A Modal Logic for CRL

J.F. Groote
S.F.M. van Vlijmen
Utrecht University, Faculty of Philosophy
Heidelberglaan 8, 3584 CS Utrecht, the Netherlands
E-mail: jfg@phil.ruu.nl, vlijmen@phil.ruu.nl

Abstract

The language pCRL allows to specify processes with data and to reason with them in an alge-
braic vein. This allows to express and reason about global correctness of systems. Sometimes,
one only needs to analyse particular properties of pCRL-processes. Modal logics are very conve-
nient to express and verify such properties. Therefore, we define a modal logic for pCRL. It is a
branching time modal logic based on actions. It has future and past operators and it allows for
reasoning about data, for instance using first order quantification over data variables. It is shown
that these modal formulae cannot distinguish between divergence sensitive branching bisimilar
processes.

The first author is partly supported by the Netherlands Computer Science Research Foundation
(SION) with financial support of the Netherlands Organisation for Scientific Research (NWO).

1 Introduction

1wCRL is a language to describe and analyse processes containing data based on an algebraic
tradition [10, 11, 12]. The main idea behind application of process algebra is the following. A
distributed system p = p; || p2 || - - - || pn is provided. A specification of the external behaviour
q is defined. Then, abstracting from internal activity in p using 770, the correctness of the
distributed system is expressed using the equation 770 (p) = ¢. Algebraic process theory
offers a whole range of techniques to prove such an equation. For many cases this is sufficient,
and beneficial. It stimulates the development of distributed systems with a ‘nice’ external
behaviour.

However, for some other purposes the algebraic approach is not adequate. Sometimes it is
only necessary to know one single property of a distributed system, which may be inconvenient
or even impossible to express using an equation. Temporal or modal logic turns out to be
adequate for such purposes. Therefore, we propose a syntax and a semantics for a modal
logic for pCRL.

The question what the form of a modal logic must be is not an easy one to answer. In the
literature there are very many different logics. Many are state based [3, 17]. Some are action
based [14]. As pCRL is an action based formalism, a modal logic for 4CRL is naturally action
based. Many are based on linear time [17] and some advocate branching time [3, 14]. Linear
time logics reason about a particular run of the protocol. This allows to express fairness
properties, such as ‘if a process reads an element d in a particular run, then during that

run, it will be delivered’. On the other hand, branching time modal logics allow to express
that ‘once in the future there is a moment where an a and a b action can be performed’.
As we feel both properties should be expressible, both kind of operators are included in the
logic. A last feature is the use of backward modalities that occur in some modal logics. When
experimenting with the logic it turned out to be very convenient to be able to say for instance
that ‘when it happens that a process signals that there is no problem, there has never been
a problematic situation before that time’. So, backward modalities are also included.

A feature that has not been extensively studied in existing logics (as far as we know)
is data (but see [13]). uwCRL has especially been designed to conveniently handle data in
specifications. It is natural that a modal logic for uCRL is also capable to express properties
of data. Therefore, quantifiers over data variables, and an equality predicate have been
included in the logic.

This leads to a logic with 28 primitives. This is rather large compared to elementary
modal logics. But we think that the current logic is fully adequate for its purpose, which
is to express properties over distributed systems in a completely formal, but still convenient
way. At the same time the requirement that the logics should be close to existing logics and
have a straightforward semantics should be satisfied.

Acknowledgements. We thank Doeko Bosscher and Alex Sellink for their valuable com-
ments. Furthermore, we thank a large number of people for discussions about the particular
form of the logic.

2 Overview of the language tCRL

In this section we give a compact introduction to pCRL. It is meant to provide the context for
definitions to follow. These definitions are given in such a way that little knowledge of pCRL
is necessary. For instance, the syntax of the modal logic is given, based on the signature of a
uwCRL specification only. The semantics is given, assuming that an operational interpretation
of pCRL processes exists. The detailed definitions of the signature and operational behaviour
for pCRL can be found in [10]. The remainder of this section is an adapted version of the
introduction appearing in [12].

First, we assume the existence of a set N of names that are used to denote sorts, variables,
functions, processes and labels of actions. The names in A are words over an alphabet not
containing

J_7+7 “7 I_L? |7<7 [>7‘767 T’ 87 p7 E) \/7 X7_>7:7:7)7 (7}7 {7,7 a Spa‘ce a“nd a neW]'ine'

The space and the newline serve as separators between names and are used for the layout of
specifications. The other symbols have special functions. Moreover, N does not contain the
reserved keywords sort, proc, var, act, func, comm, rew and from.

Data types are specified as the standard abstract data types [8], using sorts, functions
and axioms. Sorts are declared using the keyword sort and functions are declared using the
keyword func. Axioms are declared using the keyword rew, referring to the possibility to
use rewriting technology for evaluation of terms. The variables that are used in the axioms
must be declared directly before the axioms. Their scope only extends to the next single rew
declaration.

As an example we define the Booleans. The Booleans must be included in each pCRL
specification.

sort Bool
func t,f:— Bool

The following example shows how natural numbers with a zero, a successor, addition and
multiplication can be declared.

Example 2.1.

sort Bool,N
func t,f: Bool
0:— N
S:N—N
add, times : N X N — N
var z,y:N
rew add(x,0) =z
wdd(z, S(y)) = S(add(z,y))
times(x,0) =0
times(z, S(y)) = add(z, times(x,y))

Processes may contain actions representing elementary activities that can be performed.
These actions must be explicitly declared using the keyword act. Actions may be parame-
terised by data. In the following lines an action declaration is displayed.

act a,b,c
a,d:N

Here parameterless actions a, b, ¢ and actions a, d depending on natural numbers are declared.
Note that overloading is allowed, as long as this cannot lead to confusion (see [10] for details).
In this case the actions ¢ and a(n) (with n of sort N) are different actions.

In pCRL parallel processes communicate via synchronisation of actions. A communication
specification, declared using the keyword comm, prescribes which actions may synchronise
on the level of the labels of actions. For instance, in

comm in|out = com

each action in(ty,...,t;) can communicate with out(t,...,t) to com(ty,...,t;) provided
k =m and ¢; and t; denote the same data element for i =1,...,k.
Processes are declared using the keyword proc. An example is

proc counter(x:N) =p
buffer = q

In the first line a counter is declared. It is a process with one parameter z of sort N. The
parameter £ may be used in the process term p that specifies its behaviour. In the second
line a parameterless process buffer is declared. Its behaviour is given by the process term gq.

Definition 2.2 (Process terms). An expression p is called a process term iff p has the
following syntax:

p = (p+p) | (p-p) | ®lp | lp) | (p<tep) | Xapk) |
a{11,17 WM } (p) | Tiny,.. 7nm}(p> | p{n1an’1,...,nman§n}(p) |
b 7| n| nlty,... tm).

where the n,n;,n, are names, the t,t; stand for data terms, d is a variable and D denotes a
sort name.

Most operators stem from ACP [1]. Only the conditional construct p<t>p is taken from [16].
In process terms we omit brackets according to the convention that - binds strongest, the
conditional construct binds stronger than the parallel operators which in turn bind stronger
than +.

We give a short description of the behaviour represented by closed process terms.

e The + denotes the alternative composition. The process p + ¢ has the same behaviour
as the argument that performs the first step.

e The - represents the sequential composition operator. The process p - ¢ behaves as p,
and in case p terminates, it continues to behave as gq.

e The merge (or parallel composition operator) || denotes the interleaving of its argu-
ments, except that actions from both arguments may communicate if explicitly allowed
in a communication specification.

e The left merge | and the communication merge | are auxiliary operators, to be used
for analytical purposes. The left merge is as the merge, except that the first step of
p || ¢ must originate from p. The communication merge | is also as the merge, except
that p|¢ has a communication action between p and ¢ as its first step.

e The conditional construct p <t > q is an alternative way to write an if - then - else-
expression and is introduced by HOARE cs. [16]. The data term ¢ is supposed to be of
the standard sort of the Booleans (Bool). The process p<t>q behaves as p if the data
term ¢ evaluates to true (t) and it behaves as g if ¢ evaluates to false (f).

e The sum operator is used to declare a variable d of a specific sort D for use in a process
term p. The scope of the variable d is exactly the process term mentioned in the sum
operator. The behaviour associated to >, (p) is a choice between the instantiations
of the process term p with values of the sort of the variable d.

e The encapsulation operator (0) and the hiding operator (7) are used to rename the
action labels nq,...,n, to 6, resp. 7. The renaming operator p renames action labels
according to the scheme in its first argument.

e The constants 6 and 7 describe two basic types of behaviour. The constant ¢ describes
the process that cannot do anything, in particular it cannot terminate. The constant
7 can be used to represent internal activity that cannot be observed.

e The terms n and n(ty,...,t,) represent either process instantiations or actions: n refers
to a declared process (or to an action) without parameters and n(ty,...,t,) contains
the arguments (i.e., the data terms) of the identifier.

A complete pCRL-specification consists of an interleaving of sort, function, axiom, action,
communication and process declarations.

As an example we give a specification of a data transfer process TR. Data elements of sort
D are transferred from in to out.

sort Bool

func t,f:— Bool

sort D

func d1,d2,d3 :— D

act in,out:D

proc TR =73 .. p(in(z)-out(x)- TR)

2.1 The signature of a specification

From a specification we can determine its signature, i.e., the sorts, functions, actions and
processes it defines. The signature of a specification provides us with enough information to
define the structure of modal formulae about it. The following definition tells the form of a
signature. The precise recipe of how a specification generates the signature can be found in
[10], but is completely straightforward.

Definition 2.3. The signature Sig = (Sort, Fun, Act) contains sets of the following form:

e Sort = {S1,...,Sn} where Sy,...,S,, are the sort names. Bool € Sort is the prede-
fined set of booleans.

e Fun is a set containing expressions that are either of the form n: — S’ (S’ € Sort), or of
the form n:Sy x--- xS, — S" (S1,...,5,, 5" € Sort). The elements of Fun represent the
many-sorted function symbols. t: — Bool € Fun and f: — Bool € Fun are predefined
constants representing true and false.

e Act is a set with elements of the form n or n:Sy x---xS; (S1,...,5; € Sort) representing
many-sorted actions.

If Sig = (Sort, Fun, Act) is a signature, then we write Sig.Sort for Sort, Sig.Fun for Fun
and Sig.Act for Act. It is assumed that actions and process names do not overlap, and that
all sorts exist. Overloading is allowed, but the resulting sort of a function must be determined
by the name of a function and the sorts and number of its arguments. For a very detailed
and precise list of restrictions on signatures, see [10].

In the full definition of a signature for pCRL also communications and processes play a
role. We do not need these here, and therefore they are omitted.

Given a signature Sig, a set of variables V is a set containing elements (z:S) with z a name
and S a sort in Sig.Sort. The name = may not overlap with a function, action, process name
or sort in Sig. Furthermore, the variable names are not overloaded.

The set of terms Tg(Sig,V) of sort S is inductively defined, simultaneously over all sorts by
e If (n:S) € V a variable, or n: — S € Sig.Fun then n € Tg(Sig,V).

o If f:S1 x...x 8 — S € Sig.Fun and t; € Tg (Sig,V),...,t; € Tg,(Sig,V), then
fty, ...) € Ts(Sig, V).
Given a set of variables V and a signature Sig, the set of actions Act(Sig,V) is defined as:
Act(Sig,V) = {a(t1,...,t;)]|a:S1 x --- x S € Sig.Act and
t1 € Ts,(Sig,V),... ,t; € Ts,(Sig,V)}.
We write Tg(Sig) for Ts(Sig,0) and Act(Sig) for Act(Sig, ().

2.2 Semantics of the data types

First we adapt the standard definitions of algebras etc. to pCRL (see e.g. [8] for these defi-
nitions). We assume, but do not define it here, that a Sig-algebra satisfies the axioms under
the rewrite keyword in some given specification.

Definition 2.4. Let Sig be a signature. A Sig-algebra Ag;, is a structure containing

e for each S € Sig.Sort a non-empty domain D(Ag;g, S),
e for each n: — S € Sig.Fun a constant C(Ag;g,n) € D(Agig,S),

e for each n:S; x -+ x S, — S € Sig.Fun a function F(Agig,n:S1 X -+ x Sp,) from
D(Agig,sl) X -+ X D(Agig,sm) to D(Agig,S).

Definition 2.5. Let Sig be a signature and let Ag;, be a Sig-algebra. We define the
interpretation [[‘]]Asz-g from terms to the domains of Ag;, as follows:
o if t =n, then [t]as;, © ClAsig,n),

def

o if t =n(ty,...,tn) for some m > 1 with ¢; € Tg,(Sig), then [{] = F(Agig,n:51 x

e X Sm)([[tl]]A.Sig EERE! [[tm]]ASig)-
For terms ti,ty € Tg(Sig) we write Ag;y = t1 = tp iff [[tl]]ASig = [[tZ]]ASig' For actions
a(ti,...,t) and b(ui,...,ux) we write Ag;g = a(ti,...,t;) = b(ur,...,ux) iff a =0, k =1
and Agig |: ti = Uy for all 1 < 7 < l.

ASig

Definition 2.6. Let Sig be a signature and V a set of variables. A substitution (over
Sig and V is a mapping such that for each (x:S) € V it holds that (((x:S)) € D(Agsg,S).
Substitutions are extended to terms by:

¢(z) of C((z:S)) if (x:5) € V for some name S,

¢(n) o C(Asig,n) ifn:— S € Sig.Fun,
C(nlte, . tm) & F(Asig,n:S1 X -+ x Sp)(C(t1), ..., C(tm))-
If (x,S) € V and d € D(Agiy,S), then
.) od if rt=yand S =29,
Cl = d]({y,) = { C((y,S")) otherwise.

Definition 2.7. Let Sig be a signature. A Sig-algebra Ag;, is called boolean preserving iff
e it is not the case that Ag;y =t =",

e |D(Agiq,Bool)| =2, ie., t and f are exactly the two elements of sort Bool.

For 4CRL we only consider Sig-algebras that are boolean preserving, and satisfy a specifica-
tion under consideration [10].

The next definition introduces the notion of a transition system. Each pCRL process
generates a transition system. For the definition of the semantics of the modal logic, it is
not necessary to know how a particular pCRL specification generates a particular transition
system. Therefore, we do not provide this translation, but instead refer to [10].

Definition 2.8. Let Sig be a signature. A transition system Ag;, is a structure (S, —, s)
where

— S is a set of states; \/ € S,
- —C S x (Act(Sig) U {7}) x S is a transition relation,

— g € S is the initial state.

!
Elements (s',1,s") € — are generally written as s’ — s”. A path o of a transition system
Agig is a sequence

0 = 850,Q0y---3y5n,An, Sp+1 - - -

with s = s, s; € S, a; € Act(Sig) U {7} and s; BN si+1. We write of for aj and o}, for sy.
If the sequence is finite, it ends in s, € S and we define len(o) = n. Otherwise len(o) = oco.
For k < len(o) we write ol for so,ag,...,Sk_ 1,0k 1, Sk-

We say that a path o extends a path p iff o [j0,(,)= p. A path o is called a run iff o is
infinite or there is a no path p that extends o.

We extend the notion of transitions to (indexed) runs in the following way. If k¥ < k' < k",
a € Act(Sig) we write

(0,k) = (0, k") iff Of = TyO0fq1 = ToeeesOfy =Gy, Opn_ =T, Opn =T
and

(0,k) = (o, k'Y ff of =7, of 1 =7,...,00 =T.

We say that a state s is divergent iff there is an infinite path s R S1 R S92 IR

3 Syntax of the modal logic for tCRL

In this section we formulate a modal logic, as a mixture of features of Hennessy-Milner Logic
[14], Computational Tree Logic [3] and Temporal Logic [17], extended with aspects to handle
data.

T and L represent true and false. We have the ordinary propositional connectives A, V,
-, —, «<». The modal connectives are always viewed with respect to a current run. However,
this run is not necessarily fixed; the operators 3 and V express properties of branches of the
current run. The formula 3¢ expresses that there is a run that extends the current run from
now on and that satisfies ¢. V¢ expresses that every run extending the current run from now
on satisfies ¢.

There are two constants 6 and / to detect the two different kinds of termination. The
constant 4/ says that after a finite number of internal steps the terminating state / is reached
on the current path. The constant ¢ expresses that a dead state will be found on the current
path after a finite number of internal steps. A state is dead if it has no outgoing transitions,
and if it is not the terminating state /.

The formula ¢¢ expresses that ¢ holds now or will once hold in the current run; when ¢
eventually holds it will not necessarily hold for the rest of the run. The formula O¢ expresses
that ¢ holds now and will from now on always hold in the current run. The formula ¢¢ says
that ¢ holds now or held once in the past, and B¢ expresses that up to and including now ¢
has always been valid.

The formula (@¢ expresses that now an action a can be performed on the current path and
¢ must hold in a state reached after a. As we consider 7 actions as transparent, this a action
may be pre- and succeeded by any number of 7 steps.

The formula @¢ expresses that if in the current state an a action can be performed along
the current path, then ¢ must hold afterwards.

There is also an operator to go one visible action back. This is the J operator that occurs
in the work of [5] and resembles the ones in [15, 6]. We have two operators of this kind: J¢
and J¢. The first, J¢, holds if ¢ holds, in every reachable state, one visible step back. The
second, J ¢, holds if there is a reachable state, one visible step back, in which ¢ holds. Dually,
we have also the operators A and A that look one visible step forward. Furthermore, there
are the until operator ¢y and a since operator ¢Svy. The until operator says that from now
on ¢ holds, until ¥ holds (and ¢ will once hold). The since operator ¢S expresses that from
the moment ¢ held, 1) must have held, up till now. Also for ¢ and S there are two duals.
The ¢U1) operator says that if 1/ will hold once in the future, ¢ will have been valid between
now and that particular moment. ¢St says that if 1/ has been valid, once in the past, then
¢ has since that time once been valid.

In order to reason about data, we have added the possibility to express equations ¢; = 2
and to use quantifiers. For instance, we can say that whenever we read a number over channel
a this number is 5:

EIVx:N.(@T — 1z =5).

Quantified variables may occur in equations ¢; = t9 and they may occur in the formulas

(t1,...,tx)and u(ty, ..., ;) where n is an action name. A number of examples are provided

in section 4, after the definition of the semantics.

Definition 3.1. Let Sig be a signature and V be a set of variables as defined in Section
2.1. The set of MFgiqy of modal formulae is inductively defined as follows.

o TaJ—a \/76 € MfSig,V;

if t1,ty € Tg(Stg,V) for some sort S € Sig.Sort, then t; =ty € MFg;qv;
if ¢ € MfSig,Va then _'¢7 <>¢7 D¢7 .¢7 ’¢7 3¢7V¢77¢7 \7¢7N¢7N¢ € MfSig,V;

if ¢ € MFgigy[s.5) and z is a name which is not being used for a sort, action, function
or a process in Sig and S € Sig.Sort, then d2:5.¢,Vx:5.¢ € MFg;qy. The notation
V[z:S] is defined as (V' \ {(2:S)|S a name}) U (x:S5).

if ¢7 1/} € M]:Sigﬂ/a then (:ZS \ 1/)7 (ZS A 1/)7 (ZS - 1/}7 (:ZS - 1/}7 (]SZ/{Q/), (:ZSS'I/)) ¢HT/J> (ng'l/} € M]:Sig,V;
if ¢ € M]:Sig,v and a € Act(Sig,V), then @(25,@(]5 € M]‘-Sigyy.

When omitting brackets, we assume = binds strongest, then all unary operators, then i,
U, S, S, then A, then VvV, then — and < binds weakest.

4 Semantics of the modal logic for tCRL

Definition 4.1. Let Sig be a signature and V be a set of variables. Let Ag;, be a boolean
preserving Sig-algebra. Let Ag;, be a transition system and let o € run(Ag;y). Let ¢ be
a substitution and £ € N a natural number. We define Ag;q, Agig,0,(, k = ¢ for a modal
formula ¢ € MFg;4y inductively on the structure of ¢:

Asig, Asig,0,(, k |= T holds;

Asig, Asig,0,C, k =/ iff 0}, =/ and (0, k) = (o, k") for some k' > k;
Asig, Asig,0,(, k |= 0 iff len(o) # oo, (0, k) = (0,len(o)) and Ufen(o_) #\/;
Asig, Asig,0,C, k =t =uiff Agig = C(t) = ((u);

Asig, Asig, 0,k = o AN Mt Agig, Asig, 0,k = ¢ and Agig, Agig, 0, = 9y
Asig, Asig, 0,k = oV it Agig, Asig, 0,k |= ¢ or Agig, Asig,0,(, k [= 1,

Asig, Asig,0,C, k = ¢ — 1 iff
ASigaASiga a, Ca k |: (ZS does not hold or ASigaASiga a, Ca k |: 1/)7

ASiga ASiga a, Ca k |: _'(:ZS iff not ASiga ASig y 0, C) k): ¢>

Asig, Asig, 0,C k = ¢ — o iff
both Agig, Asig,0,(, k |= ¢ and Agig, Asig,0,(, k = ¢ hold, or do not hold;

Asig, Asig,0,(, k = T ¢ iff there is some 0 < &’ < k and an action a € Act(Sig) such
that <O', k,> :a> (0', k) and ASigaASiga 0, Ca k' |: ¢7

Asig Asig,0,C, k = T ¢ iff for all 0 < k' < k and action a € Act(Sig) if (o, k') = (0, k),
then ASig; ASig y 0, C) K |: ¢7

Asig, Asig,0,C, k = N ¢ iff there is some k' > k and an action a € Act(Sig) such that
(Ua k) :a> (Ua kl> and -ASz'ga ASiga g, Ca K): QS;

o Asig,Asig,0,(,k = N¢ iff for all & > k and action a € Act(Sig) if (0,k) = (0, k'),
then ASig:ASig70—7 Ca kl |: ¢;

o Agig,Asig,0,(, k =00 iff for some k < k' <len(o) Asig, Asig,0,(, k' = ¢;
o Asig Asig, 0,k |= 06 iff for all k < K < len(0) Asig, Asig, 0, C, K = &

o Agig,Asig,0,(, k = #¢ iff for some 0 < k' <k Agig, Agig,0,(, k' = ¢;

o Agig,Agig,0,(, k =M¢ iff for all 0 < k' < k Agig, Asig,0,(, k' = ¢;

L ASiga ASig7 g, Ca k |: 3¢ iff
there is a run o’ that extends oy such that Ag;g, Asig, o', (, k = ¢;

b ASiga ASiga g, C, k |: V¢) iff
for each run o' that extends oJ, it holds that Ag;g, Agig, o', (, k = ¢;

o Agig,Asig,0,(, k = ¢Up iff there is some k < k' < len(o) such that
ASZQ7AS7,g7 g, C; k,): w aund fOI‘ a.ll k S k” < kl AszgaASzg,O', C, k/l): ¢’

o Agig,Asig,0,(,k = ¢Uyp iff for all k < k' < len(o) if Asig, Asig,0,(, k' =1, then there
is a k < k" < k' such that Agiq, Agig,0,(, k" = ¢;

o Agig,Asig,0,(, k = ¢S iff there is some 0 < k' < k such that
Asig, Asig,0,(, k" = ¢ and for all k' < k" <k Agig, Asig, 0, (K" = ¢

o Agig,Asig,0,(,k = ¢St iff for all 0 < k' < k if Agig, Asig, 0, (, k' |= 1, then there is a
k < k" < k' such that Agig, Agig, 0, (k" =15

o Agig,Asig,0,(, k |= Va:S.¢ iff for each element d € D(Ag;g, S)
Asigs Asig, 0, Clx == d], k = ¢

o Agig,Asig,0,C, k |= Jx:S.¢ iff for some element d € D(Agig, S)
Asigs Asig, 0, ¢z == d], k = ¢;

o Agig,Asig,0,(, k = @¢ iff there is some k' > k such that
b
(Ua k) = (U, kl>, Agig |: b= C(a) and ASigaASig,O', ¢, K |: o;

o Agig,Agig,0,(, k = @¢ iff if there is some k' > k such that (o, k) N (o, k") and
Agig = b= ((a), then Ag;g, Asig,0,(, k' = 6.

We write Agig, Asig,0,(E ¢ for Asig,Asig,0,(,0 |= ¢. We write Ag;g,Asig = ¢ iff for
every run o € run(Agi,) and every substitution ¢ it is the case that Ag;g, Agig,0,¢ = ¢.
We write Agig, Agig,(,s | ¢ iff for every run o € run(Ag;y) with of = s it holds that
Asig, Asig,0,(,0 = ¢. We write Ag;y |= ¢ iff for every Sig-algebra Ag;, it holds that
Agig, Asig = ¢. We write = ¢ iff for every transition system Ag;, it holds that Ag;, = ¢.
Whenever Ag;, and Ag;y are clear from the context, we sometimes drop them.

10

Example 4.2. The following formula distinguishes between p = a(b+¢) and ¢ = ab+ac.
Note that the existential quantor is absolutely necessary. Without such a branching time
operator p and ¢ cannot be distinguished, i.e., if A, and A, are the (obvious) transition
systems belonging to p and ¢, respectively, we find:

A, EO(E®T AJ©@T) and
A, FEOE®T AIET).

Example 4.3. The correctness of an alternating bit protocol, which must repeatedly read
a datum d:D via channel r(d) and then write it via s(d), can be specified by postulating:

e The protocol cannot do anything else than reading or writing a datum:

D((E!d:D.T) v (EId:D.T)).

e If a datum d is read, the next activity is to deliver it:

DVd:D.(T - /\/T).

e If a datum d is written, it must previously have been read:

DVd:D.(T — jT).

Example 4.4. In [6] it was remarked that modal logics with backward modalities can
distinguish between the processes p = a(7b+ ¢) and ¢ = a(7b+ ¢) + ac. The processes p
and ¢ are obtained by instantiating Milner’s third 7-law, which is valid in weak bisimulation
semantics [18]. In our setting the formula V(@©T — @©J3®T) holds for p, but not for g.

Example 4.5. Consider the following three modal formulae.

¢1 =0(@T — 0®T),
¢2 = 0(@T — 0OT),
¢3 =0(@T — 03OT).

Formula ¢; expresses that there are no infinite a-paths. Ultimately, i.e., after finitely many
a’s, a b must happen. The formula ¢2 expresses that after each a there is a possibility to
reach a b via some path. The formula ¢3 expresses that after an a via the current run, there
must once be the direct option to do a b step. But b need not be on the current run.

Example 4.6. The Hennessy-Milner modalities (a).¢ and [a].¢p can be expressed in the logic
as follows:

(a).¢ = J@9,
[a].¢ = V@9

11

Example 4.7. Deadlock freedom can be expressed in subtly different ways,

(a) VONT,
(b) VOWNTV),
(c) VO-é.

(a) says that there is always a next visible action, independently of the choices that are
being made. (b) says that there is always a next visible action, or the process terminates.
(c) expresses that there are always next actions, but these may be internal. In particular
divergences (infinite traces of internal actions) are not considered a deadlock in (c¢), but these
are in (a) and (b).

We now provide a number of theorems explaining some of the structure present in the logic.
The main consequence of the following theorem is that — can be pushed to the end of formulas.
So, each formula is equivalent to a formula where — only occurs directly in front of a v/, § or
at=u.

Theorem 4.8.

F-LleT F-Te L F g o ¢

[—0¢ < O-¢ [—0¢ < 0¢ = l) — 420

= %) — B =3¢ < V¢ F V¢ < 3¢

=T T =T T =W o N
E-N¢ < N=g¢ E —J2:5.¢ < Va:5.-¢ E —V2:S.¢ < 32:5.-¢
F (0 VY) = (mp Ay) F (0 AY) = (2o V1) = (¢ —v) = (¢ A)
E (g o d) o (o d) b (dUp) o gl = (4SY) = ¢Sy

= —(QUy) = ~gUy F —(¢SY) & ¢Sy F-@¢ < @9

F-@¢ < @9

Proof. Straightforward, using the semantics. O

The next theorem and corollary provide a functionally complete set of 12 primitives for the
logic.

Theorem 4.9.

=L« (6A-0) ET < =(6A-0) = O¢ < ~0—¢

= Mg o 40 = Vo« =3¢ EJ¢ e T

EN¢ < -N=¢ = V:S.¢ & —-3x:5.-¢ E oV o a(m¢ A1)
E(@—d) o (@A) 0 e TUS = 46— TS¢

F U — =(=gU)) F ¢SY < —(=9SY) F @¢ — —~@¢

FWeoy) o @A)V (A)

Proof. Straightforward. O

Corollary 4.10. /,6,t=u, -, A, 3, T, N, Jx:S., U, S and (@) are a functionally complete
set of primitives.

12

Theorem 4.11.

EVT & T EVL e L EVi=u—t=u

EIdT < T E3dl e L Edt=u—t=u

= Vo — 3¢ =3¢ — V3¢

= Vg « V¢ = Wo¢ — V¢ = d3¢ « 3¢

EJVy - VT ¢ E3J¢ — J3

EVN¢ — NV EN3p— N

Proof. Straightforward using the semantics. O

Theorem 4.12.

= V3 — 3 =YT6 - T3 = NVg — NG
F3J¢— J3¢ FEVJé— T3¢ E IV — VT
ENdp — IN¢ ENVy — TN EVN¢ — NV
Proof. Using Theorem 4.9 and 4.11. O

5 Divergence sensitive branching bisimulation

We have seen that the modal formulae can detect divergences (Example 4.5) and distinguish
between weakly bisimilar processes (Example 4.4). However, it would be unpleasant if there
would be formulae that could distinguish between processes that are generally considered
equivalent, such as p and p+p (see [1, 18]). In this section we show that this is not the case.
Actually, we show that we cannot distinguish between processes that are divergence sensitive
branching bisimilar. This has some pleasant consequences. See Remark 5.6. The divergence
sensitive version of branching bisimularity seems to be new. However, divergence sensitive
stuttering equivalence is introduced in [7].

The results in this section are inspired by [7] where it was shown that weak bisimulation
where backward steps must also be mimicked is exactly branching bisimulation. Moreover, it
was shown that until operators are also connected with branching bisimulation. Inspection of
the proofs below indeed reveals that the properties that distinguish branching bisimulation
from, say, weak bisimulation are especially related to the characteristics of the operators
U and J. Note again that the notion of branching bisimulation as presented here, differs
slightly from those presented in [9, 7].

Definition 5.1 (Divergence sensitive branching bisimulation). Let Sig be a signature and
let Agi, be a boolean preserving Sig-algebra and let Ag;y = (S, —,s) be a transition system.
A relation R C S x S is called a divergence sensitive branching bisimulation iff R is symmetric
and for all pairs p,q € S, with pRq it holds that

1. if p is divergent, then ¢ is divergent.

2. if p=./then g=./

13

3. if p — p/, then

e cither a = 7 and p'Rg,

a
e or there are qo,q1,...,qm,...,qn € S such that ¢ = qq 7, q1 R e —
T

Gm+1 — -+ R gn for all 0 < ¢ < m it is the case that pRg; and for all
m +1 < j < n it holds that p'Rg;.

We write peggpq iff there is a divergence sensitive branching bisimulation R such that pRgq.

The following definition provides an auxiliary notion to prove Theorem 5.5.

Definition 5.2 (Path divergence sensitive branching bisimulation). Let Sig be a signature,
Agiy a boolean preserving Sig-algebra and let Ag;y = (S, —,s) be a transition system. Two
paths o, p are path divergence sensitive branching bisimilar iff there is a divergence sensitive
branching bisimulation relation R and a relation R C N x N such that

o 0RO0;

for all 7,5 € N iRy implies o; Rp3;

if nRm and (o, n) = (o,n + 1), then
— either a =7 and n + 1Rm,

—or (p,m) = (p,m + k) = (pm+k+1)=(pm+k+1), forall 0 <i<Fkit
holds that nRm + ¢ and for all 0 < j <[it is the case that n + IRm + k + j.

e vice versa.

if n >0, nRm and (o,n — 1) = (o,n), then
— either a = 7 and n — 1'Rm,

—or (pm—Fk—1)= (p,m—k) N (p,m—k+1) = (p,m), for all 0 < ¢ <[it holds
that n — 1Rm — k — 4 and for all 0 < 5 < k it is the case that nRm — j.

e vice versa.

Lemma 5.3. Let Sig be a signature, let Ag;y be a boolean preserving Sig algebra and let
Agig = (S,—,s) be a transition system. Let o be a path such that o§j<g4ss. Then there is
a path p such that pj = s and o, p are path divergence sensitive branching bisimilar.

Lemma 5.4. Let Sig be a signature, let Ag;y be a boolean preserving Sig-algebra and let
Agig = (S,—,s) be a transition system. Let o and p be path divergence sensitive branching
bisimilar via relation R such that nRm. Then for all $ € MFgiq4y and all :

ASigaASi9707C7n |: ¢ <~ ASigaASigap7C7m |: ¢

Proof. We prove this lemma with induction on ¢ (using corollary 4.10).

14

Assume ¢ = /. Assume also that Ag;g, Agig,0,(,n |= /. This means that (o,n) =
(o,n') and of, = /. Hence, (p,m) = (p,m') and n'Rm’. So, p}, = /. Hence,
ASigaASigaaacan |: \/

Assume ¢ = 6. Assume also that Agig, Agig,0,(,n |= 6. This means that len(o) # oo,
(o,n) = (0,len(0)) and o,) # /. Hence, (p,m) = (p,m’) and len(c)Rm/.

Now suppose (p,m’) 2, for some a # 7. This cannot be mimicked by (o,len(o)).
Hence, len(o)Rm' cannot hold. Contradiction.

Suppose pf , is divergent. This also contradicts len(o)Rm/'. Hence, there must be some
m’ < m" < oo such that len(p) = m” and (p,m’) = (p,len(p)). So, {p,m) = (p,len(p))
and len(o)Rlen(p). Clearly, Plen(p) # / and therefore, Agig, Agig, p,¢,m = 6.

The cases ¢ =t =u, ¢ = U, ¢ = Y1 Ay are trivial.

Assume ¢ = o and Agig, Agig,0,(,n |= F. Hence, there is a o' extending o [,
such that Agjg, Asig,0’,(,n = 1. Clearly, there is an extension p’ of pl,, that is
divergence sensitive branching bisimilar to ¢’. Hence, using the induction hypothesis,

ASigaASigapla C?m |: ,‘/} ClearlY) ASigaASigapa C?m |: Eh[}

Assume ¢ = Jv and Ag;g, Asig, 0,(,n = J1. This means that thereissome 0 <n' <n
and an action a € Act(Sig) such that (o,n') = (o,n) and Agig, Agig,0,(,n' = 1.
Hence, there is some m' < m such that (p,m') == (p,m) and n'Rm’. So, via the
induction hypothesis Ag;g, Asig, p, (,m' |= ¢ and hence Agig, Asig, p,(,m = T ¢.

Assume ¢ = N and Agig, Agig,0,(,n = N1. This means that there is some n’ > n
and an action a € Act(Sig) such that (o,n) = (0,n') and Agig, Agig,0,(,n' = 1.
Hence, There is some m/ > m such that (p,m) == (p,m’) and n'Rm/. By induction
ASiga ASiga a, Ca m/): 1/} Hence, ASig; ASiga a, Ca m |: ¢

Assume ¢ = J2:5.¢ and Agig, Agig,0,(,n |= ¢. This means that for some element
v € D(Agig, S) it holds that Ag;g, Agig, 0, ([z:=v],n |= 9. Hence, it follows by induction
ASiga ASiyapa C[.TL'Z:U], m |: ,‘/} SO: ASiga ASiga P, Ca m |: ¢

Assume ¢ = 1Uy and Ag;g, Agig, 0,(,n = ¢. Hence, there is an n < n’ < len(o) such
that Agig, Agig,0,(,n' |= 1 and for all n < n” < n' Agig, Agig,0,(,n" |= 1. There
is some sequence tr of actions such that (o,n) LN (o,n'). Hence, there is an m’ such

that (p,m) N (p,m') and n'Rm/. So, Agig, Asig,p,(,m' = ¥y. Moreover, for every
m < ¢ < m' there is some n < j < n/ such that jRi. Therefore for each m < i < m/

Asig, Asig, p, ¢t = 1. So, Agig, Asig, p, (,m = ¢.
Assume ¢ = 1 SY9. This case is symmetric to the previous one.

Assume ¢ = @.¢ and Agig, Asig,0,(,n = ¢. This means that there is some n' > n
such that (o, n) N (o,n'), Agig = b = ((a) and Agig, Asig,0,(,n' |= 1. Hence, there

is some m’ > m such that (p,m) N (p,m') and Agig, Agig,p,¢,m' = 9. Clearly,
ASigaASigapa C)m |: @T/}

15

Theorem 5.5. Let Sig be a signature, let Ags;, be a boolean preserving Sig algebra and
Asig = (S,—,s) be a transition system. Let s and t be divergence sensitive branching
bisimilar. Then

ASigaASiga Ca S |: ¢ < ASigaASigacat): (:ZS

Proof. Due to symmetry, we only show ‘=’. Suppose Agig, Agig,(,s = ¢. We must show
that for all p, with pj = ¢, it holds that Ag;g, Agig,p,(,0 = ¢. Fix p. By lemma 5.3,
there is a o with of = s such that Ag;g, Agig,0,(,0 = ¢. By lemma 5.4 it follows that

ASigaASigap7C70): ¢. .

Remark 5.6. Theorem 5.5 has an important consequence. Suppose the modal formula ¢
must be checked for a parallel system M. Using equations and principles valid in divergence
sensitive branching bisimulation semantics M can be rewritten to the following linear form

2]:

X(d) =Ties Tep, 0i(£i(d,) X (9i(d, &) @ ci(d, &) > 6+
e Ten, ai(F5(d,) a¢i(d, &) > 6.

Here) ;- is a meta notation representing iterated summation. It is rather straightforward to
transform pCRL specifications to this linear form [4]. Because such a linear form is achieved
using equations and principles valid in divergence sensitive bisimulation semantics, the linear
form maintains the validity of modal formulae. Checking ¢ wrt. this linear form is — as we
expect — substantially easier than checking ¢ wrt. M.

Remark 5.7. An important and useful concept are distinguishing formulae. If two transi-
tion systems are not equivalent, then there is a modal formula that indicates a reason why;
the formula is valid in one transition system and invalid in the other. For strong and weak
bisimulation distinguishing formulae are often formulated in Hennessy-Milner Logic [14]. For
branching bisimulation a variant of Hennessy-Milner Logic with until operator is capable
to express the distinguishing formulae [7]. We think that the modal logic presented here is
capable of expressing the distinguishing formulae for divergence sensitive branching bisimu-
lation inequivalent transition systems expressed in pCRL. However, proving such a theorem
may be difficult as pCRL transition systems contain infinite branching. All results about
distinguishing formulae mentioned above assume finitely branching transition systems.

References

[1] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, 1990.

[2] M.A. Bezem and J.F. Groote. Invariants in process algebra with data. Technical Re-
port 98, Logic Group Preprint Series, Utrecht University, 1993.

16

[3]

M.C. Browne, E.M. Clarke, and O. Grumberg. Characterizing finite Kripke structures
in propositional temporal logic. Theoretical Computer Science, 59(1,2):115-131, 1988.

J.J. Brunekreef. Process specification in a UNITY format. Report P9329, Programming
Research Group, University of Amsterdam, 1993.

J.J. Brunekreef, J.P. Katoen, R.L.C. Koymans, and S. Mauw. Design and analysis
of dynamic leader election protocols in broadcast networks. Technical Report P9324,
Programming Research Group, University of Amsterdam, 1993.

R. De Nicola, U. Montanari, and F.W. Vaandrager. Back and forth bisimulations. In
J.C.M. Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, volume
458 of Lecture Notes in Computer Science, pages 152-165. Springer-Verlag, 1990.

R. De Nicola and F.W. Vaandrager. Three logics for branching bisimulation (extended
abstract). In Proceedings 5" Annual Symposium on Logic in Computer Science, Philadel-
phia, USA, pages 118-129. IEEE Computer Society Press, 1990. Full version available
as Rapporto di Ricerca SI-92/07, Dipartimento di Scienze dell’Informazione, Universita
degli Studi di Roma “La Sapienza”, November 1992.

H. Ehrig and B. Mahr. Fundamentals of algebraic specifications I, volume 6 of FATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1985.

R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimula-
tion semantics (extended abstract). In G.X. Ritter, editor, Information Processing 89,
pages 613-618. North-Holland, 1989. Full version available as Report CS-R9120, CWI,
Amsterdam, 1991.

J.F. Groote and A. Ponse. The syntax and semantics of uCRL. Report CS-R9076, CWI,
Amsterdam, 1990.

J.F. Groote and A. Ponse. Proof theory for 4CRL. Report CS-R9138, CWI, Amsterdam,
1991.

J.F. Groote and A. Ponse. Proof theory for pCRL: a language for processes with data.
In D.J. Andrews, J.F. Groote, and C.A. Middelburg, editors, Proceedings of the Inter-
national Workshop on Semantics of Specification Languages, pages 232—-251. Workshops
in Computing, Springer Verlag, 1994.

M. Hennessy and A. Ing6lfsdéttir. A theory of communicating processes with value-
passing. In M. Paterson, editor, Proceedings 17" ICALP, Warwick, volume 443 of
Lecture Notes in Computer Science, pages 209-219. Springer-Verlag, July 1990.

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal
of the ACM, 32(1):137-161, 1985.

M. Hennessy and C. Stirling. The power of the future perfect in program logics. Infor-
mation and Computation, 67:23-52, 1985.

17

[16] C.A.R. Hoare, 1.J. Hayes, He Jifeng, C.C. Morgan, A.W. Roscoe, J.W. Sanders, I.H.
Sorensen, J.M. Spivey, and B.A. Sufrin. Laws of programming. Communications of the
ACM, 30(8):672-686, August 1987.

[17] R.L.C. Koymans. Specifying Message Passing and Time-Critical Systems with Temporal
Logic. PhD thesis, Technische Universiteit Eindhoven, 1989.

[18] R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood
Cliffs, 1989.

18

