
A Modal Logic for �CRL

J�F� Groote

S�F�M� van Vlijmen

Utrecht University� Faculty of Philosophy

Heidelberglaan �� ���� CS Utrecht� the Netherlands

E�mail� jfg�phil�ruu�nl� vlijmen�phil�ruu�nl

Abstract

The language �CRL allows to specify processes with data and to reason with them in an alge�
braic vein� This allows to express and reason about global correctness of systems� Sometimes�
one only needs to analyse particular properties of �CRL�processes� Modal logics are very conve�
nient to express and verify such properties� Therefore� we de�ne a modal logic for �CRL� It is a
branching time modal logic based on actions� It has future and past operators and it allows for
reasoning about data� for instance using �rst order quanti�cation over data variables� It is shown
that these modal formulae cannot distinguish between divergence sensitive branching bisimilar
processes�

The �rst author is partly supported by the Netherlands Computer Science Research Foundation
�SION� with �nancial support of the Netherlands Organisation for Scienti�c Research �NWO��

� Introduction

�CRL is a language to describe and analyse processes containing data based on an algebraic
tradition ���� ��� ���� The main idea behind application of process algebra is the following� A
distributed system p 	 p� k p� k � � � k pn is provided� A speci
cation of the external behaviour
q is de
ned� Then� abstracting from internal activity in p using �I�H � the correctness of the
distributed system is expressed using the equation �I�H�p� 	 q� Algebraic process theory
oers a whole range of techniques to prove such an equation� For many cases this is su�cient�
and bene
cial� It stimulates the development of distributed systems with a �nice� external
behaviour�
However� for some other purposes the algebraic approach is not adequate� Sometimes it is

only necessary to know one single property of a distributed system� which may be inconvenient
or even impossible to express using an equation� Temporal or modal logic turns out to be
adequate for such purposes� Therefore� we propose a syntax and a semantics for a modal
logic for �CRL�
The question what the form of a modal logic must be is not an easy one to answer� In the

literature there are very many dierent logics� Many are state based ��� ���� Some are action
based ����� As �CRL is an action based formalism� a modal logic for �CRL is naturally action
based� Many are based on linear time ���� and some advocate branching time ��� ���� Linear
time logics reason about a particular run of the protocol� This allows to express fairness
properties� such as �if a process reads an element d in a particular run� then during that

�

run� it will be delivered�� On the other hand� branching time modal logics allow to express
that �once in the future there is a moment where an a and a b action can be performed��
As we feel both properties should be expressible� both kind of operators are included in the
logic� A last feature is the use of backward modalities that occur in some modal logics� When
experimenting with the logic it turned out to be very convenient to be able to say for instance
that �when it happens that a process signals that there is no problem� there has never been
a problematic situation before that time�� So� backward modalities are also included�
A feature that has not been extensively studied in existing logics �as far as we know�

is data �but see ������ �CRL has especially been designed to conveniently handle data in
speci
cations� It is natural that a modal logic for �CRL is also capable to express properties
of data� Therefore� quanti
ers over data variables� and an equality predicate have been
included in the logic�
This leads to a logic with �� primitives� This is rather large compared to elementary

modal logics� But we think that the current logic is fully adequate for its purpose� which
is to express properties over distributed systems in a completely formal� but still convenient
way� At the same time the requirement that the logics should be close to existing logics and
have a straightforward semantics should be satis
ed�

Acknowledgements� We thank Doeko Bosscher and Alex Sellink for their valuable com�
ments� Furthermore� we thank a large number of people for discussions about the particular
form of the logic�

� Overview of the language �CRL

In this section we give a compact introduction to �CRL� It is meant to provide the context for
de
nitions to follow� These de
nitions are given in such a way that little knowledge of �CRL
is necessary� For instance� the syntax of the modal logic is given� based on the signature of a
�CRL speci
cation only� The semantics is given� assuming that an operational interpretation
of �CRL processes exists� The detailed de
nitions of the signature and operational behaviour
for �CRL can be found in ����� The remainder of this section is an adapted version of the
introduction appearing in �����
First� we assume the existence of a set N of names that are used to denote sorts� variables�

functions� processes and labels of actions� The names in N are words over an alphabet not
containing

���� k� k � j� �� �� �� �� �� �� ����p����� ��	� �� �� g� f� �� a space and a newline�

The space and the newline serve as separators between names and are used for the layout of
speci
cations� The other symbols have special functions� Moreover� N does not contain the
reserved keywords sort� proc� var� act� func� comm� rew and from�
Data types are speci
ed as the standard abstract data types ���� using sorts� functions

and axioms� Sorts are declared using the keyword sort and functions are declared using the
keyword func� Axioms are declared using the keyword rew� referring to the possibility to
use rewriting technology for evaluation of terms� The variables that are used in the axioms
must be declared directly before the axioms� Their scope only extends to the next single rew
declaration�

�

As an example we de
ne the Booleans� The Booleans must be included in each �CRL
speci
cation�

sort Bool

func t� f �� Bool

The following example shows how natural numbers with a zero� a successor� addition and
multiplication can be declared�

Example ����

sort Bool�N

func t� f � Bool
� �� N

S � N � N

add � times � N � N � N

var x� y � N
rew add �x� �� 	 x

add �x� S�y�� 	 S�add �x� y��
times�x� �� 	 �
times�x� S�y�� 	 add �x� times�x� y��

Processes may contain actions representing elementary activities that can be performed�
These actions must be explicitly declared using the keyword act� Actions may be parame�
terised by data� In the following lines an action declaration is displayed�

act a� b� c

a� d � N

Here parameterless actions a� b� c and actions a� d depending on natural numbers are declared�
Note that overloading is allowed� as long as this cannot lead to confusion �see ���� for details��
In this case the actions a and a�n� �with n of sort N� are dierent actions�
In �CRL parallel processes communicate via synchronisation of actions� A communication

speci
cation� declared using the keyword comm� prescribes which actions may synchronise
on the level of the labels of actions� For instance� in

comm injout 	 com

each action in�t�� 	 	 	 � tk� can communicate with out�t�
�
� 	 	 	 � t�m� to com�t�� 	 	 	 � tk� provided

k 	 m and ti and t�i denote the same data element for i 	 �� 	 	 	 � k�
Processes are declared using the keyword proc� An example is

proc counter �x�N� 	 p

bu�er 	 q

In the
rst line a counter is declared� It is a process with one parameter x of sort N� The
parameter x may be used in the process term p that speci
es its behaviour� In the second
line a parameterless process bu�er is declared� Its behaviour is given by the process term q�

�

De�nition ��� �Process terms�� An expression p is called a process term i p has the
following syntax�

p ��	 �p� p� j �p � p� j �p k p� j �p k p� j �p � t � p� j Pd�D�p� j
�fn������nmg�p� j �fn������nmg�p� j �fn��n�

�
�����nm�n�

m
g�p� j

� j � j n j n�t�� 	 	 	 � tm�	

where the n� ni� n
�
i are names� the t� ti stand for data terms� d is a variable and D denotes a

sort name�

Most operators stem from ACP ���� Only the conditional construct p� t�p is taken from �����
In process terms we omit brackets according to the convention that � binds strongest� the
conditional construct binds stronger than the parallel operators which in turn bind stronger
than ��
We give a short description of the behaviour represented by closed process terms�

� The � denotes the alternative composition� The process p� q has the same behaviour
as the argument that performs the
rst step�

� The � represents the sequential composition operator� The process p � q behaves as p�
and in case p terminates� it continues to behave as q�

� The merge �or parallel composition operator� k denotes the interleaving of its argu�
ments� except that actions from both arguments may communicate if explicitly allowed
in a communication speci
cation�

� The left merge k and the communication merge j are auxiliary operators� to be used
for analytical purposes� The left merge is as the merge� except that the
rst step of
p k q must originate from p� The communication merge j is also as the merge� except
that pjq has a communication action between p and q as its
rst step�

� The conditional construct p � t � q is an alternative way to write an if � then � else�
expression and is introduced by Hoare cs� ����� The data term t is supposed to be of
the standard sort of the Booleans �Bool�� The process p � t � q behaves as p if the data
term t evaluates to true �t� and it behaves as q if t evaluates to false �f��

� The sum operator is used to declare a variable d of a speci
c sort D for use in a process
term p� The scope of the variable d is exactly the process term mentioned in the sum
operator� The behaviour associated to

P
d�D�p� is a choice between the instantiations

of the process term p with values of the sort of the variable d�

� The encapsulation operator ��� and the hiding operator ��� are used to rename the
action labels n�� 	 	 	 � nm to �� resp� � � The renaming operator � renames action labels
according to the scheme in its
rst argument�

� The constants � and � describe two basic types of behaviour� The constant � describes
the process that cannot do anything� in particular it cannot terminate� The constant
� can be used to represent internal activity that cannot be observed�

�

� The terms n and n�t�� 	 	 	 � tm� represent either process instantiations or actions� n refers
to a declared process �or to an action� without parameters and n�t�� 	 	 	 � tm� contains
the arguments �i�e�� the data terms� of the identi
er�

A complete �CRL�speci�cation consists of an interleaving of sort� function� axiom� action�
communication and process declarations�
As an example we give a speci
cation of a data transfer process TR� Data elements of sort

D are transferred from in to out�

sort Bool

func t� f �� Bool

sort D

func d�� d�� d� �� D

act in� out � D
proc TR 	

P
x�D�in�x� � out�x� � TR�

��� The signature of a speci�cation

From a speci
cation we can determine its signature� i�e�� the sorts� functions� actions and
processes it de
nes� The signature of a speci
cation provides us with enough information to
de
ne the structure of modal formulae about it� The following de
nition tells the form of a
signature� The precise recipe of how a speci
cation generates the signature can be found in
����� but is completely straightforward�

De�nition ���� The signature Sig 	 �Sort� Fun�Act� contains sets of the following form�

� Sort 	 fS�� 	 	 	 � Smg where S�� 	 	 	 � Sm are the sort names� Bool � Sort is the prede�

ned set of booleans�

� Fun is a set containing expressions that are either of the form n�� S� �S� � Sort�� or of
the form n�S��� � ��Sl � S� �S�� 	 	 	 � Sl� S

� � Sort�� The elements of Fun represent the
many�sorted function symbols� t�� Bool � Fun and f�� Bool � Fun are prede
ned
constants representing true and false�

� Act is a set with elements of the form n or n�S��� � ��Sl �S�� 	 	 	 � Sl � Sort� representing
many�sorted actions�

If Sig 	 �Sort� Fun�Act� is a signature� then we write Sig	Sort for Sort� Sig	Fun for Fun

and Sig	Act for Act� It is assumed that actions and process names do not overlap� and that
all sorts exist� Overloading is allowed� but the resulting sort of a function must be determined
by the name of a function and the sorts and number of its arguments� For a very detailed
and precise list of restrictions on signatures� see �����
In the full de
nition of a signature for �CRL also communications and processes play a

role� We do not need these here� and therefore they are omitted�
Given a signature Sig� a set of variables V is a set containing elements hx�Si with x a name

and S a sort in Sig	Sort� The name x may not overlap with a function� action� process name
or sort in Sig� Furthermore� the variable names are not overloaded�

�

The set of terms TS�Sig�V� of sort S is inductively de�ned� simultaneously over all sorts by

� If hn�Si � V a variable� or n�� S � Sig�Fun then n � TS�Sig�V��
� If f �S� � � � � � Sl � S � Sig�Fun and t� � TS��Sig�V�� � � � � tl � TSl

�Sig�V�� then
f�t�� � � � � tl� � TS�Sig�V��

Given a set of variables V and a signature Sig� the set of actions Act�Sig�V� is de�ned as�

Act�Sig�V� � fa�t�� � � � � tl�ja�S� � � � � � Sl � Sig�Act and
t� � TS��Sig�V�� � � � � tl � TSl

�Sig�V�g�
We write TS�Sig� for TS�Sig� �� and Act�Sig� for Act�Sig� ���

��� Semantics of the data types

First we adapt the standard de�nitions of algebras etc� to �CRL �see e�g� 	
� for these de��
nitions�� We assume� but do not de�ne it here� that a Sig�algebra satis�es the axioms under
the rewrite keyword in some given speci�cation�

De�nition ���� Let Sig be a signature� A Sig�algebra A Sig is a structure containing

� for each S � Sig�Sort a non�empty domain D�A Sig � S��

� for each n�� S � Sig�Fun a constant C�A Sig � n� � D�A Sig � S��

� for each n�S� � � � � � Sm � S � Sig�Fun a function F �A Sig � n�S� � � � � � Sm� from
D�A Sig � S��� � � � �D�A Sig � Sm� to D�A Sig � S��

De�nition ���� Let Sig be a signature and let A Sig be a Sig�algebra� We de�ne the
interpretation 		���ASig from terms to the domains of A Sig as follows�

� if t � n� then 		t��ASig
def
� C�A Sig � n��

� if t � n�t�� � � � � tm� for some m 	 with ti � TSi
�Sig�� then 		t��ASig

def
� F �A Sig � n�S� �

� � � � Sm��		t���ASig � � � � � 		tm��ASig ��

For terms t�� t� � TS�Sig� we write A Sig j� t� � t� i� 		t���ASig � 		t���ASig � For actions
a�t�� � � � � tl� and b�u�� � � � � uk� we write A Sig j� a�t�� � � � � tl� � b�u�� � � � � uk� i� a � b� k � l

and A Sig j� ti � ui for all
 i
 l�

De�nition ���� Let Sig be a signature and V a set of variables� A substitution � over
Sig and V is a mapping such that for each hx�Si � V it holds that ��hx�Si� � D�A Sig � S��
Substitutions are extended to terms by�

��x�
def
� ��hx�Si� if hx�Si � V for some name S�

��n�
def
� C�A Sig � n� if n�� S � Sig�Fun�

��n�t�� � � � � tm��
def
� F �A Sig � n�S� � � � � � Sm����t��� � � � � ��tm���

If hx� Si � V and d � D�A Sig � S�� then

�	x �� d��hy� S�i� �
�

d if x � y and S � S��

��hy� S�i� otherwise�

�

De�nition ���� Let Sig be a signature� A Sig�algebra A Sig is called boolean preserving i�

� it is not the case that A Sig j� t � f�

� jD�A Sig �Bool�j � �� i�e�� t and f are exactly the two elements of sort Bool�

For �CRL we only consider Sig�algebras that are boolean preserving� and satisfy a speci�ca�
tion under consideration 	���
The next de�nition introduces the notion of a transition system� Each �CRL process

generates a transition system� For the de�nition of the semantics of the modal logic� it is
not necessary to know how a particular �CRL speci�cation generates a particular transition
system� Therefore� we do not provide this translation� but instead refer to 	���

De�nition ��	� Let Sig be a signature� A transition system ASig is a structure �S���� s�
where

� S is a set of states�
p � S�

� ��� S � �Act�Sig� f�g�� S is a transition relation�

� s � S is the initial state�

Elements �s�� l� s��� ��� are generally written as s�
l�� s��� A path � of a transition system

ASig is a sequence

� � s�� a�� � � � � sn� an� sn�� � � �

with s� � s� si � S� ai � Act�Sig� f�g and si
ai�� si��� We write �a

k for ak and �s
k for sk�

If the sequence is �nite� it ends in sn � S and we de�ne len��� � n� Otherwise len��� ���
For k
 len��� we write ��k for s�� a�� � � � � sk��� ak��� sk�
We say that a path � extends a path � i� ��len���� �� A path � is called a run i� � is

in�nite or there is a no path � that extends ��
We extend the notion of transitions to �indexed� runs in the following way� If k
 k�
 k���

a � Act�Sig� we write

h�� ki a
�� h�� k��i i� �a

k � �� �a
k�� � �� � � � � �a

k� � a� � � � � �a
k���� � �� �a

k�� � �

and

h�� ki � h�� k�i i� �a
k � �� �a

k�� � �� � � � � �a
k� � ��

We say that a state s is divergent i� there is an in�nite path s
��� s�

��� s�
��� � � � ��� � � ��

� Syntax of the modal logic for �CRL

In this section we formulate a modal logic� as a mixture of features of Hennessy�Milner Logic
	��� Computational Tree Logic 	�� and Temporal Logic 	��� extended with aspects to handle
data�

�

� and � represent true and false� We have the ordinary propositional connectives �� ��
�� �� �� The modal connectives are always viewed with respect to a current run� However�
this run is not necessarily �xed� the operators � and � express properties of branches of the
current run� The formula �	 expresses that there is a run that extends the current run from
now on and that satis�es 	� �	 expresses that every run extending the current run from now
on satis�es 	�
There are two constants
 and

p
to detect the two di�erent kinds of termination� The

constant
p

says that after a �nite number of internal steps the terminating state
p

is reached
on the current path� The constant
 expresses that a dead state will be found on the current
path after a �nite number of internal steps� A state is dead if it has no outgoing transitions�
and if it is not the terminating state

p
�

The formula �	 expresses that 	 holds now or will once hold in the current run� when 	

eventually holds it will not necessarily hold for the rest of the run� The formula �	 expresses
that 	 holds now and will from now on always hold in the current run� The formula �	 says
that 	 holds now or held once in the past� and �	 expresses that up to and including now 	

has always been valid�
The formula a�	 expresses that now an action a can be performed on the current path and

	 must hold in a state reached after a� As we consider � actions as transparent� this a action
may be pre� and succeeded by any number of � steps�
The formula a�	 expresses that if in the current state an a action can be performed along

the current path� then 	 must hold afterwards�
There is also an operator to go one visible action back� This is the J operator that occurs

in the work of 	�� and resembles the ones in 	�� ��� We have two operators of this kind� J	

and J	� The �rst� J 	� holds if 	 holds� in every reachable state� one visible step back� The
second� J 	� holds if there is a reachable state� one visible step back� in which 	 holds� Dually�
we have also the operators N and N that look one visible step forward� Furthermore� there
are the until operator 	U� and a since operator 	S�� The until operator says that from now
on 	 holds� until � holds �and � will once hold�� The since operator 	S� expresses that from
the moment 	 held� � must have held� up till now� Also for U and S there are two duals�
The 	U� operator says that if � will hold once in the future� 	 will have been valid between
now and that particular moment� 	S� says that if � has been valid� once in the past� then
	 has since that time once been valid�
In order to reason about data� we have added the possibility to express equations t� � t�

and to use quanti�ers� For instance� we can say that whenever we read a number over channel
a this number is ��

��x�N��r�x���
��

� � x � ���

Quanti�ed variables may occur in equations t� � t� and they may occur in the formulas�
�

�
�n�t�� � � � � tk� and
�
�

�
�n�t�� � � � � tk� where n is an action name� A number of examples are provided

in section �� after the de�nition of the semantics�

De�nition
��� Let Sig be a signature and V be a set of variables as de�ned in Section
��� The set of MFSig�V of modal formulae is inductively de�ned as follows�

� ����p�
 �MFSig�V �

� if t�� t� � TS�Sig�V� for some sort S � Sig�Sort� then t� � t� �MFSig�V �

� if 	 �MFSig�V � then �	��	��	��	��	��	��	�J 	�J 	�N	�N	 �MFSig�V �

� if 	 �MFSig�V�x�S	 and x is a name which is not being used for a sort� action� function
or a process in Sig and S � Sig�Sort� then �x�S�	��x�S�	 � MFSig�V � The notation
V	x�S� is de�ned as �V n fhx�SijS a nameg� hx�Si�

� if 	� � �MFSig�V � then 	 � �� 	 � �� 	� �� 	� �� 	U�� 	S�� 	U�� 	S� �MFSig�V �

� if 	 �MFSig�V and a � Act�Sig�V�� then a�	� a�	 �MFSig�V �

When omitting brackets� we assume � binds strongest� then all unary operators� then U �
U � S� S� then �� then �� then � and � binds weakest�

� Semantics of the modal logic for �CRL

De�nition ���� Let Sig be a signature and V be a set of variables� Let A Sig be a boolean
preserving Sig�algebra� Let ASig be a transition system and let � � run�ASig�� Let � be
a substitution and k � N a natural number� We de�ne ASig� A Sig � �� �� k j� 	 for a modal
formula 	 �MFSig�V inductively on the structure of 	�

� ASig� A Sig � �� �� k j� � holds�

� ASig� A Sig � �� �� k j�
p

i� �s
k� �

p
and h�� ki � h�� k�i for some k� 	 k�

� ASig� A Sig � �� �� k j�
 i� len��� ���� h�� ki � h�� len���i and �s
len��� ��

p
�

� ASig� A Sig � �� �� k j� t � u i� A Sig j� ��t� � ��u��

� ASig� A Sig � �� �� k j� 	 � � i� ASig� A Sig � �� �� k j� 	 and ASig� A Sig � �� � j� ��

� ASig� A Sig � �� �� k j� 	 � � i� ASig� A Sig � �� �� k j� 	 or ASig� A Sig � �� �� k j� ��

� ASig� A Sig � �� �� k j� 	� � i�
ASig� A Sig � �� �� k j� 	 does not hold or ASig� A Sig � �� �� k j� ��

� ASig� A Sig � �� �� k j� �	 i� not ASig� A Sig � �� �� k j� 	�

� ASig� A Sig � �� �� k j� 	� � i�
both ASig� A Sig � �� �� k j� 	 and ASig� A Sig � �� �� k j� 	 hold� or do not hold�

� ASig� A Sig � �� �� k j� J 	 i� there is some �
 k� � k and an action a � Act�Sig� such

that h�� k�i a
�� h�� ki and ASig� A Sig � �� �� k

� j� 	�

� ASig� A Sig � �� �� k j� J	 i� for all �
 k� � k and action a � Act�Sig� if h�� k�i a
�� h�� ki�

then ASig� A Sig � �� �� k
� j� 	�

� ASig� A Sig � �� �� k j� N	 i� there is some k� k and an action a � Act�Sig� such that

h�� ki a
�� h�� k�i and ASig� A Sig � �� �� k

� j� 	�

�

� ASig� A Sig � �� �� k j� N	 i� for all k� k and action a � Act�Sig� if h�� ki a
�� h�� k�i�

then ASig� A Sig � �� �� k
� j� 	�

� ASig� A Sig � �� �� k j� �	 i� for some k
 k�
 len��� ASig� A Sig � �� �� k
� j� 	�

� ASig� A Sig � �� �� k j� �	 i� for all k
 k�
 len��� ASig� A Sig � �� �� k
� j� 	�

� ASig� A Sig � �� �� k j� �	 i� for some �
 k�
 k ASig� A Sig � �� �� k
� j� 	�

� ASig� A Sig � �� �� k j� �	 i� for all �
 k�
 k ASig� A Sig � �� �� k
� j� 	�

� ASig� A Sig � �� �� k j� �	 i�
there is a run �� that extends ��k such that ASig� A Sig � �

�� �� k j� 	�

� ASig� A Sig � �� �� k j� �	 i�
for each run �� that extends ��k it holds that ASig� A Sig � �

�� �� k j� 	�

� ASig� A Sig � �� �� k j� 	U� i� there is some k
 k�
 len��� such that
ASig� A Sig � �� �� k

� j� � and for all k
 k�� � k� ASig� A Sig � �� �� k
�� j� 	�

� ASig� A Sig � �� �� k j� 	U� i� for all k
 k�
 len��� if ASig� A Sig � �� �� k
� j� �� then there

is a k
 k�� � k� such that ASig� A Sig � �� �� k
�� j� 	�

� ASig� A Sig � �� �� k j� 	S� i� there is some �
 k�
 k such that
ASig� A Sig � �� �� k

� j� � and for all k� � k��
 k ASig� A Sig � �� �� k
�� j� 	�

� ASig� A Sig � �� �� k j� 	S� i� for all �
 k�
 k if ASig� A Sig � �� �� k
� j� �� then there is a

k � k��
 k� such that ASig� A Sig � �� �� k
�� j� ��

� ASig� A Sig � �� �� k j� �x�S�	 i� for each element d � D�A Sig � S�
ASig� A Sig � �� �	x �� d�� k j� 	�

� ASig� A Sig � �� �� k j� �x�S�	 i� for some element d � D�A Sig � S�
ASig� A Sig � �� �	x �� d�� k j� 	�

� ASig� A Sig � �� �� k j� a�	 i� there is some k� k such that

h�� ki b
�� h�� k�i� A Sig j� b � ��a� and ASig� A Sig � �� �� k

� j� 	�

� ASig� A Sig � �� �� k j� a�	 i� if there is some k� k such that h�� ki b
�� h�� k�i and

A Sig j� b � ��a�� then ASig� A Sig � �� �� k
� j� 	�

We write ASig� A Sig � �� � j� 	 for ASig� A Sig � �� �� � j� 	� We write ASig� A Sig j� 	 i� for
every run � � run�ASig� and every substitution � it is the case that ASig� A Sig � �� � j� 	�
We write ASig� A Sig � �� s j� 	 i� for every run � � run�ASig� with �s

� � s it holds that
ASig� A Sig � �� �� � j� 	� We write ASig j� 	 i� for every Sig�algebra A Sig it holds that
ASig� A Sig j� 	� We write j� 	 i� for every transition system ASig it holds that ASig j� 	�
Whenever ASig and A Sig are clear from the context� we sometimes drop them�

�

Example ���� The following formula distinguishes between p � a�b� c� and q � a b� a c�
Note that the existential quantor is absolutely necessary� Without such a branching time
operator p and q cannot be distinguished� i�e�� if Ap and Aq are the �obvious� transition
systems belonging to p and q� respectively� we �nd�

Ap j� ��� b��� � c��� and
Aq �j� ��� b��� � c����

Example ��
� The correctness of an alternating bit protocol� which must repeatedly read
a datum d�D via channel r�d� and then write it via s�d�� can be speci�ed by postulating�

� The protocol cannot do anything else than reading or writing a datum�

����d�D�r�d���
��

�� � ��d�D�s�d���
��

����

� If a datum d is read� the next activity is to deliver it�

��d�D��r�d���
��

� � N s�d���
��

���

� If a datum d is written� it must previously have been read�

��d�D��s�d���
��

� � J r�d���
��

���

Example ���� In 	�� it was remarked that modal logics with backward modalities can
distinguish between the processes p � a�� b � c� and q � a�� b � c� � a c� The processes p
and q are obtained by instantiating Milner�s third � �law� which is valid in weak bisimulation
semantics 	
�� In our setting the formula �� a� c��� a� c�J� b��� holds for p� but not for q�

Example ���� Consider the following three modal formulae�

	� � �� a��� � b����
	� � �� a��� �� b����
	
 � �� a��� �� b����

Formula 	� expresses that there are no in�nite a�paths� Ultimately� i�e�� after �nitely many
a�s� a b must happen� The formula 	� expresses that after each a there is a possibility to
reach a b via some path� The formula 	
 expresses that after an a via the current run� there
must once be the direct option to do a b step� But b need not be on the current run�

Example ���� The Hennessy�Milner modalities hai�	 and 	a��	 can be expressed in the logic
as follows�

hai�	 � � a�	�

	a��	 � � a�	�

Example ���� Deadlock freedom can be expressed in subtly di�erent ways�

�a� ��N��
�b� ���N��p��
�c� ���
�

�a� says that there is always a next visible action� independently of the choices that are
being made� �b� says that there is always a next visible action� or the process terminates�
�c� expresses that there are always next actions� but these may be internal� In particular
divergences �in�nite traces of internal actions� are not considered a deadlock in �c�� but these
are in �a� and �b��

We now provide a number of theorems explaining some of the structure present in the logic�
The main consequence of the following theorem is that � can be pushed to the end of formulas�
So� each formula is equivalent to a formula where � only occurs directly in front of a

p
�
 or

a t � u�

Theorem ��	�

j� �� � � j� �� � � j� ��	� 	

j� ��	� ��	 j� ��	� ��	 j� ��	� ��	
j� ��	� ��	 j� ��	� ��	 j� ��	� ��	
j� �J	� J�	 j� �J	� J�	 j� �N	� N�	
j� �N	� N�	 j� ��x�S�	� �x�S��	 j� ��x�S�	� �x�S��	
j� ��	 � ��� ��	 � ��� j� ��	 � ��� ��	 � ��� j� ��	� ��� �	 � ���
j� ��	� ��� ��	� �� j� ��	U��� �	U� j� ��	S��� �	S�
j� ��	U��� �	U� j� ��	S��� �	S� j� � a�	� a��	
j� � a�	� a��	

Proof� Straightforward� using the semantics� �

The next theorem and corollary provide a functionally complete set of � primitives for the
logic�

Theorem ����

j� � � �
 � �
� j� � � ��
 � �
� j� �	� ���	
j� �	� ���	 j� �	� ���	 j� J	� �J�	
j� N	� �N�	 j� �x�S�	� ��x�S��	 j� 	 � � � ���	 � ���
j� �	� ��� ��	 � ��� j� �	� �U	 j� �	� �S	
j� 	U� � ���	U�� j� 	S� � ���	S�� j� a�	� � a��	
j� �� � ��� �	 � �� � ��	 � ���

Proof� Straightforward� �

Corollary ����
p
�
� t � u� �� �� �� J � N � �x�S�� U � S and a� are a functionally complete

set of primitives�

�

Theorem �����

j� �� � � j� �� � � j� �t � u� t � u

j� �� � � j� �� � � j� �t � u� t � u

j� �	� �	 j� �	� ��	
j� ��	� �	 j� ��	� �	 j� ��	� �	
j� J�	� �J	 j� �J	� J�	
j� �N	� N�	 j� N�	� �N	

Proof� Straightforward using the semantics� �

Theorem �����

j� ��	� �	 j� �J	� J�	 j� N�	� �N	

j� �J	� J�	 j� �J	� J�	 j� J�	� �J	

j� N�	� �N	 j� N�	� �N	 j� �N	� N�	

Proof� Using Theorem ��� and ��� �

� Divergence sensitive branching bisimulation

We have seen that the modal formulae can detect divergences �Example ���� and distinguish
between weakly bisimilar processes �Example ����� However� it would be unpleasant if there
would be formulae that could distinguish between processes that are generally considered
equivalent� such as p and p� p �see 	�
��� In this section we show that this is not the case�
Actually� we show that we cannot distinguish between processes that are divergence sensitive
branching bisimilar� This has some pleasant consequences� See Remark ���� The divergence
sensitive version of branching bisimularity seems to be new� However� divergence sensitive
stuttering equivalence is introduced in 	���
The results in this section are inspired by 	�� where it was shown that weak bisimulation

where backward steps must also be mimicked is exactly branching bisimulation� Moreover� it
was shown that until operators are also connected with branching bisimulation� Inspection of
the proofs below indeed reveals that the properties that distinguish branching bisimulation
from� say� weak bisimulation are especially related to the characteristics of the operators
U and J � Note again that the notion of branching bisimulation as presented here� di�ers
slightly from those presented in 	�� ���

De�nition ��� �Divergence sensitive branching bisimulation�� Let Sig be a signature and
let A Sig be a boolean preserving Sig�algebra and let ASig � �S��� s� be a transition system�
A relation R � S�S is called a divergence sensitive branching bisimulation i� R is symmetric
and for all pairs p� q � S� with pRq it holds that

� if p is divergent� then q is divergent�

�� if p � p then q � p�

�

�� if p
a�� p�� then

� either a � � and p�Rq�

� or there are q�� q�� � � � � qm� � � � � qn � S such that q � q�
��� q�

��� � � � qm
a��

qm��

��� � � � ��� qn for all �
 i
 m it is the case that pRqi and for all
m�
 j
 n it holds that p�Rqj�

We write p���dsbq i� there is a divergence sensitive branching bisimulation R such that pRq�

The following de�nition provides an auxiliary notion to prove Theorem ����

De�nition ��� �Path divergence sensitive branching bisimulation�� Let Sig be a signature�
A Sig a boolean preserving Sig�algebra and let ASig � �S��� s� be a transition system� Two
paths �� � are path divergence sensitive branching bisimilar i� there is a divergence sensitive
branching bisimulation relation R and a relation R � N � N such that

� �R��
� for all i� j � N iRj implies �s

iR�
s
j �

� if nRm and h�� ni a�� h�� n� i� then
� either a � � and n� Rm�

� or h��mi � h��m � ki a�� h��m � k � i � h��m � k � li� for all �
 i
 k it
holds that nRm� i and for all � � j
 l it is the case that n� Rm� k � j�

� vice versa�

� if n �� nRm and h�� n� i a�� h�� ni� then
� either a � � and n� Rm�

� or h��m�k� li � h��m�ki a�� h��m�k�i � h��mi� for all �
 i
 l it holds
that n� Rm� k � i and for all �
 j � k it is the case that nRm� j�

� vice versa�

Lemma ��
� Let Sig be a signature� let A Sig be a boolean preserving Sig algebra and let

ASig � �S��� s� be a transition system� Let � be a path such that �s
����dsbs� Then there is

a path � such that �s� � s and �� � are path divergence sensitive branching bisimilar�

Lemma ���� Let Sig be a signature� let A Sig be a boolean preserving Sig�algebra and let

ASig � �S��� s� be a transition system� Let � and � be path divergence sensitive branching

bisimilar via relation R such that nRm� Then for all 	 �MFSig�V and all ��

ASig� A Sig � �� �� n j� 	 � ASig� A Sig � �� ��m j� 	

Proof� We prove this lemma with induction on 	 �using corollary �����

�

� Assume 	 � p
� Assume also that ASig� A Sig � �� �� n j�

p
� This means that h�� ni �

h�� n�i and �s
n� � p

� Hence� h��mi � h��m�i and n�Rm�� So� �sm� � p
� Hence�

ASig� A Sig � �� �� n j� p
�

� Assume 	 �
� Assume also that ASig� A Sig � �� �� n j�
� This means that len��� ����
h�� ni � h�� len���i and �s

len��� ��
p
� Hence� h��mi � h��m�i and len���Rm��

Now suppose h��m�i a�� for some a �� � � This cannot be mimicked by h�� len���i�
Hence� len���Rm� cannot hold� Contradiction�

Suppose �sm� is divergent� This also contradicts len���Rm�� Hence� there must be some
m�
 m�� �� such that len��� � m�� and h��m�i � h�� len���i� So� h��mi � h�� len���i
and len���Rlen���� Clearly� �s

len��� ��
p

and therefore� ASig� A Sig � �� ��m j�
�

� The cases 	 � t � u� 	 � ��� 	 � �� � �� are trivial�

� Assume 	 � �� and ASig� A Sig � �� �� n j� ��� Hence� there is a �� extending � �n
such that ASig� A Sig � �

�� �� n j� �� Clearly� there is an extension �� of � �m� that is
divergence sensitive branching bisimilar to ��� Hence� using the induction hypothesis�
ASig� A Sig � �

�� ��m j� �� Clearly� ASig� A Sig � �� ��m j� ���
� Assume 	 � J� andASig� A Sig � �� �� n j� J�� This means that there is some �
 n� � n

and an action a � Act�Sig� such that h�� n�i a
�� h�� ni and ASig� A Sig � �� �� n

� j� ��

Hence� there is some m�
 m such that h��m�i a
�� h��mi and n�Rm�� So� via the

induction hypothesis ASig� A Sig � �� ��m
� j� � and hence ASig� A Sig � �� ��m j� J 	�

� Assume 	 � N� and ASig� A Sig � �� �� n j� N�� This means that there is some n� n

and an action a � Act�Sig� such that h�� ni a
�� h�� n�i and ASig� A Sig � �� �� n

� j� ��

Hence� There is some m� m such that h��mi a
�� h��m�i and n�Rm�� By induction

ASig� A Sig � �� ��m
� j� �� Hence� ASig� A Sig � �� ��m j� 	�

� Assume 	 � �x�S�� and ASig� A Sig � �� �� n j� 	� This means that for some element
v � D�A Sig � S� it holds that ASig� A Sig � �� �	x��v�� n j� �� Hence� it follows by induction
ASig� A Sig � �� �	x��v��m j� �� So� ASig� A Sig � �� ��m j� 	�

� Assume 	 � ��U�� and ASig� A Sig � �� �� n j� 	� Hence� there is an n
 n�
 len��� such
that ASig� A Sig � �� �� n

� j� �� and for all n
 n�� � n� ASig� A Sig � �� �� n
�� j� ��� There

is some sequence tr of actions such that h�� ni tr
�� h�� n�i� Hence� there is an m� such

that h��mi tr
�� h��m�i and n�Rm�� So� ASig� A Sig � �� ��m

� j� ��� Moreover� for every
m
 i � m� there is some n
 j � n� such that jRi� Therefore for each m
 i � m�

ASig� A Sig � �� �� i j� ��� So� ASig� A Sig � �� ��m j� 	�

� Assume 	 � ��S��� This case is symmetric to the previous one�

� Assume 	 � a��� and ASig� A Sig � �� �� n j� 	� This means that there is some n� n

such that h�� ni b
�� h�� n�i� A Sig j� b � ��a� and ASig� A Sig � �� �� n

� j� �� Hence� there

is some m� m such that h��mi b
�� h��m�i and ASig� A Sig � �� ��m

� j� �� Clearly�
ASig� A Sig � �� ��m j� a����

�

�

Theorem ���� Let Sig be a signature� let A Sig be a boolean preserving Sig algebra and

ASig � �S��� s� be a transition system� Let s and t be divergence sensitive branching

bisimilar� Then

ASig� A Sig � �� s j� � � ASig� A Sig � �� t j� �

Proof� Due to symmetry� we only show ���� Suppose ASig� A Sig � �� s j� �� We must show
that for all �� with �s

�
� t� it holds that ASig� A Sig � �� �� � j� �� Fix �� By lemma 	�
�

there is a � with �s
�
� s such that ASig� A Sig � �� �� � j� �� By lemma 	�� it follows that

ASig� A Sig � �� �� � j� �� �

Remark ���� Theorem 	�	 has an important consequence� Suppose the modal formula �

must be checked for a parallel system M � Using equations and principles valid in divergence
sensitive branching bisimulation semantics M can be rewritten to the following linear form
���

X��d� �
P

i�I

P
�e� �Di

ai�fi��d��e��X�gi��d��e�� � ci��d��e� 	
�
P

j�J

P
�e� �Dj

aj�fj��d��e�� � cj��d��e� 	
�

Here
P

i�I is a meta notation representing iterated summation� It is rather straightforward to
transform �CRL speci�cations to this linear form ���� Because such a linear form is achieved
using equations and principles valid in divergence sensitive bisimulation semantics� the linear
form maintains the validity of modal formulae� Checking � wrt� this linear form is � as we
expect � substantially easier than checking � wrt� M �

Remark ���� An important and useful concept are distinguishing formulae� If two transi�
tion systems are not equivalent� then there is a modal formula that indicates a reason why�
the formula is valid in one transition system and invalid in the other� For strong and weak
bisimulation distinguishing formulae are often formulated in Hennessy�Milner Logic ����� For
branching bisimulation a variant of Hennessy�Milner Logic with until operator is capable
to express the distinguishing formulae ���� We think that the modal logic presented here is
capable of expressing the distinguishing formulae for divergence sensitive branching bisimu�
lation inequivalent transition systems expressed in �CRL� However� proving such a theorem
may be di�cult as �CRL transition systems contain in�nite branching� All results about
distinguishing formulae mentioned above assume �nitely branching transition systems�

References

��� J�C�M� Baeten and W�P� Weijland� Process Algebra� Cambridge Tracts in Theoretical
Computer Science ��� Cambridge University Press� �����

�� M�A� Bezem and J�F� Groote� Invariants in process algebra with data� Technical Re�
port ��� Logic Group Preprint Series� Utrecht University� ���
�

��

�
� M�C� Browne� E�M� Clarke� and O� Gr�umberg� Characterizing �nite Kripke structures
in propositional temporal logic� Theoretical Computer Science� 	��������	��
�� �����

��� J�J� Brunekreef� Process speci�cation in a UNITY format� Report P�
�� Programming
Research Group� University of Amsterdam� ���
�

�	� J�J� Brunekreef� J�P� Katoen� R�L�C� Koymans� and S� Mauw� Design and analysis
of dynamic leader election protocols in broadcast networks� Technical Report P�
��
Programming Research Group� University of Amsterdam� ���
�

��� R� De Nicola� U� Montanari� and F�W� Vaandrager� Back and forth bisimulations� In
J�C�M� Baeten and J�W� Klop� editors� Proceedings CONCUR ��� Amsterdam� volume
�	� of Lecture Notes in Computer Science� pages �	���	� Springer�Verlag� �����

��� R� De Nicola and F�W� Vaandrager� Three logics for branching bisimulation �extended
abstract�� In Proceedings 	th Annual Symposium on Logic in Computer Science� Philadel�
phia� USA� pages ������� IEEE Computer Society Press� ����� Full version available
as Rapporto di Ricerca SI������ Dipartimento di Scienze dell�Informazione� Universit�a
degli Studi di Roma �La Sapienza�� November ����

��� H� Ehrig and B� Mahr� Fundamentals of algebraic speci�cations I� volume � of EATCS
Monographs on Theoretical Computer Science� Springer�Verlag� ���	�

��� R�J� van Glabbeek and W�P� Weijland� Branching time and abstraction in bisimula�
tion semantics �extended abstract�� In G�X� Ritter� editor� Information Processing ���
pages ��
����� North�Holland� ����� Full version available as Report CS�R���� CWI�
Amsterdam� �����

���� J�F� Groote and A� Ponse� The syntax and semantics of �CRL� Report CS�R����� CWI�
Amsterdam� �����

���� J�F� Groote and A� Ponse� Proof theory for �CRL� Report CS�R��
�� CWI� Amsterdam�
�����

��� J�F� Groote and A� Ponse� Proof theory for �CRL� a language for processes with data�
In D�J� Andrews� J�F� Groote� and C�A� Middelburg� editors� Proceedings of the Inter�

national Workshop on Semantics of Speci�cation Languages� pages
�	�� Workshops
in Computing� Springer Verlag� �����

��
� M� Hennessy and A� Ing olfsd ottir� A theory of communicating processes with value�
passing� In M� Paterson� editor� Proceedings ��th ICALP� Warwick� volume ��
 of
Lecture Notes in Computer Science� pages ������ Springer�Verlag� July �����

���� M� Hennessy and R� Milner� Algebraic laws for nondeterminism and concurrency� Journal
of the ACM�
�����
������ ���	�

��	� M� Hennessy and C� Stirling� The power of the future perfect in program logics� Infor�
mation and Computation� ���
�	� ���	�

��

���� C�A�R� Hoare� I�J� Hayes� He Jifeng� C�C� Morgan� A�W� Roscoe� J�W� Sanders� I�H�
Sorensen� J�M� Spivey� and B�A� Sufrin� Laws of programming� Communications of the
ACM�
������������ August �����

���� R�L�C� Koymans� Specifying Message Passing and Time�Critical Systems with Temporal

Logic� PhD thesis� Technische Universiteit Eindhoven� �����

���� R� Milner� Communication and Concurrency� Prentice�Hall International� Englewood
Cli!s� �����

��

