
Binary Decision Diagrams for First Order Predicate Logic

Jan Friso Groote

Department of Philosophy� Utrecht University

Heidelberglaan �� ���� CS Utrecht� The Netherlands

email� JanFriso�Groote�phil�ruu�nl

Abstract

We present an extension of Binary Decision Diagrams �BDDs� such that they can be used for predicate
logic� We present a sound and complete proof search method which we apply to a number of examples�

Key Words � Phrases� Automatic Reasoning� Binary Decision Diagrams� First Order Predicate Logic�

� Introduction

In ���� Randy Bryant proposed to represent propositional formulas by Ordered Binary Decision
Diagrams �BDDs� �	
� A BDD is a node�labelled DAG �Directed Acyclic Graph� where in general
each node has two outgoing vertices� Bryant provided straightforward algorithms to transform a
formula into a BDD and moreover he proved that logically equivalent formulae have canonical BDD
representations� In �	
 these representations are called
reduced�� E�g� tautologies and contradictions
have as associated reduced BDDs Bt and Bf �as depicted in Figure � on page ��� This yields a very
simple procedure to �nd out whether a given formula � belongs to one of these classes� Just calculate
the reduced BDD of � and see whether it matches Bt or Bf�
The calculation of BDDs is claimed to belong to the most e�ective techniques for proving propo�

sitional formulae tautologies� And indeed there are examples where BDDs outperform almost all
existing techniques with several orders of magnitude� e�g�� the Urquhart formulae ���
� There are also
claims from various �elds that the application of BDD techniques caused substantial breakthroughs
�see ��
 for VLSI design and ��
 for process theory��
This coins the obvious question whether the BDD technique can be made suited for other purposes�

with hopefully similar impacts� A primary area to look at is predicate logic�
In this paper we outline a way of extending BDDs to handle predicate logic� Basically it works as

follows� Given a formula � that we want to show a tautology� Deny � and calculate the Skolem form
of ��� which we call �� in order to dispose of quanti�ers� We must now show � a contradiction� We
construct the BDD of � in almost the same way as one would construct the BDD of a propositional
formula� Now we enter a search procedure where we repeatedly and alternately do the following two
operations on the obtained BDD� We calculate so�called relevant uni�ers and apply these to the BDD�
This is done using backtracking� If this does not lead to a proof after an a priori bounded number of
steps� we make a copy of the BDD� rename its variables such that they become fresh� and put it in
conjunction with the original BDD� Then we start applying uni�ers again� If � is a contradiction the
search will terminate after a �nite number of steps�
We have attempted several other approaches� especially those where quanti�ers were explicitly

incorporated in the representation� But� none of them seemed to work� as they became too compli�
cated� The current approach is very natural and relatively simple� This leads us to think that we
have identi�ed a rather natural way to represent and reason within the setting of predicate logic using
BDDs�

�

	 � FIRST ORDER PREDICATE LOGIC

We provide a number of elementary theorems about this representation� These theorems all work
towards the particular proof search technique sketched above� It basically only uses the standard
algorithms for �nding most general uni�ers for terms and the construction of BDDs� Given these
algorithms� the presented search technique is rather straightforward�
An interesting question that we have only marginally addressed is how e�ective our method is�

From a theoretical perspective it is hard to say very much about the comparative speeds of the method
presented in this article� In absolute sense we know that predicate logic is undecidable and therefore no
general terminating algorithm can be presented anyhow� Therefore� it is of course impossible to give
a general treatment of e�ciency� In relative sense it seems from our own investigations that BDDs for
propositional logic are polynomially incomparable to standard techniques such as semantical tableaux
and resolution �see ���
 for the details of polynomial simulations to compare the di�erent methods��
Such results carry over to the setting with predicate logic� But we have not investigated this any
further�
One might obtain some insight by implementing the proposed algorithm� As this is a far from

trivial job� we leave this to others� We have only experimented by hand with proving numerous small
problems for which easy proofs turned out to exist �see section ��� The method proposed in this
article must be seen as an initial step towards a full �edged system� As we have seen with other
major streams in automatic theorem proving basic methods must be extended substantially before
they can get to work� E�g� for resolution there exist many variants of which hyper resolution and
SLD�resolution �for PROLOG� are probably the most well known� Furthermore� features have been
added to resolution for special purposes� such as modulation or paramodulation to handle equality�
This article is organised as follows� In section 	 predicate logic is introduced� In section � we de�ne

how binary decision diagrams for predicate logic look like� In sections � and � we provide a number
of operations on BDDs of which we give the main completeness theorem in section �� In section � we
present the proof search algorithm and in section � we show how the method works on three examples
taken from ���
�

Acknowledgements� I thank Jaco van de Pol and Hans Zantema for their assistance in proving
termination of the basic operators on BDDs� I also thank Jaco van de Pol for his detailed comments�
that contributed considerably to the quality of this paper� Thanks also go to Jean Goubault� Joachim
Posegga and Bas van Vlijmen for general discussion and comments�

� First order predicate logic

In the sequel we assume a set V � fx�� x�� � � �g of variables� a set F � ff�� f�� � � �g of function and a
set Pr � fP�� P�� � � �g of predicate symbols and we assume that we know the arity of each function
symbol in F and of each predicate in Pr � The sets V� F and Pr are pairwise disjoint� If convenient
we also use other letters than x� f and P to refer to variables� function� and predicate symbols�

De�nition ���� Terms are inductively de�ned by�

� x � V is a term�

� if f � F is a function symbol of arity r � � and t�� � � � � tr are terms� then f�t�� � � � � tr� is a term�

The set of all terms over F and V is denoted by T�F� V � and the set of all predicates of the form
P �t�� � � � � tr� with t�� � � � � tr terms and P � Pr is denoted by P�Pr � F� V �� Terms not containing
variables are called closed� For sequences of terms we use the vector notation� e�g�� �t � t�� � � � � tn� A
substitution is a mapping � � V � T�F� V �� The notation ��x���t
 represents a substitution � that
maps each variable x to ��x�� except that it maps x� to t� The substitution ���x���t
 behaves like ��
except that it replaces variables in �x by the corresponding term in �t� A substitution � is closed if
��x� contains no variables� We use
�� for composition of substitutions� � � ��t� � ����t��� and 	 is

�

the identical substitution� We assume that � is extended to a mapping from terms to terms and from
predicates to predicates in the standard way�
Formulas are inductively de�ned by�

� t and f are formulas�

� P �t�� � � � � tr� � P�Pr � F� V � is a formula�

� if � is a formula� then �� is a formula�

� if � and � are formulas� then � � � is a formula�

� if � is a formula� and x � V is a variable� then �x�� and 	x�� are formulas�

The set of all formulas is denoted by F�Pr � F� V �� The abbreviation �
 � stands for ���� � ����
� � � stands for ��
 �� and � � � represents �� � �� � �� � ��� We assume that substitutions
extend to formulas in the standard way�

De�nition ���� A structure is a multi�tuple A � hA�R�� R�� � � � �F�� F�� � � �i where

� A is a non�empty set�

� R�� R�� � � � are relations on A� The arity of Ri is equal to the arity of the predicate symbol Pi�

� F�� F�� � � � are functions on A� The arity of Fj is equal to the arity of function symbol fj �

Herbrand structures are particularly interesting� as they connect the semantical world of interpre�
tations and the syntactical world of symbolic manipulation� Herbrand structures have the form
AH � hT�F� ��� R�� � � � � f�� � � � � fni� I�e�� the domain A consists exactly of all closed terms� and each
function symbol is interpreted by itself� Relations can be chosen freely�

De�nition ���� Let A � hA�R�� � � � �F�� � � �i be a structure and � � V � A be a valuation� The

interpretation ��t

�A � T�F� V � � A of a term t is inductively de�ned by�

� ��x

�A � ��x� if x � V �

� ��fj�t�� � � � � tr�

�
A � Fj���t�

�
A� � � � � ��tr

�
A��

The interpretation ���

�A � P�Pr � F� V �� f�� �g of a formula � is inductively de�ned by�

� ��f

�A � ��

� ��t

�A � ��

� ��pi�t�� � � � � tr�

�
A �

�
� if h��t�

�
A� � � � � ��tr

�
Ai � Ri�

� otherwise�

� ����

�A � �
 ���

�A�

� ��� � �

�A � min����

�A� ���

�
A��

� ���x��

�A � mina�A����

��x��a�
A ��

� ��	x��

�A � maxa�A����

��x��a�
A ��

� � FIRST ORDER PREDICATE LOGIC

We write A� � j� � i� ���

�A � �� and A� � �j� � i� ���

�A � �� We write A j� � i� for all valuations � it
holds that A� � j� �� We say that � is a tautology� notation j� � if for all structures A it holds that
A j� �� If for each structure A there is a valuation � such that A� � �j� �� we say that � is unsatis�able�
Otherwise we say that � is satis�able�
We say that formulas � and � are strongly �logically� equivalent� notation

� u ��

i� for all structures A and all valuations � it holds that A� � j� � i� A� � j� �� We say that formulas
� and � are logically equivalent� notation

� � ��

i� for all structures A it holds that A j� � i� A j� �� We say that � and � are weakly �logically�
equivalent� notation

� � ��

i� there is a structure A and a valuation � such that A� � j� � i� there is a structure B and a valuation

 such that B�
 j� ��

Note that logical equivalence is the ordinary notion of equivalence and that strong logical equivalence
implies logical equivalence� For formulas in which no free variables occur strong logical equivalence and
logical equivalence coincide� and logical equivalence implies weak logical equivalence� Furthermore�
observe that if � � � and � is unsatis�able� then � is also unsatis�able�
There are numerous standard facts about �rst order predicate logic� We list three main results that

are used in the sequel� The following theorem expresses that for each formula there is a corresponding
formula which has only a set of leading universal quanti�ers�

Theorem ���� Let � be a formula� Then there exist variables x�� � � � � xn and a quanti�er free formula
� such that

� � �x� � � ��xn���

The formula �x� � � ��xn�� is called the Skolem form or formula of ��

Skolem formulas can e�ciently be calculated�
We are essentially interested in proving a formula from predicate logic a tautology� This is equivalent

to showing that the formula �� is unsatis�able� Using the previous theorem �� can be transformed
to a Skolem formula � maintaining unsatis�ability� The following theorem that restricts attention to
a �nite number of instances of �� is the basis of our proof procedure�

Theorem ��� �Herbrands Theorem�� Let � be a quanti�er free formula in which the variables
�x � x�� � � � � xm occur� The formula � is unsatis�able i� there are closed terms �t�� �t�� � � � � �tn such thatVn
i�� ���x���ti
 u f�

As we have restricted our attention to unsatis�ability of Skolemised formulae� we can also restrict
our attention to Herbrand structures� using the following theorem� So� from now on� reference to
structures means reference to a Herbrand structure�

Theorem ��	� Let � be a formula in Skolem form� There is a structure A and a valuation � such
that A� � j� � i� there is a Herbrand structure AH and a valuation � such that AH � � j� ��

Note that the valuation � above is actually a closed substitution� So� from now on� closed substitutions
and valuations can be identi�ed�

�

� Binary Decision Diagrams

In this section we de�ne binary decision diagrams almost completely according to Bryant �	
� The
only real di�erence is that we allow predicates as labels instead of proposition symbols�

De�nition ���� A Binary Decision Diagram �BDD� B � �Q� l�
f

�� t
�� s� �� �� is an acyclic� node

labelled graph where

� Q is a �nite set of nodes�

� l � Q � f�� �g � P�Pr � F� V � � f�� �g is a node labelling� satisfying that l��� � �� l��� � � and
l�q� �� �� � for all q � Q�

�
f

�� Q� Q � f�� �g is the false continuation of a node�

� t
�� Q� Q � f�� �g is the truth continuation of a node�

� s � Q� f�� �g is the start node� we assume that all nodes in Q are reachable from s using truth
or false continuations�

� � �� Q is a symbol representing false� and � �� Q is a symbol representing truth�

The BDD B is acyclic in the sense that there is no in�nite sequence of nodes q�
��

� q�

��

� � � � where

for each i � � �i � f or �i � t�

Note that as a consequence of the acyclicity of a BDD and the �niteness of the set of nodes each
sequence q�

��

� q�

��

� � � � is bounded and� if it cannot be extended� must end in � or ��

Notation ���� Let B � �Q� l�
f

�� t
�� s� �� �� be a BDD� We use the following notations�

� B� for the initial node s�

� QB for Q�

� p�t for the node q such that p t
� q�

� p�f for the node q such that p
f

� q�

We assume a total ordering � on P�Pr � F� V ��f�� �g such that � � P �t�� � � � � tr� and � � P �t�� � � � � tr�
for all predicates P �t�� � � � � tr��

De�nition ���� �Interpretation of a BDD�� Let B be a BDD and let A be a structure and � be a
valuation� A A���path of a node q� � QB is the sequence

q�
��

� q�

��

� � � �

�
n��

� qn

where qn � f�� �g and for each � � i
 n �i � f if A� � �j� l�qi� and �i � t if A� � j� l�qi�� If the A� ��path
of q� ends in � we say that q� holds� notation A� � j� q�� Otherwise� i�e� when the A� ��path of q� ends
in �� we say that q� does not hold� notation A� � �j� q�� We write A� � j� B for A� � j� B� and A� � �j� B
for A� � �j� B�� Using this de�nition� the relations u �strong equivalence�� � �logical equivalence� and
� �weak equivalence� and the notions tautology� satis�able� and unsatis�able formulas carry over to
BDDs and nodes of BDDs�

So� a BDD yields� given a structure and a valuation� a truth value� As such they can be used to
represent formulas� The following de�nition explains a way to do this� We sometimes use pictures�
instead of rather laborious de�nitions of BDDs� as we think that these are as clear� and far easier
to understand� We have adopted the convention to draw outgoing false continuations at the left and
outgoing truth continuations at the right of a node� We tag the nodes only with their labels and we
draw multiple occurrences of single node labelled with �� and similarly for the unique node labelled
with ��

� � BINARY DECISION DIAGRAMS

Bf � � � Bt � � � BP �t������tr	 � � P �t�� � � � � tr�

� �

�
�
��

A
A
AU

If B� �
�
�
�

A
A
A

� �

then B�� �
�
�
�

A
A
A

� �

If B� �
�
�
�

A
A
A

� �

and B� �
�
�
�

A
A
A

� �

then B��� �
�
�
�

A
A
A

� �
�
�

A
A
A

� �

Figure �� De�nitions of Bf� Bt� BP �t������tr	� B�� and B���

� P �x�

� P �x�

� �

�

�
�
��

A
A
AU
A
A
AU

�
�
��

�
�

�
��

P �x�

�

�

�

Q�y�
�
�
�R�

�

R�z�
�

�
��

�
�
�R� �

Figure 	� BDDs for P �x� � �P �x� and �P �x�
Q�y�� � R�z�

De�nition ���� Figure � shows the BDDs� Bf� Bt� BP �t������tr	� B�� and B��� corresponding to the
formulas f� t� P �t�� � � � � tr�� �� and � � �� In B��� it does not matter which diagram is put on top
and which one is put below�

Note that we divert here from �	
 wrt� the de�nition of B���� where a strict ordering on the labels
of the nodes is maintained� In �	
 it is guaranteed that when traversing a BDD from the root to � or
�� the labels are run across in a strict ascending order� We introduce special rules to sort the labels�
as we need these when applying uni�ers� As these sorting rules are available anyhow� we have chosen
for the simpler presentation of conjunction� As sorting a BDD is a very expensive operation� it seems
wise to implement � on BDDs as is done in ��� 	
�

Example ���� The BDDs belonging to the formulas P �x� � �P �x� and �P �x�
 Q�y�� � R�z� are
drawn in �gure 	�

�

pN

A

Al2

l1

l2

Figure �� The neglect operator Np�B�

A B

Jp,q

A B

l1 l2

l l l

l1 l2

Figure �� The p� q�join operator Jp�q�B�

Theorem ���� Let � be a �quanti�er free� formula and B� its corresponding BDD� For each structure
A and each valuation � we �nd that

A� � j� � i� A� � j� B��

Proof� Straightforward on the structure of �	 �

� Simple operations on BDDs

In this section we provide simple operations to transform BDDs into reduced or canonical form
��	
We show that the reduced BDDs of �strongly� equivalent formulas are isomorphic �Theorem �	
�� and
that the application of simple operators must terminate �Theorem �	

�	
The operators Np and Jp�q are the same as those in

�� where it is pointed out how simultaneous

application of these two operators can be carried out on a BDD in linear time	 Because of the details
of the operators are somewhat tricky� we give the de�nitions in full detail	 For easy understanding
each operator is depicted	

De�nition ���� �see Figure ��� Let B � �Q� l�
f

���
t��� s� ��
� be a BDD	 The neglect operator Np�B�

is de�ned if for some q � Q p
t�� q and p

f
�� q by�

Np�B� � �Q�� l�
f

��
�
�
t��

�
� s�� ��
�

where

�
��

�
� fhr�� r�i �

�
�� jr� �� p� r� �� pg � fhr�� qijr�

�
�� pg for � � ft� fg

� � SIMPLE OPERATIONS ON BDDS

A

C

B

pMf

A

C

B

l

l

l

l

Figure �� The f�merge operator M f
p�B�

Sf
p

A B

CA B

C

l(q)

l(p) l(p’’)

l(p’)

l(q)

l(p)

Figure �� The f�sort operator Sf
p�B�� l�p� � l�q�� l�p� � l�p�� and l�q� � l�p���

�

s� �

�
s if s �� p�

q if s � p

Q� � Q n fpg�

De�nition ���� �see Figure ��� Let B � �Q� l�
f

���
t��� s� ��
� be a BDD	 If p� q � Q� p �� q�

l�p� � l�q�� p
f

�� r� p t�� r�� q
f

�� r and q
t�� r� for some r� r� � Q� then the p� q�join operator

Jp�q�B� is the BDD

�Q�� l�
f

��
�
�
t��

�
� s�� ��
�

where

f
��

�
� fhr�� r�i �

f
�� jr� �� qg � fhr�� pijr�

f
�� qg

t��
�
� fhr�� r�i �

t�� jr� �� qg � fhr�� pijr�
t�� qg

s� �

�
s if s �� q�

p if s � q

Q� � Q n fqg�

The operatorsM f
p� M

t
p� S

f
p and St

p sort the BDD such that labels occur in a strict ascending order	 It
is impossible to implement simultaneous application of these operators on a BDD e�ciently� as sorting
a BDD is NP�hard�	 It is possible to avoid sorting a BDD� except after application of a uni�er	

De�nition ���� �see Figure 	�� Let B � �Q� l�
f

���
t��� s� ��
� be a BDD	 If p� q � Q� p

f
�� q� and

l�p� � l�q�� then the f�merge operator M f
p�B� is the BDD

�Q�� l�
f

��
�
�
t��� s� ��
�

where

f
��

�
� fhr�� r�i �

f
�� jr� �� p � r� �� qg � fhp� rijq

f
�� rg

Q� is Q from which non reachable parts are removed	

If p� q � Q� p t�� q and l�p� � l�q�� then the t�merge operator M t
p�B� is the BDD

�Q�� l�
f

���
t��

�
� s� ��
�

where

t��
�
� fhr�� r�i �

t�� jr� �� p � r� �� qg � fhp� rijq t�� rg

Q� is Q from which non reachable parts are removed	

De�nition ���� �see Figure
�� Let B � �Q� l�
f

���
t��� s� ��
� be a BDD	 If p� q � Q� p

f
�� q and

l�p� � l�q� with respect to the ordering relation � on predicates� then the f�sort operation is de�ned
as follows�

Sf
p � �Q�� l��

t��
�
�
f

��
�
� s�� ��
��

�When applying the operations on BDDs as described in this article to propositional logic� the only non polynomial

operator is sorting�

� � SIMPLE OPERATIONS ON BDDS

Below p� and p�� are new nodes	

l��r� �

��
�

l�p� if r � p��

l�q� if r � p���

l�r� otherwise

f
��

�
� fhr�� r�i �

f
�� jr� �� p or r� �� pg � fhr� p��ijr

f
�� pg�

fhp��� pig � fhp�� rijq t�� rg � fhp� rijq
f

�� rg

t��
�
� fhr�� r�i �

t�� jr� �� pg � fhr� p��ijr t�� pg � fhp��� p�ig � fhp�� rijp t�� rg

Q� is Q � fp�� p��g from which parts that become unreachable are removed�

If p� q � Q� p t�� q and l�p� � l�q� with respect to the ordering relation � on predicates� then the
t�sort operation is de�ned to be

St
p�B� � �Q�� l��

t��
�
�
f

��
�
� s�� ��
��

Below� p� and p�� are new nodes	

l��r� �

��
�

l�p� if r � p��

l�q� if r � p���

l�r� otherwise

f
��

�
� fhr�� r�i �

f
�� jr� �� pg � fhr� p��ijr

f
�� pg � fhp��� p�ig � fhp�� rijp

f
�� rg

t��
�
� fhr�� r�i �

t�� jr� �� p or r� �� pg � fhr� p��ijr t�� pg�

fhp��� pig � fhp�� rijq
f

�� rg � fhp� rijq t�� rg

Q� is Q � fp�� p��g from which parts that become unreachable are removed�

Lemma ��	� �Soundness�� Let B be a BDD� We �nd for p� q � QB that in case O is applicable to B

O�B� u B

where O is one of Np� Jp�q� M
t
p� M

f
p� S

t
p and Sf

p�

Proof� It is trivial but tedious� to check that for all structures A and valuations � it holds that
A� � j� O�B� i� A� � j� B	 �

De�nition ���� We say that a BDD B is reduced with respect to some total ordering � on open
predicates i� none of the operators Np� Jp�q� M

t
p� M

f
p� S

t
p and Sf

p is applicable to B	 In general the
ordering � is not mentioned� assuming it is clear from the context	

The next lemmas work towards Theorem �	
� saying that strongly equivalent reduced BDDs are
unique up to an isomorphism	

Lemma ��
� Let B� C be BDDs with nodes p � QB and q � QC � Let A be a structure and � a
valuation such that A� � j� p and A� � �j� q� Let P �t�� � � � � tn� be a label not occurring in the subdags
of B and C rooted with p and q� Then�

� There exists a structure B and a valuation � such that
B� � j� p� B� � �j� q and B� � j� P �t�� � � � � tn��

�� There exists a structure B and a valuation � such that
B� � j� p� B� � �j� q and B� � �j� P �t�� � � � � tn��

Proof� Extend A with new fresh constants� one for every variable in B� C or P �t�� � � � � tn�	 De�ne �
such that it maps every variable to this newly created constant	 De�ne B to hold on every predicate
��Q�u�� � � � � um�� i� A holds for ��Q�u�� � � � � um��	 Due to the structure of �� this is well de�ned	
Moreover� it leaves open whether B� � j� P �t�� � � � tn� or not	 �

Lemma ���� Let B and C be reduced BDDs� Let p � QB and q � QC such that p u q� We �nd�

� l�p� � l�q��

�� p	f u q	f�

�� p	t u q	t�

�� if B and C are the same BDDs� then p � q�

Proof� We prove this lemma by contradiction	 Assume there are reduced BDDs B and C containing
nodes p � QB and q � QC such that one of the conditions
���� or � do not hold	 Consider such
BDDs B and C with nodes p� q with minimal value �jpj � �jqj where jpj is the length of the longest
path leading from p to � or
	

	 Suppose l�p� �� l�q�	 Consider the case where l�p� � l�q�	 The case where l�p� � l�q� is
symmetric� and therefore omitted	 As the sort and the merge operator are not applicable to B

and C� there are no nodes below p in B and below q in C labelled with l�p�	 Now we can show
that p	f u q	 The proof of this fact is also by contradiction	 Assume p	f �u q	 Then� there is a
structure A and a valuation � such that A� � j� p	f and A� � �j� q� or vice versa� A� � j� p	f and
A� � �j� q	 We only deal with the �rst case� as the other is almost symmetric	 By Lemma �	��
there is a structure B and a valuation � such that B� � j� p	f� B� � �j� q and B� � �j� l�p�	 Hence�
B� � j� p	 But this contradicts that p u q� as B� � �j� q	 So� p	f u q	 Similarly� we can show

that p	t u q	 Hence� by transitivity of u� p	t u p	f	 As �
jp�tj ��jp�fj
 �jpj � �jpj ��jqj it must

be that p	t � p	f� as p and q were the nodes with smallest exponential distance to endnodes
violating one of the properties
 to � in this lemma	 But in this case the neglect operator is
applicable� contradicting that B is reduced	 Hence� l�p� � l�q�	

�	 Suppose l�p� � l�q�� but p	f �u q	f	 Then there is a structure A and some valuation � such
that A� � j� p	f and A� � �j� q	f or vice versa� A� � �j� p	f and A� � j� q	f	 We only consider the
�rst case for symmetry reasons	 As l�p� does not occur in the subdags in B and C rooted with
l�p�� there is according to Lemma �	� a structure B and a valuation � such that B� � j� p	f�
B� � �j� q	f and B� � �j� l�p�	 Hence� B� � j� p� B� � �j� q contradicting that p u q	

�	 Similar to case �	

�	 Let B and C be the same BDDs	 Suppose that cases
�� and � hold for p and q	 In order
to generate a contradiction� assume p �� q	 Using � and �� p	f u q	f and p	t u q	t	 As

�jp�fj � �jq�fj � �jpj � �jqj� it follows that p	f � q	f	 In the same way it follows that p	t � q	t	
Hence the join operator is applicable	 But this contradicts that B is reduced	

�

De�nition ���� Let B � �QB � lB �
f

��B �
t��B � sB � �B �
B� and C � �QC � lC �

f
��C �

t��C � sC � �C �
C�
be BDDs	 A function f � QB � f�B�
Bg � QC � f�C �
Cg is called a homomorphism i� lC�f�p�� �
lB�p�� f�p	f� � f�p�	f and f�p	t� � f�p�	t	 In case f is bijective� f is called an isomorphism	 If there
exists an isomorphism f � QB � f�B�
Bg � QC � f�C �
Cg� then B and C are called isomorphic�
written as B � C	

Theorem ���
� Let B and C be reduced BDDs� such that B u C� Then B and C are isomorphic�
i�e� B � C�

� 	 ADVANCED OPERATIONS ON BDDS

Proof� We de�ne functions f � QB � QC and g � QC � QB as follows	

f�p� � q for the q � QC such that p u q�

g�q� � p for the p � QB such that p u q�

Assuming that f and g are well de�ned functions� it is easy to see that f is a homomorphism using
Lemma �	�	 Furthermore� g is clearly the inverse of f � proving f an isomorphism	
So� we must only show that f and g are proper functions	 Due to symmetry we only do that for f 	

As B u C� it follows from Lemmas �	�	� and �	�	� and the fact that all nodes in B are reachable from
the root that each node in QB is related via u to at least one node in QC 	 Now� suppose that a node
p � QB is related to nodes q�� q� � QC 	 By transitivity of u it follows that q� u q�	 Using Lemma
�	�	� it must be that q� � q�	 �

Theorem ����� Let B be a BDD� The operators Np� Jp�q � M
t
p� M

f
p� S

t
p and Sf

p can only be applied
a �nite number of times to B�

Proof� The transformation operators can be formulated as rewrite rules in the following way �except
the join operator�� where l� and l� are predicates with l� � l�	

l��l��x� y�� z� � l��l��x� z�� l��y� z�� Sf
p

l��x� l��y� z�� � l��l��x� y�� l��x� z�� St
p

l��x� x� � x Np

l��l��x� y�� z� � l��x� z� M f
p

l��x� l��y� z�� � l��x� z� M t
p

To each DAG we can obtain its canonical tree by undoing the sharing of subdags	 Using a recursive
path ordering
�� ��� it is straightforward to see that application of these rules must terminate on these
trees	
If the rules are applied on DAGs� observe that each rewrite of the DAG corresponds to one or more

rewrites of the canonical tree	 So� rewriting the DAG must also terminate	
Repeated application of the join operator must also terminate� as the number of nodes is strictly

decreasing	 The application of the Join operator does not change the canonical tree of a BDD	
Therefore� it does not enable more rewrite steps to be applied	 Hence� repeated application of all
operators must terminate	 �

Notation ����� Let B be a BDD and let C be a reduced BDD such that B u C	 According to
Theorem �	
� C is unique up to an isomorphism	 According to Theorem �	

 C must exist� and can
be e�ectively obtained	 This allows us to write R�B� for C	

Note that Theorem �	
� implies that R�B�� � Bt if � is strongly equivalent to a tautology	 Note also
that R�B�� � Bf if � is strongly equivalent to a contradiction	 This observation is the basis for using
BDDs for propositional logic	 Contrary to what is stated in
��� due to the di�erent setting it is not
the case that R�B�� is the smallest representation for �	 This is due to the particular construction of
conjunction on BDDs and the sorting operator that can cause BDDs to grow	

� Advanced operations on BDDs

In this section we present two operators on BDDs that are solely de�ned for predicate logic	 The �rst
one is a copying operator C�B� that puts B in conjunction with a copy of itself� where variables are
made fresh	
The second operator is the uni�cation operator U��B� where � is a so�called relevant uni�er	 U��B�

instantiates B according to �	

�

De�nition 	��� Let B be a BDD in which variables 	x occur	 The copy operator C�B� is de�ned as

C�B� � B �B
	x�� 	x��

where 	x� is a sequence of variables not occurring in B	

De�nition 	��� Let P �t�� � � � � tn�� Q�u�� � � � � um� � P�Pr � F� V �	 A substitution � � V � T�F� V � is
called a uni�er of P �t�� � � � � tn� and Q�u�� � � � � um� i� ��P �t�� � � � � tn�� � ��Q�u�� � � � � um��	 A uni�er
� of P �t�� � � � � tn� and Q�u�� � � � � um� is called most general i� for each uni�er � � of P �t�� � � � � tn� and
Q�u�� � � � � um� there is a substitution � such that � � � � � �	

If predicates P �t�� � � � � tn� and Q�u�� � � � � um� are uni�able� then they have a most general uni�er
�MGU�� which is unique modulo renaming of variables	 There is also an MGU that is idempotent� i	e	
����x�� � x	 Moreover� the MGU can be determined in linear time
��
��	

De�nition 	��� Let B � �Q� l�
f

���
t��� s� ��
� be a BDD and let � be a substitution	 The BDD

��B� is de�ned as�

��B� � �Q�
x���l�x���
f

���
t��� s� ��
��

In the following de�nition we de�ne relevant uni�ers	 For arbitrary BDDs this de�nition is rather
unattractive	 But� as Lemma �	� helps us to see� relevant uni�ers are easy to �nd in reduced BDDs	

De�nition 	��� Let B � �Q� l�
f

���
t��� s� ��
� be a BDD	 A node p � Q is called redundant i�

p	t u p	f	
A path

p�
��
�� p�

��
�� � � �

�n��
�� pn

�n
�� �

for � � f��
g is called allowed i� there are no �
 i � j
 n such that l�pi� � l�pj� and �i �� �j 	
A node p � Q is called truth�truth capable i� there is an allowed path

p
t�� p�

��
�� � � �

�n��
�� pn

�n
��

A valuation � is called a relevant uni�er for B i� there is a path

p�
��
�� p�

��
�� � � �

�n��
�� pn

�n
��

with p� � s and for all �
 i
 n it holds that pi is not redundant� if �i � f� pi is not truth�truth
capable� and for some �
 i� j
 n �i � f� �j � t and � is an idempotent most general uni�er of l�pi�
and l�pj�	

Lemma 	�	� Let B be a reduced BDD�

 There are no redundant nodes p � QB �

 Every path in B is allowed�

 If pi is not truth truth capable� pi	t � ��

 � is a relevant uni�er for B i� for some �
 i� j
 n �i � f� �j � t and � is the most general
uni�er of l�pi� and l�pj� on the rightmost path

p�
��
�� p�

��
�� � � �

�n��
�� pn

�n
��

of B�

Proof�

�
 COMPLETENESS

 Suppose B is reduced and there is a redundant node p � QB 	 Hence� p	t u p	f	 According
to Lemma �	�	� p	t � p	f	 Hence� the neglect operator is applicable� contradicting that B is
reduced	

 If a path in B would not be allowed� the sort and�or merge operators are applicable� contradicting
that B is reduced	

 If pi is not truth truth capable� every path starting with p	t ends in �	 Clearly� if pi	t �� � the
neglect operator is applicable at the one but last node on a path starting in p	t	 This contradicts
that B is reduced	

 We can only turn left on a non truth truth preserving node on the path where we search for
relevant uni�ers	 According to the previous items in this way we walk along the rightmost path
of B to
	

�

It is obvious from this characterisation that relevant uni�ers are easy to �nd as we only need to inspect
the rightmost path of B	 For instance in the BDD at the left of Figure � on page
� the only relevant
uni�er on the rightmost path to
 is y��a	 And in the BDD in Figure
� on page �� the only relevant
uni�er on the rightmost path is y��d	

De�nition 	��� Let B be a BDD	 The uni�cation operator U��B� is de�ned by

U��B� � ��B� if � is a relevant uni�er of B�

Note that if � is a relevant uni�er� then U��B� contains strictly less variables than B	

Lemma 	�
� �Soundness�� Let B be a BDD�

 B � C�B��

 B � B � U��B��

Proof� Easy logical consequence	 �

� Completeness

In this section we show that if a formula � is unsatis�able� then there is a sequence of operators on B�

that turns it into Bf	 The �rst lemma attracts attention to rightmost paths in BDDs for calculating
relevant uni�ers	 The next lemma shows that if B� is strongly equivalent to Bf then we can �nd it by
repeatedly applying relevant uni�ers on B�	 Theorem �	� says� using Herbrand�s theorem that if B�

is unsatis�able we must apply relevant uni�ers to a certain number of copies to B� all interleaved with
reduction operators	 The algorithm in the next section is nothing more than recursively searching for
this sequence of operators	

Lemma ���� Let B � �Q� l�
f

���
t��� s� ��
� be a reduced BDD and � a closed substitution such that

��B� u Bf� If there is a rightmost �allowed� path

q�
��
�� q�

��
�� � � �

�m��
�� qm

�m
��

with q� � B�� then there are �
 i� j
 m with �i � f� �j � t and ��l�qi�� � ��l�qj���

�

Proof� Let

s � q�
��
�� q�

��
�� � � �

�m��
�� qm

�m
��

be the rightmost �allowed� path in B	 Suppose there are no �
 i� j
 m with �i � f� �j � t and
��l�qi�� � ��l�qj��	 Then� we can construct a Herbrand structure AH such that AH � � j� B	
De�ne the relations in AH such that for each node qi�

l�qi���
AH
� �

�
� if �i � f

 if �i � t

and take

l�qi���
AH
� � � elsewhere	

As for

 i� j
 m �i � f� �j � t� implies ��l�qi�� �� ��l�qj��� the de�nition of AH is indeed correct	
Now it is trivial to check that AH � � j� B� contradicting that ��B� u Bf� as AH � � �j� Bf	 �

Lemma ���� Let B � �Q� l�
f

���
t��� s� ��
� be a reduced BDD and � a substitution such that

��B� u Bf� Then there is a sequence of relevant uni�ers ��� � � � � �n such that

R�U���R�U���� � � �R�U�n�B������� � Bf�

Moreover� n is smaller or equal than the number of variables in B�

Proof� We apply induction on the number of variables that occur in B	 Note that if there are no
variables in B� ��B� � B� and therefore� B u Bf	 Hence� as B is reduced� B � Bf	 So� we can take
the sequence of relevant uni�ers to be empty	
If there are k � � variables in B� we know there is an allowed path to
 in B� as otherwise B u Bf�

and using the same reasoning as above� we take the sequence of relevant uni�ers to be empty	 As
there is an allowed path to
 in B then according to Lemma �	
 there is also a rightmost allowed path

q�
��
�� q�

��
�� � � �

�m��
�� qm

�m
��

to
 in B with q� � B�� and some �
 i� j
 m with �i � f� �j � t and ��l�qi�� � ��l�qj��	 Hence� there
is a relevant uni�er � such that ��l�pi�� � ��l�pj��	 Note that in U��B� there are strictly less variables
than in B	 As the operator R does not introduce new labels of nodes� R�U��B�� also contains strictly
less variables than B	 Moreover� as� due to the fact that � is an mgu� there is some substitution ��

such that �� � � � �	 So� ���R�U��B��� u Bf	 Furthermore� R�U��B�� is reduced	 Now using the
induction hypothesis� there must be a sequence ��� � � � � �n such that

R�U���� � � �R�U�n�R�U��B������� � Bf�

So� ��� � � � � �n� � is the required sequence	 �

Theorem ���� Let B be an unsatis�able BDD� Then

R�U���� � � R�U�n�

k timesz �� �
R�C�� � � R�C�B�������� � Bf

for certain n� k � � and relevant uni�ers ��� � � � � �n�

Proof� As B is unsatis�able� it follows from Theorem �	� and Theorem �	� that there are closed
substitutions ��� � � � � �m such that

m�
i��

�i�B� u Bf�

� � ALGORITHM

Select some k such that �k � m	 The term

��� � �
 	x���	x�� � � � ��m � �
 	xm��	x���

k timesz �� �
C�C�� � � �C�B�� � � ���� u Bf� �
�

Here� the notation �
	xi��	x� is a renaming that takes care that the substitution �i operates on the
appropriate variables	 Write � � �����
 	x���	x�� � � � ��m��
 	xm��	x��	 According to Lemma �	� R�B� u B	
So� we may interleave the copying operators with simple reduction operators without changing strong

equivalence	 Write B� �

k timesz �� �
R�C�� � � �R�C�B�� � � ����	 Rephrasing �
� yields

��B�� u Bf�

By Lemma �	� it follows that there are relevant uni�ers ��� � � � � �m such that

R�U���� � � �R�U�m�B
������ � Bf�

which is exactly what we must show	 �

� Algorithm

The previous lemmata suggest the following algorithm to �nd out whether a formula � is unsatis�able	

Solve��� �
B� � R�B��
Repeat

TryToReduce�B�
B� � R�C�B��

Endrepeat

TryToReduce�B� �
If B � Bf� report �unsatis�able� and stop

For all relevant uni�ers � of B TryToReduce�R�U��B���

It says that �rst R�B�� should be constructed	 As is shown in

� �� this can be done e�ciently
�although for certain formulas the width of the BDD representation may blow up	 The depth is
linearly bounded by the number of di�erent predicates�	 Note that if the construction is carried out
as described in

� �� the expensive sorting operator is not applied	
Then� recursively� relevant uni�ers are applied to B in TryToReduce�B�	 Finding the relevant

uni�ers can be done e�ciently	 All pairs of pi� pj of predicates labelling the rightmost path
 of B�
with pi	t � � and pj	t �� � must be examined	 Hence� if the length of
 is l� there are at most
�

�
l� potentially uni�able predicates	 Using the algorithms proposed by
��
�� uni�ers can be found

linearly in the size of the terms	
Application of the uni�er� calculation of R�U��B�� may be costly	 It is linear to calculate U��B�	

But this may destruct the ordering of the labels	 When reducing� it may be necessary that the
costly sorting operators are applied	 An attempt can be made to avoid extensive sorting by grouping
predicates with the same predicate symbol together	
Also the recursive nesting of calls to TryToReduce could be a cause of ine�ciency	 However� at each

call at least one variable is instantiated	 Therefore� the depth of recursive calls to TryToReduce is
limited by the number of free variables in the BDD	
When TryToReduce�B�does not yield Bt� then a copy must be made� i	e	 the command B��R�C�B��

is carried out	 The copy operator is de�ned using the � and hence� using the techniques in

� ��
R�C�B�� can be calculated e�ciently	

�

 F(y,y)F(y,y)

 F(y,a) F(a,a)

 F(a,a)F(a,a)

0110 1 1 0 0

0

Figure �� Russel�s paradox

So� the programme is clearly browsing through larger and larger BDDs of the form

R�U���R�U���� � � R�C�� � � R�C�B��������� ���

where we stop if this BDD appears to be Bf	 If � is unsatis�able� this algorithm must terminate
according to Theorem �	�	 Moreover� if we �nd that ��� is equal to Bf then we may conclude with
Lemmas �	� and �	� that B� � B� � Bf� which means that B� must be unsatis�able	
Note that the algorithm presented here only sketches a basic approach on which a number of

improvements are possible	 First� it is sometimes possible to identify that a formula is satis�able in
an early phase of the protocol	 This for instance seems to happen if �nding uni�ers fails for other
reasons than the occur check	 It is also the case that sometimes redundant uni�ers are calculated in
the approach above� for instance uni�ers that undo a copying step	 In
�� it has been described how
to avoid some of the computational overhead	

� Examples

In this section we apply the proposed method to three examples taken from

�	 The �rst one is
chosen for its simplicity� while it still expresses an interesting fact	 The second one is chosen because
it needs copying and the third one is interesting because it is rated as reasonably di�cult� while it is
still small enough to carry out the construction of the BDD and the calculation of relevant uni�ers by
hand	

��� Russel�s paradox

Problem �� of

� says that �there is no Russell set�� i	e	 a set which contains exactly those sets which
are not members of themselves	 The predicate F �x� y� must be read as �x is a member of y�	 The
problem is originally stated as

��x�y�F �y� x� � �F �y� y��� ���

We negate and Skolemise the formula	 After removal of the remaining universal quanti�er we obtain

F �y� a�� �F �y� y� ���

where a is a Skolem constant	 The leftmost BDD in Figure � is obtained from this formula	 There is
one relevant uni�er� which is obtained by making a rightmost walk through the BDD to an endnode

	 On this path the predicates F �y� a� and F �y� y� are uni�able� with uni�er ��y� � a	 Applying the

� � EXAMPLES

110

0

F(x,f(x))

F(x,a)

F(x,z)

F(z,x)F(f(x),x)
1

0

Figure �� There are no circular sets

0

0

F(x,f(x))

F(x,a)

F(x,z)

F(z,x)F(f(x),x)

0

110

0 1

F(u,a)

F(u,v)

F(v,u)F(f(u),u)

F(u,f(u))

0 110

0 1

F(u,a)

F(u,v)

F(v,u)F(f(u),u)

F(u,f(u))

0

0

0

F(a,a)

0

F(a,f(a))

F(f(a),a)

Figure �� There are no circular sets �continued�

uni�er to this BDD yields the BDD in the middle of Figure �	 Reduction leads to Bf �at the right in
Figure �� showing that ��� is unsatis�able� and hence ��� a tautology	

��� There are no circular sets

This second example is problem �� of

�	 It says that �a set is circular if it is a member of another
set� which in turn is a member of the original�	 We show that there is no set containing all non circular
sets	 The original formulation of this theorem is

��y�x�F �x� y� � ��z�F �x� z� � F �z� x���� ���

Negation� Skolemisation and removal of quanti�ers yields

�F �x� a� � ��F �x� z� � F �z� x��� � ���F �x� f�x�� � F �f�x�� x�� � F �x� a��� ���

Obviously a and f are Skolem functions	 Note that the structure of the formula has changed somewhat
due to Skolemisation� as in ��� there is a quanti�er in the scope of a �	 In Figure � the BDD for ���
is depicted	 There are two relevant uni�ers� the �rst one mapping z and x to a� and the second one

��� A problem for monadic logic
�

mapping x to z	 Application of the �rst uni�er leads to a BDD B that neither is equal to Bf nor has
another relevant uni�er	 Application of the second uni�er leads to a subsequent uni�er� mapping z to
a	 In e�ect application of this uni�er leads again to the BDD B	 In this way the BDD Bf cannot be
obtained	
According to the algorithm we now must apply the copying operator	 This leads to the BDD at

the left of Figure �	 We have used fresh variables u and v for respectively x and z	 Along a rightmost
walk in this tree we obtain the following � uni�ers	�

x��a
z��a

�
x��v
u��a

	
z��x

�
u��a
v��a

�
u��z
x��a

	
v��u

If we apply the �rst one to the BDD we obtain the BDD at the righthandside of Figure �	 Now we
�nd the following uni�ers along the rightmost walk	�

u��f�a�
v��a

�
u��f�a�
v��a

	
u��a

�
u��a
v��a

	
u��v

Applying the �rst uni�er yields a BDD that reduces to Bf	 So� formula ��� is unsatis�able and hence�
formula ��� is a contradiction	

��� A problem for monadic logic

In this example we apply our BDD techniques to problem ��� which is rated among the hardest in

�	
There are a few problems that rated as more di�cult �i	e	 problems ��� ��� �� and ���� which due to
their length seem somewhat too large to do by hand	 The formulation of the hardest problem among
the �more tedious monadic logic problems from Kalish and Montague� is formulated as follows	 Note
that there is a small mistake in its formulation in

�� which is mentioned in the Errata belonging to
it	

���x �P �x� � �xQ�x����
��x �Q�x� � R�x�� � �x �Q�x� � S�x����
��xS�x� � �x �F �x�� G�x���� �
�x �P �x� � F �x� � G�x��

���

By denying and Skolemising the formula� we obtain �a� b� c and d are Skolem constants and w� x� y
and z are variables��

�P �w� � Q�x���
��Q�b� � R�b��� �Q�c� � S�c����
�S�z�� �F �y�� G�y����
�P �d� � F �d� � �G�d��

���

The BDD of this formula is depicted in Figure
�	 Its labels are sorted alphabetically	 It has ��
nodes	 The BDD has only one relevant uni�er� y��d	 Application of this uni�er reduces the size of
the BDD with almost ���	 The newly obtained BDD is depicted in Figure

 at the left	 Again� it
has only one relevant uni�er� being z��c	 The BDD resulting after application of this uni�er has been
depicted at the righthandside of Figure

	 This last BDD has two relevant uni�ers� x��b and x��c	
After applying either of those it we obtain the BDD in Figure
�	 This BDD has the unique relevant
uni�er w��d	 Application of this last uni�er yields the BDD Bf� showing ��� unsatis�able� and hence
��� a tautology	

�� � EXAMPLES

 G(y)

 P(d)

 P(w)

 Q(b)

 Q(c)

 Q(x)

 P(w)

 Q(c)

 Q(x)

 S(z)

R(b)

 Q(x)

 Q(c)

 F(d)

 F(y)

 G(d) G(d)

 S(c)

 R(b)

R(b)

 Q(b)

 Q(c) Q(c)
Q(c)

Q(x) Q(x)
 Q(x)

Q(b)

Q(c)

S(c)

 Q(c)

0

0 0 0

00

0

0

0 0

00

1

10

10

0

00

0

01

0

P(d)

 Q(b)

0

R(b)

Figure
�� A tedious problem from monadic logic

��� A problem for monadic logic �

 F(d)

0

 P(w)
0

P(d)
0

 G(d)

 F(d)

0

 Q(b)

Q(x)Q(c)

01

0

R(b)

S(c)

Q(b)

00

00

Q(c)

0

 P(w)

 Q(c)

 Q(x)

 S(z)

R(b)

 Q(x)

Q(c)

Q(x)

Q(b)

Q(c)

S(c)

 Q(c)

0

0 0 0

00

0

01

0

P(d)

 Q(b)

0

 G(d)

R(b) 0

Figure

� A tedious problem from monadic logic �continued I�

�� � CONCLUSIONS AND RELATED WORK

 P(w)
0

P(d)
0

 G(d)

 F(d)

0

Q(b)

0

0

0

Q(c)

01

R(b)

S(c)
0

Figure
�� A tedious problem from monadic logic �continued II�

� Conclusions and related work

We have designed a way to apply BDDs to predicate logic	 We have shown that this yields a complete
proof procedure and we have also shown that for the examples that we have considered the technique
leads so quickly to results that they can be carried out by hand	 We have not implemented the
system and hence not tried to use it on larger examples	 As experience shows �which is the best that
is available due to lack of a theoretical foundation� the usefulness of techniques only show itself in
application	 It appears to be an art to get automatic theorem provers to prove sizable problems	 We
can only wait what application of these ideas will bring� and hope that the triumph stories that BDDs
brought to us� will be repeated in the setting of predicate logic	

Independently of the work reported in here two other groups have been working on extending
BDDs to predicate logic
�� ��
��
�� in a rather similar way� probably indicating the naturalness of
the approach	

In

��
�� Joachim Posegga reports about an approach where BDDs are constructed without sorting
their labels	 In order to reduce the overhead caused by copying BDDs he indicates subBDDs as logical
entities	 These subBDDs stand for universally quanti�ed subformulas� when copies of them are used
during the proof search� only a BDD for the scope of the formula is inserted in the surrounding
BDD	 These ideas have been implemented by transforming a BDD into a PROLOG programme	 The
PROLOG programme takes care of �nding the uni�ers� that in this case are found on the leftmost
path �instead of on the rightmost path as has been done here�	 The implemented system is called
SHARE and is available by contacting the author

��	 It is interesting to know that SHARE solved
problem
 to �� of Pelletier

� without mentionable problems �see

���	

In
�� �� a system is described operating in a very similar way	 Here stress is put on determining
optimal uni�ers	 In particular the copying operator C creates many pairs of uni�able labels� that need
not be considered	 Moreover� using a smart weight function certain uni�ers get priority above others�
which according to
�� very often selects the correct uni�ers	 A trial implementation exist that could

REFERENCES ��

easily solve all problems of Pelletier except a few using equality� This is due to the fact that equality
is encoded using the standard equality axioms� instead of via special features found elsewhere�

References

��� K�S� Brace� R�L� Rudell and R�E� Bryant� E�cient implementation of a BDD package� �	th ACM
IEEE Design Automation Conference �

�� Pages ��
���

��� R�E� Bryant� Graph
based algorithms for boolean function manipulation� IEEE Transactions on

Computers� C
�������		��
�� August �
���

��� J�R� Burch� E�M� Clarke� K�L� McMillan� D�L� Dill� and L�J� Hwang� Symbolic model checking
���� states and beyond� Information and Computation�
����������	�� June �

��

��� N� Dershowitz� Termination of rewriting� Journal of Symbolic Computation� ������
����� �
�	�

��� J� Goubault� Syntax independent connections� In D� Basin� Bertram Fronh�ofer� Reiner H�ahnle�
J� Posegga and C� Schwind� editors� Proceedings of the �nd Workshop on Theorem Proving with
Analytic Tableaux and Related Methods� �

��

��� J� Goubault� Proving with BDDs and control of information� Unpublished manuscript� �

��

�	� J�W� Klop� Term rewriting systems� In S� Abramsky� D� M� Gabbay� and T�S�E� Maibaum� editors�
Handbook of Logic in Computer Science� pages �
���� volume �� Oxford Science Publications�
�

��

��� K�L� McMillan and J� Schwalbe� Formal veri�cation of the Gigamax cache consistency protocol�
In International Symposium on Shared Memory Multiprocessing� �

��

�
� A� Martelli and U� Montanari� An e�cient uni�cation algorithm� ACM Transactions on Program�

ming Languages and Systems� pages ���
���� Vol� �� No� �� �
���

���� M�S� Paterson and M�N� Wegman� Linear uni�cation� Journal of Computer and System Sciences�
���������	� �
	��

���� F�J� Pelletier� Seventy
Five Problems for Testing Automated Theorem Provers� Journal of Auto�
mated Reasoning� Volume �� pp� �
�
���� �
��� See also Errata� Journal of Automated Reasoning�
Volume �� pp� ���
���� �
���

���� J� Posegga and P�H� Schmitt� Automated Deduction with Shannon Graphs� Journal of Logic and

Computation� In print� �

��

���� J� Posegga and K� Schneider� Deduction with First
order BDDs� In D� Basin� Bertram Fronh�ofer�
Reiner H�ahnle� J� Posegga and C� Schwind� editors� Proceedings of the �nd Workshop on Theorem
Proving with Analytic Tableaux and Related Methods� �

��

���� J� Posegga� SHAnnon graph REfutation system� This is an implementation of a BDD based
theorem prover� Information� posegga�ira�uka�de� �

��

���� A� Urquhart� Hard Examples for Resolution� Journal of the Association for Computing Machin�

ery� ��������

��
� �
�	�

���� A� Urquhart� Complexity of proofs in classical propositional logic� In Y� Moschovakis� editor�
Logic from Computer Science� Springer
Verlag� pp� �
�
���� �

��

