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AN INSIDE VIEW OF EXP
or
The closed fragment of the provability logic of
1A+, with a propositional constant for EXP

Albert Visser

ABSTRACT: in this paper I give a characterization of the closed fragment of the provability logic of IA+EXP
with a propositional constant for EXP.

1 Introduction

Paris & Wilkie, in their paper On the scheme of induction for bounded arithmetic formulas (Paris
& Wilkie[87]), paint a gripping picture of the interrelations between 1A+, and IA,+EXP. Two
of their most memorable results are their Corollary 8.14: IA;,+EXPrCon(IA;+£2,), and their
Theorem 8.19: IA ;+EXP+Con(IA,+£2, )i*Con(IA ) +EXP). In this paper I give a generalization of
theorems in this style. Consider the closed modal language generated by L, T, the propositional
connectives and O, with an additional logical constant EXP. We interpret the propositional
constants as themselves, O as provability in IA;+€2; and EXP as the arithmetical axiom EXP. In
this language Paris and Wilkie's results can be reformulated as IA,+£2, #*(EXP—< T) [as usual
< abbreviates =0-] and IA;+Q, ¥ ((EXPAC T )—OGEXP). In this paper I characterize all
principles of the closed modal language under the given interpretation that are provable in
IA,+£2;. One special case of our result of a distinctly different flavour than the theorems of Paris
and Wilkie discussed above is: IAj+Q, (O O T >OEXP).

Our result can be described as a solution of a variant for a special case of Friedman's 35th
problem. Friedman original problem is to give a characterization of the formulas of the closed
fragment of the language of modal propositional logic which are provable under the standard
provability interpreta- tion in reasonable arithmetical theories like PA. Friedman's problem was
solved independently by van Benthem, Boolos (see Boolos[76]) and Magari (see Magari[75]).
Their result works (modulo a slight refinement in case a theory proves its own n-iterated
inconsistency for some n) for all Alb- axiomatized theories containing a sufficiently large
fragment of IA;+(2, or even better Buss's Szl. The reason that the result goes through so easily
in weak theories is that it doesn't require Rosser style arguments: to formalize Rosser style
arguments one seems to need EXP. In contrast Solovay's proof of his arithmetical completeness
theorem for Provability Logic doesn't work in IA,+€,. (For an elaboration of this theme see
Verbrugge([88,89].) A solution of Friedmans problem for the case of Heyting's Arithmetic was
given in Visser[85]. ‘

Hijek and Svejdar in Hajék & Svejdar[198?] prove a characterization of the closed fragment of |
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(all extensions of) a modal system ILF. ILF is a system of interpretability logic: the logic one gets
by adding an operator & for relative interpretability to the language. For a given arithmetical
theory T, AP B means: T+B is relatively interpretable in T+A. An immediate consequence of
Hijek and Svejdar's result is, that their characterizion describes the closed fragment of all logics
for interpretability and provability valid in Alb-axiomatizcd extensions of IA;+Q, (again modulo
a slight refinement in case T proves its own n-iterated inconsistency). In section 6 of this paper I
prove a similar generalization of our main result.

The contents of the paper are as follows: in section 3 the necessary conventions and elementary
facts are introduced. Section 4 contains our main technical lemma. The lemma is a variant of the
main lemma of Visser[90]. It is the result of formalizing a model theoretical argument due to Paris
and Wilkie. In Section 5 our main result is proved and section 6 gives the generalization to the
language also involving interpretability. Section 7 is an extended appendix containing sketches of
the calculations needed to provide the estimates that are essential for the proof of one of the most
important lemmas.

I thank the anonymous referee for spotting a gap in my earlier presentation.
2 Prerequisites

We presuppose some knowledge of either Boolos[79] or Smoryriski[85], and of either Buss[85]
or Paris & Wilkie[87]. At a few places results from Pudldk[85],[86] and from Visser[90,89] are
used.

The reader who is not familiar with Buss[85] or Paris & Wilkie[87] and who is interested in the
modal material could try to understand the statement of lemma 4.1 and then proceed immediately
to section 5.

3 Facts, notions and conventions

In IA;+€2, we can define all the apparatus of coding needed for the purpose of arithmetization.
See Buss[85] or Paris & Wilkie[87]. The aim of this subsection is give a few definitions and to
state a few elementary points.

J.H. Bennett shows that there is a A,-formula exp(x)=y, such that IA, verifies
((exp(x)=yAexp(x)=z)—>y=z), exp(Q)=1 and exp(Sx)=2.exp(x). It is easy to see that IA, verifies
such familiar facts as: ' -

((x<yaexp(y)=z)—3Ju exp(x)=u),

((exp(x)=u A exp(y)=v) — exp(x+y)=u.v .
(Similar remarks hold for xY.)
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We define Ixi:=entier((log(x+1)), x#y:=2'x'-'y', o, (x):=x#x. €2, is the axiom "®, is total". As is
easily seen IA, does not prove Q,. IA;+Q, is just right for treating syntax: e.g. Q, guarantees
that substitution of a term in a formula is possible.

We will code strings of symbols in an alphabet adequate for the language of arithmetic, with some
extras like several kinds of brackets. The function n(x) giving the number of symbols of the
string coded by x is-Ay-definable in IA+€2,. We have: n(x)<Ix| and IxI<k.n(x) for some standard
number k.

To every number x we can assign an efficient numeral num(x): assign to 0 and 1 (the codes of ) 0
and SQ; if we have assigned to x#0 numeral t, assign to 2.x: SSQ.t, and to 2x+1: (SSQ.t+S0).
Num(x) is A,-definable in IA+€2,. We have n(num(x))<k.Ixl, for some standard k.

A crucial fact about adding functions to IA is the following:

Theorem: (Gaifman & Dimitracopoulos[82]): If f has Aj-graph than IAj+"f is total and weakly
monotonically increasing"HI1Ay(f).

Here Ay (f) is the class of (translations of) formulas with only bounded quantifiers, where f is
allowed to occur in the bounding terms.

It follows that IAj+Q, 1An(®, ), so in 1A;+£2; we can work as if ®; were a function symbol in
the language.

A sequence of syntactical objects (like formulas or terms) is coded as the string describing the
sequence as a syntactical object: e.g. <0=0,L> is coded as =0 LTS A sequence of
numbers is coded as the sequence of the numerals of those numbers, e.g. <0,2,3> is coded by:
r<1"‘num(0)*':"“num(Z)"‘':"“num(3)*r>1. Length(x), the length of x, considered as a sequence is
Ay-definable in IA;+€,. Note that if x is a sequence of numbers and z is the maximum number
occuring in x, then n(x)<length(x).(n(num(z))+2)<k.length(x).(lzl+1) for some standard number
k.

3.2 Theories and Provability
Our basic theory in this paper is IAj+Q,. It is (modulo some translation work) the same as
Buss's theory S, (see Buss[85]). The language of IA,+£2, has constant 0 and function symbols

S,+,. . Sometimes, especially in subscripts, we will call IA(+Q, simply Q. We will also be
looking at IA+EXP, which we will call sometimes -if no confusion is possible- simply EXP.
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We will assume that the axiom-set of a theory T is given by a Alb-predicate (see Buss[1985]).
We take this predicate to be part of the identity conditions of the theory. Proofy is the Alb proof
predicate based on the predicate defining T's axiom set.

We write par abus de langage 'Proofr(u, 0(x,,....x,) )' for: ProofT(u,r(p(Xl,...,Xn)’), here:

i)  all free variables of ¢ are among those shown.

ii) r(l)()'<1,...,>'<n)1 is the "Godelterm"” for ¢(x,,...,x ) as defined in Smoryfiski[85], p43. Here
we use instead of the usual numerals the efficient numerals of section 3.1, so that:
IAg+Q -V X Ty 0% X)) =Y.

070X, 5-..X,) Will stand for: Provp("9(X,....X ).

Occurrences of terms inside O should be treated with some care. Is Or(¢[t/x]) intended
(Op0(x)[t/x]? We will always use the first, i.e. the small scope reading. In cases where:
proves that t is total and Urt=x—0y;t=X, the scope distinction may be ignored within U w.r.t.
Oy. We have: Uk (Oy&(x))[t/x] & Oy (¢[t/x]).

We will use the same convention for occurrences of variables inside the interpretability predicate.
For some uses in section 4 our conventions are not sufficient. Rather than introducing a heavier
notational apparatus I prefer to explain what is going on there in words.

Some alternative notions of provability will be used in this paper: first we write Tabproofy;(x,A)
for "x is a tableaux proof of inconsistency from a finite subset of the axioms of U and —A". Here
tableaux proofs are defined as in Paris & Wilkie[87]. Define Ay;A :¢ Jx Tabproofy;(x,A).

Let v(A) be defined as follows: V(A):=0 if A is atomic, V(AAB):=v(AvVB):=v(A—B)
:=max(V(A),v(B))+1, vV(A<B):=max(v(A),v(B))+2, V(VxA):=v(IxA):=v(A)+1, V(—A):=Vv(A).
(Note that our v modulo the conventional translations of the connectives coincides with
Schwichtenberg's .| (see Schwichtenberg[77], p871).) Let p be a proof. Define v(p):=
max {v(B)IB occurs in p}. Put:

Proofy; , (p,A) ¢ Proofy;(p.A)Av(p)sx,

Oy xA < Jp Proofy; ,(p,A).
Our notion of restricted provability is a little bit more flexible than that of Paris & Wilkie[87], but
serves the same purposes.

3.3 Cuts
We follow the discussion of cuts of Paris & Wilkie[87]. For reasons of convenience we use a

slightly idiosyncratic notion of cut: a cut I is given by an arithmetical predicate, is downwards
closed w.r.t. the standard ordering of the natural numbers, is closed under successor, addition,
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multiplication and ,. The attentive reader of Paris & Wilkie[87] will easily see that our restricted
notion is not really restrictive, because any cut in the usual sense can be shortened to a cut in our
sense. We will say that I is a T-cut if T proves the arithmetization of "I is a cut".

We write Al for the result of relativizing the quantifiers of A to I. We will see in section 3.5 that
relativization to a cut can be considered as a special case of interpretation. Put: EITIA:=(DTA)I.

3.4 Some crucial facts
We state some of the vitally important arithmetical facts needed in this paper.

3.4.1 Fact: Let A range over (codes of) sentences of the language of arithmetic, we have:
1A, +Q,F VIe Q-cuts VA (OqA — DQAI).

Reference: See the proof of Corollary 7.5 in Paris & Wilkie[87]. o
3.4.2 The Big Outside, Small Inside Lemma: IAy+Q,+ VIe U-cuts Ju Vx Oy xel.

Elaboration: The idea is sketched in the proof of Lemma 8.1 of Paris & Wilkie[87]. Suppose p
is the U-proof that I is a cut. We find that we can take u:=v(p). Let x be given. The U-proof q of
xe I can be estimated by Iql<Ixl.(alpl+bixl), where a and b are fixed small standard numbers. O

Define exp(x):=2%, itexp(x,0):=x, itexp(x,y+1):=exp(itexp(x,y)). The graph of itexp can be A;-
defined in IA,+€2, in such a way that the recursive clauses for itexp can be verified.

3.4.3 Facts (Pudlak):
1) 1A, +Q, - Vy ( (itexp(y.2) exists) = Jle Q-cuts O, Vxe I (itexp(x,y) exists) ),
i) If the language of € contains the connective <>, then:

1A,+Q, - Vy ((exp(y) exists) = Jle Q-cuts O5Vxe I (itexp(x,y) exists) ),

Proof-sketch & Remarks:
Part of the idea of the proof can be found in the proof of Lemma 8.1 of Paris & Wilkie[87]. We
need however careful estimates on cuts as given in the proof of Lemma 2.2 of Pudldk[86].

A brief sketch: first extend the language of IA;+€2; with a predicate variable X. Let ®(X) be the
formula: Vy(exp(y)e X—exp(x#y)e X). It is easy to find an IA;+€Q,-proofs n(X) of (X cut —
O(X) cut) and ='(y,X) of itexp(x,y+l)e X from the assumption itexp(x,y)e ®(X). Let
[:={xIx=x}, I ,:=®(I,). Note that IL,,,/=2.IL 14k, for some standard k. So IIyI$m_.exp(y)+g,
for standard m and n. So the code of Iy is < p.(itexp(y,2)#g) for some standard p,q. Let 7, be the

proof of {xIx=x} cut. Then the proof 7, of (I, cut) looks like this: '
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Tg> T(Ig)s-..,T0( Iy-l)'
Note InyISy.ln(Iy)I+gSy.(§.IIyl+;)+g$Q.y.exp(y)+g for some standard r,s,t,a,b,c. So the code of
T, will be < itexp(y,2)#exp(y)#d for some standard d.

Consider the following proof n’y:
Xe Iy,...,itexp(x,Q)e Iy,n'(I _1)s---T(Ip),itexp(x,y) exists.
Clearly the code of n'y can be estimated in a similar way as the code of Ty

These estimates suffice for the proof of (i). To get the sharpening (ii) it is sufficient to reduce the
double occurrence of X in ®(X) to a single one. This can be done using a trick due to Ferrante &
Rackoff. In our case this trick works out like this: let F(x,y,z):=exp(x#y) if z=0,
F(x,y,z):=exp(y) if z#0. Take ¥(X):=Vy3z(F(x,y,z)e X<>z=0). It is easy to see that IA;+Q,
shows O(X)<>'¥ (X). The rest of the proof is similar to the one above, but with better estimates.

Note: it is essential for estimates in (ii) that our language contains <. I don't know of any way to
get rid of this restriction for a standard language. One strategy to get the efficient definitions
would be to enrich the language with A-abstraction and represent formulas by acyclic graphs,
which are not necessarily trees. (In this way we get a syntax which allows sharing. See
Barendregt &alii[86] for a treatment of syntax using graphs in a somewhat different context.)

Since it is somewhat unpleasant to work in a language with &> we will use (i). O

3.4.4 Fact:

i) IA,+Q, - Vx,y ( (itexp(y,2) exists) — Og (itexp(x,y) exists) )

i) If the language of IA)+£2, contains the connective <>:
IA+Q, F Vx,y ( (exp(y) exists) — O (itexp(x,y) exists) )

Proof: By 3.4.2, 3.4.3. o

Our next fact is a direct adaptation of Pudldk's strengthening of Godels Second Incompleteness
Theorem in Pudldk[85]. Let's say that a T-cut I is T-reasonable if according to T we have enough
instances of Aj-induction in I to verify the various metamathematical principles formalized by
Paris and Wilkie in IA;+€Q,. Clearly every T-cut can be shortened to a T-reasonable T-cut.
Moreover if T proves 'enough'’ instances of IA, then automatically every T-cut is T-reasonable
(by downwards preservation of I1,-sentences).

3.4.5 The Strengthened Lob's Principle (SLP): Let T extend Q. We have:
IA(+Q; + for all T-reasonable T-cuts I O(O;/A—A) —» OA

Proof: Reason in IA;+€,: Let I be a T-reasonable T-cut and suppose DT(DTIA—>A). By the
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Diagonalization Lemma we can find a sentence A such that O(A < (DTIX—aA)). We also have
0,0 /A (@ A—A)) and hence: OO0 - O(@fA—A)) (because in I we have 'enough'
axioms of IA;+Q;). Moreover: UT(DTIX—)D TIDTIK). Ergo DT(EITIK—)DTIA) and hence
DT(DTI?»—-)A). We may conclude: OpA. It follows that for some x OProof(x,A). By 3.4.2:
Opxe I, hence DTDTIX and so: OA. o

3.4.5 Cut Elimination Theorem: Let p(p) be the cut-rank of proof p, as defined in
Schwichtenberg[77]. For some standard k, we have:

IAG+EXPHVx,p,A (Proofy;(p,A)Aitexp(p,2.p(p)+k)=x) — Ip*<x Tabproof(;(p*,A).
Discussion: In Paris & Wilkie[87] a theorem like this is claimed twice. First on page 293 in
effect our 3.4.5 is given with the restriction that p(p) is standard. Secondly there is lemma 8.18.
This, however, uses an estimate that is to large for our purposes: we need that the iteration is of
order 2.p(p)+k rather than of order p. In appendix 7.1 we sketch how the proof of cut elimination
in Schwichtenberg[77] should be adapted to get our result. o
There is an IA+EXP-cut 3 such that IAj+EXPHVxVye S itexp(x,y) exists. We have:

3.4.6 Fact: IAj+EXP-VAVxe S (Oy A = AyA).

Proof: Immediate by 3.4.5 and the fact that p(p)<v(p)+1. Note that A need not be in 3! O

3.4.7 Reflection Principle I: For all formulas A(x)e 1,
IA+EXPHY x( AgA®) — A(X) ).

Discussion: This is lemma 8.10 of Paris & Wilkie[87] formulated for a functional language. In
appendix 7.2 it is shown how to adapt the proof from Paris & Wilkie[87] for this case. O

3.4.8 Reflection Principle II: For all formulas A(x)e IT,:
IAG+EXPHVxVye S(Og A = ARX)).

Proof: Immediate by 3.4.6 and 3.4.7. Note that x need not be in 3.
3.5 Interpretability

Consider two languages L and N. We assume for the moment N is relational, i.e. it contains no
functionsymbols or constants.

Interpretations are in this paper: one dimensional global relative interpretations without parameters
(for a discussion see Pudlak [83] or Visser[89]). An interpretation M of N in L is given by (i) a
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function F from the relation symbols of N to formulas of the language of L and (ii) a formula d(a)
of L having just a free. The image of a relation symbol has precisely a,,...,a, free, where n is the
arity of the relation symbol. The image of = need not be a,=a,. The function F is canonically
extended in the following way: (R(bl,...,bn))M:=A(b1,...,bn), where A=F(R). (To make
substitution of the b's possible we rename bound variables in A if necessary. In fact it would be
neater to set apart bound variables for the F(R) and for & that do not occur in the original N) (WM
commutes with the propositional connectives. (VbBYM:=V b(§(b)—BM). Similarly for 3.

We can easily extend (.)M again to map proofs %t (from assumptions) in N to proofs M from the
translated assumptions in L in the obvious way. As is easily seen for a given interpretation M the
lengths of the translated objects are given by a fixed polynomial in the lengths of the originals.
The graphs of BM (considered as a function in B and M) and of 7™ (considered as a function in
and M) can be arithmetized by Alb-formulas in such a way that the recursive clauses are verifiable
in IAy+Q,. Using the polynomial bound on the lengths of the values it is easy to verify that
IA,+Q, proves that these functions are total. (This is verified in detail in Kalsbeek[89].)

The demand that N is relational is unnecessarily restrictive. To extend the notion of interpretation
we employ certain standard translations from the language with function symbols to an associated
relational language and back. The main problem is to see, whether the obvious properties of these
translations can be verified in IA;+2,. The details of working with these translations are given in
appendix 7.3. In the main body of the paper we will simply ignore the subtleties involved in
going from functional to relational and back.

Consider theories U (with language L) and V (with language N). What does it mean to say that V
is interpretable in U via M? I think the obvious definition is this: for every Be a.y; there is a proof
in U of BM. (I assume in this discussion that we are dealing with sentences, in the case of
formulas one should consider: (5[B]— BM), where 8[B] is the conjunction of 8(b)'s, for all free

variables b of B.) Given this definition the next step is to show: if V is interpretable in U viaM
and if V proves C, say by m, then there is a proof n* in U of CM. Roughly * is t™ with proofs
of the translated T'-axioms plugged in at the relevant places. Now here is a problem: in a theory
like IA;+Q, we cannot exclude that the proofs of the translated V-axioms are cofinal in the natural
numbers. In other words we cannot prove that there is a bound for these proofs. The axiom that
would provide such bounds is ¥, -collection. (So we would get this basic property in BE,+Q,,
where BY,:= IA;+X,-collection.)

We evade the problem by making a definitional move. We change the definition of interpretability
in such a way that the basic properties we want are guaranteed even in IA;+Q,, but also in such a

way that our definition and the usual one collapse in the presence of BY,,+Q,.

Define (Vx3y)*A(x,y) by: VudvVx<udy<vA(x,y). Similarly for more variables. We also write:
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(Vxe adye B)*A(x,y) for: VudvVx<u(xe a—3y<v(ye BAA(X,Y)))
Note that if (Vx3Jy)*A(x,y) and (Vy3z)*B(y,z), then: (Vx3y,z)*(A(X,y)AB(y,2)).

Define:
KUP>,V o Vxe aVProvU(xK).
KUV o (Vxe aVE!p)*ProofU(p,xK).
K:UP>V & Vxe Senty(Provy (x)—Provy;(xX)).

Our first notion is axioms interpretability; our second notion is smooth interpretability, our third
notion is theorems interpretability. Axioms interpretability is the naive notion. One can easily
show that in BX,+Q, both smooth and theorems interpretability are equivalent to axioms
interpretability.

For our purposes both theorems interpretability and smooth interpretability are good choices. So
by interpretability we will simply mean either theorems or smooth interpretability.

K:UPV can be arithmetized in such a way that K occurs in the arithmetization as a number, so it
is possible to quantify over K in the theory. Define:

uev = KK UV

KAAP B = K:(U+A)> (U+B)

APLB = (U+A)>(U+B)

U=V = UBVAVEU

A=;B = (U+A)=(U+B)

In Visser[90 or 89] It is shown that the following principles are valid in any sequential theory U
extending IA+€2,. (Here 0:=0y, B:=y;.)

L1 FA = FOA

L2 + O(A-B) —» (DA—0OB)

L3 ~ OA —» OO0A

L4 + O(0A—>A)—>OA

J1 + O(A—-B) - A>B

J2 F (ABBABP>C) - ABC

I3 ~ (AB>CAB>C) — (AvB)>C
J4 HAPB - (CA—-COB)

J5 H OAPA

w F APB — AB(BAO-A)

The principles L1-J5 make up the thedry IL. IL+W=:ILW. (In Visser[89] it is shown that this set
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of principles is incomplete for interpretations in any Alb-axiomatized theory extending IA,+£2,.)
4 Doing some simple model theory in IA;+Q;

In this section we formalize a model theoretic argument from Paris and Wilkie[87]. The result will
be our main technical tool in sections 5 and 6.

4.1 Main Lemma: For every A(x,y)e A, with only X,y free:
A+, (VIe Q-cutsO pdxe I Vy AX,y))=q(EXPAIxVy A(x,y)).

So in more traditional terms this lemma states that IA,+€, verifies the following:
1A,+Q, +V1e Q-cuts Con(IA)+€2, +3xe IVyA(x,y))
is equi-interpretable with
IA(+EXP+ IxVyA(X,y).

Proof: Some details of the proof not given here are presented in Visser[90]. Let me first remark
that it is sufficient to prove our theorem for axioms interpretability: by Parikh's theorem we
automatically will have a bound on the length of the proof of the interpretation of an axiom C,
which is given by a polynomial in the length of C. The presence of this bound is sufficient to
guarantee both smooth and theorems interpretability (see also Visser[89]). We reason in IA;+Q,.

"B>" Let J be a (standard) Q-cut such that Oq(Vxe J itexp(x,2) exists).

Reason in IA;+Q; (so this is really in IA;+Q, in IA+€Q,):
Suppose that for every Q-cut I: & dxe IVy A(x,y). By 3.4.3:
VueJ Jle Q-cuts O(Vve [itexp(v,u) exists).
It follows that: Vue J O o3x (itexp(x,u) exists A Vy A(x,y)). Let ¢ be a new constant and let
V:=IA,+Q,+Vy A(c,y)+{itexp(c,u) exists | ue J}. As is easily seen V is consistent.

We want to formalize the following more or less trivial model theoretical argument (keeping
in mind that model=interpretation). For the moment read '@’ for J. Pick a model K of V. Say
D is the domain of K. Let D*={de DI for some ne ® KkEd<itexp(c,n)}. Let K* be the
restriction of K to D*. Clearly K*=EXP. Because the IAj-axioms are IT: K*=IA;
similarly K*=Vy A(c,y). We may conclude that K¥=IA +EXP+3xVy A(x,y).

We formalize the Henkin construction to produce an internal model K of V.
We proceed as follows: first define the usual Henkin tree for formulas in the language
extended with Henkin constants. The formula treated at depth x will be precisely the formula

with code x (if there is such a formula). So, roughly, if G is in the tree (o) A tells us whether '
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we want A or not. Some care should be taken to make the Henkin constants not too big. We
pick the leftmost path 7 in the tree. We cannot prove that our path is infinite in the usual
sense, but we can produce an Q-cut I such that for each x in L, there is a sequence in 7t with
length x. Without loss of generality we may assume that 1,<J. Let K be the set of formulas
given by elements of & with length in I;. Note that if ce &, and if A 'occurs' in ©, then
A<lole I, hence A€l It follows that K& I,. Let D be the set of Henkin constants in ;. It
can be arranged that if (the code of) 3xB(x) is in K and b is the Henkin constant of 3xB(x),
then b is in D. We can show: Vxe [ Provy(x) — K(x).

We use d,d, e,.. to range over D. We write e.g. K(B(d,d")) for K(b(d,d")), where b(d,d’) is
a term for: the code of the sentence obtained by substituting the Henkin constants coded by d
and d' for u and v in B(u,v). We write for x in I e.g. K(C(x)) for K(c(x)), where c(x) is a
term for: the code of the sentence obtained by substituting the efficient numeral of x for u in
C(u).

K is one form of appearance of the 'model K' we are looking for. Its other form of
appearence is as an interpretation (.)K. The domain of this interpretation is going to be D. Let
R be a relation of the language of V, we have: RK(d....) :& K(R(@,...)). For arbitrary
formulas B(d,...) BK(d,...) is defined as usual. For vividness we will write KE=B(d,...) for
BK(d,...).

As usual we can show Vx K(conj(x,y))>(K(x)AK(Y)), etc. . By an external induction we
can show:

o For d,... in D: K(B(d,...)) & KEB(d,...).

More on the meaning of * and its proof below: see the discussion on **.

Finally we can define a homomorphism f from I to the natural numbers of the 'internal
model' K. Consider x in I, f(x) will be the code of the Henkin constant of Fu u=x'. We will
have: K(f(x)=x). We can arrange it so (by shortening I, if necessary) that the range of f is
downwards closed in K.

Let c* be the Henkin constant of 3x x=c. We have K(c*=c). Moreover: Vxe [0 (itexp(c,x)
exists), ergo Vxel,K(itexp(c,x) exists), so Vxe I, K(itexp(c*,f(x)) exists). We may
conclude: Vxe I, KE(itexp(c*,f(x)) exists). Let D*:={de DIdxe [ KFd<itexp(c*,f(x))}.
Clearly: c*e D* and Vde D*3Jee D* KF exp(d)=e.

Let ()K" be like ()K exept that we use D* instead of D. We write for d,... in D*:
K*=B(d,...) for BK*(d,...). Because the graph of exp is A, it follows by a simple argument
that K*=EXP. Moreover KEVy A(c*,y), A is A,, hence K¥*=Vy A(c*,y) and thus
K*E=3xVy A®X,y).
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Finally we have for all codes z of instances Z of A,-induction: Onze I and DgProvy,(z), hence
0oK(2), so On(KFZ). Because these Z have I1, form we may conclude: On(K*EZ).

Let's look at this last argument a bit more carefully. As is well known (see e.g. Paris & Wilkie
[87]) the proofs of ze I(;l and I—Provv(;f can be explicitily bounded by terms in z involving the
usual arithmetical operations and @, (®,-terms for short). (A moment's reflection shows that I is
given by a standard formula.) Hence the proof of "K(2)' can be bounded by an ,-term in z.

Next we move to Oq(KFZ) using (momentarily confusing formulas and their codes):

oy vCOg( Vd,...eD (K(C(d,...)) & KFC(,...)) ).

We give the proof for the language without <>, and discuss an alternative strategy for the
language with <> afterwards.

Let's call the Q-proof of K=C(d,...) from assumptions d,...e D and K(C(d,...): n(C). Call the
Q-proof of K(C(d,...)) from assumptions d,... D and K=C(d,...): 6(C).

To prove ** we use A(®,)-induction, which is available in IA;+Q,. To do this we must bound
the n(C), 8(C) with w,-terms in C; in other words the lengths (=number of symbols) of these
proofs should be bounded by a polynomial in n(C), i.e. the length of C. Let's call the length of
the N(C): A(C); the length of 8(C): k(C).

I consider a specific example: the relative estimate of A(C) for C=(F—G). To construct 1(C) we
give proofs n(C), ®' of respectively C=impl(F,G), and Vx K(impl(x,y))>(X(x)—>K(y)). The
length of ®(C) is polynomially bounded in n(C) and the length of &' is standard. Now n(C) looks
as follows:

n(C) ® KF-G)

oF)D KF)—-K(G)

nG)
1
K=FE-G)

Here the 1 indicates the cancelation of the assumption KF. We find for some standard
polynomial P: A(F—>G)<k(F)+A(G)+P(n(C))

For each connective we find such a polynomial. Similarly for x. Let Q be a polynomial that
majorizes all polonomials corresponding to the connectives for both A and x. Noting that
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n(F)+n(G)<n(C) it is now easy to show that: A(C)<n(C).Q(n(C)), e.g. in the case considered we
have e.g:
MO<k(B)+MG)+Q(n(C)<n(F).Q(n(F))+n(G).Q(n(G))+Q(n(C)=(n(F)+n(G)+1).Q(n(C))<
n(C).Qn(C)).

In case the language contains <> this argument doesn't work since N(F), 8(F), N(G), 6(G) all
occur in e.g. N(F<>G). This spoils our estimate. The alternative strategy is this: suppose we have
proofs &, ® of K(F)«>KFF, K(G)«KkFG. Prove e.g. KF-G)>KE(F<G) in the naive
way say the proof is 6. Now remove from ¢ the various occurrences of =,%' leaving the
conclusions of 7w’ as assumptions. Say the result of this operation is T. Cancel the new
assumptions that are the former conclusions of & as follows:
r o D
vE 1
K(©O)eKEF(C)

Cancel the former conclusions of &' similarly. This strategy is easily seen to yield the desired
estimates.

Finally we move to Oq(K*FZ). Here we use:

*¥* VCOg(Vd,...e D* (K*=C(d,...) & KEC(,...)) ).

The proof shares many features with the proof of **. Again the lengths of the proofs will be
polynomially bounded in n(C). Let t range over ®,-terms. An important lemma is:

+ VtOg(Vd,...eD*VeeD ( (KFe=t(d,...)) = e D*) ).

The lemma is proved by induction on t using a bound on the lengths of the proofs that is
polynomial in n(t).

We may conclude: let AX be the set of axioms of IA;+EXP+3xVy A(x,y). We have for a
suitable ,-term t: VCe AX Jp<t(C) Proon(p,rK*l=C1). By induction we find for a suitable
,-term u:

VxVC<x (Proof, x(x,C) — Jz<u(x) Proon(z,rK*l=C1). O

"<1"Let 3 be an IA,+EXP-cut such that JA+EXP+-Vue S Vv itexp(v,u) exists. We first show
for B in A, having only x,y free: ,
IA+EXPHVIe 3( O3 Tis a cut” — (@ze S Og ,Vxe Iy B(x,y)) = Vxdy B(x,y))).

Reason in IA,+EXP: Suppose Ie 3, I:IQS"I isacut’, ze 3 and O ,VxeIJy B(x,y). Let g3
be the IA;+Q, -proof of "I is a cut". By the elaboration of 3.4.2 there is a usv(q)<q such that
Og el Clearly ue 3. It follows that for some we 3: VxO Q’wﬂy B(x,y). By 3.4.8 we may
conclude: : Vx3y B(x,y).
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From the above we have by Z-completeness, contraposition and by weakening the statement a bit:
for A in A, having only x,y free:

IA+Q;F Opyp( IxVYA(,Y) = (Ve Q-cutsOoIxe I Vy Ax,y)3).
From this the result we're looking for is immediate using 3 as our interpretation. O

4.2 Corollary: For any Z,-sentence B: IA,+£2, = B> o(BA—EXP).

Proof: from 4.1 we have: IA;+Q,+ (BAEXP)> O B, hence by principle W: 1A,+Q, -
(BAEXP)P> o((© oB)AO(B——EXP)), so [A;+€Q, - (BAEXP)E O o(BA—EXP). By JS we
may conclude: IA;+8Q, = (BAEXP)P> o(BA—EXP). Also 1A;+Q, - (BA—EXP)> o(BA—~EXP),
hence by J3: 1A +Q, = B> (BA—EXP). O

4.3 Corollary
1) Suppose A is A, having only X,y free, then:

IA(+Q, - OpxpVx3dy A(x,y) <> O3 Ie Q-cuts O,Vxe [ Iy Ax,y).
ii) Suppose B is a X,-sentence, then [A;+Q; = O(B—EXP) — O5—B.

Proof: (i) is immediate from 4.1 and (ii) is immediate from 4.2. O
4.4  Corollary: Suppose A is a Z,-sentence, then:

ii) IA0+Qli— Opxp(0gA—A) = OpypA

Proof: (i) is immediate from 4.3(i). For (ii) we have:

IAg+Q; - Opxp(O0gA—A) — Og3 Ie Q-cuts Og(O'A—A) (4.3())
— Og0oA (SLP)
—? DEXPA (4.3(1))
O
5 The closed fragment of the provability logic of IA,+Q; with a constant for
EXP

A is the closed language of provability logic, i.e. A is the smallest set containing L, T, which is
closed under —,A,v,— and O. If logical constants c,c',... are added to A we write: Afc,c',...].
< abbreviates —O—.

The degrees of falsity DF are defined as follows: 09L:=1, 0™!1:=00°%L, O%1:=T . Dually

the degrees of truth are defined by: O0T:=T, OM*IT:=0ONT, OOT =1 If X is a set of
formulas we write Boole(X) for the set of Boolean combinations of elements of X.
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We will only consider a fixed interpretation of our languages: the propositional connectives are
interpreted as themselves, O is interpreted as O, EXP is interpreted as the arithmetical axiom
EXP. The fact that our interpretation is constant makes that we can conveniently confuse modal
formulas and their arithmetical counterparts. From now on we will do so.

The system LC[EXP] in A[EXP] is given by the following principles:

L1 HA = FOA

12 + O(A—B) —» (0A—0OB)

L3 + 0OA — O0A

14 +0O(0A-A)-OA

C1 + O(EXP—B) « 00B, for Be Boole(DF)
Cc2 + O(—EXP—B) « OB, for Be Boole(DF)

We verify the validity of LC[EXP] for interpretations in IA;+Q, . C2 is immediate from 4.3(ii).

In our verification of C1 we will use the "some finite subset" notation: {AllP(A)} means
approximately: some finite (possibly empty) subset of { A[P(A)}. When the notation is repeatedly
used however it will function in an anaphoric way: so sometimes it means: the finite subset we
were talking about; or even: the finite subset connected in the evident way with the finite subset
we were talking about.

Verification of C1 in IA;+Q,: Consider B in Boole(DF). Clearly B is equivalent to a
sentence of the form /X\ {O0%L—0Ok L|k<at}. (Here: o ranges over w+1.) By 4.3(i) we have that:
IA,+Q, + O(EXP—B) > 031e Q-cuts O\ (0% L 0K L|lk<at}.
On the other hand:
1A, +Q, - Jle Q-cuts O/ {O%LL 0K L[lk<or}
Jle Q-cuts A\ {O(@%L >0k L)lk<ar}
Jle Q-cuts A\ {O(Ok+Ll Lok L)lk<o)
A\ (Ok+] L|ke @)
gl+o*
o/ {O0%L—0K 1 k<o)
3 Ie Q-cuts oA\ {O%l1 0k k< ).

(SLP)
(a*=inf{kllke @})

4l

Ergo 1A,+Q,— O(EXP—B) «> OOB. a

5.1 Theorem

i) For every Ae A[EXP]: LC[EXP]+ OA < O%1, for some o€ w+1.

i) For every Ae A[EXP] there is a Be Boole(DFU{EXP}): LC[EXP]+ A < B.
ii) For every Ae A[EXP]: LC[EXP]+ OA = LC[EXP]+ A.
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Proof: for (i) and (ii) it is sufficient to show that for Be Boole(DFU{EXP}): LC[EXP]+ OB <
O%L, for some ae w+1. The rest of the argument is a simple induction. As is easily seen there
are C,D in Boole(DF) such that LC[EXP]+ B & (EXP—C)A(—EXP—D)), hence LC[EXP]+
OB < (O(EXP—-C)AO(—~EXP—D)), so by C1, C2: LC[EXP]+ OB «> (O0OCAOD). So by the
usual reasoning the desired result follows.

To prove (iii) suppose LC[EXP]+ OA. We note that by (ii): A is LC[EXP]-equivalent to:
(EXP—/A {O0%L -0k L |lk<at})A(=EXP—/X\ {OPL 0" 1 |in<B}). If both conjunctions are
empty we are done. If not it follows that for some m LC[EXP]+ O™_L and hence
1A, +Q,—0OM.1, quod non. a

Consider two Kripke models K=<W,R,> and K'=<W',R',\-">. A A-bisimulation B between
K and K' is a relation between W and W' such that: (i) for every k in W there is a k' in W' with
kBk'; (ii) for every k' in W' there is a k in W with kBk'; (iii) if kBk' and kRs, then there is an s'
with k'R's' and sPs'; (iv) if kBk' and k'R's', then there is an s with kRs and sBs'. As is easily
seen: if B is a A-bisimulation between K and K' and kBk', then for Ae A: kA & k''A.

5.2 Theorem: LC[EXP]FA & 1A +Q,FA.
Proof: "=" has already been checked. For "<" suppose IA,+Q, —A. Suppose that LC[EXP]

does not prove A, then LC[EXP] does not prove OA, so OA must be LC[EXP]-equivalent to
ok L for some k. We find 1A, +Q,+0OA, hence 1A;+Q, + OKL. Quodnon. O

We define a Kripke model M:
<0,0> <0,1>
<1,0> <1,1>
<2,0> <2,1>
<3,0> <3,1>
<4,0> <4,1>
<5,0> <5,1>
The model M
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The domain of M is {<n,i>lnew,ie {0,1}}; M has an accessibility relation given by:
<n,i>R<m,j> :& n>m+j. We stipulate <n,i>+EXP :< i=1. The forcing relation is extended to
the whole language in the usual way. We show that LC[EXP] is valid in M. As is easily seen R is
transitive and upwards wellfounded. Hence the principles L1-L4 are valid on M.

Let N be the model with domain ® and accessibility relation R* given by: nR*m :< n>m. Define
arelation B between nodes of N and nodes of M by nB<m,i> :< n=m. It is easily seen that } is a
A-bisimulation between N and M. We may conclude that for A in A: <n,0>FHA & <n,1>A.

Verification of C1 in M: suppose B is a Boolean combination of degrees of falsity.

First suppose <n,i>F+00B and <n,i>R<m,j> and <m,j>+EXP, i.e. j=1. We have: n>m+1, so
<n,i>R<m+1,0>R<m,0>. Hence <m,0>F+B. B is in A, so <m,1>F+B. We may conclude:
<n,i>+ O(EXP-B).

Suppose for the converse: <n,i>+0O(EXP—B) and <n,i>R<m,j>R<p,k>. Clearly n>m+j>p+k,

so n>p+1 and thus <n,i>R<p,1>. <p,1>+EXP and so <p,1>FB. B is in A so we may
conclude: <p,k>#B. Ergo <n,i>+00B =]

Verification of C2 in M: suppose B is a Boolean combination of degrees of falsity.

One direction is trivial. Suppose: <n,i>FO(—~EXP—B) and <n,i>R<m,j>. Clearly
<n,i>R<m,0>, so <m,0>FB. B is in A so we may conclude: <m,j>#B. Ergo <n,i>+0B. O

5.3 Theorem: LC[EXP]-A & MFA.
Proof: entirely analogous to the proof of 5.2. o

6 The closed fragment of the interpretability logic of IA,+Q, with a constant
for EXP

The system ILC[EXP] is given by the following principles:

L1 FA = FOA

L2 + O0(A—B) - (O0A—OB)
L3 ~ 0OA — O0A

L4 F O(0A—>A)—>OA

J1 + O(A—B) - A>B

J2 +(APBABP>C) —» A>C
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I3 = (ABCAB>C) — (AVvB)E>C

J4 HAPB - (©CA—>CB)

J5 F OAPFA

w = APB - AB(BAO—-A)

C  (EXPAB)=< B, where Be Boole(DF)

We verify the validity of ILC[EXP] for interpretations in IA;+Q,.
Verification of C in IA;+Q;:

Suppose Be Boole(DF). Clearly B is equivalent to a sentence of the form W {OKT AO% LIIk<at},
where o ranges over @+1. By 4.1 we have that:
1A)+Q,+ (EXPAB)=(V Ie Q-cuts O W {OKT AD®LL[k<ar}).

By contraposition of the reasoning concerning the verification of C1:
1A +Q + (V Ie Q-cuts O W {OKTAD® Lik<a}) > OB.
We may conclude: 1A,+Q, = (EXPAB)=<CB. O

6.1 Theorem

1) For every Ae A[> EXP]: ILC[EXP]+ OA < O%L, for some o€ @+1.

ii) For every A,Be A[> EXP]: ILC[EXP]+ A>B « O%L, for some ae w+1.
iii) For every Ae A[> ,EXP] there is a Be Boole(DFU{EXP}): LC[EXP]+ A < B.
iv) For every Ae A[EXP]: LC[EXP]+ OA = LC[EXP]+ A.

Proof: for (1), (ii), (iii) it is sufficient to show that for A,Be Boole(DFU{EXP}): ILC[EXP]+
OA < O%L, for some o€ ®+1 and ILC[EXP]+ AP>B < O%L, for some o.e w+1. The rest of
the argument is a simple induction. We can restrict ourselves to the case of > noting that OA is
equivalent to mAP> L,

First consider C in Boole(DF). We show: ILC[EXP]+ (EXPAC)=0O%*T, for some o.. We have:
ILC[EXP] (EXPAC)=0C=009T,
Next we show: ILC[EXP]+ (—=EXPAC)=0BT, for some B. First note:
ILC[EXP]+ (EXPAC)B>OC
| > (O CAO(C——EXP))
B> O (—=EXPAC)
B> (=EXPAC)

Also: ILC[EXP]+ (=EXPAC)> (—-EXPAC), hence ILC[EXP]+ C> (-EXPAC). We find:
ILC[EXP]+ (—~EXPAC)=C
=(Cv<o0O)
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=OBT

Consider A in Boole(DFU{EXP}). Clearly A is equivalent to (EXPAC)v(—EXPAD) for some C
and D in Boole(DF). By the above: ILC[EXP]+ (EXPAC)=< T, for some o and ILC[EXP]H
(—-EXPAD)EOBT, for some B. Hence ILC[EXP]+ A=(OOTvO BT)=0"T, for some v. We
may conclude for A,B in Boole(DFU{EXP}): ILC[EXP]— APB & OYTE> O8T for some v,0.
If v28: ILC[EXP]+— AP>B ¢ T, and we are done. If y<d:
ILC[EXP]- AP>B & OYT> 00T

o OVT (O TAO-OYT)

© OVT(OdT AOMLL)

SO L

& Ol+L

The proof of of (iv) is the same as the proof of 5.1(lii). a
6.2 Theorem: ILC[EXP]-A & IA,+Q, FA.
Proof: the same as the proof of 5.2. o

We define a Kripke model M as follows: the domain of M is {<n,i>Ine w,ie {0,1}}; M has an
two accessibility relations R and S given by: <n,i>R<m,j> :< n>m+j and <n,i>S<m,j> ;&
n+i2m+j. We stipulate <n,i>FEXP :& i=1. The forcing relation is extended to the whole
language in the usual way using R as the accessibility relation for O and:

xAPB & forall y: xRy and y+—A = there is a z with ySz and z+B.
As before R is transitive and upwards wellfounded. We have: R<S; S is reflexive and transitive;
S satisfies property P, i.e.: xRySz = xRz.

Excursion: The property 'xRySz = xRz’ makes M into an ILP-model (see Visser(88] or Visser{90] or De Jongh
& Veltman[90]). This implies that the principle: AB>>B — O(AP>B) is valid on M. There are a priori reasons,
given the fact that M fully characterizes what is and what is not provable in the restricted language and seeing the
methods we used, that this should be so. For suppose M would provide a counterexample to the principle. This
shows or at least strongly suggests that 1A+, is not finitely axiomatizable. (The loophole here is that it might
be the case that, yes, IA;+Q, is in fact finitely axiomatizable but, no, its finite axiomatizability is not verifiable
in 1A(+€2,.) But the problem of finite axiomatizability of 1A4+€, is connected with difficult complexity theoretic
problems and it seems clear that the methods used in section 4 are not 'heavy' enough to solve such problems. So a
full characterization of the valid principles of AlEXP,P>] in IA(+Q, using light methods as in section 4 cannot but
satisfy principle P.

Verification of C in M: suppose B is a Boolean combination of degrees of falsity.
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First suppose <n,i>F+0O0B and <n,i>R<m,j> and <m,j>HEXP, i.e. j=1. We have: n>m+1, so
<n,i>R<m+1,0>R<m,0>. Hence <m,0>F B. B is in A, so <m,1>F B. We may conclude:
<n,i>+ O(EXP—-B).

Suppose for the converse: <n,i>—0O(EXP—B) and <n,i>R<m,j>R<p,k>. Clearly n>m+j>p+k,
so n>p+1 and thus <n,i>R<p,1>. <p,1>EXP and so <p,1>F B. B is in A so we may
conclude: <p,k>+B. Ergo <n,i>+00B a

6.3 Theorem: ILC[EXP]-A < MI-A.

Proof: entirely analogous to the proof of 5.3. o
i Appendices

7.1 Cut Elimination

In this section we provide an estimate on the rate of growth of the number of symbols of a proof
when we apply cutelimination. To save space the presentation is parasitic on the one in
Schwichtenberg[77]. The reader should look up Schwichtenberg's treatment: we just present the
additions to his paper that are necessary to get our estimate. Locally in this section we follow
Schwichtenberg's conventions, numbering of theorems, etc. .

n(¢) is the number of symbols in ¢. Similarly for n(d), n(I'). Note that we must consider a
variable as complex: we stipulate that e.g. x5 is represented as x101 and thus n(x5)=4. Because
we want to Godelize the proofs it would be more natural to take a linearized version of the
system. Because linearization causes only a few inessential details we refrain from doing this.

We stipulate that sets of formulas are written: {9,,...,0,}. The empty set is represented by: {}. In
IA,+€2, we have a recursive function available that eliminates repetitions from representations of
sets and puts the elements of the representation in a fixed order, so we may assume that sets are
always represented without repetitions and in a fixed order.

Here follow the additions to Schwichtenberg[77]: We work in the system described by
Schwichtenberg with terms but without extra rules for identity. (Identity will be handled by
adding finitely many axioms. These will be treated on a par with other axioms.)

2.3.1. WEAKENING LEMMA. n(d,1N<n(d).(n(I)+1).

PROOF: d,I" has less symbols than the result of inserting I after each symbol of d.
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2.4.1. SUBSTITUTION LEMMA. n(d(s))<n(d(x)).n(s)
2.4.2. SUBSTITUTION-WEAKENING LEMMA. n(d(s),I)<n(d(x)).(n(I)+n(s))
2.5, INVERSION LEMMA. (i) If d+T',0yA9,, then we can find d*;-T,¢; (1i=0,1) with
ld*,I<ldl, p(d*;)<p(d), n(d*)<n(d).n(dyAd,).

(ii) If d-T,Vxy(x), then we can find d*FI,y(x) with [d*I<ldl, p(d*)<p(d),
n(d*)<n(d).n(Vxy(x)).

PROQF: We restrict ourselves to (ii). Let ¢ be Vxy(x). If ¢ I, we take d*:=d,y(x). Our result
follows by the weakening lemma. Assume ¢&I'.

Case 1: ¢ is anot a p.f. in the last inference of d. Then this inference has the form

A,q),\uj for all j<k

A0,A

With m.f. ¥ p.f. A and s.f. A,¢ and I'=A,A.The case that k=0 is trivial. In case k>0 we apply
the induction hypothesis. Let the immediate subproofs of d be d;. We find d;*-A,y(x),y; with
ld;*I<Idyl, p(d;*)<p(d;), n(d;*)<n(d;).n(¢). The result follows by the inference:

AyX),y; foralli<k

Ay(x),A

Suppose e.g. k=2. We have:

n(d*)<n(dy*)+n(d, *)+1+n(D)+n(y(x))+1<(n(dy)+n(d,)).n(d)+n()+n(y(x))+2<
<(n(dy)+n(d,)+1+n()+1+n(9)).n(9).

The last term is clearly equal to n(d).n(¢).

Case 2: ¢ is a p.f. in the last inference of d. If ¢ is not a s.f. in the last inference of d, the
inference has the form:

Iy(x)

I,0

With m.f. y(x), p.f. ¢ and s.f. I', where ¢&I'. Here we can pick as d* simply the immediate
subproof of d. If ¢ is a s.f. in the last inference of d, the inference has the form:
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I,0,y(x)

I,

With m.f. y(x), p.f. ¢ and s.f. I". Here we find d* by applying the Induction Hypothesis to the
immediate subproof d,; of d. Note: n(d*)<n(d,).n(¢)<n(d).n(9).

2.6. REDUCTION LEMMA. n(d)<(n(dy)+n(d,)).n(dy).n(d,).

PROOF.
Case 1: We treat the case that k=2, the cases that k=0,1 being easier or similar. Let the immediate
subproofs of d;, be d,, and d,),. By the induction hypothesis the direct subproofs of d are going
to be <(n(dgyy)+n(d,)).n(dyy).n(d,) respectively <(n(dy;)+n(d,)).n(dy,).n(d,). Hence:

n(d)< (n(dyy)+n(d;)).n(dyy)-n(d,)+(n(dy,)+n(d,)).n(dy;).n(d,)+1+n(A,A,0)<

< (n(dyg)+n(d,)).n(dyg).n(d;)+(n(dgy;)+n(d,)).n(dy,).n(d,)+1+(n(dy)-2)+n(d, )<

< (n(dy)+n(d,)-1).(n(dyy)+n(dy,)).n(d;)+n(dy)+n(d,)-1<

< (n(dp)+n(d,)-1).(n(dy)-1).n(d))+(n(dgy)+n(d;)-1)<

< (n(dy)+n(d,)).n(dy).n(d,)

Case 2.1: n(I",A)<n(T,0)+n(A,—$)<2.n(T,0).n(A,—9).

Case 2.2: Let the immediate subproof of d, be dg;. We split the cases that ¢ is a s.f. in the last
inference of d, and that ¢ is not.

Suppose ¢ is not a s.f. in the last inference of d\. The conclusion of dy; is of the form I',¢;. By
weakening we get d;,A with conclusion T’ »A,0;. Here n(dy;,A)<n(d;).n(d,). By the inversion
lemma we get a proof d,; of A,—¢; with n(d,;)<n(d,).n(¢). Clearly d,;,I" has conclusion I',A,—¢;
and n(d,;,I)<n(d,;).n(dy). By cutelimination we combine d;,A and d,;,I" into a proof d of I',A.
We have:

n(d)< n(dy;).n(d,)+n(d,;).n(dy)+1+n(dy)+n(d,)<

< (n(dy-1).n(d,)+n(d,).n(¢).n(dgy)+1+n(dg)+n(d,)<

< (1+n(¢)).n(dy).n(d,)+(1+n(¢)).n(dp)+1<

< (3+2.n(9)).n(dy).n(d, )< (n(dy)+n(d,)).n(dy).n(d,)
(Clearly for k=0,1: n(dy)2n(¢p)+2.)

Suppose ¢ is a s.f. in the last inference of d,,. The conclusion of dy; is of the form I',0,0;. Apply
the Induction Hypothesis to dy; and d,. We obtain a proof d' of I,A,¢; with n(d)<

(n(dyp+n(d,)). n(dy;).n(d,). By the inversion lemma we get a proof d;; of A~ ¢; with
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n(d,;)<n(d,).n(9). Weakening gives us d,;,I" with conclusion I',A,—¢; and:
n(d,;,[< n(d,;).n(dy)<n(d,).n(¢).n(dy).
We obtain our final proof d by applying cutelimination to the conclusions of d' and d;;,I".
Clearly:
n(d)<n(d')+n(d;,1)+1+n(dy+n(d,)<
< (n(dg;)+n(d,)).n(dy;).n(d,)+n(d,).n(¢).n(dy)+1+n(dy)+n(d,)<
< (n(dy)-n(9)-1+n(d,)).(n(dy)-n(¢$)-1).n(d, )+n(d,).n(9).n(dy)+1+n(dy)+n(d,)=
= (n(dy)+n(d,)).n(dy).n(d,)-(n(dy)+n(d,)).(n($p)+1).n(d, )-(n($p)+1).n(dy).n(d, )+
+ (n(¢)+1)2.n(d1)+n(d1).n(¢).n(d0)+1+n(d0)+n(d1)=
= (n(dg)+n(d,)).n(dg).n(d,)-(n(dg)+n(d;))-(n(§)+1).0(d;)-n(d).n(d, )+
+ (n(¢)+1)2.n(d,)+1+n(dy)+n(d,)< ...

Note that n(¢)+1<n(d,) and hence (n(q>)+1)2.n(d1)£(n(d0)+n(d1)).(n(¢)+1).n(d1).
So:
< (n(dy)+n(d,)).n(dy).n(d,)-n(dy).n(d,)+1+n(dy)+n(d,)<...

Note that n(d)=23 and n(d,)23 and hence n(dy).n(d,)2n(dy)+n(d,)+1. So:
< (n(dp)+n(d,)).n(dy).n(d,)

Case 2.3.: Let the immediate subproof of d, be d,,. As before we split the cases that ¢ is a s.f. in
the last inference of d;; and that ¢ is not. The case that ¢ is not a s.f. in the last inference of d,; is
entirely analogous to the corresponding case in 2.2. Suppose ¢ is a s.f. in the last inference of d,.
The conclusion of dy, is of the form I',¢,y(s). Apply the Induction Hypothesis to d,; and d,. We
obtain a proof d' of I';A,y(s) with n(d")<(n(dy)+n(d,)).n(dyy).n(d,). By the inversion lemma
we get a proof d,4(x) of A,—y(x), where x does not occur in A with n(d,;,(x))<n(d,).n(¢). We
form d, 4(s),I"” with conclusion I',A,—(s). By the Substitution-Weakening Lemma:
n(d, o(s),D<n(d4(x)).(n(s)+n(D)<n(d,).n($).n(dy).

We obtain our final proof d by applying cutelimination to the conclusions of d' and d,,(s),I.
Clearly:
n(d)<n(d")+n(d,y(s),1)+1+n(dy)+n(d,)<
< (n(dgg)+n(d,)).n(dgyg).n(d;)+n(d;).n(¢).n(dy)+1+n(dy)+n(d,) <
< (n(dy)-n(9)-1+n(d,)).(n(dy)-n(9)-1).n(d,)+n(d, ).n(9).n(dy)+1+n(d)+n(d,)
From this point on the reasoning proceeds as in 2.2.
Let exp(x):=2%; itexp(x,0):=x, itexp(x,y+1):=exp(itexp(x,y)), exp*(x):=itexp(x,2).

2.7. CUT-ELIMINATION THEOREM. If d+T and p(d)>0, then we can find d'+T with
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p(d)<p(d’) and |d'|<exp(/d]) and n(d’)<exp?(n(d)).

PROOF. n(d'i)Sexpz(n(di)). Let m:=sup(n(dy),n(d,)). We have:

n(d)<(n(d'p)+n(d'))).n(d'y).n(d', )Sexp(exp(m)+1).exp*(m+1)<exp?(m+2)<exp*(n(d)).
(T" could be empty, but by our convention the number of symbols representing the empty set is is
non-zero.)

2.7.1. COROLLARY. If dT, then we can find a cut-free proof d*-I"with |d*/<itexp(/d],p(d))
and n(d*)<itexp(n(d),2.p(d)).

Note that, if we think of d and d* as coded as numbers we find: d*<exp(k.n(d*)) for some
standard k. So if d* is large enough we get d*Sepo(n(d*)). Hence we get:
d*< itexp(n(d),2.(p(d)+1))<itexp(d,2.(p(d)+1)).

Our argument can be formalized in the usual way using the bounds one proves as bounds in the
induction. Hence we get:
IA+EXPHVd,I',x ((Proof*(d,I)Aitexp(d,2.(p(d)+1))=x) — Id*<x Cutfreeproof*(d*,I").

Here Proof* and Cutfreeproof* are formalizations of the notion of proof and cutfree proof as
treated above. Now note that proofs in any ordinary reasonable proofsystem can be
multi-exponentially transformed in proofs in Schwichtenberg's system. (In fact, I think, one can
do much better.) Moreover cutfree proofs in Schwichtenberg's system can be almost trivially
transformed in tableaux proofs as in the system used by Paris & Wilkie. Hence for some standard
k we get for any Alb-axiomatized theory U:

IAG+EXPHVX,p,A ((Proofy;(p,A)Aitexp(p,2.p(p)+k)=x) — Jp*<x Tabproofy;(p*,A)).

7.2 Satisfaction & Reflection

We construct a satisfaction relation SAT for Aj-formulas in IA+EXP. SAT will be in Ay(exp)
(this means that SAT is the translation into our official language of a formula, in our language
enriched with a function symbol for exponentiation, in which all quantifiers are bounded by terms
possibly involving exponentiation). The fact that SATe Ay(exp) will derive its usefulness from
the well known fact that IA;+EXPHIA(exp).

We work in IA,+EXP. Let 6 code a finite partial function ¢. By default we set o(u):=0 if
ug Dom(¢). m(c):=max(Range($){2}). Call the set of assignments ASS. We write o[i/y] for
the unique &' such that for all j (i#j—0(i)=0()) and (6");=y. In this section we write < for the
subformula/subterm relation.

As is well known already in IAy+Q,; we have an evaluation function VAL for terms and
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sequences of numbers, such that VAL('t(V;,...)',6)= t(6(i)....). Note that VAL(t,0) < m(c)"® <
2(m(@k1).n(t) < m(o)#t#m for a suitable standard m.

SAT(A,0) 1> c€ASSAAeAjAdT
Tis a sequence A (T)length(t)-1=<A’6> A Vi<length(t)
35,1 A Jo'e ASS
(1);=<'s=t ,0'’> A VAL(s,0")=VAL(t,0")
\"4
Js,tS A Jo'e ASS
(T);=<—s=t',0’> A VAL(s,0)#VAL(t,0)

---------------

IBSAICLV, SBIc'eASS
B="Vv, <t C' A (1);=<B,0'> A Vy<SVAL(t,0") Jj<i (=<C,c[k/y]>
Vv
IBSA3IC,v, SB Ic'c ASS
B="-Vvst C A (1);=<B,0’> A IySVAL(t,0") Fj<i
(0);=<~C.o'lk/y]>

Clearly all quantifiers in the definition of SAT except 3t can be bounded by 7.

Let's give a rough estimate of T. Let t* be the biggest term in A. First consider <B,6"> in T and

an immediate predecessor <C,5"> in T of <B,5">. We estimate m(c") in terms of t* and m(c’):

the only interesting case is that of the quantifiers, here we find for some term t:
m(c')<max(m(c’),VAL(t,0"))<t#m(c" ) #m<t*#m(c')#m.

Similarly it follows that the number of immediate predecessors of <B,0"> is <t*#m(c')#m.

_ Hence the sequence-length of T will be < than

1+t*#m(o)#m+t*#(t*#m(c)#m)#m+....=
= 1+m(o)#, O(t*#m)+m(c)#w, D(t*#m)+...+m(c)#w, WA D(t#m)<
< n(A).(m(o)#a, PW)(t*#m)).

How long can <B,o'> be? Clearly m(d)Sm(G)#ml(“(A))(t*#m). Also the codes of the elements
of the domain of ¢ are substrings of A. The code of m(c') will have length
Slm(c)#o)l(“(A))(t*#m)l. So the length of <B,6'> considered as a string will be
Sk.n(A).(Im(c)#col(“(A))(t*#m)l+1) for some standard k. So the length of T considered as a string
will be < n(A).(m(c)#e, MA)(t+#m)).(k.n(A).(m(c)#w, *A)(t+#m)l+1)+2) =F(A,0).

So for some standard r: t<exp(r.F(A,0)). Noting that (ol(s)(p)Sitexp(sHleIlI,3), we see that a
bound for T in terms of A and ¢ is available in IA;+EXP.
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Write oE=A for: SAT(A,0)

7.2.1 Lemma: oF(.) commutes with the propositional connectives and the bounded
quantifiers. Moreover for every A€ A, GFA or 6F—A.

Proof: Entirely routine. O
7.2.2 Lemma: Suppose t is substitutable for v in A, then: cFA[t/vi] < o[k/VAL(t,0)]FA.
Proof: Entirely routine. O

7.2.3 Theorem: Let re ® and A(x) be a X,-formula, then
IA+EXPHVx ( (x)—>Tabcon(IAG+Q +0(x)) ).

Proof: This is just a slight variant of the proof of lemma 8.10 of Paris & Wilkie[87]. Suppose
A(x)=3yVzB(x,y,z), where B€ A. Let M be model of IA,+EXP+A(a), where a€ M and suppose
METabincon(IA+€2 +A(a)). Work in M. (Of course we also could give a straightforward
formalization of the proof in IA,+EXP, but thinking 'in the model' is more pleasant from the
heuristic point of view.)

Let p be a tableaux proof of a contradiction from IAj+€ +A(a), say p=I,...,I"s. Let t* be the
bigest term occuring in p and let C be the biggest formula occuring in p. Note that t*>a, because
the numeral of a occurs in p. For some b we have: VzB(a,b,z). Let m be standard such that
VAL(t,0)<t#m(c)#m. Define c:=max(b,t*#m), d:=a Z9)(c).

For each i<s and XeI; we define an assignment i x with domain the free variables of X and
range bounded by d, as follows:

Oy x is empty (for clearly in X no free variables occur);

Consider o, x. Suppose the predecessor of X at stage iis Y. We consider several cases:

i)  («)-(3) do not introduce new variables. Put o, X=0i y;

ii) Incase (€) some spurious new free variables may be introduced. Put o, X(v):= i,Y(V)
if ve Dom(ci’Y), G; +1,X(V):=O otherwise;

iii) We turn to case ({): we get —E(vy) from —VxE(x). Put o; +1,X(V)‘=°'i,Y(V) if
ve Dom(ci,Y). For v, there are three possibilities: first =V may stand for the first
existential quantifier of A. In this case put o; +1,x(V)=b. Secondly -V may stand for
the first existential quantifier in axiom £2.. This means =V xE(x) is a translation of: 3x
@ (t)=x for some term t. Put G, ,X(Vk)3=°)r(VAL(t’°'i,Y))' Thirdly -V may stand for a
bounded existential quantifier, where E is A,. Say =VxXE(x)=-Vx<t'F(x). Put:
G; +1’X(vk):=the least zSVAL(t,O'i'Y) such that ci,Y[k/z]h—'F(vk), if such a z exists,
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Ciy1 ,X(Vk)3=0 otherwise.
7.2.4 Lemma: For all i<s m(c; +1,X)Smr(2~i)(c).

Proof: The only serious growth of the elements of Range(ci’x) occurs due to clause ({). We
treat the subcase of 3x @ (t)=x. So suppose we get G, x by applying the second subcase of ©.
Let the predecessor stage be Y. We find (assuming i#0):

@ (VAL(t,0; y))<0 (Hm(0; y#m)<o, (t#a 2-2(c)#m)<w (cha 22(c))<

< mr(mr(2.i-2)(C)#mr(Z.i-Z)(c))S mr(a)l (0)1.(2'i'z)(c)))S(Dr(z'i)(C). o

Our theorem is immediate from the following lemma:

7.2.5 Lemma: For all i<s there is an XeI; such that
@) For all Ay-formulas Ce X ¢; xFGC
(ii) For all ¥,-formulas (3v,...C)e X 0; xF3V,...<d C (where Ce A);
(iii) For all Hl-formulas (Vv,..0)e X O'i,xl=Vv,...Sgi_ C (where Ce Ap).

Proof: The proof is by induction on i. (Note that our induction predicate is Ay(exp)!)

i=0: Here the most natural thing is to assume that there is only one X in I';,. The elements of X
are (a) standardly finitely many identity axioms, (b) standardly finitely many axioms concerning
S,+ and ., (c) non-standardly finitely many A,-induction axioms, (d) A, (€) €2,. (a) and (b) give
no problems. The claim does not apply to (d) and (e). Let's consider (c).

Suppose E is an induction axiom in X (remember: E might be non-standard!). E has the following
form:

Vv,...VW((D(O,V,...)Aij<w(D(vj,v...)—-)D(S(vj),v...)))—)ij<wD(vj,v...)).
Let V be the (non-standardly) finite set of variables {v,...} of the block in the front of E (except
w). Write 6{V,d]o’' :¢& o and ¢ differ only on elements of V and the values assigned by ¢' to
the elements of V are <d. One can show using an easy induction (on the number of elements of
V) that:

01=Vv,...SQVWSQ((D(O,V,...)Aij<w(D(vj,v...)—)D(S(vj),v...)))—)ij<wD(vj,v...))
if and only if

Vc’[V,d]chSd(o‘U/O]i=D(vj,v...)AVy<g(o‘ [j/y]l=D(vj,v...)—> G'[j/S(y)]l=D(vj,v...)))

—->Vy<x c'[j/y]l=D(vj,v...) Y
This last formula is an instance of the Aj(exp) Induction Scheme.

i=j+1: Suppose Ye 1"j satisfies the induction hypothesis. Let X be a successor of Y in I';. We
treat the cases that X is introduced by € and .

An inside view of EXP 27



Let Vv E(vy) and E(t) be the premiss and the conclusion involved. There are three possibilities:
Vvy E(vy) is IL,,I1; or Ay. If it is [,, then Vv E(v{)=8;. So we have to check: ¢ +1.xF
3vp_<__d_ cor(t)=vp. This follows easily by the observation that:

@ (VAL(t,0;,1 ))SO(thm(Gy, ,X)#m?Smr(t*#mr(?-l)(c)#m)S(or(c#cor(z")(c))s

< o (@2} CV(@)< (0, (@ FD(e))<o, D)< o 2S)(c)=d.
In case Vv E(vy) is [, by the induction hypothesis we have: ci,thVksg E*(vy) (where E* is
the result of bounding unbounded universal quantifiers in E by d). It follows that o; xF E*(1),
noting that by our earlier argument VAL(t,0;_ 4 x)si. The case that Vv E(vy) is A is similar.

Let =Vv, E(v}) and 'ﬂE(Vp) be the premiss and the conclusion involved. There are three
possibilities: first -V may stand for the first existential quantifier of A. In this case Gi,X(Vp):=b'
We leave it to the reader to verify that indeed o; x=Vz<d . B(g,vp,z). Secondly =V may stand for
the first existential quantifier in axiom €. This means that —V'vy E(v) is a translation of: Jv
@ (t)=v; for some term t. O'i’x(vp):=a)r(VAL(t,cj,Y)). As is easily seen Gi,X'=“‘E(Vp)v i.e.
G; Xl=mr(t)=vp- Thirdly —V may stand for a bounded existential quantifier, where —V'v; E(vy) is
Ay, say Vv E(vy)==Vvi <t F(vy). By the induction hypothesis Gi,YhﬂVVkSt F(vy). Hence
for some zSVAL(t,O'i’Y) Gi,Y[k/z]k=—.F(vk) and thus for some z_<.,VAL(t,0'i,Y) Gi’Y[p/z]l=—|F(vp).
o; +1’X(vp):=(the least zSVAL(t,O'i’Y) such that oi,Y[p/z]l= —:F(vp)). Ergo o; +1,Xl=ﬂF(vp). O

Note: Our argument hides much more generality than explicitely stated. The reader may amuse
him/herself by proving the following variants.

i) Letre ® and A(x)e Z,Z, then IA+EXPHVx ( 6(x)—>Tabcon(IAy+€ +—EXP+0(x)) ).

ii) Let A(x)€ X, then IA;+SUPEXPHVx ( 6(x)—Con(IA+EXP+0(x)) ).

The principle in (ii) is the uniform [1,-Reflection Principle UREF(IA;+EXP,IT,). By an easy
argument one can modify (ii) to:

iii) IA,+SUPEXP and IA;+Q,+UREF(Q,II,) prove the same theorems.

7.3 From Functional to Relational and back

We write P'{x} for: 'some polynomial of the form x“+a1.x“'1+...+an_1.x+an'. Here the a; are

standard. Moreover n will always be standard. P{x} will stand for: 'some P?{x}, for standard

n.

Let L be a language with finitely many relation symbols, function symbols, constants. Let L* be
the relational variant of L. I.e. L* has the same relation symbols as L; for each n-ary function
symbol f in L there is an n+1-ary relation symbol F in L*; for each constant ¢ in L there is a unary
relation symbol C in L*. L* has only relation symbols corresponding to relation symbols,
function symbols and constants in L. It is convenient here to treat constants as O-ary function
symbols. So we don't have to mention the case of constants separately.
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Let PL be predicate logic in L and let PL* be the corresponding theory in L*, where PL* is
predicate logic + Vx,...3!y F(x,...,y) (for all F corresponding to f and c in L). To fix ideas we
work with a Natural Deduction System with the ordinary schematic identity rules. The reader is
free to substitute his or her preferred system (with cuts!) for ours. I predict he/she will find that
the proofs go through with minimal changes. (The use of schematic identity rules is an
unessential simplification: if 7t is a proof in our system, it can be transformed in a simple way into
a proof ©' in the corresponding system with finitely many (concrete) identity axioms, with
n(n)<P3{n(r)}.) We assume that in our languages < is a defined symbol.

We provide a translation (.)* from L to L* and a translation (.)° from L* to L such that IA0+Ql
verifies:

i) PLHA & PL*-A*

ii) PL+B° < PL*+-B

1ii) PLH(A&A*)

iv) PL*—(B«B™*)

Both translations will commute with the logical connectives. We will first show that to prove
(1)-(iv) it suffices to show (in IA(+€2,):

i') PLHA = PL*-A*

iiy PL*B=PL-B"

ili) PLH(A©A¥*)

iv)  PL*H(B&B™)

Proof:
"(1"),(ii"),(iil) = (i)" Suppose PL*+A*, then PLA*° and hence PLFA.
"(1"),(it"),(iv) = (iii)" Suppose PL+B°, then PL*+B°* and hence PL*+~B. O

Note that by Parikh's Theorem, there are explicit bounds to the proofs whose existence is claimed
in (i)-(iv). E.g. the number of symbols of the PL*- proof n* of A* in (i) will be bounded by
P{n(w)}, where & is the PL-proof of A. Of course our proofs will explicitely provide such
polynomials.

(.)° is defined as follows: replace in formulas A of L atoms of the form F(x,...,y) by f(x,...)=y.

To define (.)*, we first have to define the function t[x] from terms t and variables x such that
xe FV(t) to formulas of L* as follows. We assume that our variables are VgsV1sVqseee - Their
official forms are v, v0, v1, v10, v11, v100,... . X,X;,y,y",Z,... are really metavariables running
over the variables. Define for xg FV(t):

yIx]:=(y=x)

f(tl,...,tn)[x]:=3x1...3xn(t1[xl]/\.../\tn[xn]AF(xl,...,xn,x)), where x,,...x, are the first n '
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variables not in FV(f(t,,...,t)))U{x} (in ascending order).

We estimate the number of symbols n(t[x]) in t[x] in terms of n(t) and n(x). Our estimate will
have the form K(n(t))+n(x). We have:

n(y[x])=n(y)+n(x)+3,

n(f(t;,....t ) [xD<K(n(t,))+...+K(n(t ) +3.(n(x )+...4+n(x))+5.0+3+n(x).
(There are: n existential quantifiers, n conjunctions, 2.n brackets corresponding to these
conjunctions, n commas after 'F'. Finally there are 'F' and two brackets.)

Hence it suffices if K satisfies:

K(n(y))2n(y)+3,
K(n(f(t;,....t ))2K(n(t,))+...+K(n(t,)+3.(n(x ) +...+n(x))+5.n+3.

We prove first that for some standard s not depending on the t;:

n(x,)+...+n(x )<n(t)+...+n(t, )+s.
Suppose FV(f(t,,....t))V{x}={z,...,z, }, where for j<k n(zj)Sn(zk). Clearly n(x)<n(v,:)
because x; will be v; for some j<m+i. Now n(zj)+...+n(z,_;)<n(t,)+...+n(t,), hence
m<n(t,)+...+n(t,). We have: n(x)<n(v, +n)SZ+entier(2log(m+n+1)), ergo n(x,)+...+n(x,) <
n.(2+ entier(zlog(n(tl)+...+n(tn)+n+1))). Because n is fixed, we find:

n(x,)+...+n(x,) < n(t,)+...+n(t)+s for some fixed, standard s.

So we can find a standard ¢ such that it is sufficient if:
K(n(y))2n(y)+3,
K(n(f(t,,...,t)))2K(n(t,))+...+K(n(t))+3.(n(t,)+...+n(t ) +c.

Clearly we can take K(n):=P2{n}.

How many symbols does it take to write down a witnessing sequence o for t[x]=A? The length of
o would be <n(t). Each item in ¢ would be a tripel <t',x',A'>. A moment's reflection shows that
n(t)<n(A"), n(x")<n(A"), n(A")<n(A). Hence each item in G counts less symbols than
3.(P2{n(t) }4+n(x)). So n(c)<3.n(t).(P2{n(t) }+n(x)).

By inspection of our argument we see that in [A;+Q, we can define (the arithmetization of) the
function At,x.t[x] with Zlb-graph and prove it to be total.

Define (.)* as follows:
(R(tyseeeotp))*e= Ix o 3x ) (4 [X JA AL [X JAR (X o.00X ), Where Xq,...X, are the first n
variables not in FV(R(t,,...,t;)) (in ascending order). (= is treated just as the other
relations.)
(.)* commutes with the logical connectives and the quantifiers.

An inside view of EXP 30



Let us write t,[y] for: t[x][y/x]. The notion "t,[y]" is slightly more flexible than "t[y]". We need it
to make some of the necessary inductions work.

7.3.1 Lemma (in IA)+Q,):
a) For all t and all z,z'¢ FV(t), z' substitutable for z in t[z]: PL*+Vy...3z' «(y,...),[Z],
b) For all t and all z,ug FV(t), for all z',u’' such that z' is substitutable for z in t[z], and such that
u' is substitutable for u in t[u]:
PL*-Vy...zu' ( «(y,...),[Z] = (t(y,...)[u']ez'=u)) .
¢) For all t and all zg FV(t), for all u, such that u is substitutable for z in t[z]:
PL*FVy...,z,u ( t(y,...),[u] &> t(y,...)[u] )

Proof: We leave it to the reader to show that Vy...3z' t(y,...),[z'], has proof =, with
n(m)<P3{n(t) }+q.n(z'), where q is standard. (c) is an immediate consequence of (b).

We prove (b). Let's call the proof from t,[z'] and t,[u] of z'=u": N(t,z,u,z',u"), and the proof
from t,[z"] and z'=u 'of t;[u']: 0(t,z,u,z',u"). The proof is by induction on t. The atomic case is
trivial.

To simplify inesentially let us suppose that t is of the form f(v,w) for certain terms v and w. So
for certain variables a,b,d,e: f(v,w),[z7] is Ja,b (v[a]aw[b]AF(a,b,z")) and f(v,w) [u'] is Id,e
(v[d]aw[e]AF(d,e,u")). Let a',b',d',e' be distinct variables not occurring in FV(t)u{z',u'}, such
that a' is substitutable for a in v[a], b' is substitutable for b in w[b], d' is substitutable for d in
v[d], €' is substitutable for e in w[e]. We can arrange it so that n(a"),n(b"),n(d"),n(e') are smaller
than n(t)+k for some fixed standard k. (This can be seen by an argument analogous to the one for
estimating "n(x;)+...+n(x,)" above.)

Now n(t,z,u,z',u’) will look roughly as follows: assume 3a,b(v[a]aw[b]AF(a,b,z")) and 3d,e
(v[d]aw[e]AF(d,e,u")). By two 3-eliminations and four A-eliminations it is sufficient to prove
our result from: v,[a], wy[b'], F(a',b',z"), v4[d], w,[e'], F(d',e',u). v,[a] and v4ld] give by
n(v,a,d,a',d’): a'=d'; wy[b'] and w,[e'] give by n(w,b,e,b',e’) b'=e'. From a'=d', b'=e',
F(a',b',z"), F(d',e',u') we have: z'=u'.

So for certain standard k,m,n,p:
n(n(t,z,u,z',u")) <n(n(v,a,d,a',d"))+n(n(w,b,e,b',e"))
k.(n(v[a])+n(w[b])+n(v[d])+n(w[e])+
n(v,[a]+n(wy[bD+n(vgldD+n(w,[e]) +
m.(n(a)+n(b)+n(d)+n(e)+n(a")+n(b")+ n(d")+n(e")) +
p-(n(z")+n(u")) +n.

Note that n(a)<P!{n(t)}, n(a')<P!{n(t)}, etcetera. Moreover n(v[a])<P?{n(v)}+n(a)<P%{n(t)},

An inside view of EXP 31



n(v,[a'])SP?{n(v)}+n(a')<P2{n(t)}, etcetera. Suppose that our estimate has the form:

n(n(t,z,u,z',u"))<H(n(t))+p.(n(z')+n(u)): we find that it is sufficient that:
H(n(1))H(n(v))+H(n(w))+k.P2{n(t)}.

Hence we can take: H(n(t)):=P3{n(t)}.

Next we do 6. Assume Ja,b(v[a]aw[b]AF(a,b,z")), z'=u'. By one 3-elimination and two A-eli-
minations it is sufficient to prove our conclusion from v,[a’], wy[b], F(a',b',z), z'=u'. First
show: 3d' d'=a' and Je' e'=b'. By two 3-eliminations it is sufficient to prove our conclusion
from v,[a'], wy[b], F(a'b',z"), z'=u', d'=a’, e'=b'. From v,[a’] and d'=a' we get by
8(v,a,d,a',d): v4ld]. Similarly we get w,[e']. Clearly: F(d',e',u’). So by two A-introductions
and two J-introductions we find: 3d,e(v[d]Aaw[e]AF(d,e,u")).

As is easily seen we get the same estimate as forn. a

7.3.2 Lemma (in IA;+€Q,)
a) For all terms t,w of L, for all variables x,z with z¢ FV(w)UFV(w[t/y])U{x} and
xg FV(t)U(FV(w)\{y}), x substitutable for y in w[z]:
PL* 3x(t[x]aw(z][x/y]) «> wlt/y][z].
b) For all formulas A,terms t and variables x of L, such that t is substitutable for y in A and such
that x is substitutable for y in A* and x¢ FV()U(FV(A)\{y}):
PL*F 3x(t[x]AA*[x/y])) <> (Alt/yD*.

Note that in (a) the condition on the variables is certainly fullfilled if x#z and x,ze FV(t)UFV(w).

Proof: (a) Induction on w. Call the proof from right to left n(w,t,x,z) and the proof from left to
right ©(w,t,x,z). First the atomic case. There are three possibilities: w is a constant, w is a
variable not equal to y, w is y. In case w is a constant, say c, we have to show: Ix(t[x]AC(z)) <>
C(z). 0 is trivial. By 7.3.1(a) n(1) can be estimated by: P3{n(t)}+q.(n(x)+n(z)), for some
standard q. The case that w is a variable not equal to y is similar. If w is y, we get: Ix(t[x]Ax=z)
& t[z]. Clearly by 7.3.1(b) n() is estimated by P3{n(t)}+r.(n(x)+n(z)) for standard r. For
reason as follows: Clearly 3x x=z. Suppose t[z] and x=z by 7.3.1(b): t[x], hence Ix(t[x]Ax=z).
By 3J-elimination we can cancel the assumption x=z. So n(n) can be estimated by:
P3{n(t) }+s.(n(x)+n(z)) for standard s.

Suppose e.g. that w=f(u,v) for terms u and v. We have to show that:
Ax(t[x]ada,b (u[a][x/y]Av[b][x/y]AF(a,b,z))) <> Je,g (u[t/ylle]avt/yl[glAF(e.g,2)).

Let's first do n: Assume Je,g (u[t/y][e]av[t/y]l[g]AF(e,g,z)). By one 3-elimination and two
A-elimations it is sufficient to prove our result from: ult/yl.[eT, v[t/y]g[g'], F(e',g',z). Here

e',g' are chosen in such a way that e',g'¢ FV(w)UFV(t)U{x,z,a,b} and €' is substitutable for e
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in u[t/y]l[e] and g' s substitutable for g in v[t/y][g]. By 7.3.1(c) we may conclude: u[t/y][e'] and
v[t/y][g']. As is easily seen the conditions of the induction hypothesis are satisfied for u,t,x,¢e', so
by N(u,t,x,e') we may conclude Ix(t[x]Au[e'][x/y]). Similarly: Ix(t[x]Au[g'][x/y]). By two
J-eliminations and two A-eliminations it is sufficient to prove our result from: t[x], u[e'][x/y],
t,[x'], v[g'l[x'/y]). Here x' is chosen as small as possible such that x' is substitutable for x in
t[x] and for y in v[g'], x'¢ FV(W)UFV(t)U{x,z,a,b,e',g'}. By 7.3.1(b): x=x". Hence t[x],
ule'l[x/y], vig'l[x/yl, F(e',g',z). Clearly Ja e'=a and 3b g'=b, so by two I-eliminations it is
sufficient to prove our result from: e'=a, g'=b, t[x], ul[e'l[x/y]l, v[g'l[x/y], F(e',g',z). By
7.3.1(b) we get: t[x], u[a][x/y], v[bl[x/y], so we may conclude: Ix(t[x]Ada,b
(u[a][x/y]lAv[b][x/y]AF(a,b,z))).

We turn to 0: suppose Ix(t[x]ada,b (u[a][x/y]Av[b][x/y]AF(a,b,z))). By several 3-eliminations
and A-eliminations it is sufficient to prove our result from: t,[x'], u,[a][x'/y], v;[b'1[x'/y],
F(a',b',z). Here a',b',x' are distinct variables such that a'.b',x'¢ FV(w)UFV(t)U{x,z,e,g} and
such that a' is substitutable for a in u[a], b' is substitutable for b in v[b], X' is substitutable for x
in t[x] and for y in u[a'] and v[b']. As is easily seen using 7.3.1(c) it easily follows that:
u[a'][x'/y], v[b'][x'/y]. Clearly we may apply the induction hypothesis so by 0(u,t,x',a") we
have: u[t/y][a’]. Similarly: v[t/y][b']. Clearly Je a'=e and 3g b'=g. So by two 3-eliminations it is
sufficient to prove our result from: a'=e, b'=g, u[t/y][a'], v[t/y]l[b'], F(a',b',z). By 7.3.1(b):
ult/yl[el, v[t/yllgl, F(e,g,z) and by a few introductions we are done.

Let us first estimate the 'local' variables of these steps. We treat one example. Consider e'. We
demanded that e'¢ FV(w)u FV(t)U{x,z,a,b} and €' is substitutable for e in uft/y][e]. Let
Y1s---s¥p De the free variables occurring in u[t/y]. It is easily seen that n(y,)+...+n(y,)<n(u)+n(t).
Hence by previous reasoning the length of the variables bound by a quantifier in whose scope e
occurs is <n(u)+n(t)+k for some standard k. So clearly we may choose e'<n(w)+n(t)+s for some
standard s. Moreover e.g. the step from u[t/y],[e'] to u[t/y][e'] can be estimated by:
P3{n(u[t/y])}+m.n(e) < P3{max(n(w[t/y]),n(w)+n(t))}.
So we have for some standard k:
n(M(w,t,x,2))Sn(N(u,t,x,e"))+n(M(v,t,x,g")N)+P3 {n(w).max(n(t),n(x)) } +k.n(z).
It follows that:
n(M(w,t,x,z))<P*{n(w).max(n(t),n(x)) }+k.n(z).
A similar estimate holds for 6.

(b) The proof is by induction on A. Call the proof from right to left n(A,t,x) and the proof from
left to right 8(A,t,x). The proofs for the atomic case are analogous to the case of f(u,v) in (a). We
get the estimate: P4{n(A).max(n(t),n(x))}.

We treat one example of the induction step: the 1-case, where A=(B—C).
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Suppose ((B[t/y])*—(Clt/y]*)). By 7.3.1(a) 3x t[x]. So it is sufficient to prove our desired
conclusion from t[x]. Suppose (B[x/y])*, by 3-introduction: Ix(t[x]AB[x/y])*). So by 6(B,t,x):
(B[t/yD* and hence (C[t/y])*. By n(C,t,x): Ix(t[x]A(C[x/y])*), so it sufficient to prove our
conclusion from: t [x'], (C[x/y])*[x'/x], where x'e FV()UFV(A[t/y])U{x}, X' substitutable for
x in t[x] and in (C[x/y])*. By 7.3.1(b): x=x' and hence: (C[x/y])*. Our conclusion now easily
follows.

We get: n(n(A,,x)) < n(0(B,t,x))+n(n(C,t,x))+P3{n(A).max(n(t),n(x))}.

The other cases are similar. We find that both n(n(A,t,x)) and n(n(A,t,x)) can be estimated by:
P4{n(A).max(n(t),n(x))}. O

Now we are in the position to prove (i'),(ii"),(iii),(iv):

7.3.3 Theorem (in IA,+Q,): We can transform each PL-proof & of A into an PL*-proof n*
of A*,

Proof: Consider for example the step moving from Vy A to A[t/y]. This step is transformed into
the following reasoning: suppose Vy A*. We show by 7.3.1(a) 3x t[x] and from this Ix
(t[x]AA*[x/y]). Here xe¢ FV(t)UFV(A) and x is substitutable for y in A*. By 7.3.2 we can
conclude: (A[t/y])*. So the length of the transformed step will be P4{n(A).max(n(t),n(x")}
+k.n(x). We can choose x' such that n(x')<n(A). a

Finally we define (.)° as follows:
if F corresponds to f: (F(xy,....X5,¥))":=(f(X;,....Xp)=Y),
if R does not correspond to a function symbol: (R(X,,...,X))":= R(X;e-0sXp)s
()" commutes with logical connectives and quantifiers.

7.3.4 Theorem (in IA;+£2,): We can transform each PL*-proof n* of B into an PL-proof &
of B°.

Proof: We can simply follow rt* in (.)’-translation. We only have to add at some places the
(standard!) proofs of statements of the form Vy,...3!x f(y,...)=x. So n(r) is linear in n(t*). O

7.3.5 Lemma (in IAy+Q,): PLH(t[x])°[t/x].
Proof: The proof is by induction on t. Let's consider a typical step. Say t is of the form f(v,w),
where v and w are terms. (t[x])°[t/x] will have the form: Ju,z (v[u]A w[z]°Af(u,z)=t) (*). Clearly

(*) is immediate from: (v[u])’[v/ula(w([z]) [W/z]Af(v,w)=t, i.e. (v[u])’[v/u]A(w[z])’[W/z]At=t.
So if we call our proof of (t[x])°[t/x]: ={t,x} we have:
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n(n{t,x}) £ n(xw{v,u})+n(r{w,z})+k.n(t)+m.n(t[x]).n(t) <
< n(rn{v,u})+n(r{w,z})+a.n3(t)+b.n3(t)+(c+m.n(x)).n(t)+d,
where n,m,a,b,c,d are standard.

Now assume that n(rt{t,x}) has the form G(n(t))+m.n(x).n(t), we find that it is sufficient that:
G(n(t)) £ G(n(v))+G(n(w))+m.n(u).n(v)+m.n(z).n(w)+a.n3(t)+b.n(t)+c.n(t)+d.
Note that n(u)+n(z)<n(t)+e, for certain standard e and that n(v)+n(w)<n(t), hence: -
G(n(t)) < G(n(v))+G(n(w))+f.n3(t)+g.n2(t)+h.n(t)+i,
for suitable standard f,g,h,i. So clearly we may take G(x):=P*{x} |

7.3.6 Theorem (in 1A;+Q,): PLH(A&A*").

Proof: Let n(A) stand for the proof of A*° from A and let 6(A) stand for the proof of A from
A*°, Let's first consider the atomic case: we have:
R(ty,eeent ) * =3% X (8 [X ] A AL X TP AR (X 5e0X ).

NR(t,,..,t)) looks as follows: first we have proofs T of (tj[xj])‘[tj/xj] (=1....,n). A number of
simple steps brings us to: (t,[x;1)°[t;/x{JA..A(t,[x, D [t,/x JAR(ty,....t) and from there to:
3X 50X (8 [X TP A AL [X 1 AR (X 45...,X)). Note that: n(x))+...+n(x)<n(t))+...+n(ty,),
n(xj)SG(n(tj))+m.n(xj).n(tj), n((tj[xj])"[tj/xj])s p.(K(n(tj))+n(xj)).n(tj) for some standard p.
From these observations it is immediate that n(m(R(t,,...,t;))) can be estimated by
PH{nR(ty,...t)}

B(R(t;,....,t;)) looks as follows: first we have proofs T of (tj[xj])"[tj/xj] (=1,...,n). Then we
have proofs Kj from (tj[xj])"[tj/xj] and (tj[xj])" to X;=t;. Assume t;[x;]°A... At [X I AR(X;5..00X ),
move to t,[x,]°,....t;[x,]",R(X;,...,x,) and infer R(t,,...,t;). Finally apply the 3-elimination
Rule.

Note that n(1tj)_<.P4{n(tj)}+m.n(xj).n(tj). n(kj) is like the proofs 7.3.1(b), but a standard factor
longer because of (.)°: so it will be .<_m.P3{n(tj)}+k.(n(xj)+n(tj)). A moment's reflection will
convince the reader that n(B(R(t;,....,t;))) can be estimated by P“{n(R(tl,...,tn))}

Consider a typical step: e.g. to (C—D). We have: for some standard p,q:
n(n(C—D))<n(6(C))+n(n(D))+p.(n(C)+n(D))+g,
n(6(C—-D))<n(n(C))+n(6(D))+p.(n(C)+n(D))+g.

It follows that we can estimate: n(n(A))<P*{n(A)}, n(6(A))<P*{n(A)} O

7.3.7 Theorem (in IA)+Q,): PL*¥*-(B&B°*).

Proof: The effect of (.)"* is just to replace atomic subformulas of the form F(x;,...,x,,y) by
subformulas of the form Bu1,...,un,u,v(x1=ulA...Axn=un/\F(u1,...,un,u)Ay=VAu=v). We have
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n(u,)+...+n(u )+n(v)<n(F(xy,....X,y))+s for some standard s. It follows that the proof 7 of the

equivalence of F(x,,...,x,,y) and 3u1,...,un,u,v(x1=u1/\...Axn=unAF(u1,...,un,u)/\y=vz\u=v)

satisfies: n(w)= Pl{n(F(xl,...,Xn,y)). Let n(B) stand for the proof of B°* from B and let 6(B)

stand for the proof of B from B°*, we find e.g. for some standard p,q:
n(n(C—D))<n(8(C))+n(N(D))+p.(n(C)+n(D))+q,
n(8(C—D))<n(n(C))+n(6(D))+p.(n(C)+n(D))+q.

It follows that: n(n(B))<P2{n(B)}, n(6(B))<P2{n(B)}. |

Let W be a theory (whose language may contain function symbols) in a language L. W* be the
theory in L* axiomatized by PL* plus the *-translations of the non-logical-axioms of W.
Evidently W* is Alb axiomatized. By the above we have:

7.3.8 Theorem: 1A +Q,V Ae Senty(OwA Oy «A*).

Let U and V be theories in languages L and N. Let K be an interpretation of N* in L. We define:
KU,V = Vye ocv,..ProvU(yK).
KU>V e (Vye oy.3p)*Proofy;(p.yX).
K:UPV i Vxe Senty(Provy(x)—Provy(x*K)).

We can view (.)° as an interpretation of L* in L, by taking as its domain {xIx=x}. If K is an
interpretation of N* in L, then K* is the interpretation of N* in L* with (R(x,...))K*:=
(R(x,...)%)* and Oy (X)=(8k(x))*. Similarly, when M is an interpretation of N* in L*, then M*
is the interpretation of N* in L with (R(x,...))M:= (R(x,...))M)* and O (X)=(Bp4(X))".

7.3.9 Theorem: Let K.M be free parameters ranging over interpretations respectively of N* in
L and of N* in L*. For every &e {a,s,t}:

i) IA+Q, - (). U eU

if) IA+Q, - K:UI>§V « K:UI>§V*.

i)  IA+Q - K:UP §V © K+ U*> gV*

iv) 1A+ - MU eV e M:U*!>§V*

Proof: Note that (i) follows from (iv) and the fact that ID:U*> gU*, where ID is the identity
interpretation. We treat (iii) in case £=s and leave the other cases and (ii) and (iv) to the reader.
Reason in IA;+Q,. "—" Suppose (Vxe aV*Sp)*ProofU(p,xK). Let a be given and let b be the
bound for the U-proofs of the xK. We have to provide a bound ¢ such that Vx<a(xe ayx—3g<c
ProofU*(q,xK*)). It is easy to see that xX*=(xK)*. Moreover as we have seen if p is a U-proof of
xK, then there is a U*-proof q of (xK)* with Igl<P(p!) for some standard polynomial P. So we
can take c:=exp(P(Ibl).

"«" Fully analogous. O
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