A rational approach to 7

Irits Beukers

September 5, 2000

Abstract

This article is based on notes for the lecture with the same title, which
was held by the author on the occasion of the ‘Piin de Pieterskerk’ event
(Pi-day) on July 5, 2000. The present article expands these notes with
short proofs of most of the theorems given, but not proved, during the
lecture.

1 Introduction

During the weeks preceding Pi-day in Leiden, and of course on the day itself, it
has once more become clear that the number 7 has an alluring appeal to a very
broad audience. A possible explanation for this interest is that 7 is the only
transcendental number which most people have ever seen and will ever see. The
fact that such a transcendental number cannot be written down exactly is then
a source of amazement and wonder.

In the past few years this fascination with 7 has resulted in a number of books
on the subject of m. Some of these books are written for a wide audience, some
others can be read only with a substantial mathematical background. In the
bibliography of this article we give a short, descriptive listing of such books
and some websites as well. Through these publications devoted to 7, a body of
facts and stories has developed itself around this number. We can read about
Archimedes’ method to compute m, Ludolf van Ceulen’s record computation,
Machin’s formula, the arithmetic-geometric mean, Ramanujan’s miraculous for-
mulas, the impossibility of circle quadrature, computation of digits of # without
knowing the previous ones. All these topics form part of what I would like to
call m-folklore.

It is not the purpose of this article to provide another introduction to m-folklore.
I refer the reader interested in this folklore to the bibliography. The purpose of
the present article is to advertise a rather recent result around 7, and thus help
it find its way into m-folklore. The result deals with the explicit construction
of good rational approximations to 7. Let us start with two very well-known
rational numbers that approximate m:
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The number % is so well-known as an approximation, that many people think

that it equals . The second approximation has been discovered in the fifth
century by the Chinese mathematician Tsu Chung Chih. One might wonder
why we call these rational approximations good, and whether more of such
good approximations exist. To quantify what ‘good’ means we rewrite our
approximations as

22
- -

7

[

1 355 1
73420 0 |113 "™ 1133200
The exponents 3.429 and 3.201 will be called the quality of the respective ap-

proximations. In general, the quality of an approximation 2—’ with p,¢ € N and
ged(p, ¢) = 1 is the number M such that

M

Using the theory of continued fractions we know that there exist infinitely many
rational approximations to m whose quality is > 2. However, the continued frac-
tion expansion of 7 is completely intractable. Almost nothing i1s known about
this continued fraction and thus we have no control over it. For applications one
would like to have an explicit construction of rational approximations to m of
good quality. By that we mean quality > 1. This is of course less than quality
> 2 as with continued fractions. But this lesser quality is counter-balanced by
the greater control over the approximations, due to the explicitness of the con-
struction. This control, which is important for several applications, is lacking
in the case of continued fractions.

It turns out that the number 7 is surprisingly resistant against contruction of
good quality approximations. Despite many efforts it was only in 1993 that the
Japanese mathematician Masayoshi Hata succeeded in giving such a construc-
tion in M.Hata, Rational approzimations to m and some other numbers, Acta
Arith. 63 (1993), pp 335-349.

In this article we shall describe a simple irrationality proof of w. Then we
explain the role of explicit good quality approximations in irrationality proofs
and irrationality measures. Finally we describe a few attempts to contruct good
quality approximations crowned by Hata’s successful construction.

2 Irrationality of =

The first irrationality proof of m was given in 1773 by the Swiss mathematician
J.Lambert. In the long history of m this can be called a fairly recent result. The
reason for the late appearance of such a proof is that proving irrationality of
m is far from trivial. Lambert made use of continued fraction of the cotangent
function. Such continued fractions were relatively new in Lambert’s time. Here
is the formula that Lambert used:



This formula means that if, for a given z, we compute consecutively the trun-
cated fractions:
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et cetera, we get a sequence of numbers which converges to cot % In fact, it
turns out that this convergence is surprisingly fast. The truncated fractions
are usually called the convergents of the continued fraction. Although I have
seen this continued fraction many times, I still think it is a wonderful formula.
One of its interesting features is that the right hand side does not contain
7 explicitly. As the reader may know, there are several ways to expand the
cotangent function. For example, Fuler’s summation
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or the product formula
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However, most of these expansions contain 7 explicitly. Lambert’s continued
fraction does not.
If, in particular, we take x = %, we obtain the equality

0=2/m— !
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The right hand side is really an elaborate, but useful, way to express the number
zero. Writing down the truncated fractions, we get:
1 12 — n?
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1 120 — 1272

2/”_6/ T = 60m—nd
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10/x
~ 0.00993
2/ 1 1680 — 18072 + 7
m— =
6 1 8407 — 2073
/7T - 1
10/71' — W
~ 0.000436

30240 — 336072 + 3074
151207 — 42073 + 75

~ 0.0000115

In particular these convergents go to zero. Lambert argued as follows. Sup-
pose that m were rational. Then the convergents are rational numbers. By
carefully estimating the numerical value of these convergents and the size of
the denominator, Lambert noticed that the convergents are eventually non-zero
rational numbers whose absolute values are strictly less than one divided by
their denominator. This is impossible and we get a contradiction. Hence 7 is
irrational.

Lambert’s precise estimates are rather tedious though, and the above sketch
may not be very illuminating. Fortunately we have nowadays a much simpler
proof given by I.Niven in 1947. This proof exploits the integral
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for every positive integer n. We remark that D.Hilbert used integrals of this
type in his simplified transendence proof of = in 1907. However, this does not
simplify the question of why one should use integrals like I, to prove irrationality
of m. This is one of the charms of irrationality proving. Most of the time the

initial idea seems to come clear out of the blue. Here are some particular values
of I,,:

I, = 12—x?

Is = 120—12#7

I, = 1680 — 18072 4 «*

Iy = 30240 — 336072 + 307"

Looking at these polynomials in m one may observe that they coincide with the
numerators of Lambert’s continued fraction. So Niven’s integral is not so alien



after all. The reader, who is familiar with continued fractions and with partial
integration, may try to find the reason for these coinciding polynomials in .
Here are a number of facts for every positive integer n:

1. I, € Z[x] of degree < n.
2. I, >0
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Fact (2) is easy, as the integrand of I, is a positive function on the segment of

integration. So, I, > 0. Fact (3) is also straightforward. The factors ", (7 —

z)", sinz in the integrand of I, can be estimated by 7™, 7™, 1 respectively. So
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Fact (1) follows from a number of observations. First of all, by partial integration
one can see that for any polynomial f(x) we have

/07T f(z)sinz dz = f(7) + £(0) — f'(m) — f7(0) + 7" (=) + £"(0) —

The second observation is that x(m — x) is symmetric with respect to the sub-
stition # — m — 2. Suppose that f(x) is symmetric in this way. Then the same
holds for the even order derivatives. So, f*#)(r) = f(2#)(0) for all £ > 0. Hence

/07T f(z)sinz dz = 2f(0) — 277(0) + 2/ (0) —

Now take f(x) = (7 — x)”. We then see that f*)(0) = 0 for all & < n.

Furthermore, by using the binomial expansion of (7 — )", we find that

F®(0) = k!(k " )(_1)k—”ﬂ2n—k

—n

for all k > n. Hence L f*)(0) € Z[r] for every k and thus we conclude that
I, € Z[r]. Also note that the highest power of 7 that can occur is 7.
Now we can finish our irrationality proof. Suppose that = = 2—’ is rational. Since,
by fact (1), I,, is a polynomial of degree n in m with integer coefficients, it is a
rational number with denominator dividing ¢”. Moreover, by fact (2), I, > 0.
Because a positive rational number is at least one divided by its denominator,
we get
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Combine this with our upper bound for I,, (fact (3)) to get
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for every positive integer n. In other words,

77,' < qnﬂ_2n+1.
This becomes impossible when n is taken large enough! We conclude that =
cannot be rational. qed

3 Irrationality proofs and irrationality measures

In an American court of law the evidence for the irrationality of 7, which we pre-
sented in the previous section, might be called ‘circumstantial’. We constructed
an increasingly complicated sequence of polynomials in m and the properties of
these polynomials bore indirect evidence against the rationality of w. There is
sometimes a more direct way to establishing irrationality of a number. It is
based on the following observation.

Observation. Let a be a real number. Suppose we have a sequence of rational
numbers
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where €, | 0 as n goes to infinity. Then « is irrational.

The proof is quite straightforward. Suppose oo = £ were rational, where p, q € 7Z

and ¢ > 0. Then the difference A,, = |a — p,/¢n]| is a positive rational number
with a denominator dividing ¢¢,,. Hence A,, > ——. On the other hand we have
the estimate A, < qi for all n. Combining the two estimates we get

1 €n

qqn dn

and hence L < ¢,. Since ¢, J 0 as n = oo we conclude that é < 0. This is
clearly impossible and so « is irrational. qed

A famous example of this principle is the irrationality proof of e, which we give
here. We know that e is the sum of the series
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Let us truncate this series after the term % and write
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Then e — B =4, where
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We can estimate d,, by using this series expression:

dn = _ (1 + ! + ! + - )
" (n+1)! n+2  (n+2)(n+3)
(n+1)! 1 2!
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Thus we see that
pco i e L
n! " n+1n!
Application of the above observation with ¢, = HL_H now shows irrationality of
€. qed

Unfortunately, a similar irrationality proof for 7 is very hard to find. In fact,
it was only in 1993 that Hata managed to give an explicit construction for
rationals approximating m sufficiently well to establish its irrationality. In the
long history of 7 this is a recent result indeed. But there is more. In general,
irrationality proofs obtained by explicit construction of rational approximations
yield more information than just an irrationality proof. They often provide so-
called irrationality measures as well. It turns out that Hata’s construction also
yields the best irrationality measure for m yet proved.

In the remainder of this section we explain what an irrationality measure 1s,
and how they can be estimated. In the following, o will be a fixed irrational
number. Consider a rational approximation f]—’ to a with p,q € Z, ¢ > 0 and
ged(p, ¢) = 1. Recall that we defined the quality of this approximation is the
number M > 0 such that

or, if it does not exist, we take M = 0. As a first result we prove,

Theorem. Let a be an irrational number. Then there exist infinitely many
approximations to 7 of quality > 2.

This statement is part of the theory of continued fractions. But also without
knowledge of continued fractions it is not hard to show. Fix a large positive
integer () and consider the set of numbers {ga'} for ¢ =0,1,2,...,Q, where {2}
denotes the difference between a and the largest integer < . The set of {ga} is
a set of @ + 1 numbers in the interval [0, 1). So it tends to be crowded when @
gets large. In particular, there must be two values of ¢, say g1 < g2, such that
the difference between {q;a} and {gaa} is less than % in absolute value. Choose
integers py, p2 such that {g;a} = ¢;a — p;. Then, (g2 — q1)a — (p2 — p1)| < %
Since clearly 0 < ¢ga—q1 < @ we see that pz:pll is an approximation of quality at
least 2. By choosing increasingly large values for @ we can produce an infinite
sequence of such approximations. qed




In the introduction we have seen two good rational approximations to m whose
quality was larger than 3. One may wonder if an infinite number of such good
quality approximations exist for m, or any other irrational we are looking at. To
that end we introduce the following concept.

Definition The irrationality measure of an irrational number « is defined as
the limsup over all qualities of all rational approximations and is denoted by
p(a).

We have taken the limsup in our definition rather than the maximum since we
are for example interested in the question whether 7 has infinitely many approx-
imations of quality at least 3. The first two occurrences from the introduction
may have been exceptional coincidences. If we assume that 7 behaves like most
other numbers, then there is very little chance that u(r) > 3. This is shown by
the following Theorem.

Theorem The set of irrational numbers with irrationality measure strictly
larger than 2 has Lebesgue measure zero.

This Theorem is not hard to prove. Let us restrict ourselves to the irrational
numbers in the interval [0, 1]. Choose € > 0. A number o with p(a) > 2 4 2¢
18, by definition, contained in an interval of the form

p 1 p 1
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with 0 < p < ¢ integers, infinitely many times. Let us give an upper bound

for the total length of these intervals with ¢ > @, where @ is some large fixed
positive integer. Such a bound can be given by

oo q 9
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The inner sum is equal to —Z=. The sum over q can be estimated by the integral
q

criterion,
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When we let @ — oo we see that the latter bound goes to zero. Hence the
Lebesgue measure of the numbers in [0, 1] with irrationality measure > 2+ 2¢ is
zero. The set of numbers in [0, 1] with irrationality measure > 2 is the union of
all sets of numbers with irrationality measure at least 24-2/n forn = 1,2,3,4, .. ..
Since a countable union of measure zero sets has again measure zero, our result
follows. qed

We note that numbers with irrationality measure > 2 do exist. In fact there
exist irrational numbers with irrationality measure co. These are the so-called
Liouville numbers. An example of such a number is given by

1
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The reader may wish to verify as an exercise that the truncated series form
a sequence of approximations whose qualities go to co. On the other hand,
numbers like Liouville numbers are a bit artificial. They are constructed for
the purpose of having large irrationality measures. It is expected that the
irrationally measure for a naturally occurring number is 2. Unfortunately, there
are not many instances where this is known. The algebraic numbers are known
to have measure 2. This was shown by K.F.Roth in 1955, an achievement
which won him the Fields medal. Another known instance is e. The fact that
p(e) = 2 can easily be shown by using the continued fraction expansion of e
which, contrary to that of m, is completely known. Although it is expected that
pu(m) = 2, it is very hard to get any results on p(r). It was only in 1953 that
K.Mahler was able to show for the first time that p(n) is finite. More precisely,
he showed that p(m) < 42. Through subsequent work, this bound was improved
to lower values as is seen from the following table:

Name year | upper bound
for p(m)
K.Mabhler 1953 42
M.Mignotte 1974 20.6
G.Chudnovsky 1979 19.89
G.Rhin, C.Viola | 1993 14.8
M.Hata 1993 8.02

Mignotte and Chudnovsky used Mahler’s method by improving his estimates.
Rhin and Viola used certain double integrals to show that p(n?) < 7.4. This im-
plies that pu(m) < 14.8. The reader may wish to verify this last implication as an
exercise. The record of Rhin and Viola was only short-lived, since Hata derived
his bound on p(w) in the same year. The method of Hata differed completely
from its predecessors. It uses precisely the sequence of explicit rational approx-
imations to m which we mentioned before. How one can derive an irrationality
measure by constructing a sequence of rational approximations is explained in
the following Proposition.

Proposition Let « be a real number. Suppose we have a sequence of rational

approximations
PP P P
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to o and suppose there exist € > 0, ¢ > 1 with the following properties:
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i) B £ z:—: for all n.
i) ¢, < Q" for all n.
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Roughly speaking this Proposition says that if we can construct a sequence of
explicit rational approximations to a with qualities at least 1 4 ¢, then this
allows us to show that p(a) < 1+ 1. So, to get a bound for p(n) one might
construct a sequence of good quality approximations to 7. Once more we have
arrived at the problem of constructing such a sequence. In the next section we
eventually find such a construction. We close this section with a proof of the
Proposition.

Let f]—’ be any rational number with ¢ > 0. Choose n such that Q" > 2¢ >

Q<("=2). Note that there are two such n. We make the choice such that Z—" # ’q—’.
This is possible on the basis of assumption (i). Then
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where we denoted A = ‘oz — f]—". Using 2¢ < Q" our last inequality implies

1 1
<A+

Q" ~ 2qQ"

and hence )
A >
2qQ"
Now we use 2¢ > Q°"=2) to derive Q" < (2¢)™/(<(*=2)) Hence
. B‘ = A > (2)7 T
q

As ¢ increases, the number n increases and n/(n — 2) — 1. Thus we see that
there cannot be infinitely many approximations of « of quality 1+ % + 4 for any
fixed & > 0. We conclude, p(a) <14 % qed

4 Constructing rational approximations of 7

In this section we shall make a number of attempts to construct good quality
approximations to w. In presenting several attempts, only one of which is suc-
cessful, we hope to illustrate the elusiveness of m with respect to explicit rational
approximation.

Our first approach begins with the consideration of integrals of the form

J(F):/O f%)z dt
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where F' € Z[t] with the constraint that F'(i) = F'(—¢). The reason is that by a
partial fraction expansion we see that

o _ ()+F(i)—F(—i) t F(i)+ F(=i) 1
1+ ¢2 21 142 2 1+ ¢2

for some polynomial G' € Z[t]. Assuming now that F (i) = F(—i) we get, using
Jy = dt = I, that
1 .
F
ﬂm:/hqwa+—@m
0 4
When J(F) is small, the rational number —ﬁ fol ((t) dt can be considered as
a rational approximation of w. In order to make J(F') small it is a good idea
to choose F' is such a way that it has small values in the interval [0,1]. For

example F(t) = t**(1 —¢)*", whose maximum value on [0, 1] is ﬁ. Moreover,
for this choice of F' we get F(i) = F(—i) = (—4)". Putting

1 44n 4n
(1= 1)
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we get
929
Ji o= _7T+7
188684
Sz = "~ 15015
431302721
Js = 16T+ —ea0s
5930158704872
Joo = AT — S ITR0T25

Without proof we mention here that the qualities of the resulting approxima-
tions eventually tend to log4/log(2e®) ~ 0.738. So this is not enough to get
either an irrationality proof of 7, nor an irrationality measure. Notice by the
way that J; = —7m + %, which gives one of the two famous approximations of
m. Since [; is the integral of a positive function we see that J; > 0 and thus
we have a proof of the fact that = # % It is not clear whether there exists a
natural choice of F' which produces the approximation %

I have tried a number of other choices of F', but they also did not give the
desired infinite sequence of quality > 1 approximations to w. The reader 1s
hereby invited to make a number of attempts for his or herself. Programs like
Maple and Mathematica can be very helpful such experiments.

There 1s a small extension of the previous idea, namely to consider integrals of

the form .
F = ——— dt
J( am) /0 (1 +t2)m+1

11



where m € Zsg and F € Z[t]. Having higher powers of 14t in the denominator
makes the integrand even smaller. In addition, the exponent m+ 1 turns out to
have a positive influence on the size of the denominators of the approximations.
In general J(F,m) evaluates to

apm + bF,mﬂ' +crm log 2,

where apm,bF m, cFm are rational numbers.
The following evaluations of b ,, and cp,, are an exercise for the reader who
feels challenged by them.

. 1. F(t
1) ¢pm = —gresidue;—q, [W} .

7

2

ii) bpm )+t

residue;—; {( Fit) }

i) cpm = 0if F € Z[t?] or degree(F) < 2m.

We remind the reader that the residue of a rational function G at ¢ = oo is
minus the coefficient of +~! in the Laurent expansion of G in increasing powers
of =1 Using this remark it is hopefully clear that (iii) is a direct consequence
of (i).

It is clear that for the construction of rational approximations of 7 we must get
rid of the log2 term. So we want that ¢p,,, = 0. By property (iii) we see that
this certainly holds for integrals of the form

Logn(l —g)n
0

(1+t2)n+1
Then
11
Jl = —gﬂ'—i—i
13
Jz = gﬂ'—g
119
Jao = TR
17 5
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This gives us the approximations

4 3 19 160 1744 644

of w. It turns out that roughly the first thirty approximations in this sequence
do have quality > 1. So this looks promising. Unfortunately in the long run the

12



asymptotics have decided otherwise and the qualities go to the value 0.9058 ...
as n — 00. As we see, the result is better than the previous attempt, but 0.9058
is still not larger than 1.

It is not entirely without reason that we mention the above approximations.
They are closely related to continued fractions. Consider the classical continued
fraction

arctan r = i 5
x
1+
L
- G
T+ .
Take # = 1 to obtain A
T =
12
14 57
3+ 32
5+
T+ .
The first few convergents read:
4 4 4 19
— =14 = =
1 ’ ] 12 5 ] 12 6
" 3 " 3+ 2
5
i
12 51
14 57
3+ 32
54
+ 7

Notice that these are exactly the approximations we got with the integrals
Jn. Again, the reader with some experience in continued fractions and partial
integration may try to show these equalities.

Let us now point out a small side track. Take z = % in our continued fraction

for arctan z. We obtain,

T 2
A T
22/3
3—1-732/3
5+ ——

T+ .

The first few convergents are:

0 49 185 5387
'572771027 29707

13



It turns out the qualities of these approximations to % tend to 1.1368--- as
n — 00. So we see that for \/ig it is possible to get a sequence of good quality
approximations. In a similar vein, R.Apéry discovered in 1978 an infinite se-

quence of good quality approximations to 2. So we see that the numbers %

and 72 are better amenable to explicit rational approximations. However, what
we really want is w! This is a somewhat frustrating situation and many people
have tried to give good explicit approximations. As we remarked before, it was
not until 1993 that M.Hata succeeded in doing so.

The approximations we present now, are a variation on Hata’s ideas. They have
the property that they fall more into the line of approach we have adopted in
this section. The resulting approximations are weaker than the ones obtained
by Hata, but they do have the desired qualities > 1.

Consider the integrals

1 t2n(1 _t2)2n
S S 0 R 1
w= | e @

This way of writing J, is more in line with Hata’s approach. Split the interval
[—1,1] into its positive and negative part. Substitute { — —¢ on the negative
part, and we obtain an integral of the form we are looking for,

g /1 t2n(1 _ t2)2n ((1 4 it)3n+1 4 (1 _ it)3n+1)
0

dt.
(1 4 ¢2)3n+1

The first few values read:

Ji = ldr—44
45616
Jz = 9687 — T
1
Js = 759207 — 1509968
9778855936
b
Jawo = agr— —
C40

Note that J; gives us the aproximation % again! We have not written down
the values of the integers a4g, bag, cap but we would like to mention some pecu-
liarities:
ged(aao, bag) = 27°
cap=23-5-72-13-17-19-23-.29-37-41-43-47-
-53-59-83-89-97--101-103-107-109-113

14



In general, let us write J,, = anﬂ'—i—z with ay,, by, ¢, integers and ged(by,, ¢p) = 1.
It turns out that both a, and b, are divisible by 2[7/2] for all n. So this means
that Jn/Q[”/Z] gives us the same approximations as J,, but its absolute value
is much smaller. Secondly, we can show that ¢, divides the lowest common
multiple of the numbers 2,3,...,3n. And so ¢, will be composed of many
primes < 3n, as we can see from the example ¢q9. However, observe that in
the factorisation of cs4p the primes between 60 and 80 are missing. This is no
coincidence. Hata discovered that in general the primes between 3n/2 and 2n
do not occur in the factorisation of ¢,;. This absence of primes improves our
estimates for the size of the denominator of the approximation for = by a small
amount. But it 1s precisely the right amount to enable us to get approximations
of quality > 1. It turns out that the integrals Jy, Jo, ... give us the sequence of
approximations

22 5702 104348
7718157 33215

of m whose qualities exceed 1.0449 in the long run!
Supposing this sequence satisfies all other assumptions of our Proposition on

irrationality measures, we get an irrationality measure of 1+ m =23.271...
Of course this is worse than the measure given by Hata. The construction used
by Hata is somewhat different from the type of integral we considered in this
section. Readers interested in this original construction are warmly encouraged
to have a look at Hata’s paper. The main point of the present section was to
point out that a judicious choice of F(¢) may after all produce a sequence of
good quality m-approximations. In fact, I spent considerable effort to find other
choices of F'(t) which would give better quality approximations than those from
Jn. This would have been a nice result on the occasion of Pi-day. Unfortunately
I was not clever enough to find such F(t). However, given the fact that the
possibility of such a choice was proved only around 1993, one should not give
up hoping for an improvement. It would actually be a very nice surprise if
a reader of this article is more successful in finding such a sequence of better
approximations.

5 Bibliography

Here we collect a number of books and URL’s concerning m. First a number of
books on m-folklore.

David Blatner, The joy of m, Walker Publishing 1997

This small book is notable for its appearance (a square) and a very rich layout.
The main theme of the book, as suggested by the title, 1s the joy which one
can have working with 7. So we find lots of anecdotes, history and citations.
The underlying mathematics is hardly exposed. A Dutch high school education
would suffice as a suitable background.

Peter Beckmann, A history of m, St.Martin’s Press, 1971.
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Because of its publication date, the important developments from 1971 and
later are missing. Nevertheless 1t is an interesting book for anyone concerned
with the history of w. In particular the author’s opinions about the scientific
contributions of the Romans and medieval Christianity are merciless.

Jean-Paul Delahaye, Le fascinant nombre m, Pour la Science; Belin, 1997.

This book, in French, is a carefully composed book and a very rich source of
m-information. The author i1s experienced in writing about math for a larger
audience. We recognize this in the choice of subjects and the presentation of
this book. On the other hand the author does not lose sight of the underlying
mathematics. A real winner for anyone who likes to become acquainted with
m-knowledge. A first year university background suffices.

Pierre Eymard, Jean-Pierre Lafon, Autour du nombre m, Hermann, 1999

This book contains an enormous amount of information but 1s more encyclopedic
than the other books. The emphasis is on the mathematical background of
anything related to m, including the more difficult points such as Ramanujan’s
formulae and the Gauss-Salamin algorithm. Both of these require knowledge of
elliptic functions, their periods and quasi-periods, something which is avoided
in most other books. A university education in mathematics is probably the
required background for reading.

Lennart Berggren, Jonathan Borwein, Peter Borwein, Pi: a source book, Springer
Verlag 1997 (2nd edition 1999).

Two of the authors, the brothers Borwein, have made considerable contributions
to the mathematics behind 7 in the last fifteen years. This book is a collection
of reprinted original publications about relevant developments around 7 in the
last three millenia. Although a number of articles can be understood without
too much mathematical background, the book is primarily of interest to readers
with a university background. For m-experts this book is a ‘must’. The second
edition contains a reprint of Hata’s article which was the inspiration for the
present article.

J.M.Borwein, P.Borwein, Pi and the AGM, A study wn analytic number theory
and computational complexity, Wiley-Interscience, 1998.

This book explains the background of Ramanujan’s formulas and the AGM-
algorithm to compute 7. As you probably know, Ramanujan himself provided
hardly any details as to his method. The authors provide those details and
along the way they also find new algorithms for the computation of © which are
orders of magnitude faster than the already fast AGM-algorithm. A background
in university mathematics is required.

F Beukers, Pi, Epsilon, fall 2000. This booklet, written in Dutch, will appear
in the fall of 2000 in the ZEBRA series. This series is published by Epsilon
publishers in cooperation with the Dutch society of math teachers (NVvW).
The books in ZEBRA are aiming at high school students who need to occupy
about 40 hours of their math program with a subject of their own choosing.
Consequently, this book is a light introduction to the first properties of # and

16



its uses. Needless to say, it is suitable for anyone with a beginning knowledge
of calculus in one variable.

It is very easy to find w-information on the world wide web. Starting points can
be the websites of the Borwein brothers:

http://wuw.cecm.sfu.ca/personal/jborwein/pi_cover.html
http://www.cecm.sfu.ca/personal/pborwein.

On the latter one can find the slides that Peter Borwein used for his talks on
Pi-day. Then there is the less serious

http://wuw.go2net.com/useless/useless/pi/pi_pages.html.

Of course there are many more sites, but the present ones may serve as good
points of departure.
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