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Abstract

In this paper,1 we present a semantic theory for the exchange of information in multi-agent
systems. We consider the multi-agent programming language agent communication programming
language, which integrates the paradigms of concurrent constraint programming and communi-
cating sequential processes (CSP). The constraint programming techniques are used to represent
and process information, whereas the synchronous communication mechanism from CSP is gen-
eralised to enable the exchange of information. The semantics of the language, which is based
on a generalisation of traditional failure semantics, is shown to be fully abstract with respect to
observing of each terminating computation its <nal global store of information. c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Multi-agent systems are the subject of a very active and rapidly growing research
<eld in both arti<cial intelligence and computer science. Although there is no formal
de<nition of an agent (in fact this also holds for the notion of an object, which
nevertheless has proven to be a very successful concept for the design of a new

1 This paper is an extended version of [7].
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generation of programming languages), generally speaking, one could say that a multi-
agent system constitutes a system composed of several autonomous agents that operate
in a (distributed) environment which they can perceive, reason about as well as can
aDect by performing actions [24]. In the current research on multi-agent systems, a
major topic is the development of a standardised agent communication language for
the exchange of information. Recently, several agent communication languages have
been proposed in the literature, like for instance the languages KQML [8] and FIPA-ACL

[12]. However none of these communication languages have been given a fully formal
account of their semantics [23]. The main contribution of this paper is the introduction
of a formal semantic theory for the exchange of information in multi-agent systems.

1.1. Concurrent programming

We introduce the multi-agent programming language agent communication program-
ming language (ACPL), which models the information processing aspects of agents.
The underlying computational model of the language has already been introduced in
[19–22]. The basic operations of the language for the processing of information are
the ask and tell operations of concurrent constraint programming (CCP) [15,16]. This
programming paradigm derives from traditional programming by replacing the store-
as-valuation concept of von Neumann computing by the store-as-constraint model.
This computational model is based on a global store, represented by a constraint,
that expresses partial information on the values of the variables that are involved in
computations. The diDerent concurrently operating processes in CCP re<ne this partial
information by adding (telling) new constraints to the store. Additionally, communica-
tion and synchronisation are achieved by allowing processes to test (ask) if the store
entails a particular constraint before they proceed in their computation. These basic op-
erations of asking and telling are de<ned in terms of the logical notions of conjunction
and entailment, which are supported by a given underlying constraint system.
In the language ACPL, however, the global store of CCP is distributed among the

agents of the system. That is, the above described ask and tell operations of CCP are
used by an agent to maintain its own private store of information. More precisely,
these operations are performed by concurrently executing threads within the agent.
The agent itself, however, has no direct access to the parts of the global store that are
distributed among the other agents in the system. Instead, the agents can only obtain
information from each other by means of a synchronous communication mechanism.
This communication mechanism is based on a generalisation of the communication

scheme of (imperative) concurrent languages like communicating sequential processes
(CSP) [11], where the generalisation consists of the exchange of information, i.e. con-
straints, instead of the communication of simple values. Abstractly, communication
between two agents comprises the supply of an answer of one agent to a posed ques-
tion of another agent, and as such presents the basics of a dialogue. In particular,
posing a question amounts to asking the other agent whether some information holds,
while the answering agent in turn provides information from its own private constraint
store that is logically strong enough to entail the question. In general, our programming
language thus can be viewed upon as a particular model of the concept of distributed
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knowledge as introduced in [9]. The above described communication mechanism then
provides a way in which the distributed knowledge of a multi-agent system can become
shared among the agents.

1.2. Fully abstract semantics

The main result of this paper is a compositional semantics for the multi-agent
language ACPL that is fully abstract with respect to observing the <nal (global) stores
of terminating computations. This semantics is based on a generalisation of the failure
semantics as developed for CSP, in which failure sets are employed to give a semantic
account of (possible) deadlock behaviour [5]. However, whereas in CSP a failure set
is simply given by a subset of the complement of all the initial actions of a process,
in our framework, these failure sets are de<ned in terms of the information that is
logically irrelevant to the speci<c question or answer of the agent. Moreover, for CSP-
like languages the failure sets can without loss of generality be assumed to be 7nite
[18]. This assumption, which plays an essential role in the full abstractness proof, fails
in the context of the exchange of information. However, we show that our notion of
failure semantics, which includes in7nite failure sets, satis<es a compactness property
that roughly amounts to the following: if every 7nite subset of a given set of answers
or questions is logically irrelevant (with respect to a particular question=answer of a
given agent) then this entire set is irrelevant. Additionally, the logical nature of the
communication mechanism requires an abstraction of what is actually communicated.
This abstraction corresponds to the principle of ‘asking more and telling less’ that
forms the basis of the fully abstract model of CCP [6,16].

1.3. Related work

To the best of our knowledge, this paper presents a <rst formal semantic account
of the exchange of information in multi-agent systems. This semantics, we believe,
provides a general basis for the semantics of agent communication languages in general
as introduced in arti<cial intelligence, like for instance KQML [8].
Other approaches that relate to our programming language include the work of RJety

on distributed concurrent constraint programming [14]. One of the diDerences with
our approach is that in the framework of RJety, distributed processes do not share
any variables. In particular, communication between processes proceeds by means of
a form of constraint abstraction: during the exchange of a constraint, the variables of
the sender that occur in the constraint are replaced by the variables of the receiving
processes.
Additionally, there is the research on synchronous concurrent constraint program-

ming, which is a version of CCP that in addition to the standard ask and tell operations,
covers a synchronous communication mechanism in which a constraint is told to the
constraint store only if there is another process asking for it [4]. The main diDerence
with our approach is that in this framework both the synchronous and asynchronous
form of communication proceed via a global constraint store.
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1.4. Overview

The remainder of this paper is organised as follows. In Section 2, we give the
syntax of the multi-agent programming language ACPL, which combines the language
of concurrent constraint programming with synchronous communication primitives for
the exchange of information. The structural operational semantics of this language is
subsequently de<ned in Section 3 in terms of a local and global transition system.
Additionally, in Section 4, we de<ne a failure semantics which is shown to be fully
abstract with respect to observing the <nal information store of terminating computa-
tions. Finally, in Section 5 we round oD by suggesting several directions for future
research.

2. Syntax

In this section, we introduce the syntax of our agent language ACPL, which like CCP

is parameterised by a constraint system that is used to represent information.

De�nition 1 (Constraint systems). A constraint system C is a tuple (C;�;�; true;
false), where C (the set of constraints, with typical element ’) is a set ordered with
respect to �; � is the least upperbound operation, and true, false are the least and
greatest elements of C, respectively.

The interpretation of ’�  is that ’ contains less information than  , while ’ �  
denotes the conjunction of ’ and  .
In order to model hiding of local variables and parameter passing in constraint

programming, in [16] the notion of constraint system is enriched with cylindri7cation
operators and diagonal elements, which are concepts borrowed from the theory of
cylindric algebras [10].

De�nition 2 (Cylindric constraint systems). Given a (denumerable) set of variables Var
with typical elements x; y; z; : : : ; we introduce a family of operators {∃x | x∈Var} (cylin-
dri<cation operators) and of constants {dxy | x; y∈Var} (diagonal elements).
Starting from a constraint system C, we de<ne a cylindric constraint system C′ as

the constraint system whose support set C′ is the smallest such that

C′ = C ∪ {∃x’ | x ∈ Var; ’ ∈ C′} ∪ {dxy | x; y ∈ Var}

modulo the identities and with the additional relations derived by the following axioms,
where ∃x’ �  stands for (∃x’) �  :
A1. ∃x’�’,
A2. if ’�  then ∃x’�∃x ,
A3. ∃x(’ � ∃x )=∃x’ � ∃x ,
A4. ∃x∃y’=∃y∃x’,
A5. dxx = true,
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Fig. 1. Layers of a KQML expression.

A6. if z 	= x; y then dxy =∃z(dxz � dzy),
A7. if x 	= y then ’�dxy � ∃x(’ � dxy).

The above laws give to ∃x the Mavour of a <rst-order existential quanti7er, as the
notation also suggests. The constraint dxy can be interpreted as the equality between x
and y. Cylindri<cation and diagonal elements allow us to model the variable renaming
of a formula ’; in fact, by the above axioms, the formula ∃x(dxy�’) can be interpreted
as the formula ’[y=x], namely the formula obtained from ’ by replacing all the free
occurrences of x by y. We also assume the generalisation ’[ Ny= Nx] to sequences of
variables.
Agent communication languages, like KQML [8], can be thought of being divided in

diDerent layers (see Fig. 1). Constraint systems can be used to represent the content
layer of KQML, which involves information on the domain of discourse.
Additionally, we will represent the speech act types [1,17] of the message layer

of KQML by corresponding operators on the underlying constraint system. For exam-
ple, a KQML expression consisting of a content expression ’ that is encapsulated in a
message wrapper containing the speech act untell, which allows to derive negative
information in terms of the closed world assumption [13], is represented by the expres-
sion untell(’). These operators can be de<ned by an extension of the information
ordering of the constraint system. For instance, given the constraints  and ’, we
de<ne

’ 	�  ⇔ untell(’) �  :

Assuming that  represents the belief base of an agent, this rule formalises the closed
world assumption. The anti-monotonicity property of the untell operator is expressed
by

untell(’) � untell( ) ⇔  � ’:

In this paper, we will assume that the content layer and message layer together form a
constraint system. This assumption is justi<ed because the semantics of the communi-
cation mechanism itself can be fully described in terms of the underlying information
ordering.
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The communication mechanism is described in KQML by its communication layer and
involves basic concepts like sender, recipient, communication channel and synchronic-
ity.
The main objective of the programming language de<ned below is to provide

a generic framework for the exchange of information in multi-agent systems, which
abstracts from the speci<c nature of the underlying information system.
In the following de<nition, we assume a given set Chan of communication channels,

with typical element c.

De�nition 3 (Basic actions). Given a cylindric constraint system C the basic actions
of the programming language are de<ned as follows:

a ::= c!’ | c?’ |ask(’) | tell(’):

The execution of the output action c!’ consists of sending the information ’ along
the channel c, which has to synchronise with a corresponding input c? , for some  
with  �’. In other words, the information ’ can be sent along a channel c only
if some information entailed by ’ is requested. The execution of an input action
c? , which consists of receiving the information ’ along the channel c, also has to
synchronise with a corresponding output c!’, for some ’ with  �’. The execution
of a basic action ask(’) by an agent consists of checking whether the private store of
the agent entails ’. On the other hand, the execution of tell(’) consist of adding ’
to the private store.
In the following de<nition, we assume a given set Proc of procedure identi<ers,

with typical element p.

De�nition 4 (Statements). The behaviour of an agent is then described by a statement
S:

S ::= a · S | S1 + S2 | S1 & S2 | ∃xS | p( Nx):

Statements are thus built up from the basic actions using the following standard
programming constructs: action pre<xing, which is denoted by ·; non-deterministic
choice, denoted by +; internal parallelism, denoted by &; local variables, denoted by
∃xS, which indicates that x is a local variable in S; and (recursive) procedure calls of
the form p( Nx), where p∈Proc constitutes the name of the procedure and Nx denotes
a sequence of variables which constitute the actual parameters of the call. Since, no
information on a local variable x can be communicated we additionally require that in
∃xS the variable x does not occur free in a communication of S; that is, ∃x’=’ for
every communication action c?’ or c!’ of S.

De�nition 5 (Multi-agent systems). A multi-agent system A is de<ned as follows:

A ::= 〈D; S; ’〉 | A1 ‖ A2 | �H (A):

A basic agent in a multi-agent system is represented by a tuple 〈D; S; ’〉. The set D
consists of procedure declarations of the form p( Nx) : −S, where Nx denote the formal
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parameters of p and S denotes its body. We assume that D satis<es the following
property:

if p( Nx) : −S ∈ D then p( Ny) : −S[ Ny= Nx] ∈ D

for all Nx and Ny, where S[ Ny= Nx] denotes the statement S in which each constraint ’ is
replaced by ’[ Ny= Nx]. The statement S in 〈D; S; ’〉 describes the behaviour of the agent
with respect to its private store ’. The threads of S, i.e. the concurrently executing
substatements of S, interact with each other via the private store of the basic agent by
means of the actions ask( ) and tell( ). As in the operational semantics below the
set D of procedure declarations will not change, we usually omit it from notation and
simply write 〈S; ’〉 instead of 〈D; S; ’〉.
Additionally, a multi-agent system itself consists of a collection of concurrently

operating agents that interact with each other only via a synchronous information-
passing mechanism by means of the communication actions c! and c? .
For technical convenience only we restrict to the parallel composition of agent sys-

tems: the semantic treatment of the sequential composition of multi-agent systems and
the non-deterministic choice between agent systems is standard. Moreover, due to our
focus on the semantic treatment of the communication mechanism we do not consider
recursion at the level of multi-agent systems.
Finally, the encapsulation operator �H with H ⊆Chan, which stems from the process

algebra ACP, is used to de<ne local communication channels [2]. That is, �H (A) denotes
a multi-agent system in which the communication channels in H are local and hence,
cannot be used for communication with agents outside the system.

3. Operational semantics

The structural operational semantics of the programming language is de<ned by
means of a local and a global transition system. Given a set of declarations D, a local
transition is of the form

〈S; ’〉 l→〈S ′;  〉
where either l equals � in case of an internal computation step, that is, a computation
step which consists of the execution of a basic action of the form ask(’) or tell(’),
or l is of the form c!’ or c?’, in case of a communication step. We employ the
symbol E to denote successful termination.

De�nition 6 (Transitions for basic actions).

〈c!’;  〉 c!’→〈E;  〉 if ’ �  

〈c?’;  〉 c?’→〈E;  � ’〉
〈ask(’);  〉 �→〈E;  〉 if ’ �  

〈tell(’);  〉 �→〈E;  � ’〉
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An output action c!’ can only take place in case the information ’ to be communicated
is entailed by the private store  . In other words, the agents are assumed to be truthful.
On the other hand, the information ’ received by an input action c?’ is added to the
private store. It is worthwhile to remark here that alternatively we could have de<ned

input actions semantically by 〈c?’;  〉 c?’→〈E;  〉. Whether or not the private store is
correspondingly updated can be controlled by the agent itself by means of the action
tell(’). However, for technical convenience only we have adopted in this paper the
<rst approach.
The actions ask(’) and tell(’) are the familiar operations from CCP which allow

an agent to inspect and update its private store.
Furthermore, we have the usual rules for action pre<xing, procedure calls and the

programming constructs for non-deterministic choice and parallel composition, which
is modelled by interleaving.

De�nition 7 (Transitions for statements).

〈a;  〉 l→ 〈E;  ′〉
〈a · S;  〉 l→ 〈S;  ′〉

〈S1;  〉 l→ 〈S ′
1;  

′〉
〈S1 & S2;  〉 l→ 〈S ′

1 & S2;  ′〉
〈S2 & S1;  〉 l→ 〈S2 & S ′

1;  
′〉

〈S1;  〉 l→ 〈S ′
1;  

′〉
〈S1 + S2;  〉 l→ 〈S ′

1;  
′〉

〈S2 + S1;  〉 l→ 〈S ′
1;  

′〉

〈S;∃x � ’〉 l→ 〈S ′;  ′〉
〈∃’

x S;  〉 l→ 〈∃ ′
x S ′;  � ∃x ′〉

〈p( Ny);  〉 �→ 〈S;  〉 where p( Ny) :− S ∈ D

Note that the syntax of the language is extended with a construct of the form ∃’
x S

denoting that in the statement S the variable x is a local variable, where the constraint
’ collects the information on the local variable x. In this notation, the statement ∃xS is
written as ∃truex S, denoting that the local constraints on x are initially empty. Note that
no information on the local variable x can be communicated, because by de<nition x
does not occur free in ’ in case l is of the form c?’ or c!’.

A global transition is of the form A l→A′, where l indicates whether the transition
involves an internal computation step, that is, l= �, or a communication, that is, l= c!’
or l= c?’.
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De�nition 8 (Transitions for multi-agent systems). The following rule describes paral-
lel composition by interleaving of the basic actions:

A1
l→ A′

1

A1 ‖ A2
l→ A′

1 ‖ A2
A2 ‖ A1

l→ A2 ‖ A′
1

In order to describe the synchronisation between agents we introduce a synchronisation
predicate |, which is de<ned as follows. For all c∈Chan and ’;  ∈C, if  �’ then

(c!’ | c? ) and (c? | c!’):
In all other cases, the predicate | yields the boolean value false. We then have the
following synchronisation rule:

A1
l1→ A′

1 A2
l2→ A′

2

A1 ‖ A2
�→ A′

1 ‖ A′
2

if l1 | l2

This rule shows that an action of the form c? only matches with an action of the
form c!’ in case  is entailed by ’. In all other cases, the predicate | yields false and
therefore no communication can take place.
Finally, encapsulation of communications along a set of channels H is described by

the rule:

A l→ A′

�H (A)
l→ �H (A′)

if chan(l) ∩ H = ∅

where chan is de<ned by chan(c!’)= chan(c?’)= {c} and chan(�)= ∅.

For any multi-agent system A we use the notation store(A) to denote its constraint
store.

De�nition 9 (Global store). We de<ne store(A) by induction on the structure of the
agent system A:

store(〈D; S; ’〉) = ’
store(A1‖A2) = store(A1) � store(A2)
store(�H (A)) = store(A)

For any multi-agent system A; store(A) thus denotes the global constraint store
that is distributed among its (sub-)agents. In fact, this amounts to what is known as
distributed knowledge in the research on distributed systems, referring to the knowledge
that would result if the knowledge of all agents in a distributed system is taken together
[9].
We want to observe the behaviour of a multi-agent system when it runs on its own,

that is, as a closed system without interaction with an environment. In the de<nition
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below the observable behaviour of a multi-agent system is therefore de<ned as the set
of <nal stores of terminating computations that consist of internal computation steps
only. Moreover, the existence of an internally diverging computation or the generation
of an inconsistent global store will be considered as a fatal error and as such they
will give rise to chaos, which amounts to a situation in which simply anything can be
observed.
In de<ning the operational semantics we make use of several auxiliary notions:

• The notation A ⇒ B indicates the existence of a computation that consists of internal
computation steps only: A �→ · · · �→ B. Additionally, B 	 �→ indicates that starting
from B there is no further �-transition possible; that is, B is either terminated or
represents a deadlock situation.

• Furthermore, the construct A ⇒ ! indicates the existence of an in<nite computa-
tion that consists of internal computation steps only: A �→ · · · �→ Ai

�→ · · ·. Such
computations are called divergent.

The operational semantics is then de<ned as follows.

De�nition 10 (Operational semantics).

O(A) = {store(B) |A ⇒ B
�9 } ∪

{’ ∈ C |A ⇒ B; store(B) = false} ∪
{’ ∈ C |A ⇒ !}:

Thus, the observable behaviour O(A) of an agent system A consists of the output
stores that the system produces. However, in case the system produces an output store
that is inconsistent or gives rise to an internally diverging computation, a fatal error
has occurred. In these circumstances, the observable behaviour comprises all possible
output stores.
Note that the treatment of (internally) diverging computations and inconsistent stores

can be mathematically justi<ed in terms of the following recursive de<nition of O:

O(A) = {store(A) |A �9 } ∪
{’ ∈ C | store(A) = false} ∪
{’ ∈ O(B) |A �→B}:

The above non-recursive de<nition then can be shown to correspond to the greatest
7xpoint of this recursive equation with respect to the pointwise extension of the subset
ordering.
We observe that internal divergent computations may be unfair: if A gives rise to

an internally divergent computation so will A ‖ B, for any B. However, the results of
this paper can be easily extended to a semantics of the parallel composition operator
which is weakly fair in the following sense: every parallel agent which is enabled will
eventually be executed.
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4. Failure semantics

In order to obtain a compositional and fully abstract characterisation of the above
de<ned notion of observables, we introduce a re<ned semantics that besides containing
the produced information store, also records the sequence of communication actions
that the system executes as well as a failure set that contains the actions that, when
oDered by the environment, lead to a deadlock situation.

De�nition 11 (Failure semantics).
• The transition relation A w⇒ B, where w is a sequence of communication actions,
indicates that the agent system A can evolve itself into B by executing a sequence
of actions w′ such that w can be obtained from w′ by deleting all �-moves.

• We let I be the function that associates with each multi-agent system A the collection
of initial actions it can perform, which is de<ned as follows:

I(A) = {l | A l→B; for some B}:
• Given a set X of communication actions, the complement NX is de<ned by

NX = {c? | there does not exist c!’ ∈ X with  � ’} ∪
{c!’ | there does not exist c? ∈ X with  � ’}:

The set NX thus contains precisely the communication actions that cannot synchronise
with a communication action in X .

• The failure semantics F is then de<ned as follows:

F(A) = {〈w; (store(B); F)〉 |A w⇒B; � =∈ I(B); F ⊆ I(B)} ∪
{〈w · w′;⊥〉 |A w⇒B and store(B) = false} ∪
{〈w · w′;⊥〉 |A w⇒B and B ⇒ !}:

The above failure semantics associates with each multi-agent system A a set of failure
traces, which record the sequence of communication actions that are generated by a
computation of A, the corresponding resulting store and a failure set of communication
actions that are refused. Divergence and inconsistency are represented by the symbol
⊥, denoting a situation of chaos in which everything is possible.
The above de<nition of a failure set diDers from the standard one, which is simply

given by a subset of the complement of the set of initial actions [3,5]. The standard
failure sets as such indicate the actions which the process itself cannot perform. How-
ever, the communication actions that an agent cannot perform are not necessarily given
by the actions that it refuses for synchronisation.

Example 12 (Failure sets). Consider the following two agents A and B:

A= 〈c!(’ �  ); ’ �  〉
B= 〈(c!(’ �  ) + c!’); ’ �  〉:
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The set of initial actions of A and B are diDerent:

I(A) = {c!(’ �  )}
I(B) = {c!(’ �  ); c!’}:

Hence, the actions that A and B cannot execute are also diDerent: the agent A cannot
perform the action c!’, while this does not hold for the agent B. However, the actions
that are refused for synchronisation by the agents are the same, that is, for their failure
sets we have

I(A) = I(B):

In fact, there is the following more general result, which states that NNX contains all
the communication actions that derive from X by asking more and telling less.

Lemma 13 (Refusals of refusals). For any set X of communication actions, we have

NNX = {c? | c?’ ∈ X and ’ �  } ∪
{c!’ | c! ∈ X and ’ �  }:

Proof. We have the following sequence of equivalences:

c!’ ∈ NNX ⇔
∀ ( � ’ ⇒ c? =∈ NX ) ⇔
∀ ( � ’ ⇒ ∃’′ (c!’′ ∈ X and  � ’′)) ⇔
∃’′ (c!’′ ∈ X and ’ � ’′) ⇔
c!’ ∈ {c!’ | c!’′ ∈ X and ’ � ’′}:

To see that the third equivalence holds, for the implication from left to right take ’
for  . Conversely, consider  with  �’. If we assume that there exists a constraint
’′ with ’�’′ that satis<es c!’′ ∈X , we can also conclude that there exists ’′ with
 �’′ such that c!’′ ∈X .
The same line of reasoning can be applied to formulae c? ∈ NNX .

Of particular interest is to observe that failure sets can be in7nite, but denumerable
sets of communication actions; i.e. when the underlying constraint system contains
in<nitely but denumerable many constraints. This is in contrast with the traditional
approaches in which the assumption is made that failure sets are <nite [18].
The following theorem states the correctness of the above failure semantics.

Lemma 14 (Correctness of F). For all agent systems A and formula ’ the following
holds:

’ ∈ O(A) i; 〈'; (’; F)〉 ∈ F(A) for some F or 〈';⊥〉 ∈ F(A);

where ' denotes the empty trace.
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Proof. If ’∈O(A) then there are three possibilities: either there exists an agent system
B with A ⇒ B and store(B)=’, or a fatal error has occurred, which means that A ⇒ !
or for some B we have A ⇒ B with store(B)= false. In the <rst situation, we have
〈'; (store(B); F)〉 ∈F(A), for some particular failure set F . In the other situation, which
amounts to chaos, we have 〈';⊥〉∈F(A). For the converse, the same line of reasoning
can be applied.

4.1. Compositionality of failure semantics

In order to establish the compositionality of the failure semantics, we <rst introduce
the parallel composition of sequences of communication actions.

De�nition 15 (Compositionality of communication traces). Given sequences w1 and
w2 of communication actions, we de<ne w1‖w2 to be the following set of communi-
cation sequences [2]:
• ' ‖ ' is equal to {'}, and for the other cases:
• w1 ‖ w2 = (w1‖−w2)∪ (w2‖−w1)∪ (w1 |w2), where the leftmerge operator ‖− and the

synchronisation merge | are (recursively) de<ned by:
• (a · w)‖−w′= a · (w ‖ w′) and
• (c? · w) | (c!’ · w′)= (w ‖ w′) provided that  �’. In all other cases we have:

w1 |w2 = ∅.

Thus, w1 ‖ w2 consists of all possible interleavings of the traces w1 and w2 and
additionally takes into account all possible synchronisations between them.

De�nition 16 (The predicate X |Y ). Given two sets X and Y of communication ac-
tions, we use the notation X |Y to indicate that there exists c!’∈X and c? ∈Y (or
vice versa) such that  �’.

So if, X denotes a set of actions that an agent A can execute and Y a set of ac-
tions that an agent B can execute then X |Y implies that A and B can communicate
with each other. Finally, for the compositional modelling of chaos introduced by inter-
nally diverging computations and inconsistent constraint stores, we need the following
notions.

De�nition 17 (In<nite communication traces).
• The set F!(A) denotes all the in7nite sequences w of communication actions such
that for every pre<x w′ of w, we have 〈w′; t〉 ∈F(A), for some t.

• The predicate v1 ↑ v2 is recursively de<ned: (c!’ · v) ↑ (c? · v′) if and only if
( �’ and v ↑ v′).

The composition of termination modes is de<ned as follows.

De�nition 18 (Termination modes).
• Provided that F1 AF2 and ’1 � ’2 	= false we de<ne:
(’1; F1) ‖ (’2; F2)= {(’1 � ’2; F) |F ⊆F1 ∩ F2}
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• Provided that ’1 � ’2 = false we de<ne:
(’1; F1) ‖ (’2; F2)= {⊥}

• (’; F) ‖ ⊥= {⊥} and ⊥ ‖ (’; F)= {⊥}.

Note that the <rst two equations for the composition of termination modes are par-
tially de<ned; in the other cases, the result is the empty set. So, if one agent system
ends with a store ’1 and failure set F1 and another agent system with a store ’2 and
failure set F2, then their parallel composition produces a store ’1 � ’2 and refuses
a set F of actions that are refused by both of the agent systems, hence F ⊆F1 ∩F2.
Moreover, it is required that the systems cannot communicate with each other, that is,
F1 AF2. The second equation handles the case in which the composition of ’1 and ’2
yields an inconsistent store. This fatal error is represented by the symbol ⊥. Finally,
the third equation deals with the situation in which an error has occurred in one of the
two agent systems; this error is propagated to the parallel composition.
Next, we consider the compositionality of the failure semantics.

Theorem 19 (Compositionality of F). The compositionality of the parallel operator
is given by

F(A1 ‖ A2)
=
{〈w; t〉 |w ∈ (w1 ‖ w2); t ∈ (t1 ‖ t2); 〈w1; t1〉 ∈ F(A1);
〈w2; t2〉 ∈ F(A2)}
∪
{〈w · w′;⊥〉 |w ∈ (w1 ‖ w2); (w1 · u) ∈ F!(A1); (w2 · v) ∈ F!(A2);
u ↑ v}:

The compositionality of the encapsulation operator is phrased as follows, where we
use the notation chan(w) to denote the set of channels that occur in the sequence w:

F(�H (A))
=
{〈w; (’; F)〉 | 〈w; (’; F ′)〉 ∈ F(A); chan(w) ∩ H = ∅;
F ⊆ F ′ ∪ {c! ; c? | c ∈ H;  ∈ C}}
∪
{〈w;⊥〉 | 〈w;⊥〉 ∈ F(A); chan(w) ∩ H = ∅}:

Divergence of the parallel composition A1 ‖ A2 thus stems from the divergence of
one of the individual agent systems A1 or A2, or from the generation of an in<nite
sequence u of communication actions by A1 and an in<nite sequence v by A2 such
that each of the actions in u matches the corresponding action in v, in which case the
proposition u ↑ v is true.
The proof of this theorem can be found in the appendix. In this proof as well as in

the sequel we frequently make use of the following well-known result.
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Lemma 20 (KTonig’s lemma). Every 7nitely branching tree with an in7nite number of
nodes has an in7nite branch.

4.2. Full abstraction of failure semantics

The failure semantics F still distinguishes too many multi-agent systems, that is, it
is not fully abstract with respect to the observables O. This is shown in the following
example.

Example 21. Consider again the agents

A = 〈c!(’ �  ); ’ �  〉
B = 〈(c!(’ �  ) + c!’); ’ �  〉:

The failure semantics distinguishes these two agents since we have

〈c!’; (’ �  ; F)〉 ∈ F(B)−F(A);

for all F . However, intuitively, there is no context C such that O(C[A]) 	=O(C[B]).
(Formally, this can be shown via the correctness and compositionality of the operator
F+ that is de<ned below.)

From this example we conclude that in order to obtain a fully abstract semantics we
should account for the fact that asking for a constraint includes asking for all stronger
information and that the communication of a constraint includes the communication of
all weaker information. We therefore introduce an abstraction of F that incorporates
these properties of asking more and telling less.

De�nition 22 (Abstraction operator). For every set W of traces we denote by +(W )
the smallest set V that contains W and additionally satis<es:
• w1 · c? · w2 ∈V ⇒ w1 · c?’ · w2 ∈V , provided that  �’
• w1 · c!’ · w2 ∈V ⇒ w1 · c! · w2 ∈V , provided that  �’.

The operator + saturates a set of traces with all traces that derive via asking more
and telling less information.

De�nition 23 (The semantics F+). The semantics F+ is obtained from F as follows:

F+(A) = +(F(A));

where +(F(A)) denotes the extension of + to sets of failure traces.

The failure semantics F+ is correct and compositional with respect to the observable
O. The correctness of F+ follows from the correctness of F.

Theorem 24 (Compositionality of F+). The compositionality of the parallel opera-
tor is phrased as follows, where F!

+ (A) consists of all the in7nite sequences w of
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communication actions such that for every pre7x w′ of w, we have 〈w′; t〉 ∈F+(A),
for some t:

F+(A1 ‖ A2)
=
{〈w; t〉 |w ∈ (w1 ‖ w2); t ∈ (t1 ‖ t2); 〈w1; t1〉 ∈ F+(A1);
〈w2; t2〉 ∈ F+(A2)}
∪
{〈w · w′;⊥〉 |w ∈ (w1 ‖ w2); (w1 · u) ∈ F!

+ (A1); (w2 · v) ∈ F!
+ (A2);

u ↑ v}:
Additionally, the compositionality of the encapsulation operator is given by

F+(�H (A))
=
{〈w; (’; F)〉 | 〈w; (’; F ′)〉 ∈ F+(A); chan(w) ∩ H = ∅;
F ⊆ F ′ ∪ {c! ; c? | c ∈ H;  ∈ C}}
∪
{〈w;⊥〉 | 〈w;⊥〉 ∈ F+(A); chan(w) ∩ H = ∅}:

Proof. The proof of this theorem is a slight modi<cation of the proof of Theorem 19,
where we make use of the following property: +(w1 ‖ w2)= +(w1) ‖ +(w2), for all
traces w1 and w2.

The abstraction operator + thus simply distributes over the semantic counterparts of
the operators of parallel composition and encapsulation.
As mentioned before, failure sets are typically comprised of an in<nite number of

refused communication actions. In order to prove full abstraction of the semantics F+,
we therefore need a compactness property, which is proved in the following theorem.

Theorem 25 (Compactness of the failure semantics F+). If 〈w; (’; F ′)〉 ∈F+(A), for
every <nite subset F ′ of a given set of communication actions F , then also 〈w; (’; F)〉
∈F+(A).

Proof. Suppose that for all <nite F ′ ⊆F we have 〈w; (’; F ′)〉 ∈F+(A). We assume
that F is in<nite, as the <nite case is trivial. Let l1; l2; : : : be an enumeration of the
elements of F . Consider the collection F of subsets of F :

F0 = ∅
Fj+1 = Fj ∪ {lj}

Consider next the collection C of computations of A that generate the word w, yield
the store ’ and refuse a set Fi ∈F. We assume that there is a bound k on the number
of successive �-steps that can occur in each computation in C. For, if such a bound
does not exist then from the fact that the operational semantics gives rise to only
<nitely branching computation trees, we conclude via KTonig’s lemma, which states
that any <nitely branching tree with an in<nite number of nodes has an in<nite branch
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(Lemma 20), that there must be a computation in C that after having generated a pre<x
of w goes into an in<nite loop of �-steps. Then since such a diverging computation
gives rise to chaos, we immediately obtain 〈w; (’; F)〉 ∈F+(A).
Hence, we assume that such a bound k exists. As the computation tree is <nitely

branching, there also exists a bound on the length of the computations in C, and
therefore C is <nite. However, as there are in<nitely many sets Fi ∈F, the pigeon-hole
principle then tells us that there must be a computation p in C that refuses an in<nite
number of sets in F.
We claim that p also refuses F . To see this consider an arbitrary element li of

F . As li ∈Fi+1 and p refuses an in<nite number of failure sets of F, there must be
an index j¿i + 1 such that p refuses Fj. As this set Fj also includes the action li,
we obtain that the computation p refuses li. As li was chosen arbitrarily from F , we
conclude that p refuses all elements of F (or more). By the de<nition of the failure
semantics F+, which says that any subset of a failure set is also a failure set, we obtain
〈w; (’; F)〉 ∈F+(A), which completes the proof.

Finally, we are in the position to show our main result, namely that the semantics
F+ constitutes a fully abstract semantics with respect to our notion O of observable
behaviour.

Theorem 26 (Full abstraction of F+). For any two agents A and B, the following
holds:

(O(C[A]) = O(C[B]); for all contexts C)⇒ F+(A) =F+(B):

Proof. The proof proceeds by contraposition. Suppose F+(A) 	=F+(B) then without
loss of generality there must exist a tuple 〈w;⊥〉 or 〈w; (’; F)〉 ∈F+(A) −F+(B), for
some 7nite set F according to the compactness property that is established in Theo-
rem 25.
The idea is then to de<ne a context C such that O(C[A]) 	=O(C[B]). In order to

achieve this, we de<ne the complement l̃ of a communication action l as follows. For
all c∈Chan and ’∈C:

c̃!’ = c?’
c̃?’ = (tell(’) · c!’):

Let w be given by l1l2 · · · ln.
First, we consider the case 〈w;⊥〉. Consider the context C de<ned by

〈l̃1 · · · l̃n; true〉 ‖·

It is easy to see that O(C[A]) contains all constraints. We claim that this does not hold
for O(C[B]). For, suppose O(C[B]) contains all constraints, which means false∈O
(C[B]). There are two possibilities for generating false. The <rst is the case that B u⇒
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B′ with store(B′)= false for some pre<x u of w (note that because of the semantics
of the communication actions, this also covers the case in which the constraints of
w are inconsistent themselves). The second is the case that B u⇒ B′ �⇒ !, for some
pre<x u of w (modulo asking more and telling less). Then by the de<nition of F+ in
which divergence and inconsistency gives rise to chaos, we conclude 〈u;⊥〉∈F+(B)
and hence, as u is a pre<x of w we have: 〈w;⊥〉∈F+(B). This yields a contradiction.
Next, we consider the case 〈w; (’; F)〉. Consider the following context C:

〈l̃1 · · · l̃n〉 · tell(ok1) · /l∈F(l · tell(ok2)); true〉 ‖·
where ok1 and ok2 denote some constraints that do not occur in the multi-agent systems
A and B and /l∈F denotes the non-deterministic choice between the actions in F . Note
that here it is crucial that F is a 7nite set. The idea of this context is that it oDers
the complements of the actions of w then produces a signal ok1, and <nally, oDers the
actions in the failure set F . Additionally, it produces the signal ok2 in case one of the
elements in F is accepted. It is easy to see that (’ � ok1)∈O(C[A]).
We claim that (’�ok1) =∈ O(C[B]). For, otherwise it would be the case that B u⇒ B′

with u=w modulo asking more and telling less, as the signal ok1 has been produced,
and B′ refuses the set F or more, otherwise the signal ok2 would have been produced.
Then via the de<nition of F+ which says that any subset of a failure set is also a
failure set, we conclude 〈w; (’; F)〉 ∈F+(B). This yields a contradiction and hence we
obtain O(C[A]) 	=O(C[B]).

This ends the construction of a compositional and fully abstract model for the multi-
agent programming language ACPL.

5. Conclusions and future research

In this paper, we have developed a compositional semantics for the multi-agent
programming language ACPL, based on a generalisation of traditional failure semantics,
which is shown to be fully abstract with respect to observing the global information
stores of terminating computations.
Our main goal is now to extend our failure semantics to more sophisticated agent

communication languages. For example, currently, we are investigating an extension of
the model which incorporates agent ontologies such that communication of information
additionally involves the translation of information from the ontology of the sender
to that of the receiving agent, as outlined in [22]. Furthermore, we aim to study the
incorporation of non-monotonically increasing information stores as described in [20].
Another interesting extension of the framework concerns features that allow a dynamic
recon<guration of the communication network.
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Appendix

We consider the compositionality of the failure semantics.

Proof of Theorem 19. We start with the parallel composition. Let us denote the right-
hand side of the equation by G(A1 ‖ A2). We show F(A1 ‖ A2) ⊇ G(A1 ‖ A2). There
are four cases.
Case 1: Suppose 〈w; (’1 � ’2; F)〉 ∈G(A1 ‖ A2), where we have w∈ (w1 ‖ w2);

〈w1; (’1; F1)〉 ∈F(A1), that is,

A1
w1⇒B1; � =∈ I(B1); F1 ⊆ I(B1); ’1 = store(B1);

and 〈w2; (’2; F2)〉 ∈F(A2), that is,

A2
w2⇒B2; � =∈ I(B2); F2 ⊆ I(B2); ’2 = store(B2);

such that ’1 � ’2 	= false, F1 AF2 and F ⊆F1 ∩F2.
Note that the condition F1 AF2 boils down to the requirement that B1 and B2 cannot

communicate with each other, since Fi is a superset of the initial communication actions
of Ai (i=1; 2). From this fact together with the assumptions � =∈ I(B1) and � =∈ I(B2)
we obtain

� =∈ I(B1 ‖ B2) (i):

Furthermore, since B1 and B2 cannot communicate, F1⊆ I(B1); F2⊆ I(B2) and F ⊆F1
∩F2 we derive

I(B1) ∩ I(B2) = I(B1 ‖ B2) ⇒
F1 ∩ F2 ⊆ I(B1 ‖ B2) ⇒
F ⊆ I(B1 ‖ B2) (ii):

Finally, as store(B1 ‖ B2)=’1 � ’2 	= false, we obtain via (i) and (ii) what was to
be shown: 〈w; (’1 � ’2; F)〉 ∈F(A1 ‖ A2). Note that here and in the sequel we make
implicit use of the following property of the parallel composition: for all w∈ (w1 ‖ w2)

(A1
w1⇒B1 and A2

w2⇒B2) ⇔ (A1 ‖ A2
w⇒B1 ‖ B2):

Case 2: Consider 〈w;⊥〉∈G(A1 ‖ A2), where w∈ (w1 ‖ w2), 〈w1; (’1; F1)〉 ∈F(A1)
and 〈w2; (’2; F2)〉 ∈F(A2) such that A1

w1⇒ B1, A2
w2⇒ B2 as well as store(B1 ‖ B2)=

false. We immediately obtain 〈w;⊥〉∈F(A1 ‖ A2).
Case 3: Consider 〈w;⊥〉∈G(A1 ‖ A2), where w∈ (w1 ‖ w2) and without loss of

generality 〈w1;⊥〉∈F(A1) and 〈w2; t2〉 ∈F(A2). Then either A1
w1⇒ B1 with store(B1)=

false or B1 ⇒ !. We immediately derive that A1 ‖ A2 also yields an inconsistent store
or diverges. The latter follows from the following property:

A ⇒ ! implies A ‖ B ⇒ ! for all B:
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Case 4: Finally, there is the case 〈w ·w′;⊥〉∈G(A1 ‖ A2), where A1 ‖ A2
w⇒ B1 ‖ B2

and there exist in<nite sequences u and v such that for all pre<xes u′ of u and v′ of
v we have

u′ ↑ v′; B1
u′⇒C1 and B2

v′⇒C2 for some C1 and C2:

Hence, there does not exist a bound on the number of successive internal steps in the
computations of B1 ‖ B2. As the computation tree of B1 ‖ B2 is <nitely branching,
Lemma 20 then yields the existence of a computation with an in<nite number of
successive �-steps. Hence, we have B1 ‖ B2 ⇒ !, yielding 〈w · w′;⊥〉∈F(A1 ‖ A2).
For the converse inclusion F(A1 ‖ A2)⊆G(A1 ‖ A2) the same line of reasoning can

be applied.
Next, we consider encapsulation. Let us denote the right-hand side by G(�H (A)). We

show F(�H (A)) ⊇ G(�H (A)). Suppose 〈w; (store(B); F)〉 ∈G(�H (A)), where A w⇒ B.
Then as chan(w)∩H = ∅, we also have

�H (A)
w⇒ �H (B) (i):

Additionally, as � =∈ I(B), which implies � =∈ I(�H (B)), we also have

� =∈ I(�H (B)) (ii):

Finally, via the fact: I(�H (B))= I(B) ∪ {c! ; c? | c∈H;  ∈C}, we obtain
F ⊆ I(�H (B)) (iii):

Then from (i) to (iii) and the fact store(�H (B))= store(B) we derive what was to be
shown: 〈w; (store(B); F)〉 ∈F(�H (A)).
Secondly, suppose 〈w · w′;⊥〉∈G(�H (A)), where chan(w)∩H = ∅ and A w⇒ B with

B ⇒ ! or store(B)= false. Then also �H (A)
w⇒ �H (B) with �H (B)⇒ ! or store(�H (B))

= false, which yields 〈w · w′;⊥〉∈F(�H (A)).
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