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We answer a question of Lambek and Scott (see [LS] p.99) by proving the following:

Theorem. Let 9vt be a C-monoid, with C-structure (7t, 7t', £, (_)*, <_,_>). Then there exists a

cartesian closed category A with exactly two objects U and T, such that End(U) = !M

The construction of . is entirely by hand. The intuitive idea is as follows. !may be viewed

as a collection of endomorphisms of a set U. Let T_ { *I be a one-point set; then u - X*.u is a

one-to-one correspondence between U and the set of all functions from T to U. Now if . is a

cartesian closed category with just U and T for its objects, where T is terminal, then in A we

must have

Hom(U,U) = Hom(TxU,U) = Hom(T,UU) =_ Hom(T,U);

so if we put Hom(U,U) = iM, and like to think of Hom(T,U) as HomSets({*},U), we must
have M_ U, as sets. Since it does not matter much what the elements of U are, we take M=U.

Then we have functions ft _ k*.f : *I - U for every f E U. Composing with o
ku.*:U-{*}, we have

(X*.f) o (ku.*) = ku f : U- U.

This we identify with the arrow Xuf _ (fn')* in ?tt, described in [LS] §15. The longer defini-

tions (notably, those of goft and {gt,ht}) were forced upon us by this identification. The rest

were the simplest at first sight.

Remark. By [LS] § 16, the Karoubi envelope K(it) of has a full cartesian closed subcat-

egory Kp(" consisting of all objects isomorphic to U (the unit of iM) or the terminal object T.

Taking one representative from either isomorphism class, one gets another full subcategory,
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which is easily shown to be cartesian closed; and since the monoid End(U) of endomorphisms

of U is isomorphic to M can now be recovered.

This method is unsatisfactory since we are not told how to identify U in K(M). With the

approach set out below, it is not necessary for the recovery of ±7vf that we know which of the

objects of A is U. We have a constructive criterion: take the object that is not terminal. If both

objects are terminal, the choice is free.

We use the notation of [LS], but for one exception: we write f a for ` f applied to a".

Proof of the theorem. Let U be the object of M.. Take some thing T distinct from U. We form

A from Min a number of steps. First we add the object T to Mas a terminal object, i.e. we also
add arrows O:U-T and 1T:T->T, and specify

of = O for all arrows f in
1TO = O, 1T1T = 1T

Moreover, for each f in Jvlwe take a distinct new arrow ft: T- U with

fro = (f7c)*, oft = 1T,fr1T =ft, and

g ft _ (g`f)t (_ (e<go(f7z')*,1>)t) for all arrows g in M.

The category A has now been defined. To be sure that A is indeed a category, the axioms for
categories must be checked. The unit axioms are easy; in particular, lUoft = (1`f)t =ft by C12

([LS] p. 96). Associativity of composition dissolves into sixteen cases

A-B-C-D

with each of A,B,C,D either U or T. We write out the four least trivial.

(i) Suppose we have

U g p U-0 IN. T
ft

- U

Then fto(Og) =PO = (f7t')* _ (f7t')*g by C9, [LS] p. 96

_ (fto)g
(ii) If we have

U 0 T U 9 00. U

go(fto) = go(f7L')* _ (e<go(fn')*n,7t'>)* = (e<go(f7C')*,l>7t')* (using C9)

= ((gf)n')* = (g`f)to = (gft)o.

(iii) Given

t
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t
T fr U U h- U

we find ho(gft) = ho(gf)t = (h`(g`f))t = ((hg)f)t by C10, [LS] p. 96

= (hg)ft.

(iv) In a diagram

T
ft

U T U

we have gto(oft) = gt = ((? g)f)t (cf. [LS] Cor. 15.3)

((gn')*` )t = (gn')*ft = (gtO)ff

The next step is to define the cartesian structure.

UxU= U, UxT =TxU=.U,TxT =T.

71U,U = 71, 7tU U = 7E"

nUT= 1U, nUTO,
7tT,U = O, 7tT,U = lU,

7tT,T 1T, 7tT,T = 1T.

We write { f,g } for the pair off and g in . and set

{ f,g } _ <f,g> if f,g belong to M;

{f,o} = f, {of} = f for f in M;
{O,O) _ {1T,o} = {O,1T} = O, {1T,1T} = 1T;

{.ft,gt} _ (<?uf,Xug>`1)t, { lTf t) =ft, {ft,1T} =ft.

We must check if these definitions satisfy the additional axioms for a cartesian category, the

equations E3 of [LS] p. 52. A number of these checks are trivial. We shall write out one case of

E3a, and three cases of E3c.

(ad Ma.) 7tU,U{ft,gt) _ ito(<?,uf,a,ug)`1)t = (7c`0,,uf,aug)`1))t

((7t<a,uf,Xug)`1)t by C10 ([LS] p. 96)

((a,uf)`l)t =ft , by [LS] Cor. 15.3.

(ad E3c.) (i) If k:U-TxU, then in fact k:U-U, and

{nT Uk,7cT Uk} _ {ok,k} _ {o,k} = k.

(ii) Let g,h be arrows of .M Then

g
p 0- g7

_

=

,

_

_
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(*) ((g`h)n')* = (e<go(hn')*,l>n')* = go(hn')*,

since by C9 (hn')*n' = (hn')* = (hn'),*7t. Now if k:T-> UxU, then in fact k = ft:T- U for some

f. U- U, and we have

{nU Uk,nU Uk} = {nft,ni} = f(nf)t,(n"f)t} _ (<Xu.n`f, 2u.7t"f>`1)t

= (e«Xu.n`f, Xu.n"f>(n')*,1>)t = (C«no(fn')*,n'o(fn')*>,1>)t by (*)

_ (e<(fn')*,l>)t = (1`f)t =ft = k, using C12 ([LS] p. 96).

(iii) If k:T-TxU, then k =ft for some f: U- U, and

{iTUk,it Uk} = {Oftft} = {1T,ft} =ft = k.

The last step is the specification of exponents and evaluation. We define

UU=UT=U, TU=TT=T;

CU,U = e; CT,T = 1T; ''T,U = 0; EU T = 1u.

Cartesian closed categories associate to each an arrow AC,B(f):A-CB. Usually one

A
writes f* for AC,B(f), since the indices AB,C tend to be clear from the context. In our category

A, however, many products cannot be distinguished (recall UxU = UxT = TxU), and because

of this the type off does not contain. enough information. Thus we must specify the operations

AC B instead of just (_)*.

U
AU,U(f) =f*

T
AU, U(f) =f

U
AT,U(O) = O

U
AU,T(f) =f

U
AT,T(O) = O

T
AU,T(ft) =f

T
AT,U(O) = 1T

T
AT,T(IT) = 1T

=
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We finish by checking a few cases of the evaluation laws E4 ([LS] p. 53).

(ad E4a.) (i) EU,U {AU U(flnT,U,r,U} = c<fto,lU> _ c<(fn')*,lU> =f

by the corollary to the functional completeness theorem, [LS] 15.3.

EU,T {AUU,T(f)7[U,T,7LU,T} = lU{ f,o } =f.

CU,T {AU,T(ft)7tT,T,1,T} = 1U{ft,1T} =P-

T
CT,U

{AT,U(0)7tT,U,7LT,U} = O{O,lU} = O.

(ad E4b.) (i) Suppose k: T- UU, then k = ft for some f: U- U. Then

AU U(CU,U{k71T U,7GT U}) = AU AU,U(E<(f7c')*,1>)

= AUU(f) = k (cf. (i) ad E4a.).

(ii) Suppose k:T-BUT; again k is of the form ft, and

AU,T(cU,T{kiT,T,7U1,T}) = AU T((ft,1T}) = AU,T

(iii) If k:T-,TU, then k = 1T, and

= k.

ATU(cT,U{k7tT,U,7tT,U}) = AT U(o{o,lU)) = AT U(o) = k.

The proof is complete.
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