ jy]) Similarly: x(t[xjnu[g 1[X/Y]) . By two

3=el n`iiii andtwo n=ehmiilations' it is suffi'cieht'to prove our result frohi: t[x), u[e ] [x/y],

X[x']; v[g`]{x'/y]). Mere ` is°cht sen' as small asjpdssibie such that x' is substitutable for x in

t[x] and for y in v[g], x'oFV(w)uFV(t)u{x,z,a,b,e',g'}. By 7.3.1(b): x=x'. Henee t[x],
u[e'][x/y], v[g'][x/y], F(e',g',z). Clearly 3a e'=a and 3b g'=b, so by two 3-eliminations it is
sufficient to prove 'our result 'froth e'-a, =b; t[x] use ][x/y], e,[91 [x/y],' By

7.3.1(b) we get: t[x], u[a][x/y], v[b][x/y],

(u[a][x/y]Av[ [ V - /y]A-F(a,l z))).

so we may conclude: 3x(t[x]n3a,b

We turn to 8: suppose 3x(t[x]A a,b (u[a][x/y]AV[b][x/y]AF(a,b,z))). By several 3-eliminations

and n-eliminations it is sufficient to pr`ove-`our result` fromtX[x'j ua[h ][x'/y], vb[b'][x'/y],

F(a',b',z). Here a',b',x' are distinct variables such that a,b',x'eFV(w)uFV(t)u{x,z,e,g} and
- stitutable for xsiic`h that a 'is subs iiiiable for` a in u[a], ' is substitutable for, b in v[b], x` is sub

in t[x] and for y in u[a'] and v[b']. As is easily seen using 7.3.1(c) it easily follows`*'that:
u[a'] [x'/y], v[b'] [x'/y]. Clearly we may apply the induction hypothesis so by 8 (u,t,x',a') we

have: u[t/y][a']. Siii i i a r l `n [t/y][b' .'Clea'rly` a a'=e
& , g

g
b,

=g. So by two 3-eliminations it is

sufficient to prove our result from uut/y1[a'], V[t/y][b'j, F(a',b' z) By 7.3 -1 (b):

u[t/y][e], v[t/yt[g] F(e,g,z) and by as few- introductions we are done.

Let us first estimate the 'local' variables of these steps. 7de' treat one example. bnsider"et. We

demanded that e'eFV(w)u FV(t)u{x,z,a,b} and e' is substitutable for e in u[t/y][e]. Let

yi,...,yn be the free variables occurring in u[t/y]. It is easily'seen that n(y)= ' +ri(yn) ri(u)+n(t).

Hence by previous reasoning the length of the Vaiia les boiirid'by a quantifier in whose scope e

occurs is k So` e16a Ty vve -may choose, `<n(w)+h(i)+s for some

standard s. Moreover e.g. the step froni°'u[t/yje[e'1`to'ut/Y[e] cati be estidiated by:

P3 { n(u[t/y]))+m.n(e') <- P3 { max(n(w[t/y]),n(w)+n(t)) 1.

So we have for some staiitrd k

n(rl(w,t,x,z))Sn(71(u,t,x,e'))+n(rl(v,t,x,g'))+P3 { n(w).max(n(t),n(x)) } +k.n(z).

It follows that:

ITO1(W x;z)) (4(*-, ax n(t),n(`), .n(

A similar estimate holds=for 8°:"

(b) The proof is by induction on A. Call the proof from right tt left rj(A;t x) and the proof from

left to right O(A,t,x). The proofs for the atomic case are analogous to the case of f(u,v) in (a). We

get the estimmate: P4 [ n(A).t iax(n(t) n(x))) .F

e treat one.-'exaznple of tare induction step: the r-case, where A=(B->C
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Suppose ((B[t/y])*-+(C[t/y]*)). By 7.3.1(a) So it-is,suffi ent to, prove our desired
conclusion from t[x] Snppose,,(B[x/yl)*,, by 3-introduction: 3x(t[x]A(B[x/y])*). So by O(B,t,x):

(B{t/y])*.: and hence .(C.[t/y])*. By rl(C,t,x): 3x(t[x]^(C[x/yl)*),: soAt sufficient to prove our

conclusion f o tX[x'l, .( where x' ,FV(t)uFV(A[t/y])u{x),,x' substitutable for
x in t[x] and (C[x/y})* By 7.3.1(b): x=x' and hence: (C[x/y} *,,2Qur conclusion now easily

follows.

(O( x))+n( l(C,t,c))+P3 {n(A).max(n(t),n;(x)))
p 5 .

The other cases are similar, We find that both:. n(ij(A,t,x)) ands n(n(A ,t,x)) can

P4 { n(A).max(n(t),n(x)) } .

Now we are in the position to prove (i'),(ii'),(iii),(iv)

e- estimated by:

7..3 3 Theorem (in ®S21): ale: can transform each PL-proof n,eof A into an-.PL*-proof n*

Proof: Consider for example the step moving from. V y A to A[t/y]. This step is transformed into

the following reasoning: suppose. b'y A*. We show by 7.3.1(a) 3x t[x] and; from -th 3x
(t[x]'AA*[x/y]). Here xO FV(t)uFV(A) and' x, is substitutable .for y in A*. By 7.3:1 we can

conclude: (A[t/y])*. So the length of the transformed step will-be_.P4{n(A).max(n(t),n(x'))}

+k.n{x). We can.choose; x', such that n(%-')<_n(A).

Finally we define

if F corresponds to::f: (F(x1,..,y)) =(f(xl ,xn)=Y

if R does not. correspond to a .funct}on:symbol:. (R(x1

(.)*,commutes with logical connectives and quantifiers.

7.3.4 Theorem (in IOo+S2g): We can transform each PL*-proof, n* of B into -an PL-proof it

of B°.

Proof: We can simply follow tt* ttt nslation: We only have to add at some places the
(standard!) proofs, of statements -of the form b'y,...3!x f(y,...)=x. n(n) is linear in

n +): PLF-tt[x])°.[,t/x}
:.

Proof: The proof is by induction on t. Let's consider atypical step.a=Say t is of the f(v,w),

where v and w are terms. (t[x])°[t/x] will have the form: 3u,z (v[u]°A w[z]°Af(u,z)=t) (*). Clearly

(*) is immediate from (v[u,])°Cv/u]A( L l)'[w z]% f(v,w)=t, (v[ul)°[v/u]A.(w[z],)°[w/z]At=t.
So if we call our proof of (t[x])°[t/x]: n(t,x) we have:

of A* ..J't
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n( {x, } ). <_ .;n(n {:v, })+n( {;wz } 1 k ( E-r n(t[x]),.n(t) , `x.

< {;v,u })+n( })+a.n3(t).+F .n (t)+(c-k m n(x)).n(t +,d,

where n; ,a,b,c,d are :standard.

Now assume that n(n{t,x}) has the form G(n(t))+m.n(x).n(t), we find that it is sufficient that:

G(n(t)) <_ G(n(v))+G(n(w)+nr,n(urri(v7-:n(z)n(w},±a ni(t)+bri?(t)+cir(t)+d.

Note that n(u)+n(z)5n(t)+e, for certain standard e;and,that; n(v)±n( r)<_n(t) °hence:'

G(n(t)) <_ G(n(v))+G(n(w))+f.n3(t)+g.n2(t)+h.n(t)+i,

for suitable s.,tandardf,glii:.So clearly! ewe lnay take,G(x);F { x }

7.3.6 Theorem (in IAo+Q1):

Proof: Let Tl(A) stand for the proof of X** m A Anddlet:-8 (A),,stand for the :proof of A ,,,from

A*°. Let's first consider the atomic case: we have:

, R(ti, ::;tn)*`,= xY.,-_ ,xn.(ti[x1 `° .** 1 n

Tl(R(ti.... ,tn)) looks as follows: first we have proofs nj of t ,n): A number of

simple steps brings us to: (ti[xi])'[t rxl] ..^(tnIkn] '[tn/xn (t ; .,tn)land from there to:

3xi,...,xn(ti[xi]°^...^tn[xn]' t(xi;s s, n));. Note +n(x =..)+...+n(tn),

n(nj)<_G(n(tj))+m.n(xj).n(tj), n((tj[xj])°.[tj/xj])<_ p.(K(n(tj))+n(xj)).n(tj) for some standard p.

13..:.tn))) earl be estimated by'Fro these }obsevatios it: is mediate that !n(i(R(t

8(R(t1,.. oks as follows: first we have',proofs 9 of 0=1 n). Then we

have proofs Xj from (tj[xj])°[tj/xj1 and (tj[xj])° to xi=tj. Assumee

move to x =.,tn[ cn) and in£e e.R(ti,£.., ,). Finally apply the el rt irration

Rule.

Note that n(nj) { n(tj) }+m.n(xj).n(tj). n(kj) is like thd proofs 731(b), b .i- standard factor

longer because of (.)°: so it will be Sm.P3 { n(tj) } W.irioment's reflection will

convince the reader that n(8(R(ti,...,tn))) can be"estimmat tti, .,tn))=} ,,.

Consider a typical step: e.g tor(. - i ). ell ve for sdzne°ast ndard p ti:

It follows that we can estimate: n(rt(A)) {.n(A) j,. n(6(A)j {

.; Theorem (B B

Proof: The effect of (.)°* is just to replace atomic subformulas of the form F(xl,...,xn,y) by
subformulas of the form 3-ui,...,un,u,v(x1=uiA...^xn=un^F(u1,...,un,u) =v a We"have
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a

n(71(C-+D))5n(9 (C))+n(B(D))+p.(n(C)+n(D))+q,

n(6 (C-+D))Sn(71(C))+n(8 (D))+p.(n(C)+n(D))+q.

(in IOo+S21):



n(ul)+...+n(un)+n(v)<n(F(xl,...,xn,y))+s%fgr`some: standard s. It follows that the proof it of the

equivalence of ,y>-.;and. _ul ...;uru,v(1 1 nxn=unnF(ul., ..,uw;u)ny=VAu=v)

satisfies: n(7t)= Pl { n(F(xl,...,xn,y)). Let r(B) stand for the proof of rB° - from B and lot 8(B)

stand for the proof of B from B°*, we find e.g. for some standard p,q:

n(1(CD)En(8 (C))+n{(,D)+p:n(C)n(I1+q
ji +q.d(8 (C= D))en(q(C))+n(8 (D))+1.(n(C)+ (D ))

It follows- 211 n(8(B)) 2{n(B):}

Let W be a theory (whose `lang iage. ay:eontainnfunction symbols) in a language L; W* be the

theory in L* axiomatized by PL* plus the *-translations. of the non-logical-axioms of W.

E v i d e n t l y W* is
A,b axiomatized. By the above we have.,

7.3.8 Theou°erh E A*

Let U and V be theories in languages L and N. Let K be an Interpretation of N* in L. We define:

ProvK:U ® T s .
,K:U SCI :. cx p ofB(p Y :

:, . t b'x Sent (I'rovV(x) ov.& U .

We,.oan,;vie ii () as an,,.interpretation of.L*-i L; by taking as=its (AX x<). If K is an

interpretation of "N* in L, then K is the interpretation of N*, in ,L , with <= ( (x,..))I*
((R(x,...))K)* and SK*(x)=(&K(x))*. Similarly, when M is an, interpretation of N* in L*, then

is,the. interpretation:-of N .in L with eR(x ..))M`,= ((1 0 encl. .(x))° '

=. 3 .. .T eoreBn Let K,M. be- reetparameters- ranging over in

of N* in L*. For every 4e{a,s,t}:
i) ISO+Sl l -

V

iii) ...1L O+Q-fI- Vi K* U* V1

iv) + 1 11TP",1.U,*V*rN

Proof: Note that (i)$fc lbws from .(iv)° d4the that :U=* C>_ U °whor 3 is the identity

interpretation. We treat.-(iii) in-case~4= an cither,ca5es and (ii) and (iv) to the reader.

Reason in IDO+S1. Suppose Let aRbe ,given and let b be the

bound for the U proofs.of the have.I a lendo such that
Proofu*(q,xK*)). It is easy to see that xK*=(xK)*. Moreover as we have seen if p is a U-proof of

xK, then there is a U*-proof q of (x K)* wit lg1<P(Ipl),fbr sore %'andardzpolynomial P.=So we

can take c:=exp(P(Ibl).

1~;ully.analogous.$

An inside view of. EXP

that:

av*ProvU(yK).

ii) IAO+01i-- K:Ur-> 4V t-*

H

"-"
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