
Compositionality and Model-Theoretic

Interpretation

Herman Hendriks

Utrecht Institute of Linguistics OTS, Utrecht University, The Netherlands

ILLC/Department of Philosophy, University of Amsterdam, The Netherlands

Abstract

The present paper studies the general implications of the principle of compo-

sitionality for the organization of grammar. It will be argued that Janssen's

(1986) requirement that syntax and semantics be similar algebras is too

strong, and that the more liberal requirement that syntax be interpretable

into semantics leads to a formalization that can be motivated and applied

more easily, while it avoids the complications that encumber Janssen's for-

malization. Moreover, it will be shown that this alternative formalization

even allows one to further complete the formal theory of compositionality, in

that it is capable of clarifying the role played by translation, model-theoretic

interpretation andmeaning postulates, of which the latter two aspects received

little or no attention in Montague (1970) and Janssen (1986).

1 Compositionality

In its most general form, the principle of compositionality states the following:

The meaning of an expression is a function of the meanings of its parts

and of the way they are syntactically combined. (Partee 1984, p. 281)

In other words: the meaning of an expression is determined completely by the

meanings of its parts plus the information which syntactic rules have been used to

build that expression out of those parts. The principle of compositionality is also

known as `Frege's principle'.1 We will give a formalization of the principle along

the lines of Janssen (1986), which, in turn, is based on Montague's seminal paper

`Universal Grammar' (UG, 1970).2

1Janssen (1986) argues that this attribution is at best a tribute. See also the contributions of

Janssen and Pelletier to the present issue of the Journal of Logic, Language and Information.
2The framework de�ned in Montague's UG and Janssen's formalization are, roughly speaking,

`di�erent views of the same mathematical object' (Janssen 1986, Part 1, p. 91). The main di�erence

is that Janssen employs many-sorted algebras, whereas Montague uses one-sorted algebras (though

with much additional structure). As a consequence of this, Janssen's approach has the following

advantages (of which (a) through (c) are also noted in Janssen 1986, Part 1, pp. 90-92):

(a) In UG, the operators in the algebraic sense are untyped, but the syntactic rules are typed.

UG requires for each operator a single corresponding semantic operation. However, sometimes one

might want to be able to interpret the same operator in di�erent ways, for instance depending on

the type of the expressions involved.

(b) Both frameworks require that the operators be total. In the one-sorted context of UG this

means that an algebraic operator has to be de�ned for all elements of the algebra, also for those

elements to which the corresponding syntactic rule will never be applied. And worse, even a

semantic interpretation has to be speci�ed for the resulting non-expressions.

(c) Janssen's formalization establishes a natural and straightforward relation between the dis-

ambiguated language (the members of the term algebra) and the generated language: one obtains

an expression of the generated language from an expression in the term algebra by simply evaluat-

1

As for the syntax, the principle presupposes some set A of expressions and some

set F of syntactic rules. This set A includes a set H that consists of the non-

compound, lexical expressions. In keeping with the customary assumption within

theories of formal grammar that linguistic expressions belong to di�erent syntactic

categories , we will suppose that the set of expressions is an indexed family of sets:

A = (As)s2S , where S is the set of sorts , which model the syntactic categories, and

for each s 2 S, the set As is the set of expressions of category s, or the carrier

of sort s. This also holds for the set of lexical expressions: H = (Hs)s2S , where

Hs � As for all s 2 S. Since we are dealing with expressions, we will assume

that the members of the carriers are strings over some alphabet. But there are

no further restrictions on the carriers; they may overlap, be empty, include one

another, etcetera.

Syntactic rules, or operators , F
 2 F yield a unique compound expression an+1
when they apply to a number of expressions a1; : : : ; an, the (immediate) parts of

an+1: F
(a1; : : : ; an) = an+1. We will assume that every F
 has a �xed number

n of expressions to which it applies (where n 2 IN+, i.e., n 2 IN and n > 0).3 A

syntactic rule does not have to yield a expression for every sequence ha1; : : : ; ani
of expressions in [A � : : : � [A. It may be that F
 only produces an outcome

an+1 for sequences ha1; : : : ; ani of which the components belong to certain sorts

s1; : : : ; sn, that is, for a1 2 As1 ; : : : ; an 2 Asn . But if this is the case, we assume

that Fi does this for all ha1; : : : ; ani 2 As1 � : : : � Asn , and the outcomes an+1
must without exception belong to the carrier of one sort, Asn+1 , say.

4 Thus every

syntactic operator is a total function F
 : As1�: : :�Asn ! Asn+1 , for some n 2 IN+,

As1 2 A; : : : ; Asn 2 A, and Asn+1 2 A. There are no further restrictions on the

members of F . The operators may do anything: concatenate, insert, permute,

delete, introduce syncategorematic material that does not occur in the arguments,

or what have you.5

The picture of syntax that emerges from these considerations is that of a many-

sorted algebra of signature �. (The phrase `many-sorted algebra of signature �' will

ing the latter. UG only requires some (further unspeci�ed) relation R between the disambiguated

language and the generated language.

(d) While in Janssen's approach syntactic rules operate on expressions of the generated language,

they operate on expressions of the disambiguated language in UG. This restricts the set of possible

syntactic operations in an unnatural way. For example, an operation F : As �As ! As of simple

concatenation is not an admissible structural operation in a disambiguated language, since it makes

an expression ��
 ambigous between F (�;F (�;
)) and F (F (�; �);
) (cf. Halvorsen and Ladusaw

1979, footnote 17, p. 221).
3Contrary to Montague (1970), we will follow Janssen (1986) in not allowing in�nitary opera-

tors. This restriction, which does not seem to reduce the practical applicability of the framework,

has the advantage that one will never have to deal with proper classes of operators (cf. Montague

1970, footnote 4).
4This assumption does not involve a real restriction. The e�ects of operators which do not have

a �xed arity, are partial, do not distinguish among argument sorts, or yield values of more than

one sort can always be mimicked by a suitable adaptation of the structure of F and A: by making

it more �ne-grained, adding operators, subdividing carriers into di�erent (new) sorts, etcetera.
5Accordingly, Janssen shows that any recursively enumerable language can be generated by

an algebraic grammar. Moreover, such a language can be assigned any set of meanings in a

compositional way (Janssen 1986, Part 1, Chapter 2, Section 3 and Section 6). It follows that

compositionality is not an empirical principle, but a methodological one.

2

often be abbreviated as `�-algebra'.6)

h(As)s2S ; (F
)
2�i is a many-sorted algebra of signature � i�

(a) S is a non-empty set (of sorts);

(b) (As)s2S is an indexed family of sets (As is the carrier of s);
(c) � is a set (of operator indices);

(d) � (the type-assigning function) assigns to each
 2 � a pair

hhs1; : : : ; sni; sn+1i, where n 2 IN+, s1 2 S; : : : ; sn+1 2 S; and
(e) (F
)
2� is an indexed family (of operators) such that if

�(
) = hhs1; : : : ; sni; sn+1i, then F
 : As1 � : : :�Asn ! Asn+1 :

(1)

More speci�cally, the syntactic component is a �-algebra A = h(As)s2S ; (F
)
2�i
with generating family H = (Hs)s2S , where S is the set of syntactic categories

and for each s 2 S, the set As is the set of expressions of category s; � is the

set of indices of syntactic rules and for each
 2 �, syntactic rule F
 of type �(
)
= hhs1; : : : ; sni; sn+1i is a total function As1 � : : : � Asn ! Asn+1 that yields a

unique compound expression an+1 of category sn+1 for every sequence a1; : : : ; an
of expressions of respective categories s1; : : : ; sn; and for each s 2 S, the set Hs is

the set of non-compound (lexical) expressions of category s. (A concise survey of

the concepts and facts from the theory of many-sorted algebra that will employed

below is given in the Appendix of the present paper.)

At this point it is important to observe that natural languages are generally syn-

tactically ambiguous . This means that natural language expressions may belong to

more than one sort|walk, for example, is both a verb and a noun and denotes dif-

ferent sets of individuals depending on its sort (walkers and walks, respectively)|,

but also that they may be associated with di�erent syntactic analyses: the expres-

sion old men and women, for example, may be analyzed as [[old men] and

women] and as [old [men and women]], two analyses that are responsible for

non-equivalent interpretations; likewise, an expression such as kick the bucket

may be analyzed as an idiomatic lexical expression with a concomitant �gurative

meaning, but must also be analyzed as a compound expression that has a literal

meaning.7

As a consequence of the phenomenon of syntactic ambiguity, one cannot in

general speak of the meaning of an expression, but only of the meaning of an

expression with respect to a certain sort and a certain syntactic analysis, that is:

with respect to a certain so-called derivational history .

In order to be able to refer to derivational histories of expressions, we invoke

the concept of a term algebra. Term algebras play an important role in the formal-

ization of the compositionality principle. The carriers of term algebras consist of

symbols, `syntactic terms', which can be seen as representations of the derivational

histories of the generated algebra with which they are associated. Accordingly, term

algebras are invariably syntactically unambiguous, or free algebras (formal de�ni-

tions of these notions are given in the Appendix). Now, since the meaning of an

expression depends on its sort and syntactic analysis, the meanings of the mem-

bers of the carriers of the syntactic algebra A = h(As)s2S ; (F
)
2�i with generating

family (Hs)s2S are de�ned on the members of the carriers of the corresponding

term algebra TA;H = h(TA;H;s)s2S ; (F
T

)
2�i, an algebra in which these aspects are

represented.

What about these meanings? By analogy with the idea that linguistic expres-

sions belong to di�erent categories, it has become customary to assume that their

6The term `many-sorted algebra' stems from Adj (1977). Our terminology deviates from

Janssen (1986, Part 1, p. 43), where a pair h(As)s2S ; (F
)
2�i meeting the requirements in (1) is

called a `many-sorted algebra of signature (S;�; �)'.
7Literal is, of course, �gurative for verbal.

3

meanings, or interpretations, inhabit various semantic types , and that, moreover,

the interpretations of di�erent expressions of the same category belong to the same

semantic type.

Firstly, we will therefore assume that also the members of the semantic domain

constitute an indexed family of sets (Bt)t2T , where T is the set of semantic sorts,

which model the types, and for each t 2 T , the set Bt is the set of semantic objects

of sort t, or the carrier of sort t; and that, furthermore, there is a function � which

associates every syntactic sort s with a semantic sort �(s), so that semantic objects
of sort �(s) can serve as interpretations of syntactic expressions of sort s.

Secondly, given this much, the principle of compositionality|according to which

the meaning of a compound expression is a function of the meanings of its con-

stituent parts and the way they are syntactically combined8|literally requires that

for every way of syntactically combining expressions, i.e., for every syntactic oper-

ator F
 , there is a semantic function GÆ such that for every sequence a1; : : : ; an of

expressions, the meaning of the compound expression built up from these expres-

sions, i.e., the meaning of the expression F
(a1; : : : ; an) which results from applying

F
 to a1; : : : ; an, is equal to the value which the function GÆ assigns to the meanings

of a1; : : : ; an. More formally: let h denote `the meaning of'. Then:

h(F
(a1; : : : ; an)) = GÆ(h(a1); : : : ; h(an))(2)

This means that the semantics, too, is a many-sorted algebra. In addition to a

family of sets indexed by sorts, it includes a number of operators: functions from

the Cartesian product of a number of semantic carriers to some semantic carrier.9

Hence, thirdly, besides the function � mapping categories to types, we need a

function � which associates every n-ary operator F
 in the syntactic algebra with

an n-ary operator G�(
) in the semantic algebra. And since every syntactic sort

s is associated with a semantic sort �(s), it must be the case that !(�(
)) =

hh�(s1); : : : ; �(sn)i; �(sn+1)i whenever �(
) = hhs1; : : : ; sni; sn+1i, where � and !
are the type-assigning functions of the syntactic and semantic algebra, respectively.

The above considerations can be formalized by means of the following notions.

Let A = h(As)s2S ; (F
)
2�i be a �-algebra, let B = h(Bt)t2T ; (GÆ)Æ2�i be an

!-algebra, and let � : S ! T and � : �! � be functions. Then:

A is (�; �)-interpretable in B i� for all
 2 � : if �(
) =
hhs1; : : : ; sni; sn+1i, then !(�(
)) = hh�(s1); : : : ; �(sn)i; �(sn+1)i:

(3)

Moreover, let �-algebra A = h(As)s2S ; (F
)
2�i be (�; �)-interpretable in !-algebra
B = h(Bt)t2T ; (GÆ)Æ2�i and let h[As] denote the set fh(a) j a 2 Asg. Then:

h :
S
s2S As !

S
t2T Bt is a (�; �)-homomorphism from A to B i�

(i) for all s 2 S: h[As] � B�(s) (h respects the sorts); and

(ii) if �(
) = hhs1; : : : ; sni; sn+1i and a1 2 As1 ; : : : ; an 2 Asn ,

then h(F
(a1; : : : ; an)) = G�(
)(h(a1); : : : ; h(an))
(h respects the operators).

(4)

Summing up, then, the principle of compositionality dictates the following:

� The syntax is a �-algebra A = h(As)s2S ; (F
)
2�i with generating family

H = (Hs)s2S .

� The semantic domain is an !-algebra B = h(Bt)t2T ; (GÆ)Æ2�i such that A is

(�; �)-interpretable in B for some functions � : S ! T and � : �! �.

8That is, strictly speaking, the meaning of an expression relativized to a particular sort and

derivational history of that expression.
9We will assume that these are total functions, just as the functions in the syntactic algebra.

4

� Meaning assignment is a (�; �)-homomorphism from TA;H , the term algebra

of A with respect to H , to B.

2 Similarity versus Interpretability

The above formalization of the compositionality principle is more or less the same

as the one given by Janssen (1986), except for a seemingly minor point which will

turn out to have rather far-reaching consequences.

Janssen's de�nition of (�; �)-homomorphism is identical to the one given in (4),

but (�; �)-homomorphisms are allowed to exist only between algebrasA and B which

are `(�; �)-similar'. Here is the de�nition of that notion (Janssen 1986, pp. 67{8).

Let A = h(As)s2S ; (F
)
2�i be a �-algebra, let B = h(Bt)t2T ; (GÆ)Æ2�i be an !-
algebra, and let � : S ! T and � : �! � be bijections . Then:

A and B are (�; �)-similar i� for all
 2 � : !(�(
)) =
hh�(s1); : : : ; �(sn)i; �(sn+1)i i� �(
) = hhs1; : : : ; sni; sn+1i:

(5)

So, (�; �)-similarity di�ers from (�; �)-interpretability in two respects: the former

notion requires (a) that the functions � and � be bijections ; and (b) that for all
 2 �:

!(�(
)) = hh�(s1); : : : ; �(sn)i; �(sn+1)i if and only if �(
) = hhs1; : : : ; sni; sn+1i.
It may be noted, however, that the `only if'-part of (b) is super
uous given (a)

and the `if'-part of (b),10 and that, hence, the only real di�erence between the two

notions is (a).
We will now argue that the requirement of (�; �)-similarity leads to complica-

tions, and show that these undesirable consequences can be avoided by replacing

the requirement of (�; �)-similarity between the syntactic algebra and the semantic

algebra by the requirement that the syntactic algebra be (�; �)-interpretable in the

semantic algebra.

First, note that (�; �)-similarity is too strong in view of the explication of the

intuitive idea of compositionality that we have given in the previous section, but

that, on the other hand, (�; �)-interpretability is a notion that can be motivated in

this way: it suÆces to require that there be functions (and not necessarily bijections)

� : S ! T and � : �! � that connect the sorts and operator indices of the syntactic

algebra to the sorts and the operator indices of the semantic algebra.

Second, since bijections are functions, we have that �-algebra A is (�; �)-inter-
pretable in !-algebra B whenever A and B are (�; �)-similar. The converse does

not hold. Therefore, (�; �)-similarity is stronger than (�; �)-interpretability, so that
the latter notion is more easily applicable in principle.

And third, the requirement that the domains of syntax and semantics constitute

similar algebras is responsible for technical complications in that it does in fact

lead to actual problems of applicability, because in practice it is generally not the

case that there are bijections � : S ! T from the syntactic categories to the

semantic types and � : � ! � from the syntactic operator indices to the semantic

operator indices that are respected by the meaning assignment homomorphism.

Usually, the syntactic and the semantic algebra fail to be (�; �)-similar, since (a)
some semantic types do not correspond to syntactic categories, so that � is not

10Assume that � is an injection (which follows from (a)), and that for all
 2 �:

(#) if �(
) = hhs1; : : : ; sni; sn+1i, then !(�(
)) = hh�(s1); : : : ; �(sn)i; �(sn+1)i.

Consider any
 2 � and hhs1; : : : ; sni; sn+1i such that �(
) 6= hhs1; : : : ; sni; sn+1i. Then it

holds that �(
) = hhs01; : : : ; s
0
m
i; s0

m+1i, where hhs01; : : : ; s
0
m
i; s0

m+1i 6= hhs1; : : : ; sni; sn+1i. By

(#): !(�(�)) = hh�(s01); : : : ; �(s
0
m
)i; �(s0

m+1)i. Moreover, since � is an injection, we have that

hh�(s01); : : : ; �(s
0
m
)i; �(s0

m+1)i 6= hh�(s1); : : : ; �(sn)i; �(sn+1)i and, consequently, that !(�(�)) 6=

hh�(s1); : : : ; �(sn)i; �(sn+1)i.

5

surjective; (b) di�erent syntactic categories correspond to one and the same semantic
type, so that � is not injective; (c) some semantic operators do not �gure as the

counterpart of a syntactic operator, so that � is not surjective; and (d) di�erent
syntactic operators correspond to one and the same semantic operator, so that �
is not injective. Moreover, as will be shown below, if a formal logical language is

used as an auxiliary translation language, syntactic operators may correspond to

semantic operators that|though de�nable in terms of the operators of the semantic

algebra|are themselves not actually present in the semantic algebra, so that � is

not even a function.

Consider, by way of illustration, the grammar fragment in Montague's `The

Proper Treatment of Quanti�cation in Ordinary English' (PTQ, 1973), a paper

which has acquired a paradigmatic status within the framework of compositional

model-theoretic semantics.

The set of syntactic sorts of this `PTQ fragment' is de�ned as the smallest set

S such that e and t are in S; and whenever A and B are in S, then A=B and A==B
are also in S (Montague 1973, p. 249). The set of semantic sorts is de�ned as the

smallest set T such that e and t are in T ; whenever a and b are in T , then (a; b)
is in T ; and whenever a is in T , then (s; a) is in T (Montague 1973, p. 256). And

the function � that associates the syntactic sorts in S with the semantic sorts in

T is de�ned by �(e) = e, �(t) = t, and �(A=B) = �(A==B) = ((s; �(B)); �(A))
(Montague 1973, p. 260).

Observe, �rst, that � is not a surjection, since there are semantic sorts such as

(s; e) and (e; t) that do not correspond to a syntactic sort|in fact, only e, t and

sorts of the form ((s; a); b) are the �-value of some syntactic sort|; and, second,

that � is not an injection, since there are di�erent syntactic sorts that correspond

to one and the same semantic sort: the syntactic sorts t=e (of intransitive verb

phrases) and t==e (of common noun phrases), for example, correspond both to the

semantic sort ((s; e); t).
Speaking in strict many-sorted algebraic terms, moreover, the PTQ fragment

contains syntactic operators such as the following ones (see Montague 1973, pp. 251{

3, for details; in (6), IV abbreviates the syntactic sort t=e):

FS8-F6 : AIV==IV �AIV ! AIV; FS11-F8 : At �At ! At; and

FS10-F7 : AIV=IV �AIV ! AIV; FS11-F9 : At �At ! At:
(6)

The semantic operators of PTQ correspond to the interpretations of the clauses for

the construction of meaningful expressions of the logical language IL (`Intensional

Logic'; see Montague 1973, pp. 256{60, for the semantic interpretation of IL). Here

are some examples of these clauses (in (7), T denotes the set of semantic sorts; and

for a 2 T , the set of meaningful IL expressions of sort a is denoted by Ba):

K()-a-b : B(a:b) �Ba ! Bb (application) for a; b 2 T , where
K()-a-b(�; �) = [�(�)]
Kin-a : Ba ! B(s;a) (intension) for a 2 T , where Kin-a(�) = ^�;
K^ : Bt �Bt ! Bt (conjunction), where K^(�; �) = [� ^ �]; and
K_ : Bt �Bt ! Bt (disjunction), where K_(�; �) = [� _ �]:

(7)

Focusing on the correspondence � between the syntactic and the semantic operators
(see Montague 1973, pp. 261{2), we may note that � is not an injection, since it

turns out that, for example, the syntactic operators FS8-F6 : AIV==IV � AIV ! AIV

and FS10-F7 : AIV=IV � AIV ! AIV both correspond to the semantic operator that

applies the application operator to its �rst argument and the result of applying

the intension operator to its second argument. In addition to this, it can be ob-

served that � is not a surjection either, because except for K^ : Bt �Bt ! Bt and

K_ : Bt � Bt ! Bt, which �gure as the semantic counterparts of the respective

6

syntactic operators FS11-F8 : At�At ! At and FS11-F9 : At�At ! At, none of the

semantic operators is associated with one of the syntactic operators in the PTQ frag-

ment. As a matter of fact, the correspondence � between the syntactic and the se-

mantic operators even fails to be a function, since apart from FS11-F8 : At�At ! At

and FS11-F9 : At � At ! At, all syntactic operators correspond to semantic oper-

ators that are indeed de�nable as non-trivial compositions of semantic operators,

but do not belong to the semantic algebra proper. Thus we just noted that both

FS8-F6 : AIV==IV � AIV ! AIV and FS10-F7 : AIV=IV � AIV ! AIV correspond to a

semantic operator O : B((s;((s;e);t));((s;e);t))�B((s;e);t) ! B((s;e);t) that can be consid-

ered the composition of the application operatorK()-(s;((s;e);t))-((s;e);t) and the inten-

sion operator Kin-((s;e);t), in that O(�; �) = K()-(s;((s;e);t))-((s;e);t)(�;Kin-((s;e);t)(�))
= [�(^�)]. Mutatis mutandis , the same holds for the semantic operators that corre-

spond to all other syntactic operators.11 It will be shown below that the `addition'

of this kind of operators is always unproblematic.

In order to bridge such gaps of dissimilarity between syntactic and semantic

algebras, Janssen invokes the notion of a `safe deriver'. This notion is introduced in

the course of giving a de�nition of a Montague grammar, which, in its most simple

form, consists of a many-sorted algebra and a homomorphic interpretation.

However, one always uses, in practice, some formal (logical) language

as auxiliary language, and the language of which one wishes to de�ne

the meanings is translated into this formal language. Thus the meaning

assignment is performed indirectly. The aspect of translating into an

auxiliary language is, in my opinion, unavoidable for practical reasons,

and I therefore wish to incorporate this aspect in the de�nition of a

Montague grammar. (Janssen 1986, Part 1, p. 81)

This de�nition is given in (8), and the situation it describes can be sketched as in

(9) (cf. Janssen 1986, Part 1, pp. 75 and 82):

A Montague grammar consists of:

a syntactic �-algebra A = h(As)s2S ; (F
)
2�i generated by H = (Hs)s2S ;

a logical !-algebra B = h(Bt)t2T ; (KÆ)Æ2�i;

a semantic !-algebra M = h(Mt)t2T ; (GÆ)Æ2�i similar to B;
an interpretation homomorphism I from B to M ;

an algebra D(B) similar to A, where D is a safe deriver ; and

a translation homomorphism tr from TA;H = h(TA;H;s)s2S ; (F
T

)
2�i, the

term algebra of A with respect to H , to D(B).

(8)

TA;H
tr

B =) D(B)
I # I

M =) M 0

(9)

In general, a deriver D is a function from algebras to algebras: `a method to obtain

11Janssen (1986, Part 2, p. 159) notes that editor Thomason's revision of Montague's semantics

for the syntactic operator FS3-F3-n : ACN �At ! ACN (cf. footnote 12 in Montague 1973, p. 261)

is not de�nable as a composition of the semantic operators in (7), but proposes a correction of

Thomason's revision of Montague's semantics which is, again, a `decent' composition of the original

operators in the semantic algebra.

7

new algebras from old ones', and:12

A deriver D is safe for algebra A i� for all algebras B and all surjective

homomorphisms I from A to B there is a unique algebra B0 such that

for the restriction I 0 of I to D(A) it holds that I 0 is a surjective
homomorphism from D(A) to B0. (Janssen 1986, Part 1, p. 76)

(10)

Janssen's deriver D is the composition of four basic derivers, viz., AddOp, Add-

Sorts, DelOp and DelSorts,13 which, by adding operators, adding sorts, deleting

operators and deleting sorts, respectively, transform the logical algebra B into an

algebra D(B) = DelSorts(DelOp(AddSorts(AddOp(B)))) which is similar to the

syntactic algebra A.
With respect to the question whether is it really necessary to incorporate this

laborious process of deriving an algebra D(B) similar to the syntactic algebra A
in four steps from the original logical algebra B into the general de�nition of a

Montague grammar, it can be noted that Janssen emphasizes repeatedly that the

possibility of a homomorphism presupposes similarity: `A mapping is called a homo-

morphism if it respects the structures of the algebras involved. This is only possible

if the two algebras have a similar structure.' (Janssen 1986, Part 1, pp. 21{22; see

also pp. 67{70). Nevertheless, it can also be observed that if, instead of similarity,

interpretability is assumed, we are done in one step: we only need to consider the

`addition' of operators to the logical algebra.

As regards this aspect of the derivation of a new algebra from the algebra of the

logical language, Janssen concludes:

In one respect this attempt [to formalize the compositionality principle]

probably has not been successful: the description of how to obtain new

algebras out of old ones. There is no general theory which I could use

here, and I had to apply ad hoc methods. (Janssen 1986, Part 1, p. 42;

see also p. 83)

Contrary to this, however, we feel that the appropriate conclusion to be drawn is

that the very notion of a `safe deriver' is ad hoc, since it is an artefact created by the

requirement of similarity|a requirement which, as we pointed out above, is itself

undermotivated in view of the conditions imposed by the compositionality principle.

Accordingly, we will now show that the addition of operators to the logical algebra

is not, as Janssen puts it, the `most important' deriver, but the only `deriver' that

has to be taken into account at all. In order to demonstrate this, we will �rst discuss

the use of a formal logical language as an auxiliary translation language and then

clarify the role played by model-theoretic interpretation and meaning postulates.

12Janssen o�ers no arguments why (10) should de�ne the safeness of a deriver. The only moti-

vation given is the following: `The requirement that I0 is a surjective homomorphism is important.

If we would not require this, then B
0 would in most cases not be unique. An extreme example

arises when D(A) is an empty algebra. Then there are in�nitely many algebras B0 such that I0

is a homomorphism from D(A) to B
0, but only one such that I0 is a surjective homomorphism

from D(A) to B0.' (Janssen 1986, Part 1, p. 76). In the context of the present paper it is perhaps

interesting to observe that an operator �� over an algebra A is universally I-functional (cf. Section

3 below) if and only if the deriver AddOp[f��g] is safe for A in the sense of de�nition (10) above,

but that, as will be shown below, and contrary to what Janssen's motivation for the notion of

safeness suggests, it is not so much the uniqueness as the existence of the algebra B0 which is at

stake. (Notice, by the way, that de�nition (10) does not say how D(A) relates to A, so that it is

not clear what I0 denotes, given I.)
13In fact, the deriver DelSorts replaces the more complicated and problematic deriver SubAlg

actually proposed by Janssen (see Hendriks 1993, Chapter 2, for motivation and details).

8

3 Translation, Models and Meaning Postulates

The basic idea of using a formal logical language as an auxiliary translation language

is simply that a syntactic term in the term algebra of the generated syntactic algebra

is indirectly assigned the interpretation I(�) of the expression � of the logical

language that serves as the translation of the term. Thus, each syntactic term

� is associated with a unique translation tr(�), and this translation induces the

interpretation I(tr(�)): `the principal use of translations is the semantical one of

inducing interpretations' (Montague 1970, p. 232).

For such an indirect interpretation assignment to be compositional, the com-

position tr ÆI of the translation and interpretation step has to be a homomor-

phism, i.e., a function, which entails that the logical language must be unambigu-

ous. In general, formal logical languages and their semantic interpretations are

de�ned by specifying (i) a generated algebra of well-formed logical expressions; and

(ii) an interpretation homomorphism from this generated algebra to a semantic

algebra. This homomorphism is not speci�ed by stating its values for all argu-

ments (since there are generally in�nitely many well-formed logical expressions),

but by (a) providing a mapping I which assigns a member of sort �(t) in the

semantic algebra to each generator of sort t in the logical algebra; and (b) associ-
ating each logical operator KÆ of type hht1; : : : ; tni; tn+1i with a semantic operator

G�(Æ) of type hh�(t1); : : : ; �(tn)i; �(tn+1)i, whereby I(KÆ(�1; : : : ; �n)) is de�ned as

G�(Æ)(I(�1); : : : ; I(�n)).
14 Note that this procedure is only guaranteed to result|

and does indeed result15|in a homomorphism I if the logical language is syntac-

tically unambiguous. Therefore, the generated algebra of a logical language is as a

rule a free algebra.16

Furthermore, formal logical languages usually have a model-theoretic interpreta-

tion, which means that their interpretation homomorphism I is de�ned pointwise:

on the basis of a class17 M of models for the logical language, the interpretation

of logical expressions � is speci�ed by separately de�ning inm(�) for each m 2M,

where inm(�) is given by (a) a speci�cation of inm(�) for logical generators �; and
(b) an assignment of a semantic operator Gm;Æ to each logical operator KÆ, so that

inm(KÆ(�1; : : : ; �n)) is de�ned as Gm;Æ(inm(�1); : : : ; inm(�n)).
Of course, the point of this model-theoretic set-up is that a logical expression

can have di�erent interpretations in di�erent models: there is not in general a

single object that serves as the interpretation of a logical expression � in all models

14The correspondence between the sorts and operator indices of the logical and the semantic

algebra is usually established by bijections (identity functions) � and �. We will henceforth simply

assume that � and � are identity functions, and call I an (=,=)-homomorphism.
15Observe that I is designed so as to respect sorts and operators. Moreover, if the logical

language is a syntactically unambiguous free algebra, then all generators belong to exactly one

sort and are di�erent from all non-generators, so that every generator is assigned exactly one

value by I. Besides, the operators are injections with disjoint ranges, which means that also the

non-generators receive a unique value, and, consequently, that I is a homomorphism.
16In conformity with L.T.F. Gamut's adage: `Logical languages wear their meanings on their

sleeves' (p.c.).
17Here the word `class' is used deliberately rather than `set', since the collection of models for

a logical language is generally not a set in the sense of axiomatic set theory. In typed logic, for

instance, each non-empty set E gives rise to a distinct domainDE;e of individuals, so that there are

at least as many frames|and, consequently, models|as there are (non-empty) sets. This means

that the collection M of models is itself too large to be countenanced as a set: it is a proper class.

Moreover, if M is a proper class, then the interpretations I(�) de�ned below must be proper

classes as well: these collections contain for all m 2 M exactly one ordered pair hm; inm(�)i

and are, hence, just as large as M. Finally, proper classes do not correspond to set-theoretical

objects, so they cannot be constituents of sets and ordered pairs (which are a special kind of sets).

Therefore, also the notions It, GÆ, S, �
I

 , K

I

Æ
and S0, which will be de�ned in terms of I(�) below,

do not necessarily correspond to sets. (The same holds for their MP-superscripted counterparts.)

The use of calligraphic letters for these notions is meant to visualize the set-theoretical proviso of

the present footnote.

9

m.18 Hence, in order to be able to talk about `the' interpretation I(�) of a logical
expression �, one has to incorporate the models into the concept of interpretation:

I(�) is that function from models to interpretations in models such that I(�)(m)

= inm(�) for all m 2M.19

Observe that if B = h(Bt)t2T ; (KÆ)Æ2�i is a model-theoretically interpreted log-

ical algebra of signature !, then such an interpretation function I can be construed

as a|surjective|homomorphism from B to the following semantic !-algebra S:

S = h(It)t2T ; (GÆ)Æ2�i, where
(a) It = fI(�) j � 2 Btg; and

(b) if !(Æ) = hht1; : : : ; tni; tn+1i, then GÆ : It1 � : : :� Itn ! Itn+1 ,

where GÆ(I(�1); : : : ; I(�n)) = I(KÆ(�1; : : : ; �n)):

(11)

So, let us assume that each syntactic term � in a carrier of the term algebra TA;H
= h(TA;H;s)s2S ; (F

T

)
2�i of the syntactic �-algebra A = h(As)s2S ; (F
)
2�i with

respect to the generating family (Hs)s2S is to be assigned a logical translation

tr(�) in some carrier of the logical !-algebra B = h(Bt)t2T ; (KÆ)Æ2�i, a translation

which is interpreted as I(tr(�)) in some carrier of the semantic !-algebra S =

h(It)t2T ; (GÆ)Æ2�i via the (=;=)-homomorphism I (cf. footnote 14).

Note that for such an indirect interpretation assignment to be compositional,

the composition tr ÆI of the translation and interpretation function has to be a

homomorphism. This entails that tr ÆI has to respect the sorts, so there must be a

function � from the sorts S of TA;H to the sorts T of S such that tr ÆI[TA;H;s] � I�(s)

for all s 2 S. However, since the correspondence between the sorts of B and S is

established by an injection (the identity function =), this means that the translation

tr by itself must also respect the sorts, i.e.: tr [TA;H;s] � B�(s) for all s 2 S.
The assignment of translations tr(�) to syntactic terms � in the term alge-

bra TA;H of a generated syntactic algebra proceeds in a way analogous to the

assignment of interpretations to expressions in a logical language: because there

are generally in�nitely many syntactic terms to be translated, the translation func-

tion is not speci�ed by stating its values for all terms, but by providing a map-

ping tr which (a) associates each syntactic term � that corresponds to a genera-

tor h of category s in the syntactic algebra with some expression of type �(s) in
the logical algebra B; and (b) associates each term algebra operator F T

 of type

hhs1; : : : ; sni; sn+1i with some function �
 : B�(s1) � : : : � B�(sn) ! B�(sn+1),

whereby tr(F T

 (�1; : : : ; �n)) is de�ned as �
(tr(�1); : : : ; tr(�n)). Since the term al-

gebra of a generated syntactic algebra is a free algebra, this procedure is guaranteed

to result in the assignment of a unique translation tr(�) to each syntactic term � .
Besides, the �-algebra TA;H = h(TA;H;s)s2S ; (F

T

)
2�i is (�; �)-interpretable in the

�0-algebra B0 = h(Bt)t2T ; (�
)
2�i for � and �0 such that �(
) =
 and �0(
) =
hh�(s1); : : : �(sn)i; �(s)i i� �(
) = hhs1; : : : sni; si, and the translation function tr

is a (�; �)-homomorphism from TA;K to B0.

18In keeping with this, the standard de�nition of logical equivalence has it that two expressions

� and �
0 are logically equivalent|i.e., `have the same logical meaning' (Gamut 1991, Vol. I, p.

49)|if and only if for all m 2 M it holds that inm(�) = inm(�
0).

19It may be noted that this is another application of the cylindri�cation technique which is used

for assigning interpretations in models to logical languages that involve well-formed expressions

which may contain free variables. Expressions � of such logics are standardly assigned an object

in a model m under a variable assignment a, viz.: j�jm;a. Such a set-up is necessitated by the

fact that there is not in general a single object in the model that can serve as the denotation of

a logical expression �. For if � contains free variables, then its denotation is dependent on the

interpretation of these free variables and, hence, on the variable assignment. Consequently, in

order to be able to talk about `the' interpretation of an expression � in a model m, one must

incorporate the variable assignment into the concept of interpretation and de�ne inm(�), the

interpretation in m of a well-formed expression �, as the function from variable assignments a to

objects d in m such that ha; di 2 inm(�) if and only if d = j�jm;a (cf. Montague 1970, p. 228;

Janssen 1986, Part 1, pp. 28{35).

10

It is worth mentioning here that the logical algebra is usually exploited `at a

higher level' in the process of translation. Thus terms corresponding to generators

of the syntactic algebra need not be translated into generators of the logical alge-

bra. In the PTQ fragment, for example, the syntactic generator run is assigned

a generator|viz., a (non-logical) constant|of the corresponding logical sort as its

translation, but the translation of the syntactic generator be is a (highly) com-

pound expression. And, more importantly, the functions �
 associated with the

operators F T

 of the syntactic term algebra do not necessarily coincide with the

operators KÆ that are actually present in the logical algebra. We have already seen

that in the PTQ fragment, for example, the syntactic operators FS11-F8 and FS11-F9
turn out to correspond to operators that belong to the logical algebra, viz., K^ and

K_, respectively, but that this does not hold for the other operators: the latter are

all associated with a logical operator that is de�nable as a non-trivial composition

of the operators present in the logical algebra, but does not itself belong to that

algebra.

Now, let �
 : B�(s1) � : : : � B�(sn) ! B�(sn+1) be such a logical operator. We

de�ne �I

 , the relation I-induced by �
 , as the following collection:

fhhI(�1); : : : ; I(�n)i; I(�n+1)i j hh�1; : : : ; �ni; �n+1i 2 �
g(12)

We will say that an operator �
 is I-functional i� the relation �I

 I-induced by �

is a function, i.e., i� there are no hh"1; : : : ; "ni; "i 2 �I

 and hh"01; : : : ; "

0
ni; "

0i 2 �I

such that h"1; : : : ; "ni = h"01; : : : ; "
0
ni while " 6= "0.

Note that for the operators KÆ of the logical algebra B = h(Bt)t2T ; (KÆ)Æ2�i

itself it holds that KI
Æ = GÆ , where GÆ is the function de�ned in (11) above. Hence,

obviously, KÆ is I-functional for all Æ 2 � and I is an (=,=)-homomorphism from

B to the semantic algebra S = h(It)t2T ; (GÆ)Æ2�i = h(It)t2T ; (K
I
Æ)Æ2�i.

In general, as regards the compositionality of an indirect interpretation as-

signment in terms of a translation homomorphism tr from the syntactic term

algebra TA;H = h(TA;H;s)s2S ; (F
T

)
2�i to some `derived' logical algebra B0 =

h(Bt)t2T ; (�
)
2�i and an interpretation homomorphism I from the logical algebra

B = h(Bt)t2T ; (KÆ)Æ2�i to the semantic algebra S = h(It)t2T ; (K
I
Æ)Æ2�i, it may

be noted that the structure S 0 = h(It)t2T ; (�
I

)
2�i is an algebra|and I, conse-

quently, a homomorphism from B0 to S 0|if and only if for all
 2 � it holds that

�
 is I-functional.20 Since the composition of two homomorphisms is again a ho-

momorphism, this means that we have that tr ÆI is a homomorphism from TA;H to

S 0 if and only if �
 is I-functional for all
 2 �.

Summing up: in order for the composition tr ÆI of a homomorphism tr from

TA;H to B0 and a homomorphism I from B to S to be a homomorphism from TA;H
to S 0, all functions �
 in B0 that are associated with operators F T

 in TA;H must

I-induce a function �I

 .

This raises the following question: given a homomorphism I from the logical alge-

bra B = h(Bt)t2T ; (KÆ)Æ2�i to a semantic algebra S = h(It)t2T ; (K
I
Æ)Æ2�i, which

operators �
 : Bt1 � : : :�Btn ! Btn+1 are I-functional?

20Strictly speaking, it is not the �
 : B�(s1) � : : : � B�(sn) ! B�(s
n+1)

themselves, but

their restrictions �
 jtr = �
 \ ((tr [TA;H;s1] � : : : � tr [TA;H;sn]) � tr[TA;H;s
n+1

]) which must

be I-functional for tr ÆI to be a homomorphism. But in view of the fact that every I-functional

� : tr [TA;H;s1]�: : :�tr[TA;H;sn]! tr [TA;H;s
n+1

] can be extended to an I-functional �0 : B�(s1)�

: : : � B�(sn) ! B�(s
n+1)

(simply avoid non-equivalent values for equivalent arguments outside

tr [TA;H;s1]� : : :� tr [TA;K;sn]), there is for every non-I-functional �
 : B�(s1) � : : :�B�(sn) !

B�(s
n+1)

with I-functional �
 jtr an I-functional �0

: B�(s1) � : : : � B�(sn) ! B�(s

n+1)
such

that �0

 jtr = �
 jtr . The latter entails that an algebra B

0 = h(Bt)t2T ; (�
)
2�i that mediates

in an indirect interpretation homomorphism tr ÆI can always be replaced by an algebra B
00 =

h(Bt)t2T ; (�
0

)
2�i in which all operators are I-functional.

11

A partial answer to this question is given in the Appendix, where it is shown

that the class of operators that are I-functional for all homomorphisms I from B to

some algebra S includes the polynomial operators over the algebra B. The class of
polynomial operators over B consists of elementary operators|projection functions

and constant functions|plus operators that are de�nable as compositions of these

elementary operators and the operators in (KÆ)Æ2�.

On the other hand, it is also obvious that for a particular homomorphism I

from the logical algebra B to a speci�c semantic algebra S, there are always21

non-polynomial I-functional operators. For either there are no t 2 T , � 2 Bt

and �0 2 Bt such that I(�) = I(�0), or there are such t 2 T , � 2 Bt and

�0 2 Bt. In the former|peculiar22|situation every operator �
 is necessar-

ily I-functional, since then hI(�1); : : : ; I(�n)i = hI(�01); : : : ; I(�
0
n)i entails that

h�1; : : : ; �ni = h�01; : : : ; �
0
ni, so that �I

 inherits its being a function from �
 . In

the latter situation, where for some t 2 T , � 2 Bt and �0 2 Bt it holds that I(�)
= I(�0), it can be noted that the operator �
 : Bt ! Bt such that �
(�) = �0,
�
(�

0) = � and �
(�
00) = �00 for �00 2 (Bt � f�; �0g) is I-functional but non-

polynomial.23

Nonetheless, there are good reasons for disregarding operators over the logical

algebra B that are only I-functional for some homorphism I from B to S. For even

though formal logical languages B usually come with a particular class of models

M which determines a speci�c semantic algebra S and a speci�c homomorphism I

from B to S,24 this is generally not the class of models in which the translations of

the expressions in the syntactic term algebra are interpreted. This is because most

Montague grammar fragments contain a set MP of so-called meaning postulates ,25

sentences of the logical language which are intended to reduce the class M of all

models to the subclass MMP of models in which all meaning postulates in MP are

21Well, almost always: some carrier Bt of B will have to contain at least two expressions. For if

all carriers of B contain at most one expression, we have either (a), (b) or (c): (a) Bt1� : : :�Btn =

fh�1; : : : ; �nig, Bt
n+1

= ;, and then there is no �
 : Bt1 � : : :�Btn ! Bt
n+1

; (b) Bt1 � : : :�Btn

= fh�1; : : : ; �nig, Bt
n+1

= f�n+1g, and then for any �
 : Bt1 � : : :�Btn ! Bt
n+1

it holds that

�
 = fhh�1; : : : ; �ni; �n+1ig, which is a constant function; or (c) Bt1 � : : :� Btn = ;, and then

for any �
 : Bt1 � : : : � Btn ! Bt
n+1

we have that �
 = ;, which is a projection function. If,

on the other hand, some carrier Bt contains at least two expressions � and �
0, then any operator

�
 : Bt ! Bt such that �
(�) = �
0 and �
(�0) = � is non-polynomial, for note that (a) �
 is not

a constant function, since �
(�) 6= �
(�0); (b) �
 is not a projection function, since �
(�) 6= �;

and (c) �
 is not determined by a polynomial symbol b
 p1: : : pncs which contains the polynomial

variable �1, since for such �
 it holds that for all �00 2 Bt, the term b�00c is a proper subterm of

b�
(�
00)c, and b�c and b�0c cannot be proper subterms of each other. (Here, the expression b�c

represents the term � such that ev(�) = �. Recall that the logical algebra B is a free algebra,

hence for all � there is a unique � such that ev(�) = �.)
22It seems to be characteristic for a logic that it contains at least some equivalent expressions.
23That �
 is I-functional follows from the fact that for all �00 and �

000 either I(�00) 6= I(�000)

or I(�
(�
00)) = I(�
(�

000)). That �
 is non-polynomial is shown in footnote 21 above. An

example of such an operator in typed logic is the operator F : B(e;t) ! B(e;t) de�ned by

F (walk) = [�v v](walk), F ([�v v](walk)) = walk, and F (�) = � for � 2 B(e;t) such that

� 62 fwalk; [�v v](walk)g. (In typed logic it holds for all types t 2 T , variables v 2 Bt and

expressions � 2 Bt that I([�v v](�)) = I(�), since in(�v v) = f ha; fhd; di j d 2 DE;tgi j a 2 Ag

in all models m 2 M .)
24There is some latitude. E.g., typed logics have `standard' as well as `generalized' models, etc.
25See Montague 1973, pp. 263{4, for the nine meaning postulates of the PTQ fragment.

12

true:26

MMP = fm 2 M j for all ' 2 MP : inm(') = fha; 1i j a 2 Agg(13)

The interpretation I(�) of logical expressions � is reduced accordingly:

IMP(�) = fhm; inm(�)i j m 2MMPg:(14)

The interpretation function IMP can be construed as a|surjective|homomorph-

ism from the logical !-algebra B = h(Bt)t2T ; (KÆ)Æ2�i to the following semantic

algebra SMP of signature !:

SMP = h(IMPt)t2T ; (G
MP

Æ)Æ2�i, where

(a) I MPt = fIMP (�) j � 2 Btg; and

(b) if !(Æ) = hht1; : : : ; tni; tn+1i, then G
MP

Æ : IMPt1 � : : :� IMPtn ! IMPtn+1 ,

where GMPÆ (IMP(�1); : : : ; I
MP (�n)) = IMP (KÆ(�1; : : : ; �n)):

(15)

The addition of meaning postulates a�ects the class of I-functional operators in

a fairly inscrutable manner: given an initial homomorphism I and some set MP

of meaning postulates, the IMP-functionality of an operator over a logical algebra

B cannot be straightforwardly predicted from its I-functionality.27 That is: the

fact that �
 is I-functional does not entail that it will be IMP-functional, while

an operator �
 which fails to be I-functional may very well be IMP-functional.

(Examples are provided at the end of the Appendix.) Hence it is a safe strategy to

allow only those operators over B which are I-functional for all homomorphisms I.

We noted above that the class of these universally I-functional operators always

includes the polynomial operators over the logical algebra B. Moreover, for the

languages of typed logic which are commonly used in Montague grammar fragments

and of which the syntax constitutes a free algebra B in which each type contains

in�nitely many generators (viz., the variables of that type), there is a complete

characterization of this class, since it can be shown for such algebras that the

polynomial operators over B actually exhaust the class of universally I-functional

operators.28

26This is only true for extensional logics, where sentences denote (a constant function from

assignments to) a truth value in every model, viz. 1 (fha; 1i j a 2 Ag) or 0 (fha; 0i j a 2 Ag).

In the case of intensional logics, where the interpretation of a sentence in a model is (a constant

function from assignments to) a function from (sequences of) indices to truth values, the class M

of all models is reduced to the subclass MMP of models in which all meaning postulates in MP

are valid , i.e., the class of models in which they denote (the constant function from assignments

to) the constant function from (sequences of) indices to the truth value 1.

Normally, meaning postulates are meant to restrict `the interpretations of the [non-logical] con-

stants of the logic' (Janssen 1986, Part 1, p. 98). This obviously includes example (26), to be

discussed below, but excludes a candidate such as 9u9v:[u = v], which restricts the domain of

individuals without restricting the interpretation of any non-logical constant. However, observe

that the example 9u9v[:[u = v] ^ walk(u) ^ walk(v)] combines both features and shows that

the boundary is not always clear. Hence our liberal policy of accepting any expression of type t

without free variables as a legitimate meaning postulate. Given their function of reducing the class

of models, for that matter, it does not even seem essential that meaning postulates are expressions

of (or expressible in) the logical language.
27Some results in this area can be distilled from Van Benthem (1980), Section 3.
28A proof of this result which originates from F. Wiedijk is presented in Appendix I of Janssen

(1986, Part 1), pp. 189{192 (cf. Van Benthem (1980), footnote 7, for a one-sorted counterpart),

where the following claim is proven: let B be a free algebra h(Bt)t2T ; (KÆ)Æ2�i with generating

family (Ht)t2T , where each Ht is in�nite; and letK� : Bt1�: : :�Btn ! Bt
n+1

be an operator such

that for every algebra C = h(Ct)t2T ; (GÆ)Æ2�i and every homomorphism I from B to C there is an

operator G� : Ct1 � : : :�Ctn ! Ct
n+1

such that I is a homomorphism from h(Bt)t2T ; (KÆ)Æ2�[

fK�gi to h(Ct)t2T ; (GÆ)Æ2� [fG�gi. Then F� is polynomially de�nable.

Of course, a homomorphism I from B = h(Bt)t2T ; (KÆ)Æ2�i to C = h(Ct)t2T ; (GÆ)Æ2�i is a

homomorphism from h(Bt)t2T ; (KÆ)Æ2� [fK�gi to h(Ct)t2T ; (GÆ)Æ2� [fG�gi if and only if G�

13

The restriction to universally I-functional|i.e., polynomial|operators can be

incorporated as follows. Let B = h(Bt)t2T ; (KÆ)Æ2�i be an algebra, let POLB

denote the set of polynomial symbols over B, and let p# denote the polynomial

operator determined by a polynomial symbol p.29 Then �(B), the polynomial

closure of B, is the following algebra:

h(Bt)t2T ; fp
j p 2 POLBgi(16)

Observe that if I is a homomorphism from an algebra B to an algebra C, then
I is also a homomorphism from �(B), the polynomial closure of B, to �(C), the
polynomial closure of C. This holds on account of the fact that there is a function �
from the polynomial symbols over B to the polynomial symbols over C such that for

all �1; : : : ; �n: I(p
#
Æ (�1; : : : ; �n)) = (�(pÆ))

#(I(�1); : : : ; I(�n)) (see the Appendix

for the de�nition of �).30

The above considerations lead to the situation depicted in (17):

TA;H

tr

B �(B)

I # IMP

S �(SMP)

(17)

In (17), B represents a logical algebra h(Bt)t2T ; (KÆ)Æ2�i which is interpreted on

the basis of a class of models M: the interpretation I(�) of each logical expression

� is a function which associates each m 2 M with inm(�), the interpretation of

� in m. The interpretation function I is an (=;=)-homomorphism from B to a

semantic algebra S = h(It)t2T ; (GÆ)Æ2�i, where It = fI(�) j � 2 Btg and for all

Æ 2 �: GÆ(I(�1); : : : ; I(�n)) = I(KÆ(�1; : : : ; �n)).
In the right-hand side of (17), TA;H represents the term algebra of a syntactic

algebra A = h(As)s2S ; (F
)
2�i with generating family H = (Hs)s2S , while �(B)

represents the polynomial closure h(Bt)t2T ; fp
j p 2 POLBgi of the logical algebra

B. Every sort s of TA;H is assigned a sort �(s) of �(B), every operator F T

 of TA;H

is assigned an operator p#�(
) of �(B), and the translation function tr is a (�; �)-

homomorphism from TA;H to �(B). The set of meaning postulatesMP restricts the

classM of models for the logical algebra B to the classMMP of models in which all

meaning postulates inMP are true (or valid), and the restriction IMP of I toMMP

is de�ned by IMP (�) = fhm; inm(�)i j m 2 MMPg. Since IMP is an (=;=)-homo-
morphism from B to the semantic algebra SMP = h(IMPt)t2T ; (G

MP

Æ)Æ2�i, where

I MPt = fIMP (�) j � 2 Btg and for all Æ 2 �: GMPÆ (IMP(�1); : : : ; I
MP (�n)) =

IMP(KÆ(�1; : : : ; �n)), we have that IMP is an (=; �)-homomorphism from �(B)

is a function and G� = K
I
� , the relation I-induced by K�. So the claim indeed establishes that

all universally I-functional operators over an in�nitely generated free algebra B are polynomially

de�nable. (If some types in the free logical algebra B are �nite or �nitely generated, then there may

be non-polynomial universally I-functional operators. E.g., if Bt consists of two expressions � and

�
0, then the non-polynomial operator K : Bt ! Bt such that K(�) = �

0 and K(�0) = � induces a

function K
I for all I. Another example is attributed to W. Peremans in Janssen (1986) and Van

Benthem (1980) and concerns the free (one-sorted) algebra hN;Si, where N = f0; S0; SS0; : : :g

and S : N ! N is the (successor) operator de�ned by S(n) = Sn. This algebra is �nitely generated

by f0g: hN;Si = h[f0g]; Si. While the (addition) operator F : N �N ! N de�ned by F (n; 0) = n

and F (n;S(m)) = S(F (n;m)) is not a polynomal operator over hN;Si, it does hold that F is

I-functional for all homomorphisms I.)
29These notions are de�ned in the Appendix.
30Note that if I is an (=,=)-homomorphism from B to C, then I is an (=; �)-homomorphism

from �(B) to �(C).

14

to the polynomial closure �(SMP) = h(IMPt)t2T ; fp
j p 2 POLS

MP

gi of SMP,

where � is as speci�ed above. As a consequence, the composition tr ÆI MP of

the translation homomorphism tr and the interpretation homomorphism I MP is

a (� Æ=; � Æ�)-homomorphism from the syntactic term algebra TA;H to the semantic

algebra �(SMP).

4 Conclusion

Summing up, the main advantage of the picture sketched in (17) over the approach

outlined in (9) above seems to be that there is no need for a separate process of

explicitly deriving algebras. On the one hand, there is a model-theoretically inter-

preted logic which determines the translation algebra. On the other hand, there is

a grammar fragment consisting of a generated syntactic algebra, a translation ho-

momorphism from its term algebra to the translation algebra, and a set of meaning

postulates. Given the grammar fragment, both the interpretation algebra and the

interpretation homomorphism from the translation algebra to the interpretation al-

gebra are induced automatically. This makes the relationship between the grammar

of our fragment and the logic that we use in specifying its semantics not only more

perspicuous, but also more general: there is no need to readjust our logical tools to

every fragment in which we may wish to employ them, apparently as intended by

Montague, who

viewed the use of an intermediate language as motivated by [. . .] the ex-

pectation (which has been amply realized in practice) that a suÆciently

well-designed language such as his Intensional Logic with a known se-

mantics could provide a convenient tool for giving the semantics of var-

ious fragments of various natural languages. (Partee 1997, p. 24)

Appendix: Many-Sorted Algebra

The de�nition of the basic notion `many-sorted algebra of signature �' (or `�-
algebra') is given in (1) above. A subalgebra of a many-sorted algebra A is a

collection of subsets of the carriers of A which is closed under the restrictions of the

original operations to those subsets:

A subalgebra of �-algebra A = h(As)s2S ; (F
)
2�i is a �-algebra
h(Bs)s2S ; (F

0

)
2�i, where Bs � As for all s 2 S, and for
 2 �:

if �(
) = hhs1; : : : ; sni; sn+1i, then F 0

 is the restriction of F

to (Bs)s2S , that is: F
0

 = F
 \ ((Bs1 � : : :�Bsn)�Bsn+1):

(18)

Let A = h(As)s2S ; (F
)
2�i be a �-algebra that includes H = (Hs)s2S , that

is: Hs � As for all s 2 S. The smallest subalgebra h(Bs)s2S ; (F
0

)
2�i of A

that includes H is called the subalgebra generated by H , which we will write as

h[H]; (F 0

)
2�i, where [H] indicates the indexed family (Bs)s2S of carriers of that

subalgebra, and for F 0

 2 (F 0

)
2�, F
0

 is the restriction of F
 to (Bs)s2S . The al-

gebra h[H]; (F 0

)
2�i always exists, since it can be characterized as the intersection

of all subalgebras of A that include H .

Let algebra A = h(As)s2S ; (F
)
2�i include H = (Hs)s2S . Then H is a generat-

ing family for A (or: A is generated by H) i� h[H]; (F 0

)
2�i = h(As)s2S ; (F
)
2�i.

31

31The move from many-sorted algebras to generated many-sorted algebras involves by no means

a loss of generality or applicability of the formalization: observe that every many-sorted �-algebra

A = h(As)s2S ; (F
)
2�i can be characterized as a generated algebra, since it is trivially true that

A = h[(As)s2S]; (F
)
2�i.

15

If a �-algebra h(As)s2S ; (F
)
2�i generated by (Hs)s2S has the following three

properties, it is called a free algebra: (1) the members of the generating family

(Hs)s2S are not in the range of some operator F
 in (F
)
2�: if an+1 2 Hsn+1 ,

then for all F
 with �(
) = hhs1; : : : ; sni; sn+1i and for all a1 2 As1 ; : : : ; an 2 Asn :

an+1 6= F
(a1; : : : ; an); (2) the operators in (F
)
2� are injections that have disjoint
ranges: if F
(a1; : : : ; an) = F
0(a

0
1; : : : ; a

0
m), then ha1; : : : ; ani = ha01; : : : ; a

0
mi and

F
 = F
0 ; and (3) every member of a member of (As)s2S is a member of exactly

one carrier As: if a 2 As and a 2 As0 , then s = s0.32

If �-algebra A = h(As)s2S ; (F
)
2�i is generated by H = (Hs)s2S ;
then TA;H ; the term algebra of A with respect to H, is the �-algebra
h(TA;H;s)s2S ; (F

T

)
2�i, where for all s 2 S and for all
 2 � :

(a) TA;H;s is the smallest set such that f bhcs j h 2 Hsg � TA;H;s;
and if t12TA;H;s1 ; : : : ; tn2TA;H;sn and �(
) = hhs1; : : : ; sni; si; then
F T

 (t1; : : : ; tn) 2 TA;H;s; and (b) F T

 (t1; : : : ; tn) = b
 t1: : : tncs:

(19)

Observe that the term algebra TA;H of a �-algebra A = h(As)s2S ; (F
)
2�i with
generating family H = (Hs)s2S can be characterized as a generated algebra, viz.,

as h[(fbhcs jh 2 Hsgs)s2S]; (F
T

)
2�i, and that it is necessarily a free algebra, since

it meets the three relevant requirements: (1) members bhcs of the generating set

are always di�erent from terms F T

 (t1; : : : ; tn) = b
 t1: : : tncs, which are of the form

b
 bx1cs1 : : : bxncsncs;
33 (2) F T

 (t1; : : : ; tn) = b
 t1 : : : tncs for all F
T

 with �(
) =

hhs1; : : : ; sni; si and for all t1 2 TA;H;s1 ; : : : ; tn 2 TA;H;sn ; hence if F
T

 (t1; : : : ; tn) =

F T

0(t

0
1; : : : ; t

0
m), then b
 t1: : : tncs = b
0 t01: : : t

0
mcs0 , so that ht1; : : : ; tni = ht01; : : : ; t

0
mi

and
 =
0, i.e., F T

 = F T

0 ; and (3) terms carry their sort as a subscript, so that a

term bhcs or b
 t1: : : tncs is always a member of exactly one carrier, viz., TA;H;s.
De�nition (20) relates the members of the carriers of a term algebra TA;H to

the members of the carriers of the original algebra A by means of the evaluation

function ev . It can be noted that whenever TA;H is the term algebra of an algebra

A = h(As)s2S ; (F
)
2�i with respect to some generating family H , then it holds for

32Clause (1) and (2) constitute the de�nition of the notion of a free for traditional (`one-sorted')

algebras (cf. Montague 1970, p. 225). Clause (3) is a natural addition in the context of many-sorted

algebras, in view of the following considerations.

After a comparison of his own formalization with the many-sorted approach outlined in Adj

(1977), Janssen concludes that he `did not succeed in obtaining a handsome de�nition of the

notion of a \free algebra" ' (Janssen 1986, Part 1, p. 94), and blames this on the fact that he does

not treat members of carriers as nullary operators. We agree with Janssen that such a treatment

is `intuitively diÆcult, and practically inconvenient' (p. 93), but we do not consider it necessary

for a de�nition of the notion of a `free algebra': intuitively, the expressions in the carriers of a free

algebra should be uniquely analyzable, and this simply excludes the possibility of expressions that

occur in more than one carrier.

A related issue is the de�nition of the notion of a `homomorphism'. In Janssen's (and our|

cf. (4) below) approach, a homomorphism is a function which has the union of the collection of

carriers as its domain. In Adj (1977), it is a sorted collection of functions: for each sort there is a

separate function. Thus if an object occurs in two carriers, these occurrences are treated as two

di�erent objects and can be assigned di�erent values by the homomorphism, something which is

not possible if a homomorphism is a single function (Janssen 1986, p. 93). However, it can be

argued that the fact that this option is not available under the de�nition of homomorphisms as

single functions is unproblematic: one simply has to take into account that homomorphisms, qua

cornerstones of semantic interpretation, are de�ned on term algebras. Hence if term algebras are

designed so as to represent occurrences of an object in di�erent carriers as di�erent objects|e.g.,

by subscripting them with the sort of the carrier to which they belong, as in (19)|, it is possible

to assign di�erent values to these occurrences. Besides, such term algebras have the advantage

that they are free in the sense of clause (1) through (3), as will become clear below.
33That is: provided that `fresh' brackets `b' and `c' are chosen, i.e., symbols that do not occur

as subexpressions of the members h of the carriers in the generating family (Hs)s2S , but that will

occur as subexpressions of `
 bx1cs1 : : : bxncsn ' (for recall that n 2 IN+).

16

all s 2 S that a 2 As if and only if there is a term t 2 TA;H;s such that ev(t) = a.

ev(bhcs) = h; and
ev(b
 t1: : : tncs) = F
(ev (t1); : : : ; ev (tn)):

(20)

The notion `(�; �)-interpretability' is de�ned in (3) above. A �-algebra A generated

by some family H is (�; �)-interpretable in algebra B if and only if TA;H is (�; �)-
interpretable in B, for note that A and TA;H invariably have the same set of sorts S,
the same set of operator indices �, and the same type-assigning function �. Note,
moreover, that if A is (�; �)-interpretable in B and B is (�0; �0)-interpretable in C,
then A is (� Æ�0; � Æ�0)-interpretable in C, where f Æg denotes the composition of the

functions f and g, de�ned by f Æg(x) = g(f(x)).
The de�nition of the notion `(�; �)-homomorphism' is given in (4). An impor-

tant property of homomorphisms is that the composition of two homomorphisms

h and g is again a homomorphism. Suppose that A, B and C are algebras such

that A is (�; �)-interpretable in B and B is (�0; �0)-interpretable in C, that h is

a (�; �)-homomorphism from A to B, and that g is a (�0; �0)-homomorphism from

B to C. Then h Æg is a (� Æ�0; � Æ�0)-homomorphism from A to C. The proof is

straightforward: �rst, recall that A is (� Æ�0; � Æ�0)-interpretable in C; second, since
h[As] � B�(s) and g[B�(s)] � C�0(�(s)), necessarily g[h[As]] � C�0(�(s)); and third,

the following identities hold for operators F
 , G�(
) and H�0(�(
)) in A, B and C, re-
spectively: h Æg(F
(a1; : : : ; ak)) = g(h(F
(a1; : : : ; ak)) = g(G�(
)(h(a1); : : : ; h(ak)))
= H�0(�(
))(g(h(a1)); : : : ; g(h(ak))) = H�0(�(
))(h Æg(a1); : : : ; (h Æg(ak)).

The set of polynomial operators over a �-algebra A = h(As)s2S ; (F
)
2�i consists
of projection functions and constant functions plus operators which are de�nable

in terms of these elementary operators and the operators in (F
)
2�. We present a

de�nition in terms of so-called polynomial symbols.34

Let A = h(As)s2S ; (F
)
2�i be a many-sorted algebra of signature �. On the

basis of A, we �rst de�ne three sets of auxiliary symbols. Let s 2 S and let, for

n 2 IN+, hhs1; : : : ; sni; si 2 Sn � S. Then:

VAR = f�i j i 2 IN+
g;

CONA
s = fa j a 2 Asg; and

OPAhhs1;:::;sni;si = f
 j F
 2 (F
)
2� and �(
) = hhs1; : : : ; sni; sig:

(21)

VAR is the set of polynomial variables , CONA
s is the set of polynomial constants

over A of sort s, and OPAhhs1;:::;sni;si is the set of polynomial operator symbols over

A of type hhs1; : : : ; sni; si. For n 2 IN+ and h~s; si 2 Sn � S, the set POLA
h~s;si of

polynomial symbols over A of type h~s; si is de�ned as the smallest set such that:

if �i 2 VAR and ~s = hs1; : : : ; si�1; s; si+1 : : : ; sni, then b�
ics 2 POLAh~s;si;

if a 2 CONA
s , then bacs 2 POLAh~s;si; and

if p1 2 POLAh~s;s1i; : : : ; pk 2 POLAh~s;ski and
 2 OPAhhs1;:::;ski;si,

then b
 p1: : : pkcs 2 POLAh~s;si:

(22)

We let POLA =
S
f POLAh~s;si j h~s; si 2 Sn�S and n 2 IN+

g. A polynomial symbol

p 2 POLAh~s;si uniquely determines a polynomial operator p# of type h~s; si. Let ~s be

34Cf. Janssen (1986, pp. 56{61). A more direct|one-sorted|de�nition is given in Montague

(1970, p. 224). The mediation of polynomial symbols leads to a more neatly arranged bureaucracy

in the many-sorted context.

17

the sequence hs1; : : : ; sni and let a1 2 As1 ; : : : ; an 2 Asn . Then p#(a1; : : : ; an) is
de�ned as follows:

b�ic#s (a1; : : : ; an) = ai;
bcc#s (a1; : : : ; an) = c; and

b
 p1: : : pkc
#
s (a1; : : : ; an) = F
(p

#
1 (a1; : : : ; an); : : : ; p

#
k (a1; : : : ; an)).

(23)

Thus (i) polynomial symbols b�ics of type hhs1; : : : sni; si determine a projection

function b�ic#s : As1 � : : : � Asn ! As which yields its i-th argument as a result;

(ii) polynomial symbols bccs of type hhs1; : : : sni; si determine a constant function

bcc#s : As1 � : : :� Asn ! As which yields c 2 As as a result; and (iii) polynomial
symbols b
 p1: : : pkcs of type hhs1; : : : sni; si determine a function b
 p1: : : pkc

#
s :

As1 � : : : � Asn ! As which is a composition of F
 and the functions p#1 ; : : : ; p
#
k

determined by the respective polynomial symbols p1; : : : ; pk.
35

Let A = h(As)s2S ; (F
)
2�i be a �-algebra with generating family H = (Hs)s2S .

We will now show that polynomial operators over A are h-functional for all homo-
morphisms h from A to some algebra B. That is: let B = h(Bt)t2T ; (GÆ)Æ2�i be

an arbitrary !-algebra such that A is (�; �)-interpretable in B for some � : S ! T
and � : � ! �, and let h be a (�; �)-homomorphism from A to B. Then for all

polynomial operators p# over A it holds that (p#)h, the relation h-induced by p#

as de�ned in (24), is a function.

(p#)h = fhhh(a1); : : : ; h(an)i; h(an+1)i j hha1; : : : ; ani; an+1i 2 p#g(24)

This claim is proven by de�ning a function � which assigns a polynomial symbol

�(p) 2 POLBhh�(s1);:::�(sn)i;�(s)i to each polynomial symbol p 2 POLAhhs1;:::sni;si and

by showing that for all a1 2 As1 ; : : : ; an 2 Asn it holds that h(p#(a1; : : : ; an)) =
(�(p))#(h(a1); : : : ; h(an)). The latter means that (p#)h is nothing but the set

fhhh(a1); : : : ; h(an)i; (�(p))
#(h(a1); : : : ; h(an))i j hha1; : : : ; ani; an+1i 2 p#g, which,

of course, cannot fail to be a function. The function � is de�ned by �(b�ics) =
b�ic�(s); �(bccs) = bh(c)c�(s); and �(b
 p1: : : pkcs) = b�(
) �(p1) : : : �(pk)c�(s).

The proof proceeds by induction on c(p), the complexity36 of p 2 POLA:

h(b�isc
#(a1; : : : ; an)) = h(ai) = b�i�(s)c

#(h(a1); : : : ; h(an)) =

(�(b�isc))
#(h(a1); : : : ; h(an));

h(bcsc
#(a1; : : : ; an)) = h(c) = bh(c)�(s)c

#(h(a1); : : : ; h(an)) =
(�(bcsc))

#(h(a1); : : : ; h(an)); and

h(b
 p1: : : pkc
#(a1; : : : ; an)) =

h(F
(p
#
1 (a1; : : : ; an); : : : ; p

#
k (a1; : : : ; an))) =

G�(
)(h(p
#
1 (a1; : : : ; an)); : : : ; h(p

#
k (a1; : : : ; an))) =

G�(
)((�(p1))
#(h(a1); : : : ; h(an)); : : : ; (�(pk))

#(h(a1); : : : ; h(an))) =

b�(
) �(p1) : : : �(pk)c
#(h(a1); : : : ; h(an)) =

(�(b
 p1: : : pkc))
#(h(a1); : : : ; h(an)): [qed]

35Projection functions yield one of their arguments as a result, constant functions yield a member

of a carrier as a result, and the collection (As)s2S is closed under the operations F
 2 (F
)
2�.

Hence the addition of polynomial operators to an algebra A = h(As)s2S; (F
)
2�i always yields

an algebra with the same carriers as A itself.

Note that the operators F
 in h(As)s2S ; (F
)
2�i are themselves expressed by a polynomial

symbol: if �(
) = hhs1; : : : ; sni; si, then F
 = b
 b�1cs1 : : : b�
ncsnc

#
s , where b�

1cs1 ; : : : ; b�
ncsn

have the respective types hhs1; : : : ; sni; s1i; : : : ; hhs1; : : : ; sni; sni.

Incidentally, the members of the carriers of the term algebra TA;H of a �-algebra A =

h(As)s2S ; (F
)
2�i with respect to generating family H = (Hs)s2S are precisely the polynomial

symbols which can be built up from polynomial constants corresponding to members of members of

(Hs)s2S and operator symbols corresponding to members of (F
)
2�, but contain no polynomial

variables.
36That is: c(b�ics) = c(bccs) = 0, and c(b
 p1: : : pncs) = max(c(p1); : : : ; c(pn)) + 1.

18

It was observed in Section 3 that an I-functional operator �
 can fail to be

IMP-functional, while an operator �
 which fails to be I-functional may very

well be IMP-functional. By way of illustration, consider typed logic. With re-

spect to the interpretation homomorphism I based on the class M of standard

models, we have that I([�v v](�)) = I(�) for all t 2 T and � 2 Bt, so that

I([�v v](walk)) = I(walk), while I(walk) 6= I(talk), I(walk) 6= I(man)

and I(talk) 6= I(man).37 On account of this, the operator F de�ned in (25)

below fails to be I-functional: we have that I([�v v](walk)) = I(walk), but

I(F ([�v v](walk))) = I([�v v](walk)) = I(walk) 6= I(talk) = I(F (walk)).
On the other hand, the operator G in (25) does induce a function GI , since if I(�)
= I(�0), then (i) I(�) = I(�0) 6= I(walk), and then G(�) = � and G(�0) = �0; or
(ii) I(�) = I(�0) = I(walk), and then G(�) = man = G(�0). Both (i) and (ii)
entail that I(G(�)) = I(G(�0)).

F : B(e;t) ! B(e;t), where F (�) = talk if � = walk, and

F (�) = � if � 6= walk:
G : B(e;t) ! B(e;t), where G(�) = man if I(�) = I(walk), and

G(�) = � if I(�) 6= I(walk):

(25)

Now, suppose that the class M of models for typed logic is restricted to the class

MMP by the following singleton set of meaning postulates:

MP = fwalk = talkg(26)

The reduced class MMP of models comprises the models m 2M in which the sen-

tence walk = talk is true, i.e., those m 2M such that inm(walk) = inm(talk).

This has as a consequence that IMP(walk) = IMP(talk). But the latter means

that the operator F is IMP-functional, since we now have that IMP(F (�)) =

IMP(�) for all �. On the other hand, the expressions man and talk continue to be

non-equivalent under the reduced homomorphism IMP: IMP(man) 6= IMP(talk),

and this implies that the operator G ceases to induce a function: IMP(walk)

= IMP(talk), while I(walk) = I(walk) but I(talk) 6= I(walk), so that

IMP(G(walk)) = IMP(man) 6= IMP(talk) = IMP(G(talk)).

References

Adj (J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B. Wright) (1977). `Initial Algebra

Semantics and Continuous Algebras'. Journal of the Association for Computing Machinery

24, 68{95.

Benthem, J. van (1980). `Universal Algebra and Model Theory. Two Excursions on the

Border.' Report ZW{7908. Department of Mathematics, Groningen University.

Gamut, L.T.F. (J. van Benthem, J. Groenendijk, D. de Jongh, M. Stokhof, H. Verkuyl)

(1991). Logic, Language and Meaning. Volume I: Introduction to Logic. Volume II: In-

tensional Logic and Logical Grammar . University of Chicago Press, Chicago and London.

Halvorsen, P.-K., and W. Ladusaw (1979). `Montague's \Universal Grammar": an Intro-

duction for the Linguist'. Linguistics and Philosophy 3, 185{223.

Hendriks, H. (1993). Studied Flexibility. Categories and Types in Syntax and Semantics.

ILLC Dissertation Series 1993{5. ILLC, University of Amsterdam.

37Thus in the model m 2 M such that DE;e = fe1; e2g, I(walk) = fhe1; 1i; he2; 0ig,

I(talk) = fhe1; 0i; he2; 1ig and I(man) = fhe1; 1i; he2; 1ig it is a fact that inm(walk) =

fha; fhe1; 1i; he2; 0igi j a 2 Ag, inm(walk) = fha; fhe1; 0i; he2; 1igi j a 2 Ag and inm(man) =

fha; fhe1; 1i; he2; 1igi j a 2 Ag. Consequently, the functions inm(walk), inm(talk) and inm(man)

are all di�erent, and the same holds for the functions I(walk), I(talk) and I(man).

19

Janssen, T. (1986). Foundations and Applications of Montague Grammar. Part 1: Phi-

losophy, Framework, Computer Science. Part 2: Applications to Natural Language. CWI

Tracts 19 and 28, Amsterdam.

Montague, R. (1970). `Universal Grammar'. Theoria 36, 373{398. Page references concern

the reprint as Chapter 7 of R. Thomason (ed.) (1974), Formal Philosophy. Selected Papers

of Richard Montague. Yale University Press, New Haven.

Montague, R. (1973). `The Proper Treatment of Quanti�cation in Ordinary English'.

In J. Hintikka, J. Moravcsik and P. Suppes (eds.) (1973), Approaches to Natural Lan-

guage. Proceedings of the 1970 Stanford Workshop on Grammar and Semantics. Reidel,

Dordrecht. Page references concern the reprint as Chapter 8 of Thomason (ed.) (1974),

Formal Philosophy. Selected Papers of Richard Montague. Yale University Press, New

Haven.

Partee, B. (1984). `Compositionality'. In F. Landman and F. Veltman (eds.) (1984),

Varieties of Formal Semantics. Proceedings of the Fourth Amsterdam Colloquium. Foris,

Dordrecht.

Partee, B., with H. Hendriks (1997). `Montague Grammar'. Chapter 1 in J. van Benthem

and A. ter Meulen (eds.), Handbook of Logic and Language, Elsevier Science Publishers,

Amsterdam, 5{92.

20

