
A Proof�checked Veri�cation of a Real�Time Communication

Protocol
�

Indra Polak

Department of Philosophy� Utrecht University

P�O�Box ������	
�� TC Utrecht� The Netherlands

ipolak�phil�ruu�nl

Abstract

We present an analysis of a protocol developed by Philips to connect several com�
ponents of an audio�system� The veri�cation of the protocol is carried out using the
timed I�O�automata model of Lynch and Vaandrager� The veri�cation has been partially
proof�checked with the interactive proof construction program Coq� The proof�checking
revealed an error in the correctness proof �not in the protocol���

� Introduction

The veri�cation of distributed systems is considered to be an important topic of current re�
search� Especially real time systems where discrete and continuous quantities play important
roles are interesting since these systems are very di�cult to build error�free� Where many as�
pects of human life are becoming more and more dependent on such systems� the importance
of the correctness of these increases�
To help us human beings build good systems� the support of the computer can be very

worthwile� One approach is to formally check a hand�made correctness proof with the com�
puter� There are currently a number of programs that can be used to support this process�
One of these is the type theory based system Coq ��	�
In this case study we will report on our experiences when proof�checking a real�time com�

munication protocol with the Coq system�
This article builds on �
	� where the speci�cation and correctness proof were shown� We

add the proof�checking in this article� Sections
 and � are almost directly taken from �
	�
We use a slightly di�erent formal model that was easier to implement in Coq�
The protocol we analyzed is known as the Manchester protocol and is in this case being

used in audio systems� We will use a variant of the timed I�O�automata model of Lynch and
Vaandrager to specify the protocol� The proof itself is stated in many sorted predicate logic�
The article proceeds as follows� In section � the protocol is introduced� In section
 timed

I�O automata are explained� Section
 shows the speci�cation of the protocol while section �
deals with the correctness proof� In section � we introduce Coq and treat the proof�checking�
The focus will be on section � since the others are well treated in �
	�

�Part of this work took place in the context of ESPRIT Basic Research Action ����� �Types for Proofs
and Programs�	

� The Manchester protocol

The protocol we analyzed is known as the bi�phase or manchester encoding� Imagine a
sender�receiver pair that is to communicate messages consisting of a ��nite� number of bits
on a bi�state communication channel� Both parties have a real�time clock� They have agreed
upon the following protocol�

� Divide the time�axis in equal parts called bit�slots�

� The �rst bit of a message is always ��

� An upgoing edge in the middle of a bit�slot means a ��

� A downgoing edge in the middle of a bit�slot means a ��

� The other up� and downgoing edges are done on the boundaries of the bit�slots�

� The state of the channel is low when not used�

See �gure ��

Figure �� Bi�phase protocol�

Message to send� ������

�
�

�
�
�

�
�
�

Bit�slots

Signal on bus

� Time

For reasons of economy� the upgoing edges are excuted better than the downgoing ones�
Therefore� the receiver only sees the upgoing edges� since these are sharp� while the down�
going edges are not and are therefore di�cult to clock� By measuring the time between the
upgoing edges� the receiver can in most cases still reconstruct the sent message� A problem
occurs when the message has the form x��� The receiver can not distinguish this message
from the message x�� since the last zero bit is communicated with a down�going edge� To
solve this problem� the following convention is used� if the last bit received by the receiver is
�� and if the number of bits received is even� the receiver assumes that a � bit was sent too�
and outputs a message ending with �� to the environment� Now all messages having odd
length can be properly detected with the above protocol�
Alas� the sender and the receiver have clocks that drift� How much is unknown� This drift

is expressed as a tolerance N on the clocks� what this means exactly will be explained later

�

on� The main problem of the designer can now be stated as follows �

Find the maximum tolerance N for which the above protocol functions correctly�

Correct functioning means in this case that whenever the sender sends a bit�string s� the
receiver will always receive the same bit�string s�
The above protocol is used by Philips in certain audio equipment to provide communication

between audio sets� This gives the system more possibilities with respect to embedding
intelligence in the system� Now in order to record a tape from a Compact Disc� only one
button needs to be pushed instead of several more�
The control information is sent over a tiny network that connects the various devices� The

bus communication on this network is ruled basically by the above protocol� so Philips needs
to know how precise their clocks must be� Otherwise the messages need not be communicated
correctly� and instead of playing your tape� you might end up with an erased one� Of course
Philips did test their systems rigorously for a certain tolerance� but it remains interesting to
know how high the tolerance may be in general� If the found tolerance is higher than the one
used� cheaper clocks can be put in the product instead�

� Timed I�O�automata

In this section we introduce some preliminaries on a variant of timed I�O�automata�
An action signature S is a triple �in�S�� out�S�� int�S�� of three disjoint sets of respectively

input actions� output actions and internal actions� We derive from these the sets of external
actions� locally controlled actions and actions of S as follows�

ext�S� � in�S� � out�S�

local�S� � out�S�� int�S�

acts�S� � in�S� � out�S� � int�S��

De�nition ��� A timed I�O�automaton A consists of �ve components

�� a nonempty set states�A� of states�

�� a nonempty set start�A� � states�A� of startstates�

	� a nonempty set accepting�A� of acceptingstates��

� an action signature sig�A��

�� a set steps�A� � states�A� � �acts�A� �R��� states�A� of transitions�

We will let s
a
�A s� abbreviate �s� a� s�� � steps�A�� We will often omit the subscript A

when no confusion can arise� The possible actions are divided in normal actions that do not
in�uence time and explicit time actions that add an amount of time to the current time� The

�In this respect our timed I
O�automata di�er from the usual ones	 We need this to express the correctness
criterion more conveniently and point out the relation with Timed B
uchi Automata

intuition is that every normal action has a time stamp that records the time that the action
occurred� We have the following restraint�

Restraint Each input action is enabled in each state�

This restraint makes the assumption that input actions are controlled by the environment
and can therefore not be prevented by the system�

��� Composition� Hiding

The composition of two �or more� timed I�O�automata is constructed with a Cartesian
product� This achieves synchronizing on common events and interleaving on others� To make
two automata S� and S� compatible we rename actions in such a way that out�S���out�S�� �
�� int�S�� � acts�S�� � �� and int�S�� � acts�S�� � �� The composition S� k S� of a pair of
compatible action signatures S�� S� is de�ned to be the action signature S� with

in�S� � �in�S��� in�S���	 �out�S�� � out�S����

out�S� � out�S�� � out�S���

int�S� � int�S�� � int�S���

Now the composition of two timed automata A� and A� is the timed automaton A with

�� states�A� � states�A��� states�A���

�� start�A� � start�A��� start�A���

� accepting�A� � accepting�A��� accepting�A���

� sig�A� � sig�A�� k sig�A���

�� steps�A� is the set of triples ��s�� s��� a� �s
�

�� s
�

��� in states�A���acts�A��R���states�A�
such that� for i � f�� �g� if a � acts�Ai� �R� then si

a
�Ai

s�
i
else si � s�

i
�

Note that since time actions are synchronized� time can only pass if both automata can let
time pass with the same amount�
Suppose H � out�S� for some action signature S� We de�ne the action signature HIDE

H IN S as the triple �in�S�� out�S�	H� int�S��H��
Now if A is an I�O�automaton and H � out�A�� thenHIDE H IN A is the I�O�automaton

obtained from A by replacing sig�A� by HIDE H IN sig�A�� and leaving the other compon�
ents unchanged�

��� traces

An execution fragment of a timed automaton A is a �nite or in�nite alternating sequence
s�a�s�a�s���� of states and actions of A� beginning with a state� and if it is �nite also ending

with a state� such that for all i� si
ai��
� si��� Suppose � � s�a�s�a�s���� is an execution

fragment of A� Let � bet the sequence consisting of the actions in �� � � �������� Then
trace��� is de�ned to be the sequence �� We have a function h � int�A� � f�g that hides

internal actions by renaming them to � � A computation is an in�nite trace that starts in a
start state and in�nitely often visits accepting states� where all internal actions are renamed
into � by h � We will consider two computations equal i� the computations without � actions
are equal�
In this way our timed I�O�automata resemble timed B�uchi automata� see ��	� So our model

di�ers from usual timed I�O�automata ����	� in the following ways�

� We do not really make a distinction between normal actions and time actions�

� We allow abnormal traces like Zeno�traces to occur� since they do not in�uence the
correctness of the protocol�

But there are a number of aspects that make our model similar to timed I�O�automata�

� We use a notion of input�enabledness

� We use the same precondition�e�ect style and state variables

so in need of a better name we have chosen to call our model a variant of timed I�O�automata�

��� simulations

De�nition ��� A weak timed forward simulation from A to B is a relation R � states�A��
states�B� that satis�es the following conditions

�� If s � start�A�� then there exists a state s� � start�B� such that R�s� s���

�� If s
a
�A s�� and R�s� u� for some u � states�B�� then there exists a state u� of B such

that u
a
�B u� and R�s�� u��� or from state s� we can never reach an accepting state

anymore�

	� If s is an accepting state of A� and R�s� s��� then s� is an accepting state of B�

Lemma ��� If there exists a weak timed forward simulation from A to B� then
computations�A� � computations�B��

Proof� By induction on the length of the trace�

This lemma states that if we have a weak timed forward simulation from A to B� then all
computations of A are contained in that of B� We will say that A behaves correct w�r�t� B�
We will use a simulation to express the correctness criterion of our speci�cation��

Another problem is a notion of fairness� As it stands now� the speci�cation does not
guarantee fairness� However we believe that in this protocol the only unfair behavior results
from so�called zeno�traces that do not occur in the real world� As these traces do not violate
the correctness� we let them be in the speci�cation�

�This criterion coincides with the correctness criterion used with Timed Buchi Automata� where only
in�nite words that in�nitely often visit members of a set of accepting states are considered	

�

� Speci�cation

In this section we will show a formal speci�cation of the protocol� We will �rst explain
the syntax we will use in de�ning the timed I�O�automata� In general we follow the same
patterns as in �
	�

��� Precondition�e�ect notation

We will use the characteristic precondition�e�ect style of notation for I�O�automata� The
advantage of this notation is mainly that we can reason about many states and transitions
conveniently�
In this notation� states are represented by state variables� Each variable has an abstract

data type as domain� This data type is de�ned using standard equations over a signature �
and a many sorted ��Algebra A�
Each action is de�ned using a precondition over the state�variables and an e�ect that gives

the state variables new values after the action� A primed variable denotes the variable after
the action� Only if a precondition is true for a certain state� then the transition is possible�
For the TIME action we use an action formula that states the e�ect on all variables slightly
di�erent� I� the action formula is true� then we can do the TIME action�
Now to make our presentation more readable� we introduce notational sugar for an if then

else and a case construct� We also use a standard notation for logical connectives�
We make a distinction between Input actions� Output actions� Internal actions� Discrete

variables� Continuous variables and Initial formulas� The initial formula represents the start
states of the timed I�O�automaton�

��� Data types

We start the speci�cation of the protocol with a description of the various data types that
we will need� We assume a many�sorted signature � and a ��algebra A which consists of the
following components�

� a type Nat of natural numbers� with constant symbol zero� successor function symbol
succ� and a predicate symbol odd� all with the usual interpretation� Also� there is an
embedding � � Nat� Real of the natural numbers into the reals� We will suppress ��s
in terms�

� a type Bit of bits that the protocol has to transmit� with constants symbols � and ��
Again there is an embedding � � Bit � Real� which we will suppress in terms�

� a type List� with as domain the collection of �nite lists of bits� There is a constant
symbol � for the empty list� an embedding h�i � Bit � List� and a binary function
symbol �� denoting concatenation of lists� Besides these constructors� there are function
symbols

head � List � Bit last � List� Bit

tail � List � List last two � List� List

length � List � Nat

�

head takes the �rst element of a list �de�ned arbitrarily as � in case of the empty list��
tail returns the remainder of a list after removal of the �rst element� last gives the last
element of a list� last two gives the last two elements of a list� and length returns the
length of a list� These operations are fully characterized by the axioms �here m is a
variable of type List� and d� e are variables of type Bit��

head��� � � last two��� � �

head�hdi�m� � d last two�hdi� � hdi
tail��� � � last two�m�hdei� � hdei
tail�hdi�m� � m length��� � zero

last��� � � length�hdi�m� � succ�length�m��
last�m�hdi� � d

Here �and elsewhere� we write hdei for hdi�hei� Finally� we need an operation �nalize �
List � List de�ned by�

if last�m���
 odd�length�m�� then �nalize�m��m else �nalize�m��m�h�i�

� a type Bool of booleans with constant symbols true and false� We view boolean valued
terms as formulas and use b as an abbreviation of b�true�

� a function symbol min � Real � Real � Real� with the obvious interpretation� and
two constant symbols Q and T of type Real�

� Q denotes one quarter of the length of a bit slot in the Manchester encoding� In
the Philips speci�cations Q equals ���	s�

� T gives the tolerance on the timing of the sender and receiver in the protocol�
Philips allows a maximum tolerance of � �

��
�

In this paper we will assume Q
 � and � � T � ��

��� The sender

We now de�ne the system S� which models the sender of the protocol� The discrete variables
of S are a variable list� which records the bit string still to be transmitted� a boolean wire high
to keep track of the voltage on the wire� and a boolean transmitting which records whether
the sender is busy transmitting� There is also a continuous variable x which represents a
drifting clock with tolerance T that is reset in the middle of each bit slot� The input action
IN �m� corresponds to a request by the environment to transmit a bit string m� Upon the
occurrence of such an action in the initial state� S immediately does an UP�action� which
represents an upgoing edge on the bus� Depending on whether the second bit in the string is
absent� � or �� a DOWN �action occurs �Q or
Q time units after the �rst UP � according to
the local clock of S� An action DOWN represents a downgoing edge on the bus� Subsequent
actions UP and DOWN are generated as required by the Manchester encoding� and when
the transmission is �nished the protocol returns to its initial state� IN �actions that occur
before the transmission �nishes are ignored�

�

Inputs IN 	 List
Outputs UP

Internals DOWN

Discrete transmitting 	 Bool Init � �transmitting
wire high 	 Bool � �wire high
list 	 List � list
�

Accepting � �transmitting
� �wire high
� list
�

Continuous x 	 Real

IN �m�
Precondition

� head�m�
�
� �odd�length�m�� � last two�m�
h��i�

E�ect

if �transmitting � �wire high � list
� then
list 	
 m

x 	
 ��

UP

Precondition

� �wire high
� list �
�
� if transmitting then �if head�list�
� then x
�Q else x
�Q� else x
�

E�ect

transmitting 	
 true

wire high 	
 true

if head�list�
� then
list 	
 tail�list�
x 	
 ��

DOWN

Precondition

� wire high

� if list �
� � head�list�
� then x
�Q else x
�Q
E�ect

if list
� � list
h�i then
transmitting 	
 false�
wire high 	
 false

if list �
� � head�list�
� then
list 	
 tail�list�
x 	
 ��

TIME �t�
Action formula

� t � �

� �� T � x
�
�x

t
� � � T

��� The receiver

Next we de�ne system R� which models the receiver of the protocol� System R has two
state variables� a discrete variable list� which gives the bit string received thus far� and a
continuous variable x� which represents a drifting clock with tolerance T that is reset whenever
an upgoing edge is detected� There are two actions� an action UP that corresponds to the

�

detection of an upgoing edge� and an action OUT by which the receiver passes a received
string on to the environment� The action predicates for UP and OUT are straightforward
formalizations of the informal speci�cations by Philips of the receiver algorithm�

Inputs UP

Outputs OUT 	 List
Discrete list 	 List Init list
�
Accepting list
�
Continuous x 	 Real

UP

Precondition

true

E�ect

case

list
� � list 	
 h�i
last�list�
� � case

x � �Q � list 	
 �

�Q � x � �Q � list 	
 list�h�i
�Q � x � list 	
 list�h��i

last�list�
� � case

x � �Q � list 	
 �

�Q � x � �Q � list 	
 list�h�i
�Q � x � �Q � list 	
 list�h�i
�Q � x � list 	
 list�h��i

x 	
 �

OUT ��nalize�list��
Precondition

� list �
�
� if last�list�
� then x
�Q else x
�Q

E�ect

list 	
 �

TIME �t�
Action formula

� t � �

� �� T � x
�
�x

t
� � � T

��	 The Full Protocol

The full protocol can now be de�ned as the composition of automata S and R� with commu�
nication between these components hidden�

Impl
�
� HIDE fUPg IN �SkR�

��
 The correctness criterion

System P de�nes the collection of allowed behaviors of Impl � It has the same input and
output actions as Impl � but no internal actions� In P each action IN �m� is followed by an
action OUT�m� within time

�
 length�m� � ��Q

�	 T

However� if the environment o�ers another IN �action before the system has generated a
corresponding OUT �action� P moves to a state of chaos in which anything is possible� This

�

means that in such a situation any behavior of Impl is allowed� In the next section we will
prove that the Impl is indeed a correct implementation of P �

Inputs IN 	 List
Outputs OUT 	 List
Discrete list 	 List Init � list
�

chaos 	 Bool � �chaos
Accepting � list
�

� �chaos
Continuous x 	 Real

IN �m�
Precondition

� head�m�
�
� �odd�length�m�� � last two�m�
h��i�

E�ect

if list
� then
list 	
 m

x 	
 ��
if list �
� then
chaos 	
 true�

OUT �list�
Precondition

� �list �
� � ��� T�x � �� length�list� � ��Q�
� chaos

E�ect

list 	
 �

TIME �t�
Action formula

� t � �
� x

� � x
 t

� Correctness Proof

In this section we will establish that there exists a weak timed forward simulation from
the implementation to the speci�cation� We �rst gain insight into the reachable states by
presenting a number of invariants� i�e�� properties that hold initially and that are preserved
by the transitions� We have omitted all proofs� which are mostly routine and tedious� the
creative part is �nding the right invariants and the order in which to prove them�
From now on� we will assume that the tolerance T is less than �

��
� The following scenario

shows what goes wrong if T
 �

��
� Assume that the sender�s clock progresses maximally slow

and the receiver�s clock maximally fast� Now the sender and receiver are at rest and the
message to be sent is ���� � Immediately after the IN of this message the sender will output
an UP to the receiver� Both clocks are �re�set to �� the bu�er of the sender contains ���
and that of the receiver �� � The receiver can output �� at �Q local receiver�s time� before
the last UP arrives at �Q local sender�s time� if

�Q � ��T
��T

� �Q�

And this is� as the reader can verify� when T
 �

��
�

��

The variables in the invariants are pre�xed with their origin� e�g�� S�x for sender�s clock
x� Besides the variables present in the sender and the receiver� we add to Impl a �discrete�
boolean history variable error that indicates whether Impl is in an erroneous or chaotic state�
We will need this variable to express that a premature input has occurred� Variable error is
de�ned by adding a clause �error to the initialization condition of Impl � and a clause

if R�list ��� then error �� true

to the e�ect of IN in Impl � All the other actions� including TIME � leave error unchanged�
With ��	 we know that this is a harmless extension by which� as one can easily verify� the
set of traces of Impl is not changed� We have a predicate living that ranges over states to
express the property of being able to reach an accepting state� Since the simulation relation
only says something about living states� we can ignore the other states�
We start with a few invariants about the state space of the sender� The �rst invariant

re�ects the observation that the sender is always busy �i�e�� transmitting� if the bus is high�

Lemma 	�� The following property holds for all reachable states of Impl

S�wire high � S�transmitting�

The second invariant gives upper bounds for the the various stages of progress of the sender�
in the �rst conjunct the sender is at rest and ready to accept any input� in the second conjunct
the sender has received its message but has not yet begun to transmit� in the third conjunct
it is waiting to send the next �� etc�

Lemma 	�� The following property holds for all reachable� living states of Impl

� init�S�
� �S�wire high
 S�list ���
 �S�transmitting
 S�x��
� �S�wire high
 S�list ���
 S�transmitting
 head�S�list���
 S�x �
Q
� �S�wire high
 S�list ���
 S�transmitting
 head�S�list���
 S�x � �Q
� S�wire high
 S�list ���
 head�S�list���
 S�x �
Q
� S�wire high
 �S�list�� � head�S�list����
 S�x � �Q�

The next invariant gives an upper bound for the clock of the receiver�

Lemma 	�� The following property holds for all reachable� living states of Impl

R�list�� � if last�R�list��� then R�x � �Q else R�x � �Q�

We now give invariants for relations between the states of the sender and the receiver� The
next invariant tells us that for a good working of the implementation an input of a new
message can only happen when the receiver is at rest�

Lemma 	�
 The following property holds for all reachable� living states of Impl

�S�wire high
 S�list ���
 �S�transmitting � R�list���

��

We want to reason about the two clocks in the implementation as if they were not drifting�
but precise� For this reason we introduce a new symbol � with an intended meaning of
�almost equal � With this we abstract from the amount of drifting�

Notation 	�	 Let e and f be expressions of type Real� We de�ne

e � f
�
�

�	 T

� � T
e � f �

� � T

�	 T
e�

Notice that if T�� we can read � again as �� Also note that e � f if and only if f � e�

Lemma 	�� Let s� s� be states of Impl and e� f terms of type Real in which no continuous
variables occur� Suppose s j� S�x� e � R�x� f � and suppose that s d	� s�� for some d � R��
Then s� j� S�x� e � R�x� f �

The most important observations about the implementation are those in which the distance
between the clocks is related to the contents of the bu�ers of sender and receiver� We start
with the possible distances and then give a more detailed description�

Lemma 	�� The following property holds for all reachable� living states of Impl

 S�transmitting
 �S�wire high � � R�x � S�x�
Q

� R�x � S�x� �Q
� R�x � S�x
 head�S�list���

 S�transmitting
 S�wire high � � R�x � S�x

� R�x � S�x	 �Q
 S�list ���
 head�S�list����

Lemma 	�
 The following property holds for all reachable� living states of Impl

 R�list ���
 S�transmitting �

� last�R�list���
 R�x � ��T
��T

Q
R�x � S�x

� last�R�list���
 ��T
��T

Q � R�x � ��T
��T

�Q
R�x � S�x�
Q

� last�R�list���
 R�x � ��T
��T�Q
R�x � S�x	 �Q

� last�R�list���
 ��T
��T

�Q � R�x � ��T
��T

�Q
R�x � S�x� �Q�

 R�list ���
 init�S��
� last�R�list���
 R�x � �Q
 R�x � S�x

� last�R�list���
 ��T
��T

Q � R�x � �Q
 R�x � S�x�
Q

� last�R�list���
 ��T
��T

�Q � R�x � �Q
 R�x � S�x� �Q

 R�list�� � �S�transmitting
 �S�wire high�

The following invariant implies that� with our additional assumption that T � �

��
� the above

defective scenario is not possible� an output of a message by the receiver cannot happen when
the sender is still busy�

Lemma 	�� The following property holds for all reachable� living states of Impl

S�list ���
 ��R�list ���
 last�R�list���
R�x � �Q� � �last�R�list���
 R�x � �Q��� error �

The last invariant gives an obvious property of the speci�cation automaton�

��

Lemma 	��� The following property holds for all reachable states of P

P�list�� � �head�P�list� � �
 �odd�P�list� � last two�P�list� � h��i��

We have now collected enough invariants to establish a weak timed forward simulation from
the implementation to the speci�cation� Besides a part needed to deal with premature inputs�
the simulation consists of two parts� a part relating the bu�ers of the sender and the receiver
to the bu�er of the speci�cation and a part relating the clocks of the protocol to the single
precise clock of the speci�cation� As in most veri�cations of data link protocols it is essential
to realize at what moment which part of the message is in transit between the sender and
the receiver� In our case this comes down to establishing when there is a �� in transit that
is about to be accepted by the receiver�

Theorem 	��� The relation determined by the following formula over the state variables of
Impl and P is a weak timed forward simulation from Impl to P

SIM
�
� if error then P�chaos else

if R�list�� then P�list�S�list
 �S�list�� � P�x��� else
if R�x � S�x� �Q�last�R�list�	 ��
then
 P�list�R�list�S�list

 ��	 T�P�x �
Qlength�R�list�	 �Q�� � last�R�list��
�min�R�x� S�x� �Q�last�R�list�	 ���

else
 P�list�R�list�h�i�S�list

 ��	 T�P�x �
Qlength�R�list�	 �Q�� � last�R�list��

�min�R�x� S�x� �Q�last�R�list� � ����

	 Proof�checking

The proof�checking activities consisted mainly of the following parts�

� formalize the protocol veri�cation in type theory�

� check the simulation using the lemmas�

� check all lemmas�

The �rst part was easily realized using the same approach as in ��	� Some new constructions
were formalized� For example� the simulation was indeed a relation� and not a function as in
��	� This lead to the introduction of an existential quanti�er in the simulation relation�
We also had the notion of dead and living states to cope with� These were straightforward

to implement using inductive de�nitions� The real�time aspects were modeled with Q� and
some functions on Q had to be de�ned� This formed no problem either�
The proof�checking itself posed more problems� It appeared that the manipulation with

data� e�g� solving an inequality with the two unknowns Q and T � took more time than
expected� Another reason for this fact was that these calculations were not spelled out in the
proof�
This had implications for the speed of the proof�checking process� Since many lemmas

used the parameters and the � construct� the checking of the simulation would be very time

�

consuming� We investigated to automate the handling of these inequalities� but were unable
to �nd a satis�able solution�
After we checked some lemmas we therefore concentrated on the simulation� Here we found

an error in the inequality part� To repair this error� the simulation relation changed radically�
This meant we could start all over again� At this moment� we have checked the simulation
against the lemmas� but did not yet check all lemmas�
We checked lemmas ���� ���� ��� and ���� The others are left for further work�
In the remainders of this section we will explain how the correctness proof was formalized in

Coq and �partially� computer�checked� To this end� we �rst give a short introduction to Coq

itself� After that� we will explain the translation of the speci�cation� Finally we show some
proof�checking examples� In the following we will show Coq input and output in typewriter

style�

�� The Coq system

Coq is an interactive computer program based on the Calculus of Inductive Constructions�
��	� It uses the Curry�Howard isomorphism to represent natural deduction proofs as ��terms�
In addition� we can de�ne inductive types� If we de�ne e�g� the natural numbers as follows �

Inductive Definition nat � Set � O � nat � S � nat �� nat�

then we have de�ned the type nat as the smallest set X such that X is closed under two
constructors� O � X and S � X � X � This gives us the no confusion and no junk properties
normally associated with the natural numbers� all members of nat are di�erent and there are
no other elements besides those built from O and S�
This mechanism gives the system at least the expressive power of the primitive recursive

functions� It is also very useful in the proof� when we have to do an induction over a number
of possible actions in the timed I�O�automaton� we can use this inductive mechanism very
elegantly�
The user communicates with Coq by typing in commands� For an example� consider the

following ��term�

�x �A� B � �y �A � x y

This term corresponds to the following natural deduction rule�

A� B A
ModusPonens

B

We will show a proof�session in Coq that uses the above deduction rule�

Coq � Goal 		A �� B
 �� A
 �� B�

Coq � Show�

 subgoal

		A��B
��A
��B

Coq � Intro H�

�

 subgoal

B

����������������������������

H � 	A��B
��A

Coq � Elim H�

 subgoal

	A��B
��A��B

����������������������������

H � 	A��B
��A

Coq � Intro H��

 subgoal

A��B

����������������������������

H� � A��B

H � 	A��B
��A

Coq � Intro H
�

 subgoal

B

����������������������������

H
 � A

H� � A��B

H � 	A��B
��A

Coq � Apply H��

 subgoal

A

����������������������������

H
 � A

H� � A��B

H � 	A��B
��A

Coq � Assumption�

Goal proved�

We used the following commands�

� Goal x� This tells Coq we want to proof x�

� Show� This command shows the current subgoals�

� Intro x� This corresponds with �I�

� Elim x� This eliminates an inductively de�ned type� In this case it means that if we
want to prove C from A
B� then it is enough to prove A� �B � C��

��

� Apply x� This corresponds to the Modus Ponens rule�

� Assumption� This tells Coq that the current subgoal is given in the context� i�e� the
terms below the double bar�

We see the proof is constructed bottom up instead of top down� we start with the goal and
then we interactively build the proof tree� For more information about Coq see ��	�

�� I�O�automata in Coq

In the proof we constantly use very speci�c aspects of I�O�automata theory� For instance we
often do a case distinction on all possible steps from a given state� Therefore it is useful to
create a framework within Coq that makes this reasoning easy� In ��	 this is done already�
and in general we use the same framework�
We make a distinction between the abstract data types and the transition systems� For

this particular case study� the manipulation of data is a crucial aspect� In many other case
studies with Coq the manipulation of data forms a big problem� In our case this was not
di�erent� In the hand�made proof we generally use the theory of real numbers� However this
datatype is not speci�able in a �nite way� Therefore we chose to model Rwith Q� the set of
rational numbers�
We believe this to be a sound choice� since the hand�made proof only used the axioms of

an ordered �eld� Therefore if the proof in Q can be computer checked with the axioms of
an ordered �eld� we can use the same strategy to check the proof in R� However� we must
now pay attention to the rules we used� It would have been better if we had not chosen any
model� but only stated the axioms for an ordered �eld� The recognition that we only used
properties of an ordered �eld came after some time� and at that point the e�ort to redo the
proof�checking in this setting was not cost�e�ective anymore�

�� Datatypes

In general all our datatypes are inhabitants of the prede�ned type Set� We have the following
data types to translate�

� The sort BOOL of booleans�

� the sort LIST of lists of booleans�

� the sort REAL of real numbers�

����� Booleans

In general we can opt for two strategies� the �rst is to inductively de�ne the booleans with
constants true and false as constructors� This has the advantage that we can do induction
on the possible values of a boolean� A disadvantage of this method is that we must do extra
work to derive a contradiction when we have �true � false� in the context� However this is
a small price to pay� The second approach is to use the prede�ned type Prop that represents
propositions� This has the disadvantage that we can not do induction in a straightforward
way� Therefore we chose for the �rst approach�

��

Inductive Definition bool � Set � true � bool � false � bool�

����� Lists of booleans

Again we used a inductive type� a list is build from two constructors� NIL � LIST and
CONS � BOOL � LIST � LIST � Again the advantage of this approach is that we can do
induction very easy�

Inductive Definition LIST � Set � NIL � LIST �

CONS � bool �� LIST �� LIST�

����� Reals

As said before� the reals are modelled as rationals in this case study� This proved to be
su�cient� A real is modelled as a cartesian product of two natural numbers� The natural
numbers are prede�ned �inductively!� in Coq�

Definition REAL � 	nat � nat
�

����
 Functions

We also have to de�ne the functions on our data types� In general this can be done in
two ways� In Coq it is possible to state axioms like � � x � x� With this axiom we can
rewrite terms using that axiom� The danger of this approach is that we can easily end up
in a situation where every type is inhabited by assuming unsound axioms� Obviously in a
situation like this inhabitance has become a trivial notion from which you never can conclude
the correctness of a protocol�
For an example� if we want to code the integers as built from three constructors� O� S and

P �for predecessor�� Now we want that S�P �O�� and O denote the same integer�

Inductive Definition Z � O � Z � S � Z��Z � P � Z��Z�

If we then add the following proof term h to our context�

h � �Z�O�P	S	O

Then we can �nd a predicate Q that has the following reduction behavior�

Q O ��� 	A�Prop
A��A

Q 	P	S O

 ��� 	A�Prop
A

and hence we can inhabit any proposition F as follows�

h Q �A�Prop��x�A�x F � F

��

So in order to use the inductive approach safely� without introducing contradictions� one
needs to be sure that the introduced axioms are sound� In our case the used axioms of the
datatypes are standard and generally accepted as sound�
The other option is to code all functions directly in lambda�calculus� using the naturals and

ordering thereon that are given with Coq� This approach is much safer and is nearly always
preferable� since all rewrites are
��rewrites and therefore directly recognized by the system�
The problem with this approach is that it can take a long time to formulate a certain function
in ��calculus� and the notation becomes less readable� We coded the functions on naturals�
booleans and lists directly in lambda�calculus to take as much advantage of the increased
speed of computation� In summary� we followed the following guidelines in our choices�
�� Represent all datatypes inductively with proper constructors�
�� Represent equations over the rationals with axioms�

� Represent functions on the other data�types in lambda�calculus for maximum speed�

In this way we could do structural induction where we needed it and use the speed of

��rewrites when we needed to compute a lot�
The protocol mentions three parameters�

� T � the tolerance for which the system functions correctly�

� Q� the size of the bit�time�

� MAX � the maximal length of a message�

In Coq these parameters were simply de�ned with the Parameter command that introduces
the constants�
Many times we needed to solve inequalities over these parameters� To solve these we needed

the axioms over the real numbers� If the protocol did not have these parameters� we could
have represented all functions as ��terms conveniently�
Now we will give some example de�nitions of the functions� For example� plus on the

naturals�

Definition plus � �n�m�nat�	�nat�Match n with m �p�nat�S
�

The even function on naturals�

Definition even � �N�nat�	�bool�Match N with

true

�n
�nat��b�bool�	negb b

�

Negation on booleans�

Definition negb � �x�bool�	�bool�Match x with false true
�

Concatenation and reversal on lists�

Definition concat � �L
�LIST��L��LIST�	�LIST�Match L
 with

L�

�b�bool��l�LIST��rl�LIST�		CONS b rl

�

��

Definition reverse � �L
�LIST�	�LIST�Match L
 with

NIL

�b�bool��l�LIST��rc�LIST�	concat rc 	CONS b NIL

�

In this way we have coded all necessary functions in type theory�

�� The transition systems

In ��	 we see that the transition systems are de�ned using cartesian products over inductively
de�ned sets� In general we followed the same approach�

��
�� Actions

The actions of a timed automaton S are de�ned as an inductively de�ned set� For an ex�
ample� consider the set act S R�

Inductive Definition act�S�R �

IN � LIST �� act�S�R �

OUT � LIST �� act�S�R �

TIME � REAL �� act�S�R �

UP � act�S�R �

DOWN � act�S�R �

In a similar way we de�ne act P � the set of actions of the full protocol�
The state space is de�ned with cartesian products over the state variables� E�g�� the parallel

behavior is de�ned using a cartesian product�

Definition states�system � 	states�S � states�R
�

We have a function ev � act S R � act P that renames actions of �S k R� into the corres�
ponding actions of P in such a way that internal actions are renamed into � �
To reason easily about the state space we de�ned several projections on speci�c actions of

the cartesian products� For instance�
	p t S 	p S 	S � R

 gives us the transmitting variable of the Sender in S � R�

Definition p�t�S � �s�states�S�

�bool� bool � LIST � REAL � bool�Fst	s
�

Definition p�S � �s�states�system�

�states�S� states�R�Fst	s
�

Fst�s� is prede�ned as the �rst projection on a cartesian product�

��

��
�� Transitions

The transitions are de�ned inductively as a predicate over the actions and state space� We
will give an example�

Inductive Definition step �

act�S�R �� states�system �� states�system �� Prop �

step�IN�
 � 	m�LIST
	x�REAL
	e�bool
	lr�LIST
	xr�REAL

	le 	length m
 max
 ��

	�bool�	head m
�true
 ��

		�bool�	odd 	length m

�true
 ��

	�LIST�	last�two m
�	CONS false 	CONS false NIL

 ��

	step 	IN m

	st�system 	st�S false false NIL x e
 	st�R NIL xr

	st�system 	st�S false false m 	realc O 	S O

 e
 	st�R NIL xr

�

���

This shows an action IN � This action corresponds to the case where �transmitting

�wire high
 list � e is valid� In a similar way all other actions are de�ned� Since we have
an inductive de�nition� we can proof goals with induction over step� This gives us a proof
obligation for all possible steps� which is exactly what we wanted� The major disadvantage
of the above approach is that by extracting the if and case constructions� we have a lot of
goals to consider� Another possibility would have been to do the following�

Inductive Definition step �

act�S�R �� states�system �� states�system �� Prop �

step�IN � 	m�LIST
	s�s��states�system

	le 	length m
 max
 ��

	�bool�	head m
�true
 ��

		�bool�	odd 	length m

�true
 ��

	�LIST�	last�two m
�	CONS false 	CONS false NIL

��

	If 		�bool�	p�t�S 	p�S s

�false
 ��

	�bool�	p�w�S 	p�S s

�false
 ��

	�bool�	empty 	p�l�S 	p�S s

�true
 ��

	�LIST�	p�l�S 	p�S s�

�m
 ��

	�REAL�	p�x�S 	p�S s�

�	realc O 	S O

	� then �
 	step 	IN m
 s s�

 �

���

This is an equivalent approach that introduces less but more complex subgoals� It is an
open question whether the added complexity weighs more heavily than the more subgoals�
It probably depends on the way the proof is structured which approach is best� We chose to
do the �rst approach� that is �lling in as much state variables as possible�

��

�	 Simulation

To code the weak simulation property of the timed I�O�automata� we used a predicate over
the state�space�

	

	s�states�system
	p�states�P

	start s
��	start� p
��	simrel s p

 �� 	� Start states should be related �

	

	s�s��states�system
	p�states�P
	a�act�S�R

	step a s s�
��	reach s
��	living�sys s
��	simrel s p
��

	� related through step or��� �

	

�states�P�Ex	�p��states�P�		step� 	ev a
 p p�

��	simrel s� p�

 ��

	

	living�sys s�
��False 	� ���dead��� �

 ��

		s�states�system
	p�states�P

	accepting�sys s
��	simrel s p
��	accepting�P p

	� accepting states related �

�

	simrel s p
 is the simulation relation as de�ned in theorem ����� Ex is the existential
quanti�er as is prede�ned in Coq� If we must prove

�states�P�Ex	�p��states�P�F	p�

then we explicitly must give a witness w and after that a proof of F	w
� If we compare
this with ��	� we see that there the simulation relation was a function� and the existential
quanti�er could be dropped�
In a similar way we de�ned all other needed predicates as reachability� living states� start

states� accepting states etc� In general we could code all aspects of the timed I�O�automata
model we were interested in� For another example� look at the de�nition of living states�

Inductive Definition living�sys � states�system �� Prop �

lives�INIT � 	s�states�system
	reach s
��	accepting�sys s
��

	living�sys s
 �

lives�step � 	a�act�S�R
	s
�s��states�system

	step a s
 s�
��	reach s

��	living�sys s�
��

	living�sys s

�

A living state is a reachable accepting state� or a reachable state from which we can reach
a living state in one step� Compare this with the de�nition of reachability�

��

Inductive Definition reach � states�system �� Prop �

reach�INIT � 	s�states�system
	start s
��	reach s
 �

reach�STEP � 	a�act�S�R
	s
�s��states�system

	step a s
 s�
 �� 	reach s

 �� 	reach s�
�

We see the same inductive de�nition using the step predicate� To prove whether a certain
state s is reachable or living� we �rst prove the initial formula and after that do an induction
over all possible steps�

�
 Invariants

Several invariants were necessary to proof the desired results� To code these� a similar ap�
proach as above was followed� Again we will give an example�

Lemma ��
�

Assumes

	St�states�system

	reach St
��

	�bool�	p�w�S 	p�S St

�true
��	�bool�	p�t�S 	p�S St

�true
�

In general the invariants were more easy to prove than the simulation property� However
some invariants consisted of large and complex propositions� Especially those concerning the
real�time clocks were time consuming to check� It appears that much time can be saved if
the invariants are as simple as possible� It takes probably less time to check a lot of small
invariants like Lemma ���� which was checked whithin
� minutes �human development �
wall clock cpu time�� than to check a very large one like lemma ���� which took more than
a week to develop� This is mainly due to the addition of real numbers� parameters and
inequalities� much time was spent dealing with those�

�� Session examples

We will show some sample session examples to illustrate the proof�checking process�

	simrel s p
��

	step a s s�
��

	reach s
��

	living�sys s
��

		�states�P�Ex	�p��states�P�	step� 	ev a
 p p�
��	simrel s� p�

��		living�sys s�
��False

����������������������������

H� � 	simrel s p

H
 � 	living�sys s

H� � 	reach s

H � 	step a s s�

a � act�S�R

p � states�P

s� � states�system

s � states�system

��

Here we see one of the crucial moments in checking the simulation� we proceed by doing
induction over all possible steps with the command

Elim H� Intros�

After this we have to proof the above Goal for every possible action a� In our case there are

 possible steps to consider� We will show one of them�

subgoal
 is�

	�states�P

�Ex	�p��states�P�

	step� 	ev 	IN m

 p p�

��	simrel

	st�system 	st�S false false m 	realc O 	S O

 e

	st�R NIL xr

p�

��		living�sys

	st�system 	st�S false false m 	realc O 	S O

 e
 	st�R NIL xr

��False

����������������������������

H� � 	living�sys

	st�system 	st�S false false NIL x e
 	st�R NIL xr

H� � 	reach 	st�system 	st�S false false NIL x e
 	st�R NIL xr

H� � 	step 	IN m

	st�system 	st�S false false NIL x e
 	st�R NIL xr

	st�system 	st�S false false m 	realc O 	S O

 e

	st�R NIL xr

H� � 	simrel 	st�system 	st�S false false NIL x e
 	st�R NIL xr

 p

H� � 	�bool�	odd 	length m

�true

��	�LIST�	last�two m
�	CONS false 	CONS false NIL

H� � �bool�	head m
�true

H� � 	le 	length m
 max

xr � REAL

lr � LIST

e � bool

x � REAL

max � nat

m � LIST

p � states�P

Here we see that Coq has �lled in the values of the state variables� H� equals the induction
hypothesis� The proof proceeds with choosing the left disjunct� giving the right state for
p�� doing induction over e and using induction� This is a simple subgoal that takes only ��

�

lines of tactics� More involved subgoals can take ��� lines of tactics to solve� On one line we
generally put more than one tactic�
Another example shows an inequality�

Goal

	X�REAL

	ler T

	realc 	S O
 	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S O

��

	ler X 	multr 	divr epT emT
 	multr 	realc 	S 	S O

 	S O

 Q

��

	ler 	multr Q 	realc 	S 	S 	S O

 	S O

 X
��

	ler X 	multr Q 	realc 	S 	S 	S 	S 	S O

 	S O

��

False�

This expresses the folllowing fact�

�X� T � REAL�
���T � �����

�X � ��� � T ����	 T �� � �Q�

�
Q � X�

�X �
Q���

To proof this we needed about ��� lines of tactics mainly consisting of rewriting subterms
with the axioms on the real�numbers� These kinds of subgoals appeared very frequently� We
think that a tool like mathematica would be more convenient to check such goals� Therefore
we checked some of them and left the rest for further work�

�
 Coq tactics

The command language of Coq consists apart from tactics dealing with goals themselves also
of a few tactic functions to compose atomic tactics to composed tactics called tacticals�
The semi�colon � in t� � t� applies the tactic t� to all subgoals generated by tactic t�� We

solved lemma ��� with one tactical using this construct�
Another tactical is the t� Orelse t� tactical that tries tactic t�� and if it fails� applies tactic

t�� In this way we can compose very complicated tacticals to solve a lot of di�erent subgoals
with one tactical�
However we also could use additional tacticals� For example it would be very useful if we

could write parametrized tacticals� Then we can make the tacticals more general� and better
reusable�
Another point is the ability to look in your context with a tactic� For instance� if the term

t is part of our context then apply tactic x with parameter t� In this way we could guide the
proof much more easily�
Another point is the ability to save system states during a proof session� In Coq you can

only save a state when you have �nished a proof� However loading old proofs can take a long
time� It would be convenient if the user could save his current state and when he wants can
enter back�

�

 Conclusions

On the account of �nding an error in the proof one could say that the experiment was succes�
ful� the main goal of proof�checking is to �nd errors in proofs� However we did not completely
proof�check the new proof� This is mainly due to the great complexity of the protocol and the
need to do many data manipulations� for which Coq seems not particularily suited� One can
choose to check these algebraic theorems outside the theorem prover using an algebraic tool�
e�g� maple� Another solution is to add preproven libraries and theories to the distribution�
which has already been done in the latest version for Coq� but were not available at the time
we used Coq�

Proof�checking with Coq We can distinguish two aspects here� On aspect deals with
the ability to formulate all aspects of timed I�O�automata� This formed no problem using
the rich and expressive language of Coq� The second aspect deals with the support for the
proof�checking itself� In this respect we encountered limitations of the implementation of Coq
we used� Especially when we had to deal with heavy data manipulations we felt the need for
preproven libraries and theories�

Related work In ��	 a very similar experiment was shown� Their conclusions con�rm the
view that data manipulations are troublesome and that the command language is not very
strong� However their data structures did not include an uncountable set and inequalities
with two unknowns�
In ��	 LP �the Larch Prover� is used to check an algorithm stated in TLA �the Temporal

Logic of Actions�� We see here that the distinction between �� the action logic �� the
temporal logic give reason to use di�erent encodings for these� We see similar activities in
our case� The action logic is directly coded in ��calculus while many lemma�s on the Real
numbers are stated and used by axioms�
In ��	 we see a veri�cation of Pbs� Here the much use of inductional reasoning struck us

as similar to our case� It also illustrates that more experience is needed to reach a situation
where formal veri�cation becomes cost e�ective�
In ��	 the system Isabelle is used which is very similar to Coq� We also have ��calculus

and higher order logics to work with� We also see here that a theorem prover is not always
especially suited to proof�check a realistic protocol�

Acknowledgements

Thanks to the following people � �rst and above all Alex Sellink who taught me type theory
and Coq with an astonishing amount of patience and enthusiasm� Without him the article
would not have been written at all� Secondly Jan Friso Groote who guided the project� Then
Frits Vaandrager and Doeko Bosscher for joint work on �
	� the starting point of the present
paper� Then Jan Springintveld� Jaco van de Pol and Marc Bezem who helped in all sorts
of ways� Thanks also to Philips Electronics for several discussions on the protocol and for
giving access to con�dential documentation�

��

References

��	 M� Agaard and M� Leeser� Verifying a logic synthesis tool in nuprl� a case study in
software veri�cation� In Bochmann and Probst �
	� pages ��"���

��	 R� Alur and D�L� Dill� The theory of timed automata� In J�W� de Bakker� C� Huizing�
W�P� de Roever� and G� Rozenberg� editors� Proceedings REX Workshop on Real�Time

Theory in Practice� Mook� The Netherlands� June ����� volume ���� pages
�"�
� �����

�
	 G� v� Bochmann and D�K� Probst� editors� Proceedings of the
th International Workshop
on Computer Aided Veri�cation� Montreal� Canada� volume ��
� �����

�
	 D�J�B� Bosscher� I� Polak� and F�W� Vaandrager� Veri�cation of an audio control pro�
tocol� In Proceedings of the Third International School and Symposium on Formal Tech�
niques in Real Time and Fault Tolerant Systems� L#ubeck� Germany� September ���
�
To appear�

��	 G� Dowek� A� Felty� H� Herbelin� G�P� Huet� C� Murthy� C� Parent� C� Paulin�Mohring�
and B� Werner� The Coq proof assistant user�s guide� Version ���� Technical report�
INRIA " Rocquencourt� May ���
�

��	 U� Engberg� P� Gr$nning� and L� Lamport� Mechanical veri�cation of concurrent systems
with TLA� In Bochmann and Probst �
	� pages

"���

��	 L� Helmink� M�P�A� Sellink� and F�W� Vaandrager� Proof�checking a data link protocol�
In H� Barendregt and T� Nipkow� editors� Proceedings Workshop Esprit BRA �Types for
Proofs and Programs�� Nijmegen� The Netherlands� May ���
� number ���� ���
� Full
version available as Report CS�R�
��� CWI� Amsterdam� March ���
�

��	 N�A� Lynch and F�W� Vaandrager� Forward and backward simulations " part II� Timing�
based systems� Report CS�R�
�
� Amsterdam� March ���
�

��	 D� Mery and A� Mokkedem� Crocos� an integrated environment for interactive veri�ca�
tion of sdl speci�cations� In Bochmann and Probst �
	� pages

"
���

���	 F�W� Vaandrager and N�A� Lynch� Action transducers and timed automata� In W�R�
Cleaveland� editor� Proceedings CONCUR ��� Stony Brook� NY� USA� volume �
�� pages

�"
��� �����

��

