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Abstract
We present an analysis of a protocol developed by Philips to connect several com-
ponents of an audio-system. The verification of the protocol is carried out using the
timed I/O-automata model of Lynch and Vaandrager. The verification has been partially
proof-checked with the interactive proof construction program Coq. The proof-checking
revealed an error in the correctness proof (not in the protocoll).

1 Introduction

The verification of distributed systems is considered to be an important topic of current re-
search. Especially real time systems where discrete and continuous quantities play important
roles are interesting since these systems are very difficult to build error-free. Where many as-
pects of human life are becoming more and more dependent on such systems, the importance
of the correctness of these increases.

To help us human beings build good systems, the support of the computer can be very
worthwile. One approach is to formally check a hand-made correctness proof with the com-
puter. There are currently a number of programs that can be used to support this process.
One of these is the type theory based system Coq [5].

In this case study we will report on our experiences when proof-checking a real-time com-
munication protocol with the Coq system.

This article builds on [4], where the specification and correctness proof were shown. We
add the proof-checking in this article. Sections 4 and 5 are almost directly taken from [4].
We use a slightly different formal model that was easier to implement in Coq.

The protocol we analyzed is known as the Manchester protocol and is in this case being
used in audio systems. We will use a variant of the timed I/O-automata model of Lynch and
Vaandrager to specify the protocol. The proof itself is stated in many sorted predicate logic.

The article proceeds as follows. In section 2 the protocol is introduced. In section 3 timed
1/O automata are explained. Section 4 shows the specification of the protocol while section 5
deals with the correctness proof. In section 6 we introduce Coq and treat the proof-checking.
The focus will be on section 6 since the others are well treated in [4].

*Part of this work took place in the context of ESPRIT Basic Research Action 6453: ‘Types for Proofs
and Programs’.



2 The Manchester protocol

The protocol we analyzed is known as the bi-phase or manchester encoding. Imagine a
sender-receiver pair that is to communicate messages consisting of a (finite) number of bits
on a bi-state communication channel. Both parties have a real-time clock. They have agreed
upon the following protocol:

e Divide the time-axis in equal parts called bit-slots.

The first bit of a message is always 1.

e An upgoing edge in the middle of a bit-slot means a 1.

e A downgoing edge in the middle of a bit-slot means a 0.

e The other up- and downgoing edges are done on the boundaries of the bit-slots.
e The state of the channel is low when not used.

See figure 1.
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Figure 1: Bi-phase protocol.

For reasons of economy, the upgoing edges are excuted better than the downgoing ones.
Therefore, the receiver only sees the upgoing edges, since these are sharp, while the down-
going edges are not and are therefore difficult to clock. By measuring the time between the
upgoing edges, the receiver can in most cases still reconstruct the sent message. A problem
occurs when the message has the form 210. The receiver can not distinguish this message
from the message 21, since the last zero bit is communicated with a down-going edge. To
solve this problem, the following convention is used: if the last bit received by the receiver is
1, and if the number of bits received is even, the receiver assumes that a 0 bit was sent too,
and outputs a message ending with 10 to the environment. Now all messages having odd
length can be properly detected with the above protocol.

Alas, the sender and the receiver have clocks that drift. How much is unknown. This drift
is expressed as a tolerance N on the clocks, what this means exactly will be explained later



on. The main problem of the designer can now be stated as follows :
Find the maximum tolerance N for which the above protocol functions correctly.

Correct functioning means in this case that whenever the sender sends a bit-string s, the
receiver will always receive the same bit-string s.

The above protocol is used by Philips in certain audio equipment to provide communication
between audio sets. This gives the system more possibilities with respect to embedding
intelligence in the system. Now in order to record a tape from a Compact Disc, only one
button needs to be pushed instead of several more.

The control information is sent over a tiny network that connects the various devices. The
bus communication on this network is ruled basically by the above protocol, so Philips needs
to know how precise their clocks must be. Otherwise the messages need not be communicated
correctly, and instead of playing your tape, you might end up with an erased one. Of course
Philips did test their systems rigorously for a certain tolerance, but it remains interesting to
know how high the tolerance may be in general. If the found tolerance is higher than the one
used, cheaper clocks can be put in the product instead.

3 Timed I/O-automata

In this section we introduce some preliminaries on a variant of timed 1/O-automata.

An action signature S'is a triple (in(9), out(S),int(S)) of three disjoint sets of respectively
input actions, output actions and internal actions. We derive from these the sets of external
actions, locally controlled actions and actions of S as follows:

ext(S) = n(S)Uout(s)
local(S) = out(S)Uint(S)
acts(S) = in(S)Uout(S) U int(S).
Definition 3.1 A timed [/O-automaton A consists of five components
1. a nonempty set states(A) of states,
2. a nonempty set start(A) C states(A) of startstates,
3. a nonempty set accepting(A) of acceptingstates,’

4. an action signature sig(A),

5. a set steps(A) C states(A) X (acts(A) URT) x states(A) of transitions.

We will let s —¥4 s abbreviate (s,a,s’) € steps(A). We will often omit the subscript A
when no confusion can arise. The possible actions are divided in normal actions that do not
influence time and explicit time actions that add an amount of time to the current time. The

'In this respect our timed 1/O-automata differ from the usual ones. We need this to express the correctness
criterion more conveniently and point out the relation with Timed Buchi Automata



intuition is that every normal action has a time stamp that records the time that the action
occurred. We have the following restraint:

Restraint Each input action is enabled in each state.

This restraint makes the assumption that input actions are controlled by the environment
and can therefore not be prevented by the system.

3.1 Composition, Hiding

The composition of two (or more) timed I/O-automata is constructed with a Cartesian
product. This achieves synchronizing on common events and interleaving on others. To make
two automata S1 and S2 compatible we rename actions in such a way that out(Sy)Nout(S2) =
0, int(S1) Nacts(Sz) = 0, and int(S3) N acts(Sy) = 0. The composition Sy || Sy of a pair of
compatible action signatures 57,57 is defined to be the action signature S, with

in(S) = (in(S1)Uin(S2)) — (out(Sy) Uout(Ss2)),
out(S) = out(Sy) U out(Ss),
int(S) = nt(Sy) Uint(Ss).

Now the composition of two timed automata Ay and As is the timed automaton A with
1. states(A) = states(Ay) X states(As),

2. start(A) = start(Ay) x start(As),

3. accepting(A) = accepting (A1) X accepting(As),

4. sig(A) = sig(Ar) || s1g(Az2),

5. steps(A) is the set of triples ((s1, s2), a, (s}, s5)) in states(A) x (acts(A)URT) X states(A)
such that, for i € {1,2},if a € acts(A;) URT then s; —'4, st else s; = sl

Note that since time actions are synchronized, time can only pass if both automata can let
time pass with the same amount.

Suppose H C out(9) for some action signature S. We define the action signature HIDE
H IN S as the triple (in(S), out(S) — H,int(S)U H).

Now if A is an [/O-automaton and H C out(A), then HIDE H IN A is the I/O-automaton
obtained from A by replacing sig(A) by HIDE H IN sig(A), and leaving the other compon-
ents unchanged.

3.2 traces

An ezxecution fragment of a timed automaton A is a finite or infinite alternating sequence
Soa1S1G253... of states and actions of A, beginning with a state, and if it is finite also ending
with a state, such that for all 7, s; g Si41. Suppose « = Sg@1S5103Sg... IS an execution
fragment of A. Let v bet the sequence consisting of the actions in a: v = ajasg.... Then
trace(w) is defined to be the sequence y. We have a function h : int(A) — {7} that hides



internal actions by renaming them to 7. A computation is an infinite trace that starts in a
start state and infinitely often visits accepting states, where all internal actions are renamed
into 7 by & . We will consider two computations equal iff the computations without 7 actions
are equal.

In this way our timed I/O-automata resemble timed Biichi automata, see [2]. So our model
differs from usual timed I/O-automata ([10]) in the following ways:

e We do not really make a distinction between normal actions and time actions.

e We allow abnormal traces like Zeno-traces to occur, since they do not influence the
correctness of the protocol.

But there are a number of aspects that make our model similar to timed [/O-automata:
e We use a notion of input-enabledness
e We use the same precondition/effect style and state variables

so in need of a better name we have chosen to call our model a variant of timed 1/O-automata.

3.3 simulations

Definition 3.2 A weak timed forward simulation from A to B is a relation R C states(A) x
states(B) that satisfies the following conditions:

1. If s € start(A), then there exists a state s’ € start(B) such that R(s,s').

2. If s %4 8, and R(s,u) for some u € states(B), then there exists a state v’ of B such
that w —¥g u' and R(s',u'), or from state s' we can never reach an accepting state
anymore.

3. If s is an accepting state of A, and R(s,s'), then s’ is an accepting state of B.

Lemma 3.3 If there exists a weak timed forward simulation from A to B, then
computations(A) C computations(B).

Proof: By induction on the length of the trace. [

This lemma states that if we have a weak timed forward simulation from A to B, then all
computations of A are contained in that of B. We will say that A behaves correct w.r.t. B.
We will use a simulation to express the correctness criterion of our specification.?

Another problem is a notion of fairness. As it stands now, the specification does not
guarantee fairness. However we believe that in this protocol the only unfair behavior results
from so-called zeno-traces that do not occur in the real world. As these traces do not violate
the correctness, we let them be in the specification.

2This criterion coincides with the correctness criterion used with Timed Buchi Automata, where only
infinite words that infinitely often visit members of a set of accepting states are considered.



4 Specification

In this section we will show a formal specification of the protocol. We will first explain
the syntax we will use in defining the timed I/O-automata. In general we follow the same
patterns as in [4].

4.1 Precondition/effect notation

We will use the characteristic precondition/effect style of notation for I/O-automata. The
advantage of this notation is mainly that we can reason about many states and transitions
conveniently.

In this notation, states are represented by state variables. Each variable has an abstract
data type as domain. This data type is defined using standard equations over a signature 3
and a many sorted Y-Algebra A.

Each action is defined using a precondition over the state-variables and an effect that gives
the state variables new values after the action. A primed variable denotes the variable after
the action. Only if a precondition is true for a certain state, then the transition is possible.
For the TIMFE action we use an action formula that states the effect on all variables slightly
different. Iff the action formula is true, then we can do the TIMFE action.

Now to make our presentation more readable, we introduce notational sugar for an if then
else and a case construct. We also use a standard notation for logical connectives.

We make a distinction between Input actions, Qutput actions, Internal actions, Discrete
variables, Continuous variables and Initial formulas. The initial formula represents the start
states of the timed 1/O-automaton.

4.2 Data types

We start the specification of the protocol with a description of the various data types that
we will need. We assume a many-sorted signature 3 and a ¥-algebra A which consists of the
following components:

e a type Nat of natural numbers, with constant symbol zero, successor function symbol
succ, and a predicate symbol odd, all with the usual interpretation. Also, there is an
embedding ¢ : Nat — Real of the natural numbers into the reals. We will suppress ¢’s
in terms.

e a type Bit of bits that the protocol has to transmit, with constants symbols 0 and 1.
Again there is an embedding ¢ : Bit — Real, which we will suppress in terms.

e a type List, with as domain the collection of finite lists of bits. There is a constant
symbol ¢ for the empty list, an embedding (.) : Bit — List, and a binary function
symbol °, denoting concatenation of lists. Besides these constructors, there are function
symbols

head : List — Bit last : List — Bit
tail : List — List last_two : List — List
length : List — Nat



head takes the first element of a list (defined arbitrarily as 0 in case of the empty list),
tail returns the remainder of a list after removal of the first element, last gives the last
element of a list, last_two gives the last two elements of a list, and length returns the
length of a list. These operations are fully characterized by the axioms (here m is a
variable of type List, and d, e are variables of type Bit):

head (¢) =0 last_two(¢) = €

head((d)'m) = d last_two((d)) = (d)

tail(¢) = € last_two(m " (de)) = (de)

tail((d)’m) = m length (¢) = zero

last(¢) =0 length ((d)"m) = succ(length(m))
last(m™(d)) = d

Here (and elsewhere) we write (de) for (d)"(e). Finally, we need an operation finalize :
List — List defined by:

if last(m)=1 A odd(length(m)) then finalize(m)=m else finalize(m)=m"(0).

e a type Bool of booleans with constant symbols true and false. We view boolean valued
terms as formulas and use b as an abbreviation of b=true.

e a function symbol min : Real x Real — Real, with the obvious interpretation, and
two constant symbols Q and T of type Real:

— Q denotes one quarter of the length of a bit slot in the Manchester encoding. In
the Philips specifications Q equals 222us.

— T gives the tolerance on the timing of the sender and receiver in the protocol.
Philips allows a maximum tolerance of :I:%.

In this paper we will assume Q > 0and 0 < T < 1.

4.3 The sender

We now define the system S, which models the sender of the protocol. The discrete variables
of .S are a variable list, which records the bit string still to be transmitted, a boolean wire_high
to keep track of the voltage on the wire, and a boolean transmitting which records whether
the sender is busy transmitting. There is also a continuous variable  which represents a
drifting clock with tolerance T that is reset in the middle of each bit slot. The input action
IN (m) corresponds to a request by the environment to transmit a bit string m. Upon the
occurrence of such an action in the initial state, S immediately does an UP-action, which
represents an upgoing edge on the bus. Depending on whether the second bit in the string is
absent, 0 or 1, a DOWN-action occurs 2Q or 4Q time units after the first UP, according to
the local clock of 5. An action DOWN represents a downgoing edge on the bus. Subsequent
actions UP and DOWN are generated as required by the Manchester encoding, and when
the transmission is finished the protocol returns to its initial state. IN-actions that occur
before the transmission finishes are ignored.



Inputs IN : List

Outputs UpP

Internals DOWN

Discrete transmitting : Bool Init A —transmitting
wire_high : Bool A —wire_high
list @ List A list=¢

Accepting A ~transmitting
A —wire_high
A list=¢
Continuous z : Real

IN (m)
Precondition
A head(m)=1
A (odd(length(m)) V last_two(m)=(00))
Effect
it —transmitting A —~wire_high A list=c then [list :=m
z:=0]

Up
Precondition
A —wire_high
A list#e
A if transmitting then (if head(list)=1 then x=4Q else x=2Q) else #=0
Effect
transmitting = true
wire _high := true
if head (list)=1 then [list := tail(list)
z:=0]

DOWN
Precondition
A wire_high
A if list#£e A head(list)=0 then 2=4Q else 2=2Q
Effect
if list=¢ V list=(0) then [transmitting := false]
wire _high := false
if list#¢ A head(list)=0 then [list := tail(list)
z:= 0]

TIME ()
Action formula
At>0

A-T<Zo2 <1 4T

4.4 The receiver

Next we define system R, which models the receiver of the protocol. System R has two
state variables: a discrete variable list, which gives the bit string received thus far, and a
continuous variable z, which represents a drifting clock with tolerance T that is reset whenever
an upgoing edge is detected. There are two actions: an action UP that corresponds to the



detection of an upgoing edge, and an action QUT by which the receiver passes a received
string on to the environment. The action predicates for UP and OUT are straightforward
formalizations of the informal specifications by Philips of the receiver algorithm.

Inputs UpP
Outputs OUT : List
Discrete list : List Init list=¢

Accepting list=¢
Continuous =z : Real

UP
Precondition
true
Effect
case
list=¢ = list .= (1)
last(list)=0 = case
r < 3Q = list ;= ¢
3Q < x < 5Q = list := list™(0)
Q< x = list .= list"(01)
last(list)=1 = case
r < 3Q = list ;= ¢
3Q < x < 5Q = list .= list™(1)
5Q< e < 7Q = list .= list™(0)
Q< = list .= list"(01)
x:=0
OUT (finalize(list)) TIME ()
Precondition Action formula
A list#e Al>0
A if last(list)=0 then x=7Q else z=9Q AlL-T< x't;x <14T
Effect
list .= ¢

4.5 The Full Protocol

The full protocol can now be defined as the composition of automata S and R, with commu-
nication between these components hidden:

Impl = HIDE {UP} IN (S||R)

4.6 The correctness criterion

System P defines the collection of allowed behaviors of Impl. It has the same input and
output actions as Impl, but no internal actions. In P each action IN(m) is followed by an
action OUT(m) within time

(4 length(m) 4+ 5) Q
1-T
However, if the environment offers another IN-action before the system has generated a
corresponding OUT-action, PP moves to a state of chaos in which anything is possible. This




means that in such a situation any behavior of Impl is allowed. In the next section we will
prove that the I'mpl is indeed a correct implementation of P.

Inputs IN : List
Outputs OUT : List
Discrete list : List Init A list=c
chaos : Bool A —chaos
Accepting A list=e
A —chaos

Continuous =z : Real

IN (m)
Precondition
A head(m)=1
A (odd(length(m)) V last_two(m)=(00))
Effect
if list=¢ then [list :=m
z:=0]
if list£¢ then [chaos := true]

OUT (list)
Precondition
V (list£e A (1 — T)x < (4 length(list) +5) Q)
V chaos
Effect
list .= ¢

TIME(1)
Action formula
At>0
ANe' —x=1t

5 Correctness Proof

In this section we will establish that there exists a weak timed forward simulation from
the implementation to the specification. We first gain insight into the reachable states by
presenting a number of invariants, i.e., properties that hold initially and that are preserved
by the transitions. We have omitted all proofs, which are mostly routine and tedious; the
creative part is finding the right invariants and the order in which to prove them.

From now on, we will assume that the tolerance T is less than 11—7 The following scenario
shows what goes wrong if T > 11—7 Assume that the sender’s clock progresses mazimally slow
and the receiver’s clock maximally fast. Now the sender and receiver are at rest and the
message to be sent is “101”. Immediately after the IN of this message the sender will output
an UP to the receiver. Both clocks are (re)set to 0, the buffer of the sender contains “01”
and that of the receiver “1”7. The receiver can output “1”7 at 9Q local receiver’s time, before
the last UP arrives at 8Q local sender’s time, if

9Q-%§8Q.

And this is, as the reader can verify, when T > 11—7

10



The variables in the invariants are prefixed with their origin, e.g., S.z for sender’s clock
z. Besides the variables present in the sender and the receiver, we add to Impl a (discrete)
boolean history variable error that indicates whether Impl is in an erroneous or chaotic state.
We will need this variable to express that a premature input has occurred. Variable error is
defined by adding a clause —error to the initialization condition of Impl, and a clause

if R.list#¢ then error := true

to the effect of IN in Impl. All the other actions, including TIMF, leave error unchanged.
With [8] we know that this is a harmless extension by which, as one can easily verify, the
set of traces of Impl is not changed. We have a predicate living that ranges over states to
express the property of being able to reach an accepting state. Since the simulation relation
only says something about living states, we can ignore the other states.

We start with a few invariants about the state space of the sender. The first invariant
reflects the observation that the sender is always busy (i.e., transmitting) if the bus is high.

Lemma 5.1 The following property holds for all reachable states of Impl :

S.wire_high — S.transmitting.

The second invariant gives upper bounds for the the various stages of progress of the sender:
in the first conjunct the sender is at rest and ready to accept any input, in the second conjunct
the sender has received its message but has not yet begun to transmit, in the third conjunct
it is waiting to send the next “1” etc.

Lemma 5.2 The following property holds for all reachable, living states of Impl :

Vooinit(S)

—S.wire_high N S.list#e A =S.transmitting A S.x2=0

—S.wire_high A S.list#e N S.transmitting A head(S.list)=1 A S.z < 4Q
—S.wire_high A S.list#e N S.transmitting A head(S.list)=0 A S.z < 2Q
S.wire_high N S.list#£e A head(S.list)=0 A S.z < 4Q

S.wire_high A (S.list=¢ V head(S.list)=1) A S.z < 2Q.

< <L

The next invariant gives an upper bound for the clock of the receiver.

Lemma 5.3 The following property holds for all reachable, living states of Impl :
R.list=¢ V if last(R.list)=0 then R.z < 7Q else R.z < 9Q.

We now give invariants for relations between the states of the sender and the receiver. The
next invariant tells us that for a good working of the implementation an input of a new
message can only happen when the receiver is at rest.

Lemma 5.4 The following property holds for all reachable, living states of Impl :

—S.wire_high A S.list#e N =S.transmitting — R.list=e.

11



We want to reason about the two clocks in the implementation as if they were not drifting,
but precise. For this reason we introduce a new symbol ~ with an intended meaning of
“almost equal”. With this we abstract from the amount of drifting.

Notation 5.5 lLet e and f be expressions of type Real. We define:

s 1-T 14T

e~/ rTes s

Notice that if T=0 we can read =~ again as =. Also note that e = f if and only if f =~ e.

Lemma 5.6 Let s,s" be states of Impl and e, [ terms of type Real in which no continuous
variables occur. Suppose s |= S.x 4+ e~ R.x+ f, and suppose that s N s', for some d € RT.
Then s' = Sx+emx~ Ra+ f.

The most important observations about the implementation are those in which the distance
between the clocks is related to the contents of the buffers of sender and receiver. We start
with the possible distances and then give a more detailed description.

Lemma 5.7 The following property holds for all reachable, living states of Impl :
A S.transmitting A =S.wire_high — V R.x =~ S.x +4Q
V Rz~ S.z+2Q
V R.z ~ S.x Ahead(S.list)=
A S.transmitting A S.wire_high — V R~ S.x
V Rz~ S.x —2Q A S.list#¢ A head(S.list)=

Lemma 5.8 The following property holds for all reachable, living states of Impl :
A R.list#¢ A S.transmitting —

V last(R.list)=1 A R z < 1"’T4Q ANRax=~ Sz

V last(R.list)=1 4Q < Ra< 1"’T8Q ARz~ Sz +4Q

V last(R.list)= 0/\Rx < 1"’ T2QA Rx = S.a —2Q

V last(R.list)=0 -|-T2Q < R.x < }i’$6Q ANR.x~ Sa+2Q)
A R.list#£e A init(S) —

V last(R.list)=1 A R x <IQARax= Sz

V last(R.list)=1 A 4Q <Rz <IQARzxz=~S.z+4Q

V last(R.list)=0 A 1+T2Q <Rz <TQARxz=~S.2z+2Q
A R.ist=e¢ — =S .transmitting A\ —S.wire_high.

The following invariant implies that, with our additional assumption that T < 17, the above

defective scenario is not possible: an output of a message by the receiver cannot happen when
the sender is still busy.

Lemma 5.9 The following property holds for all reachable, living states of Impl :
S.list#e N ((R.list#e A last(R.list)=0 A R.x = 7Q) V (last(R.list)=1 A R.x = 9Q)) — error.

The last invariant gives an obvious property of the specification automaton.

12



Lemma 5.10 The following property holds for all reachable states of P:
P.list=¢ V (head(P.list) = 1 A (odd(P.list) V last_two(P.list) = (00)).

We have now collected enough invariants to establish a weak timed forward simulation from
the implementation to the specification. Besides a part needed to deal with premature inputs,
the simulation consists of two parts: a part relating the buffers of the sender and the receiver
to the buffer of the specification and a part relating the clocks of the protocol to the single
precise clock of the specification. As in most verifications of data link protocols it is essential
to realize at what moment which part of the message is in transit between the sender and
the receiver. In our case this comes down to establishing when there is a “0” in transit that
is about to be accepted by the receiver.

Theorem 5.11 The relation determined by the following formula over the state variables of
Impl and P is a weak timed forward simulation from Impl to P:
SIM 2 if error then P.chaos else
if R.list=c then P.list=S.list A\ (S.list=¢ V P.z=0) else
if Rz~ S.a+2Q(last(R.list) — 1)
then A P.list=R.list"S.list
A (1 —=T)P.x < 4Qlength(R.list) — 2Q(1 + last(R.list))
+min(R.z, S.z + 2Q(last(R.list) — 1))
else A P.list=R.list"(0)"S.list
A (1 —=T)P.x < 4Qlength(R.list) — 2Q(1 + last(R.list))
+min(R.z, S.z + 2Q(last(R.list) + 1)).

6 Proof-checking

The proof-checking activities consisted mainly of the following parts:
e formalize the protocol verification in type theory;
e check the simulation using the lemmas;
e check all lemmas.

The first part was easily realized using the same approach as in [7]. Some new constructions
were formalized. For example, the simulation was indeed a relation, and not a function as in
[7]. This lead to the introduction of an existential quantifier in the simulation relation.

We also had the notion of dead and living states to cope with. These were straightforward
to implement using inductive definitions. The real-time aspects were modeled with @, and
some functions on Q had to be defined. This formed no problem either.

The proof-checking itself posed more problems. It appeared that the manipulation with
data, e.g. solving an inequality with the two unknowns ¢ and T, took more time than
expected. Another reason for this fact was that these calculations were not spelled out in the
proof.

This had implications for the speed of the proof-checking process. Since many lemmas
used the parameters and the = construct, the checking of the simulation would be very time

13



consuming. We investigated to automate the handling of these inequalities, but were unable
to find a satisfiable solution.

After we checked some lemmas we therefore concentrated on the simulation. Here we found
an error in the inequality part. To repair this error, the simulation relation changed radically.
This meant we could start all over again. At this moment, we have checked the simulation
against the lemmas, but did not yet check all lemmas.

We checked lemmas 5.1, 5.2, 5.7 and 5.8. The others are left for further work.

In the remainders of this section we will explain how the correctness proof was formalized in
Coq and (partially) computer-checked. To this end, we first give a short introduction to Coq
itself. After that, we will explain the translation of the specification. Finally we show some
proof-checking examples. In the following we will show Coq input and output in typewriter
style.

6.1 The Coq system

Coq is an interactive computer program based on the Calculus of Inductive Constructions,
[5]. It uses the Curry-Howard isomorphism to represent natural deduction proofs as A-terms.
In addition, we can define inductive types. If we define e.g. the natural numbers as follows :

Inductive Definition nat : Set = 0 : nat | S : nat -> nat.

then we have defined the type nat as the smallest set X such that X is closed under two
constructors, O : X and .S : X — X. This gives us the no confusion and no junk properties
normally associated with the natural numbers: all members of nat are different and there are
no other elements besides those built from O and S.

This mechanism gives the system at least the expressive power of the primitive recursive
functions. It is also very useful in the proof: when we have to do an induction over a number
of possible actions in the timed 1/O-automaton, we can use this inductive mechanism very
elegantly.

The user communicates with Coq by typing in commands. For an example, consider the
following A-term:

Az:A—> B.Ay:A.zy

This term corresponds to the following natural deduction rule:
A—-B A
B

We will show a proof-session in Coq that uses the above deduction rule.

Modus Ponens

Coq < Goal ((A -> B) /\ A) -> B.

Coq < Show.

1 subgoal
((A->B)/\A)->B

Coq < Intro H.
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1 subgoal

H : (A->B)/\A

Coq < Elim H.
1 subgoal
(A->B)->A->B

H : (A->B)/\A

Coq < Intro HO.
1 subgoal
A->B

HO : A->B
H : (A->B)/\A

Coq < Intro H1.

1 subgoal
B
H1 : A
HO : A->B

H : (A->B)/\A

Coq < Apply HO.

1 subgoal
A
H1 : A
HO : A->B

H : (A->B)/\A

Coq < Assumption.
Goal proved!

We used the following commands:
e Goal z. This tells Coq we want to proof x.
e Show. This command shows the current subgoals.
e Intro z. This corresponds with —1.
e Elim z. This eliminates an inductively defined type. In this case it means that if we

want to prove C' from A A B, then it is enough to prove A — (B — ().
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e Apply z. This corresponds to the Modus Ponens rule.

e Assumption. This tells Coq that the current subgoal is given in the context, i.e. the
terms below the double bar.

We see the proof is constructed bottom up instead of top down: we start with the goal and
then we interactively build the proof tree. For more information about Coq see [5].

6.2 I/O-automata in Coq

In the proof we constantly use very specific aspects of I/O-automata theory. For instance we
often do a case distinction on all possible steps from a given state. Therefore it is useful to
create a framework within Coq that makes this reasoning easy. In [7] this is done already,
and in general we use the same framework.

We make a distinction between the abstract data types and the transition systems. For
this particular case study, the manipulation of data is a crucial aspect. In many other case
studies with Coq the manipulation of data forms a big problem. In our case this was not
different. In the hand-made proof we generally use the theory of real numbers. However this
datatype is not specifiable in a finite way. Therefore we chose to model R with @, the set of
rational numbers.

We believe this to be a sound choice, since the hand-made proof only used the axioms of
an ordered field. Therefore if the proof in @ can be computer checked with the axioms of
an ordered field, we can use the same strategy to check the proof in R. However, we must
now pay attention to the rules we used. It would have been better if we had not chosen any
model, but only stated the axioms for an ordered field. The recognition that we only used
properties of an ordered field came after some time, and at that point the effort to redo the
proof-checking in this setting was not cost-effective anymore.

6.3 Datatypes

In general all our datatypes are inhabitants of the predefined type Set. We have the following
data types to translate:

e The sort BOOL of booleans;
e the sort LIST of lists of booleans;

o the sort REAL of real numbers.

6.3.1 Booleans

In general we can opt for two strategies: the first is to inductively define the booleans with
constants true and false as constructors. This has the advantage that we can do induction
on the possible values of a boolean. A disadvantage of this method is that we must do extra
work to derive a contradiction when we have (true = false) in the context. However this is
a small price to pay. The second approach is to use the predefined type Prop that represents
propositions. This has the disadvantage that we can not do induction in a straightforward
way. Therefore we chose for the first approach.
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Inductive Definition bool : Set = true : bool | false : bool.

6.3.2 Lists of booleans

Again we used a inductive type: a list is build from two constructors, NIL : LIST and
CONS : BOOL x LIST — LIST. Again the advantage of this approach is that we can do
induction very easy.

Inductive Definition LIST : Set = NIL : LIST |
CONS : bool -> LIST -> LIST.

6.3.3 Reals

As said before, the reals are modelled as rationals in this case study. This proved to be
sufficient. A real is modelled as a cartesian product of two natural numbers. The natural
numbers are predefined (inductively!) in Coq.

Definition REAL = (nat * nat).

6.3.4 Functions

We also have to define the functions on our data types. In general this can be done in
two ways. In Coq it is possible to state axioms like 0 + 2z = z. With this axiom we can
rewrite terms using that axiom. The danger of this approach is that we can easily end up
in a situation where every type is inhabited by assuming unsound axioms. Obviously in a
situation like this inhabitance has become a trivial notion from which you never can conclude
the correctness of a protocol.

For an example, if we want to code the integers as built from three constructors, O, S and
P (for predecessor). Now we want that S(P(0O)) and O denote the same integer.

Inductive Definition Z =0 : Z | S : Z->Z | P : Z->Z.
If we then add the following proof term h to our context:
h : <Z>0=P(sS(0))

Then we can find a predicate ) that has the following reduction behavior:

=> (A:Prop)A->A
=> (A:Prop)A

Qo
Q (

P(S 0))

and hence we can inhabit any proposition F as follows:

h Q [A:Prop][x:Alx F : F
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So in order to use the inductive approach safely, without introducing contradictions, one
needs to be sure that the introduced axioms are sound. In our case the used axioms of the
datatypes are standard and generally accepted as sound.

The other option is to code all functions directly in lambda-calculus, using the naturals and
ordering thereon that are given with Coq. This approach is much safer and is nearly always
preferable, since all rewrites are Fi-rewrites and therefore directly recognized by the system.
The problem with this approach is that it can take a long time to formulate a certain function
in A-calculus, and the notation becomes less readable. We coded the functions on naturals,
booleans and lists directly in lambda-calculus to take as much advantage of the increased
speed of computation. In summary, we followed the following guidelines in our choices:

1. Represent all datatypes inductively with proper constructors;
2. Represent equations over the rationals with axioms;
3. Represent functions on the other data-types in lambda-calculus for maximum speed.

In this way we could do structural induction where we needed it and use the speed of
Bi-rewrites when we needed to compute a lot.
The protocol mentions three parameters:

e 7', the tolerance for which the system functions correctly;
e (), the size of the bit-time.
o MAX, the maximal length of a message.

In Coq these parameters were simply defined with the Parameter command that introduces
the constants.

Many times we needed to solve inequalities over these parameters. To solve these we needed
the axioms over the real numbers. If the protocol did not have these parameters, we could
have represented all functions as A-terms conveniently.

Now we will give some example definitions of the functions. For example, plus on the
naturals:

Definition plus = [n,m:nat](<nat>Match n with m [p:nat]S).
The even function on naturals:

Definition even = [N:nat](<bool>Match N with
true
[n1:nat] [b:bool] (negb b)) .

Negation on booleans:
Definition negb = [x:bool] (<bool>Match x with false true).
Concatenation and reversal on lists:

Definition concat = [L1:LIST][L2:LIST](<LIST>Match L1 with
L2
[b:bool] [1:LIST][r1:LIST]((CONS b rl))).
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Definition reverse = [L1:LIST](<KLIST>Match L1 with
NIL
[b:bool][1:LIST] [rc:LIST] (concat rc (CONS b NIL))).

In this way we have coded all necessary functions in type theory.

6.4 The transition systems

In [7] we see that the transition systems are defined using cartesian products over inductively
defined sets. In general we followed the same approach.

6.4.1 Actions

The actions of a timed automaton S are defined as an inductively defined set. For an ex-
ample, consider the set act_S_R:

Inductive Definition act_S_R =

IN : LIST -> act_S_R |
OUT : LIST -> act_S_R |
TIME : REAL -> act_S_R |
UP : act_S_R |

DOWN : act_S_R

In a similar way we define act_P, the set of actions of the full protocol.
The state space is defined with cartesian products over the state variables. E.g., the parallel
behavior is defined using a cartesian product:

Definition states_system = (states_S * states_R).

We have a function ev : act_S_R — act_P that renames actions of (S || R) into the corres-
ponding actions of P in such a way that internal actions are renamed into 7.

To reason easily about the state space we defined several projections on specific actions of
the cartesian products. For instance,
(ptS (pS (S * R))) gives us the transmitting variable of the Sender in S x R:

Definition p_t_S = [s:states_S]
<bool, bool * LIST * REAL * bool>Fst(s).

Definition p_S = [s:states_system]
<states_S, states_R>Fst(s).

F'st(s) is predefined as the first projection on a cartesian product.
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6.4.2 Transitions

The transitions are defined inductively as a predicate over the actions and state space. We
will give an example.

Inductive Definition step :
act_S_R -> states_system -> states_system -> Prop =
step_IN_1 : (m:LIST)(x:REAL)(e:bool) (1lr:LIST) (xr:REAL)
(le (length m) max) ->
(<bool>(head m)=true) ->
((<bool>(odd (length m))=true) \/
(KLIST>(last_two m)=(CONS false (CONS false NIL)))) ->

(step (IN m)
(st_system (st_S false false NIL x e) (st_R NIL xr))
(st_system (st_S false false m (realc 0 (S 0)) e) (st_R NIL xr)))

This shows an action I'N. This action corresponds to the case where —transmitting A
—wire_high A list = e is valid. In a similar way all other actions are defined. Since we have
an inductive definition, we can proof goals with induction over step. This gives us a proof
obligation for all possible steps, which is exactly what we wanted. The major disadvantage
of the above approach is that by extracting the ¢f and case constructions, we have a lot of
goals to consider. Another possibility would have been to do the following:

Inductive Definition step :
act_S_R -> states_system -> states_system -> Prop =
step_IN : (m:LIST)(s,s’:states_system)
(le (length m) max) ->
(<bool>(head m)=true) ->
((<bool>(odd (length m))=true) \/
(<LIST>(last_two m)=(CONS false (CONS false NIL))))->
(If ((<bool>(p_t_S (p_S s))=false) /\
(<bool>(p_w_S (p_S s)))=false) /\
(<bool>(empty (p_1_S (p_S s)))=true) /\
(KLIST>(p_1_S (p_S s’))=m) /\
(<REAL>(p_x_S (p_S s’))=(realc 0 (S 0)))
(* then *) (step (IN m) s s°)) |

This is an equivalent approach that introduces less but more complex subgoals. It is an
open question whether the added complexity weighs more heavily than the more subgoals.
It probably depends on the way the proof is structured which approach is best. We chose to
do the first approach, that is filling in as much state variables as possible.
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6.5 Simulation

To code the weak simulation property of the timed I/O-automata, we used a predicate over
the state-space.

(
(s:states_system) (p:states_P)
(start s)->(start’ p)->(simrel s p)
) /\ (* Start states should be related *)
(
(s,s’:states_system) (p:states_P) (a:act_S_R)
(step a s s’)->(reach s)->(living_sys s)->(simrel s p)->
(* related through step or... %)
(
<states_P>Ex([p’:states_P]((step’ (ev a) p p’))/\(simrel s’ p’))
) \/
(
(living_sys s’)->False (* ...dead... *)
)
) /\
((s:states_system) (p:states_P)
(accepting_sys s)->(simrel s p)->(accepting_P p)
(* accepting states related *)

).

(simrel s p) is the simulation relation as defined in theorem 5.11. Ex is the existential
quantifier as is predefined in Coq. If we must prove

<states_P>Ex([p’:states_P]F(p’))

then we explicitly must give a witness w and after that a proof of F(w). If we compare
this with [7], we see that there the simulation relation was a function, and the existential
quantifier could be dropped.

In a similar way we defined all other needed predicates as reachability, living states, start
states, accepting states etc. In general we could code all aspects of the timed 1/O-automata
model we were interested in. For another example, look at the definition of living states:

Inductive Definition living_sys : states_system -> Prop =

lives_INIT : (s:states_system)(reach s)->(accepting_sys s)->
(living_sys s) |

lives_step : (a:act_S_R)(sl1,s2:states_system)
(step a s1 s2)->(reach s1)->(living_sys s2)->
(l1iving_sys s1).

A living state is a reachable accepting state, or a reachable state from which we can reach
a living state in one step. Compare this with the definition of reachability:

21



Inductive Definition reach : states_system -> Prop =
reach_INIT : (s:states_system)(start s)->(reach s) |
reach_STEP : (a:act_S_R)(sl,s2:states_system)

(step a s1 82) -> (reach s1) -> (reach s2).

We see the same inductive definition using the step predicate. To prove whether a certain
state s is reachable or living, we first prove the initial formula and after that do an induction
over all possible steps.

6.6 Invariants

Several invariants were necessary to proof the desired results. To code these, a similar ap-
proach as above was followed. Again we will give an example.

Lemma 5.1.

Assumes

(St:states_system)

(reach St)->

(<bool>(p_w_S (p_S St))=true)->(<bool>(p_t_S (p_S St))=true).

In general the invariants were more easy to prove than the simulation property. However
some invariants consisted of large and complex propositions. Especially those concerning the
real-time clocks were time consuming to check. It appears that much time can be saved if
the invariants are as simple as possible. It takes probably less time to check a lot of small
invariants like Lemma 5.1, which was checked whithin 30 minutes (human development +
wall clock cpu time), than to check a very large one like lemma 5.7, which took more than
a week to develop. This is mainly due to the addition of real numbers, parameters and
inequalities: much time was spent dealing with those.

6.7 Session examples
We will show some sample session examples to illustrate the proof-checking process.

(simrel s p)->
(step a 5 8’)->
(reach s)->
(living_sys s)->
((<states_P>Ex([p’:states_P](step’ (ev a) p p’)/\(simrel s’ p’)))
\/((living_sys s’)->False))

H2 : (simrel s p)

H1 : (living_sys s)

HO : (reach s)

H : (step a s 8?)

a : act_S_R

p : states_P

s’ : states_system
! states_system
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Here we see one of the crucial moments in checking the simulation: we proceed by doing
induction over all possible steps with the command

Elim H; Intros.

After this we have to proof the above Goal for every possible action a. In our case there are
34 possible steps to consider. We will show one of them.

subgoal 1 is:
(<states_P
>Ex([p’:states_P]
(step’ (ev (INm)) p p’)
/\(simrel
(st_system (st_S false false m (realc 0 (S 0)) e)
(st_R NIL xr))

p’)

)
\/((living_sys
(st_system (st_S false false m (realc 0 (S 0)) e) (st_R NIL xr)))
->False)

H9 : (living_sys

(st_system (st_S false false NIL x e) (st_R NIL xr)))
H8 : (reach (st_system (st_S false false NIL x e) (st_R NIL xr)))
H7 : (step (IN m)

(st_system (st_S false false NIL x e) (st_R NIL xr))

(st_system (st_S false false m (realc 0 (S 0)) e)

(st_R NIL xr)))
H6 : (simrel (st_system (st_S false false NIL x e) (st_R NIL xr)) p)
H5 : (<bool>(odd (length m))=true)
\/(<LIST>(last_two m)=(CONS false (CONS false NIL)))

H4 : <bool>(head m)=true
H3 : (le (length m) max)

xr : REAL
1r : LIST
e : bool
x : REAL
max : nat
m : LIST

p : states_P

Here we see that Coq has filled in the values of the state variables. H6 equals the induction
hypothesis. The proof proceeds with choosing the left disjunct, giving the right state for
p’, doing induction over e and using induction. This is a simple subgoal that takes only 25
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lines of tactics. More involved subgoals can take 275 lines of tactics to solve. On one line we
generally put more than one tactic.
Another example shows an inequality.

Goal

(X:REAL)

(ler T

(realc (S 0) (S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(50))2)2)2)))))3))))))—>

(ler X (multr (divr epT emT) (multr (realc (S (S 0)) (S 0)) QI)->

(ler (multr Q (realc (S (S (S O))) (S 0))) N->

(ler X (multr Q (realc (S (S (S (S (S5 0))))) (sO))))—>

False.

This expresses the folllowing fact:

VX,T: REAL.

(T < 1/17)A

(X < ((1+T)/(1=T)) = 2Q)A
(3Q < X)A

(X <4Q)).

To proof this we needed about 100 lines of tactics mainly consisting of rewriting subterms
with the axioms on the real-numbers. These kinds of subgoals appeared very frequently. We
think that a tool like mathematica would be more convenient to check such goals. Therefore
we checked some of them and left the rest for further work.

6.8 Coq tactics

The command language of Coq consists apart from tactics dealing with goals themselves also
of a few tactic functions to compose atomic tactics to composed tactics called tacticals.

The semi-colon jin t1 ; t2 applies the tactic t2 to all subgoals generated by tactic t1. We
solved lemma 5.1 with one tactical using this construct.

Another tactical is the 1 Orelse 12 tactical that tries tactic t1, and if it fails, applies tactic
t2. In this way we can compose very complicated tacticals to solve a lot of different subgoals
with one tactical.

However we also could use additional tacticals. For example it would be very useful if we
could write parametrized tacticals. Then we can make the tacticals more general, and better
reusable.

Another point is the ability to look in your context with a tactic. For instance, if the term
t is part of our context then apply tactic x with parameter t. In this way we could guide the
proof much more easily.

Another point is the ability to save system states during a proof session. In Coq you can
only save a state when you have finished a proof. However loading old proofs can take a long
time. It would be convenient if the user could save his current state and when he wants can
enter back.
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7 Conclusions

On the account of finding an error in the proof one could say that the experiment was succes-
ful: the main goal of proof-checking is to find errors in proofs. However we did not completely
proof-check the new proof. This is mainly due to the great complexity of the protocol and the
need to do many data manipulations, for which Coq seems not particularily suited. One can
choose to check these algebraic theorems outside the theorem prover using an algebraic tool,
e.g. maple. Another solution is to add preproven libraries and theories to the distribution,
which has already been done in the latest version for Coq, but were not available at the time
we used Coq.

Proof-checking with Coq We can distinguish two aspects here. On aspect deals with
the ability to formulate all aspects of timed 1/0O-automata. This formed no problem using
the rich and expressive language of Coq. The second aspect deals with the support for the
proof-checking itself. In this respect we encountered limitations of the implementation of Coq
we used. Especially when we had to deal with heavy data manipulations we felt the need for
preproven libraries and theories.

Related work In [7] a very similar experiment was shown. Their conclusions confirm the
view that data manipulations are troublesome and that the command language is not very
strong. However their data structures did not include an uncountable set and inequalities
with two unknowns.

In [6] LP (the Larch Prover) is used to check an algorithm stated in TLA (the Temporal
Logic of Actions). We see here that the distinction between 1. the action logic 2. the
temporal logic give reason to use different encodings for these. We see similar activities in
our case: The action logic is directly coded in A-calculus while many lemma’s on the Real
numbers are stated and used by axioms.

In [1] we see a verification of Pbs. Here the much use of inductional reasoning struck us
as similar to our case. It also illustrates that more experience is needed to reach a situation
where formal verification becomes cost effective.

In [9] the system [Isabelle is used which is very similar to Coq. We also have A-calculus
and higher order logics to work with. We also see here that a theorem prover is not always
especially suited to proof-check a realistic protocol.
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