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1 Introduction

Paris & Wilkie, in their paper On the scheme of induction for bounded arithmetic formulas (Paris &
Wilkie[87]), paint a gripping picture of the interrelations between 1A;+€; and 1A+EXP. Two of
their most memorable results are their Corollary 8.14: IA,+EXPb Con(IAO+Ql), and their
Theorem 8.19: 1A +EXP+Con(IA;+€2, ) Con(IA,+EXP). In this paper I give a generalization of
theorems in this style. Consider the closed modal language generated by L, T, the propositional
connectives and O, with an additional logical constant EXP. We interpret the propositional
constants as themselves, O as provability in IA;+£2; and EXP as the arithmetical axiom EXP. In
this language Paris and Wilkie's results can be reformulated as IA0+§21V(EXP—><>T) [as usual ©
abbreviates =0—] and IA,+Q, ¥ ((EXPAC T)— GEXP). In this paper I characterize all principles
of the closed modal language under the given interpretation that are provable in IA;+£2,;. One
special case of our result of a distinctly different flavour than the theorems of Paris and Wilkie
discussed above is: IA0+Ql (OO T—oCOEXP).

Our result can be described as a solution of a variant for a special case of Friedman's 35th problem.
Friedman original problem is to give a characterization of the formulas of the closed fragment of the
language of modal propositional logic which are provable under the standard provability interpreta-
tion in reasonable arithmetical theories like PA. Friedman's problem was solved independently by
van Benthem, Boolos (see Boolos[76]) and Magari (see Magari[75]). Their result works (modulo a
slight refinement in case a theory proves its own n-iterated inconsistency for some n) for all Alb-
axiomatized theories containing a sufficiently large fragment of IA;+£2, or even better Buss's 821.
The reason that the result goes through so easily in weak theories is that it doesn't require Rosser
style arguments: to formalize Rosser style arguments one seems to need EXP. In contrast
Solovay's proof of his arithmetical completeness theorem for Provability Logic doesn't work in
IA,+€2,. (For an elaboration of this theme see Verbrugge[88].) A solution of Friedmans problem
for the case of Heyting's Arithmetic was given in Visser[85].

Hédjek and Svejdar in Hajék & Svejdar[198?] generalize Friedman's problem by adding a binary
operator B for relative interpretability to the language. If the theory we consider is T AP> B means:
T+B is relatively interpretable in T+A. Hdjek and Svejdar solve the generalized problem for all
Alb-axiomatized extensions of IA;+£2; (again modulo a slight refinement in case T proves its own

n-iterated inconsistency). In section 6 of this paper I prove a similar generalization of our main
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result.

The contents of the paper are as follows: in section 3 the necessary conventions and elementary
facts are introduced. Section 4 contains our main technical lemma. The lemma is a variant of the
main lemma of Visser[88]. It is the result of formalizing a model theoretical argument due to Paris
and Wilkie. In Section 5 our main result is proved and section 6 gives the generalization to the
language also involving interpretability.

2 Prerequisites

We presuppose some knowledge of either Boolos[79] or Smoryriski[85], and of either Buss[85]
or Paris & Wilkie[87]. At a few places results from Pudldk[85],[86] and from Visser[87b] are
used.

The reader who is not familiar with Buss[85] or Paris & Wilkie[87] and who is interested in the
modal material could try to understand the statement of lemma 4.1 and then proceed immediately to
section 5.

3 Facts, notions and conventions
3.1 Theories and Provability

We will assume that the axiom-set of a theory T is given by a Alb-predicate (see Buss[1985]). We
take this predicate to be part of the identity conditions of the theory. Proofr is the Alb proof
predicate based on the predicate defining T's axiom set.

We write par abus de langage Proofp(u, 0(x,,...,x,) )' for: Proofp(u, d(X,....X ), here:

i) all free variables of ¢ are among those shown.

i1) rq)(xl,...,xn)‘ is the "Godelterm" for 0(x,,....x,) as defined in Smoryriski[85], p43. Here
we use instead of the usual numerals the efficient numerals of Paris & Wilkie[87], so that:
1Ag+Q,FVxy5e,x 3y '0(X 5o X ) =Y.

Opd(x,,....x,) will stand for: Provp('o(X;,....%X ).

Occurrences of terms inside O should be treated with some care. Is Op(¢[t/x]) intended
(O70(x)[t/x]? We will always use the first, i.e. the small scope reading. In cases where: U prov.
that t is total and Ur-t=x—0;t=x, the scope distinction may be ignored within U w.r.t. Oy. W
have: Uk (Oy¢(x))[t/x] <> Oy (0[t/x]).

We will use the same convention for occurrences of variables inside the interpretability predicate.
For some uses in section 4 our conventions are not sufficient. Rather than introducing a heavier
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notational apparatus I prefer to explain what is going on there in words.

The theory that we will be looking at in this paper is IA;+€2,: this theory is explained in Paris &
Wilkie[87]. It is (modulo some translation work) the same as Buss's theory S, (see Buss[85]).
Sometimes, especially in subscripts, we will call IA+Q, simply Q. We will also be looking at
IA,+EXP, which we will call sometimes -if no confusion is possible- simply EXP.

3.1.1 Cuts & a strengthened Lob's Principle

We follow the discussion of cuts of Paris & Wilkie[87]. For reasons of convenience we use a
slightly idiosyncratic notion of cut: a cut I is given by an arithmetical predicate, is downwards
closed w.r.t. the standard ordering of the natural numbers, is closed under successor, addition,
multiplication and @, (i.e. x1°8®)). The attentive reader of Paris & Wilkie[87] will easily see that
our restricted notion is not really restrictive. We will say that I is a T-cut if T proves the
arithmetization of "I is a cut".

In section 5 we will use a strengthened Lob's principle: this is a direct adaptation of Pudlék's
strengthening of Godels Second Incompleteness Theorem in Pudldk[85]. Let's say that a T-cut I is
T-reasonable if according to T we have enough instances of A j-induction in I to verify the various
metamathematical principles formalized by Paris and Wilkie in IA ;+€2,. It is well known that every
T-cut can be shortened to a T-reasonable T-cut. Moreover if T proves 'enough' instances of 1A
then automatically every T-cut is T-reasonable (by downwards preservation of IT,-sentences). Let
T extend Q. We have:

Strengthened Lob's Principle (SLP)
IA0+Ql F for all T-reasonable T-cuts I DT(DTIA—>A) — OrA

Proof: Reason in IA;+€,: Let I be a T-reasonable T-cut and suppose DT(DTIA-—éA). By the
Diagonalization Lemma we can find a sentence A such that DT(K < (EITIX—>A)). We also have
00> (@A —A)) and hence: OO A — O (O A—A)) (because in I we have ‘enough
axioms of IA0+Ql). Moreover: DT(DTIK-—HZI TIDTIX). Ergo DT(DTIK—>DTIA) and hence
DT(DTIX—>A). Conclude: OA. It follows that for some x O Proof(x,A). By a result of both
Pudldk and Paris & Wilkie: Oxe I, hence DTDTIX and so: OpA. o

3.2 Interpretability

Interpretations are in this paper: one dimensional global relative interpretations without parameters.
For a discussion see Pudldk([83] or Visser[88b]. We say that: U is interpretable via interpretation M
in V if for every theorem C of U there is a proof in V of CM. Here CM is the translation of C under
M. In the definition I assumed that the theorems are sentences; if we allow formulas D(x,...) as

theorems we should take: (S(X)/\.‘.)——)D(X,...)M, where 8 is the formula giving the domain of the
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interpretation M.

Warning: our definition of interpretability speaks of theorems not axioms. In strong theories a
definition involving axioms is equivalent to ours. As far as I can see the proof of equivalence needs
Z-induction. 'Theorems-interpretability' seems to be what is needed for applications.

We write: M:UPV, for the arithmetization of: V is interpretable in U via M. We can arrange it so
that M occurs in the arithmetization as a number, so it is possible to quantify over M in the theory.
Define:

uev = dMM: UBV

M:A‘>UB = M:(U+A)> (U+B)

AP B = (U+A)> (U+B)

U=V = UBVAVEU

A= B = (U+A)=(U+B)

In Visser[88b] It is shown that the following principles are valid in any sequential theory extending
1A, +Q;.

L1 FA = FOA

L2 - + O(A-B)— (DA—OB)

L3 + OA — O0OA

L4 F O(O0A—A)—OA

J1 + O(A—B) > APB

J2 F (APBABP>C) - ABRC

J3 (A CABP>C) — (AVB)B>C
J4 HAPB = (CA—-OB)

I8 = OARA

W = AB>B — AP (BAO-A)

The principles L1-J5 make up the theory IL. IL+W=:ILW. I conjecture that the principles of ILW
are precisely the principles valid in every sequential theory extending IA,+£2,. To be precise the
conjecture is:

ILWHA « for all sequential T extending IA+£2, for all T-interpretations (.)* THA*

4 Doing some simple model theory in IA +Q,

In this section we formalize a model theoretic argument from Paris and Wilkie[87]. The result will
be our main technical tool in sections 5 and 6.
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4.1

Main Lemma

For every A(x,y)e A, with only x,y free:

A, +Q - (V 1A +Q, -cut [OTdxelVy A(x,y)=q(EXPAIXVy A(X,y)).

Proof: Some details of the proof not given here are presented in Visser[88b].

"D>" We reason in IA;+Q,. Let J be a (standard) IA;+Q; -cut such that O(Vxe J exp(x) exists).

Let

itexp(x,0):=x, itexp(x,y+1):=exp(itexp(x,y)). One can find a A -formula representing the

graph of itexp, such that the recursive clauses of the definition are verifiable.

Reason in IA;+Q; (so this is really in IA;+Q; in IAj+Q,):

Suppose that for every IA;+Q -cut I: O dxe IVy A(x,y). By a result of Pudldk (see Pud-
14k[86], the proof of Lemma 4.2): VueJ 3 IA,+Q,-cut I Oo(Vvel itexp(v,u) exists). It
follows that: VueJ © odx (itexp(x,u) exists A Yy A(x,y)). Let c be a new constant and let
V:=IA0+Ql +Vy A(c,y)+{itexp(c,u) exists | ue J}. As is easily seen V is consistent.

We want to formalize the following more or less trivial model theoretical argument (keeping in
mind that model=interpretation). For the moment read '®' for J. Pick a model K of V. Say D
is the domain of K. Let D*={de DI for some ne = KFd<itexp(c,n)}. Let K* be the restriction
of K to D*. Clearly K*=EXP. Because the IAj-axioms are IT;: K¥FIA; similarly K*EVy
A(c,y). Conclude that K*FIA+EXP+3xVy A(x,y).

We formalize the Henkin construction to produce an internal model K of V.

We proceed as follows: first define the usual Henkin tree for formulas in the language
extended with Henkin constants. The formula treated at depth x will be precisely the formula
with code x. Some care should be taken to make the Henkin constants not too big. We pick the
leftmost path & in the tree. We cannot prove that our path is infinite in the usual sense, but we
can produce an IA;,+Q, -cut I such that for each x in I, there is a sequence in 7 with length x.
Without loss of generality we may assume that IOg J. Let K be the set of formulas given by
elements of 7t with length in I clearly K& I,- Let D be the set of Henkin constants in 1. It
can be arranged that if (the code of) 3xB(x) is in K and b is the Henkin constant of 3xB(x),
then b is in D. We can show: Vxe I, Provy(x) — K(x).

We use d,d, e,.. to range over D. We write e.g. K(B(d,d")) for K(b(d,d")), where b(d.d") is
a term for: the code of the sentence obtained by substituting the Henkin constants coded by d
and d' for u and v in B(u,v). We write for x in [ e.g. K(C(x)) for K(c(x)), where c(x) is a
term for: the code of the sentence obtained by substituting the efficient numeral of x for u in
C(u).
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K is one form of appearance of the 'model K' we are looking for. Its other form of appearence
is as an interpretation (.)X. The domain of this interpretation is going to be D. Let R be a
relation of the language of V, we have: RK(d,...) 1< K(R(d,...)). For arbitrary formulas
B(d,...) BK(d,...) is defined as usual. For vividness we will write K=B(d,...) for B¥(d,...).

As usual we can show Vx K(conj(x,y))«> (K(x)AK(y)), etc. . By an external induction we can
show:
* For d,... in D: K(B(d,...)) & KEB(,...).

More on the meaning of * and its proof below: see the discussion on **,

Finally we can define a homomorphism f from I, to the natural numbers of the 'internal model
K. Consider x in L, f(x) will be the code of the Henkin constant of Fu u=£ . We will have:
K(f(x)=x). We can arrange it so (by shortening I if necessary) that the range of f is
downwards closed in K.

Let c* be the Henkin constant of 3x x=c. We have K(c*=c). Moreover: Vxe I;0y,(itexp(c,x)
exists), ergo Vxe I, K(itexp(c,x) exists), so Vxel, K(itexp(c*,f(x)) exists). Conclude:
Vxe I, KE(itexp(c*,f(x)) exists). Let D*:={de DIdxe I, KFd<itexp(c*,f(x))}. Clearly:
c*e D* and Vde D*Jee D* Kk exp(d)=e.

Let (.)K* be like ()K exept that we use D* instead of D. We write for d,... in D*: K*¥=B(d,...)
for BK*(d,...). Because the graph of exp is A, it follows by a simple argument that K¥*=EXP.
Moreover KEVy A(c*,y), A is A, hence K¥EVy A(c*,y) and thus K*¥=3xVy A(x,y).

Finally we have for all codes z of instances Z of A;-induction: Ogze I and O Provy,(z), hence
0oK(z), so O(KFZ). Because these Z have II; form we may conclude: On(K*=Z).

Let's look at these last four steps a bit more carefully. As is well known (see e.g. Paris & Wilkie
[87]) the proofs of 'ze IO1 and rProvV(;)1 can be explicitily bounded by terms in z involving the
usual arithmetical operations and ®,; (w,-terms for short). (A moment's reflection shows that I is
given by a standard formula.) Hence the proof of 'K(z)' can be bounded by an @,-term in z.

Next we move to Oo(KFD) using (momentarily confusing formulas and their codes):

0k VCOg( Vd,...e D (K(C(@.,...)) <> KFC(d,...)) ).

Let's call the statement following Og, in **: E{C}. To prove ** we use Ay(®,)-induction, which is
available in IA;+€2,. To do this we must bound the IAO+Ql-proofs of E{C} with ®,-terms in C; in
other words the lengths (=number of symbols) of these proofs should be bounded by a polynomial
in ICl, i.e. the length of C. Let's call the length of the proof of E{C}: A(C). I consider a specific
example: say C=(FAG) and suppose we have proofs of E{F} and E{G}. To construct a proof of
E{C} we give proofs of: C=conj(F,G), and Vx K(conj(x,y))<>(K(x)AK(y)). The length of the
first proof is polynomially bounded in ICl and the length of the second one is standard. Now the
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proofs of E{F}, E{G}, C=conj(F,G), and Vx K(conj(x,y))<>(K(x)AK(y)) can be combined to a
proof of E{C} of length bounded by: A(F)+A(G)+P(ICl), where P is a suitable polynomial. For
each connective we find such a polynomial. Let Q be a polynomial that majorizes all polonomials
corresponding to the connectives. Noting that IFI+IGI<IC| it is now easy to show that:
A(O)=ICLQ(CI), e.g. in the case considered we have e.g:
AMO)ZA(F)+A(G)+QUCHLIFIQUFN+GIQUGH+QUCH<(FI+IGI+1)QUCHICIQUCY).

Finally we move to On(K*FZ). Here we use:

¥ VOO Vd,...e D* (K*=C(d....) <« KF=C(d....)) ).

The proof shares many features with the proof of **. Again the lengths of the proofs will be
polynomially bounded in ICI. Let t range over m,-terms. An important lemma is:

+ VtOg( Vd,...e D*Vee D ( (KFe=t(d,...)) = ee D*) ).

The lemma is proved by induction on t using a bound on the lengths of the proofs that is
polynomial in Itl.

Concluding: let AX be the set of axioms of IA;+EXP+3xVy A(x,y). We have for a suitable
,-term t: VCe AX Ip<t(C) Proofq(p, K*=C'). By induction we find for a suitable ®,-term u:
VxVC<x (Proof 45 (x,C) — Jz<u(x) Proofo(z, K*=C"). O

"<1" Let 3 be an IA j+EXP-cut such that IA ;+EXPHVue SVv itexp(v,u) exists. We first show for
B in A, having only x,y free:
IA +EXPHVIe 3( DQS”I isacut" — ((Hze3 EIQZVxe I3y B(x,y)) = Vx3dy B(x,y))).

Reason in IA;+EXP: Suppose Ie 3, DQS”I is a cut", ze3 and O, ,VxeIJy B(x,y). For some
ue 3 and for all v Oq el It follows that for some we 3: VxDQ,WEIy B(x,y). Using the estimate
on cut-elimination in Paris & Wilkie[87], p293 we may conclude: VxAQEIy B(x,y). Paris and
Wilkie also show reflection for tableaux provability in IA;+EXP. w.r.t. I1,-formulas, hence:
Vx3dy B(x,y).

From the above we have by Z-completeness, contraposition and by weakening the statement a bit:
for A in A, having only x,y free:

IA(+Q - Opxp( IXVYARXY) = (V [A(+Q;-cut IO Ixe I Vy A(x,y))s ).
From this the result we're looking for is immediate using 3 as our interpretation. O

4.2 Corollary
For any Z,-sentence B: 1A;+Q, = B> o(BA—EXP).
Proof: from 4.1 we have: IAj+Q; = (BAEXP)> O 0B, hence by principle W: IA +Q,+

(BAEXP)P> (O oB)AO o(B——EXP)), 50 1A, +Q, - (BAEXP)P> & ((BA—EXP). Conclude by
I5: IAg+Q, = (BAEXP)E> (BA—EXP). Also IA+Q, - (BA~EXP)B> (BA—~EXP), hence by J3:

An inside view of EXP 7



IA,+Q;+ B> (BA—EXP). O
4.3 Corollary
1) Suppose A is A, having only x,y free, then:

IA+QF OpxpVx3y A(x,y) > O3 1A+Q;-cut I0LVxe I Jy A(x,y).
ii) Suppose B is a X,-sentence, then 1A+, O,(B—EXP) — O,—B.
Proof: (i) is immediate from 4.1 and (ii) is immediate from 4.2. O
4.4 Corollary
Suppose A is a X ;-sentence, then:
1) IA(+£2 = OpxpA ¢ Op00A

ii) IAO+§21P— DEXP(EIQA—>A) — OpypA

Proof: (i) is immediate from 4.3(i). For (ii) we have:

1A +Q, - Opyp(OgA—A) — 063 1A+Q, -cut IDG(OGIA—-A) (4.3(1))
— Og00A (SLP)
— OgxpA (4.3(1))
O
5 The closed fragment of the provability logic of IA;+Q; with a constant for
EXP

A is the closed language of provability logic, i.e. A is the smallest set containing L, T, which is
closed under —,A,v,— and O. If a logical constants c,c',... are added to A we write: Afc,c',...].
< abbreviates —O—.

The degrees of falsity DF are defined as follows: 0%L:=1, 0™11:=00%1, O®1:=T. Dually the
degrees of truth are defined by: O0T:=T, OMIT:=0 OMT, OPT:=L. If X is a set of formulas
we write Boole(X) for the set of Boolean combinations of elements of X.

We will only consider a fixed interpretation of our languages: the propositional connectives are
interpreted as themselves, O is interpreted as O, EXP is interpreted as the arithmetical axiom

EXP. The fact that our interpretation is constant makes that we can conveniently confuse modal
formulas and their arithmetical counterparts. From now on we will do so.

The system LC[EXP] in A[EXP] is given by the following principles:

Ll HFA = FOA
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L2 + O(A—B) - (DA—0OB)

L3 HOA — OOA

L4 F O(0A—>A)—>DA

Cl1 + O(EXP—B) «» O0OB, for Be Boole(DF)
C2 + O(—EXP—B) «» OB, for Be Boole(DF)

We verify the validity of LC[EXP] for interpretations in IA+Q,. C2 is immediate from 4.2(ii).

In our verification of C1 we will use the "some finite subset" notation: {AllP(A)} means
approximately: some finite (possibly empty) subset of { AIP(A)}. When the notation is repeatedly
used however it will function in an anaphoric way: so sometimes it means: the finite subset we
were talking about; or even: the finite subset connected in the evident way with the finite subset we
were talking about.

Verification of C1 in IA;+€Q,: Consider B in Boole(DF). Clearly B is equivalent to a
sentence of the form A\ {0%L—0OK 1L k<o ). (Here: o ranges over ®+1.) By 4.2(i) we have that:
IA)+Q, - O(EXP—B) > 03 1A +Q;-cut IO/ {O% L 0K L (k<o)
On the other hand:
1A +Q - 3 1A, +Q,-cut IO\ (0% L 0K 1 lik<or)
FIA ;+Q, -cutl/A (OO %L L 0K L)lk<or )
F1A ;+Q -cutl/AN {O(Ok+LLL 50k 1 )lk<o)
M {(OK+1 L |ke @)
gl+o* |
o/ {o%L Ok k<o)
I1A+Q,-cut I0/A (0% L 0K L ik<a}.

(SLP)
(o*=inf{kllke ®})

4 d Ll

Ergo 1A,+Q, = O(EXP—B) <> OOB. O
5.1 Theorem

i) For every Ae A[EXP]: LC[EXP]+ DA ¢« O%L, for some o€ w+1.
ii) For every Ae A[EXP] there is a Be Boole(DFU{EXP}): LC[EXP]+ A < B.
111) For every Ae A[EXP]: LC[EXP]+ OA = LC[EXP]+ A.

Proof: for (i) and (ii) it is sufficient to show that for Be Boole(DFU{EXP}): LC[EXP]+ OB <
O%1, for some o.e w+1. The rest of the argument is a simple induction. As is easily seen there are
C,D in Boole(DF) such that LC[EXP]+ B <« ((EXP—C)A(~EXP—D)), hence LC[EXP]+ OB
< (O(EXP—-C)AO(-EXP—D)), so by C1, C2: LC[EXP]+ OB « (O0OCAOD). So by the usual
reasoning the desired result follows.

To prove (iii) suppose LC[EXP]+ OA. We note that by (ii): A is LC[EXP]-equivalent to:
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(EXP—/M\ {O0%L DK 1 |k<a})A(-EXP—/A {OBL 50" LIin<B})). If both conjunctions are
empty we are done. If not it follows that for some m LC[EXP]+ O™_L and hence IA,+Q,+—0OML,
quod non. O

Consider two Kripke models K=<W ,R,I-> and K'=<W'R',\=">. A A-bisimulation B between K
and K'is a relation between W and W' such that: (i) for every k in W there is a k' in W' with kBk’;
(i) for every k' in W' there is a k in W with kBk"; (iii) if kBk' and kRs, then there is an s' with
k'R's" and sPs'; (iv) if kBk' and k'R's', then there is an s with kRs and sBs'. As is easily seen: if
B is a A-bisimulation between K and K' and kfk/, then for Ae A: ki-A & k'i-'A.

5.2 Theorem
LC[EXP]-FA & A +Q FA.

Proof: "=" has already been checked. For "&" suppose IA;+Q, —A. Suppose that LC[EXP]
does not prove A, then LC[EXP] does not prove OA, so OA must be LC[EXP]-equivalent to O L
for some k. We find IAO+QII—EIA, hence IA0+Qli—Dk_L. Quod non. ]

We define a Kripke model M as follows: the domain of M is {<n,i>Ine w,ie {0,1}}; M has an
accessibility relation given by: <n,i>R<m,j> 1< n>m+j. We stipulate <n,i>—EXP :< i=1. The
forcing relation is extended to the whole language in the usual way. We show that LC[EXP] is
valid in M. As is easily seen R is transitive and upwards wellfounded. Hence the principles L1-L4
are valid on M.

<0,0> <0,1>

<1,0> <1,I>

<2,0> <2.1>

<3,0> <3,1>

<4,0> <4,1>

<5,0> f <5,1>
The model M

Let N be the model with domain  and accessibility relation R* given by: nR*m :< n>m. Define a

relation B between nodes of N and nodes of M by nf<m,i> :< n=m. It is easily seen that B is a
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A-bisimulation between N and M. Conclude that for A in A: <n,0>HA < <n,1>HA.
Verification of C1 in M: suppose B is a Boolean combination of degrees of falsity.

First suppose <n,i>H0O0OB and <n,i>R<m,j> and <m,j>-EXP, i.e. j=1. We have: n>m+1, so
<n,i>R<m+1,0>R<m,0>. Hence <m,0>B. B is in A, so <m,1>FB. Conclude: <n,i>+
O(EXP—-B).

Suppose for the converse: <n,i>—O(EXP—B) and <n,i>R<m,j>R<p,k>. Clearly n>m+j>p+k,
so n>p+1 and thus <n,i>R<p,1>. <p,1>HEXP and so <p,1>IB. B is in A so we may conclude:
<p,k>B. Ergo <n,i>—00B O

Verification of C2 in M: suppose B is a Boolean combination of degrees of falsity.

One direction is trivial. Suppose: <n,i>0(—EXP—B) and <n,i>R<m,j>. Clearly <n,i>R<m,0>,
so <m,0>I-B. B is in A so we may conclude: <m,j>I—B. Ergo <n,i>+—0B. O

5.3 Theorem

LC[EXP]-A <& MIFA.

Proof: entirely analogous to the proof of 5.2. O
6 The closed fragment of the interpretability logic of IA,+Q, with a constant
for EXP

The system ILC[EXP] is given by the following principles:

L1 FA = FOA

L2 + O(A—B) - (0DA—0OB)

L3 +OA — OOA

4 = O(0A—>A)—>OA

J1 ~ O0O(A—B) > A>B

J2 F (AB>BABP>C) - ABC

I3 = (AP CAB>C) - (AVB)E>C
J4 HAPB — (CA—>OB)

5 HOARA

W - AB>B —- AP (BAO-A)

C F (EXPAB)=<B, where Be Boole(DF)

We verify the validity of ILC[EXP] for interpretations in 1A+, .
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Verification of C in IA0+QI:

Suppose Be Boole(DF). Clearly B is equivalent to a sentence of the form W {OkT AO%L|k<0r ),
where o ranges over w+1. By 4.1 we have that:
IA,+Q, F (EXPAB)=(V 1A +Q,-cuts IO W { Ok TAD®LLIK<)).

By contraposition of the reasoning concerning the verification of C1:
IA+Q, - (V 1A +Q, -cuts IO W {OkTAOM L k<ot }) ¢« OB.
Conclude: 1A+, = (EXPAB)=CB. O

6.1 Theorem

1) For every Ae A[> ,EXP]: ILC[EXP]+ OA « O%L, for some o€ w+1.

11) For every A,Be A[> ,EXP]: ILC[EXP]+ AP>B < O%L, for some o€ w+1.
1ii) For every Ae A[> ,EXP] there is a Be Boole(DFU{EXP}): LC[EXP]+ A < B.
iv)  For every Ae A[EXP]: LC[EXP]- DA = LC[EXP]+ A. |

Proof: for (), (ii), (iii) it is sufficient to show that for A,Be Boole(DFU{EXP}): ILC[EXP]+ OA
« O%L, for some ae w+1 and ILC[EXP]+ AP B « O%L, for some ae w+1. The rest of the
argument is a simple induction. We can restrict ourselves to the case of > noting that DA is
equivalentto AB> L.

First consider C in Boole(DF). We show: ILC[EXP]+ (EXPAC)=0%T, for some o.. We have:
ILC[EXP]+ (EXPAC)=0C=0%T,
Next we show: ILC[EXP]+ (“'EXP/\C)EOBT, for some [3. First note:
ILC[EXP]+ (EXPAC)B>SC
B> (O CAO(C—»—EXP))
B> O (-EXPAC)
> (—=EXPAC)

Also: ILC[EXP]F (—~EXPAC)> (-EXPAC), hence ILC[EXP]+ CP> (—-EXPAC). We find:
ILC[EXP]+ (=EXPAC)=C
=(Cv<o0)
=OBT

Consider A in Boole(DFU{EXP}). Clearly A is equivalent to (EXPAC)v(—~EXPAD) for some C
and D in Boole(DF). By the above: ILC[EXP]+ (EXPAC)=0%T, for some o and ILC[EXP]+
(=EXPAD)=0 BT, for some B. Hence ILC[EXP]+ A=(<C %T v<O BT)=0"T, for some Y.
Conclude for A,B in Boole(DFU{EXP}): ILC[EXP]+ AP B < YT B &8T for some v,0. If
v=0: ILC[EXP] AP>B « T, and we are done. If y<6:

An inside view of EXP 12



ILC[EXP]- AP>B < OYT> 00T
o VT (O TAO-OYT)
o OVTB(OdTAOMIL)
& OVTE L
— ol

The proof of of (iv) is the same as the proof of 5.1(iii). O
6.2 Theorem

ILC[EXP]FA & IA+Q FA.
Proof: the same as the proof of 5.2. O

We define a Kripke model M as follows: the domain of M is {<n,i>lne w,ie {0,1}}; M has an two
accessibility relations R and S given by: <n,i>R<m,j> :<> n>m+j and <n,i>S<m,j> 1< n+i>2m+j.
We stipulate <n,i>I—EXP :< i=1. The forcing relation is extended to the whole language in the
usual way using R as the accessibility relation for O and:

xI-FAP>B < forall y: xRy and y—A = there is a z with ySz and zi-B.
As before R is transitive and upwards wellfounded. We have: RES; S is reflexive and transitive; S
satisfies property P, i.e.: xXRySz = xRz.

Excursion: The property 'xRySz = xRz' makes M into an ILP-model (see Visser[88a] or Visser[88b] or De Jongh
& Veltman[88]). This implies that the principle: A>B — O(AP> B) is valid on M. There are a priori reasons, given
the fact that M fully characterizes what is and what is not provable in the restricted language and seeing the methods
we used, that this should be so. For suppose M would provide a counterexample to the principle. This shows or at
least strongly suggests that IAO+Ql is not finitely axiomatizable. (The loophole here is that it might be the case
that, yes, IAG+€2; is in fact finitely axiomatizable but, no, its finite axiomatizability is not verifiable in 1A5+€;.)
But the problem of finite axiomatizability of IA;+£; is connected with difficult complexity theoretic problems and
it seems clear that the methods used in section 4 are not ‘heavy' enough to solve such problems. So a full
characterization of the valid principles of A[EXP,>]in IA0+Ql using light methods as in section 4 cannot but

satisfy principle P.
Verification of C in M: suppose B is a Boolean combination of degrees of falsity.

First suppose <n,i>H—0O0OB and <n,i>R<m,j> and <m,j>EXP, i.e. j=1. We have: n>m+1, so
<n,i>R<m+1,0>R<m,0>. Hence <m,0>F B. B is in A, so <m,1>B. Conclude: <n,i>I
O(EXP—B).

Suppose for the converse: <n,i>HO(EXP—B) and <n,i>R<m,j>R<p,k>. Clearly n>m+j>p+k,
so n>p+1 and thus <n,i>R<p,1>. <p,1>—EXP and so <p,1>I-B. B is in A so we may conclude:
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<p,k>I-B. Ergo <n,i>—0O0B O
6.3 Theorem

ILC[EXP]-A © MIFA.
Proof: entirely analogous to the proof of 5.3. |
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