
Operational Semantics for
Agent Communication Languages

Rogier M. van Eijk, Frank S. de Boer,
Wiebe van der Hoek, and John-Jules Ch. Meyer

Utrecht University, Department of Computer Science
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

{rogier, frankb, wiebe, jj}@cs.uu.nl

Abstract. In this paper, we study the operational semantics of agent communica-
tion languages.We develop a basic multi-agent programming language for systems
of concurrently operating agents, into which agent communication languages can
be integrated. In this language, each agent has a mental state comprised of an
informational component and a motivational component; interaction between the
agents proceeds via a rendezvous communication mechanism. The language builds
upon well-understood concepts from the object-oriented programming paradigm
as object classes, method invocations and object creation. The formal semantics
of the language are de ned by means of transition rules that describe its operatio-
nal behaviour. Moreover, the operational semantics closely follow the syntactic
structure of the language, and hence give rise to an abstract machine to interpret
it.

1 Introduction

The research on agent-oriented programming has yielded a variety of programming
languages for multi-agent systems, each of which incorporates a particular mechanism
of agent communication. Many of these communication mechanisms are based on speech
act theory, originally developed as a model for human communication. A speech act is
an action performed by a speaker to convey information about its mental state with
the objective to in uence the mental state of the hearer. This notion has been fruitfully
adopted in agent communication languages as kqml [10] and fipa-acl [11], which
prescribe the syntax and semantics of a collection of speech act-like messages. Such a
message is comprised of a performative, a content and some additional parameters as the
sender and receiver of the message; e.g., there is a message to inform a receiving agent that
the sender believes a particular formula to be true, and a message to request a receiving
agent to perform some particular action. Both agent communication languages assume
an underlying communication mechanism that proceeds via asynchronous message-
passing.

As was indicated by Cohen and Levesque (cf. [4]) communicative acts should be
considered as attempts of the sending agent to get something done from the receiving
agent. An important consequence of this view is that there is no guarantee that the
receiving agent will actually act in accordance with the purposes the sending agent has
attributed to the message. That is, it is possible that a receiving agent will simply ignore

F. Dignum and M. Greaves (Eds.): Agent Communication, LNAI 1916, pp. 80–95, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Operational Semantics for Agent Communication Languages 81

the message or will do the opposite of what it is requested for. Hence, in giving semantics
to messages one should not confuse the effects that a message has on the receiving agent
with the subsequent reactions taken by the receiver that it brings about. For instance,
one could easily be tempted to describe the meaning of an ask(ϕ) message as that upon
its reception, the receiving agent should respond with a confirm(ϕ) message in the
situation it believes the formula ϕ to be true, and with a disconfirm(ϕ) message if it
this is not the case. In our opinion however, the reactions towards a message are not part
of the semantics of the message, but rather are consequences of the characteristics of
the receiving agent. The point we advocate in this paper is to describe the semantics of
messages solely in terms of the effects they have on the mental state of the receiving
agent, without giving any references to the possible subsequent reactions. For instance,
the meaning of an ask(ϕ) message would be that upon its reception the receiving agent
registers that it is asked whether it believes ϕ to hold. It will be on the basis of its
altered mental state that the agent will subsequently decide what actions to perform.
This behaviour is however not considered to be part of the semantics of the message.
Moreover, we give an operational semantics of agent communication (in contrast for
instance with the approach of Colombetti [5], which is based on modal logic).

Types Of Communication. In the research on intelligent agents, it is common practice to
think of an agent as an entity having several different mental attitudes. These attitudes
are divided into a category of information attitudes, which are related to the information
an agent has about its environment such as belief and knowledge, and secondly, a class
of pro-attitudes which govern the actions that the agent performs in the world and hence,
concern the agent’s motivations. Examples of the latter category of attitudes are goals,
intentions and commitments (cf. [16]). Our previous work on communication in multi-
agent systems has been centred around the agents’ information attitudes (cf. [6,8,7,9]).
A central topic in this study is the development of a communication mechanism that
allows for the exchange of information. In this report, we consider communication that
concerns the agents’ pro-attitudes; that is, we study the communication of actions and
programs to be executed. In particular, we will focus on the motivations that directly
stem from communication, and refer the reader to [13] for details on non-communicative
motivations.

We distinguish between two different types of interaction. First of all, there is com-
munication that concerns properties of the agent system, which are not considered as to
give information about the current agent system but rather as speci cations of a pursued
con guration of the agent system. An example of a communicative act that falls in this
category is the kqml message achieve(i, j, ϕ), which denotes a request of the agent
i to the agent j to accomplish a state in which ϕ is true. This type of communication
typically involves planning of actions, which is an issue that we will not address here.

Secondly, there is communication that involves executable programming code to
change the agent system; i.e., the communication concerns implementation rather than
speci cation, or in other words, is procedural of nature instead of declarative.An example
of a communicative act in this category is the fipa-acl message 〈i, request(j, a)〉, which
denotes a request of the agent i directed to the agent j to execute the action a. This
type of interaction is similar to that of higher order communication, studied in the
 eld of concurrency theory. In this paradigm, programs themselves constitute rst class

82 R.M. van Eijk et al.

communication data that can be passed among the processes in the system (cf. [15]).
Upon reception of a program, the receiving process integrates it in its own program and
subsequently resumes its computation. Although communication of mobile code gives
rise to a very powerful computation mechanism, it also gives rise to a wide range of
problems especially with respect to safety and security issues in computer systems, like
the unauthorised access to and manipulation of sensitive data and services.

In this paper, we will not follow the road of higher order communication, but adopt a
more traditional communication mechanism that has been fruitfully employed in various
distributed programming paradigms. It amounts to the idea that rather than accepting
and executing arbitrary programs, a process speci es a collection of programs that other
processes can request it to execute.

Rendezvous and Remote Procedure Call. In the eld of concurrency, there is the classical
notion of a rendezvous, which constitutes a communication mechanism in which one
process j executes one of its procedures on behalf of another process i (cf. [2]). In
particular, a rendezvous can be viewed upon as to consist of three distinct steps. First,
there is the call of a procedure of j by i. This is followed by the execution of this procedure
by j, during which the execution of the calling process i is suspended. Finally, there is
the communication of the result of the execution back to i, which thereupon resumes its
execution. It follows that a rendezvous comprises two points of synchronisation. First,
there is the call with the exchange of the actual procedure parameters from the caller to
the callee and secondly, there is the communication of the results back from the callee
to the caller

The notion of a rendezvous is almost equal to that of a remote procedure call (rpc)
(cf. [3]). The difference between the two notions lies in the fact that for an rpc an entirely
new process is created that takes care of the call, whereas in the case of a rendezvous
the call is handled by the called process itself (cf. [2]). This implies that in the former
case different procedure calls can be handled simultaneously, whereas in the latter case
the calls are taken one at a time.

The rendezvous communication mechanism has for instance been adopted in the
concurrent programming language pool (cf. [1]), which constitutes a semantically well-
understood programming language for systems of concurrently operating objects. In this
paper, we outline a framework for agent communication that builds upon the object-
oriented features of languages like pool. The most important aspect we have to take into
account is that in agent-oriented programming computations are not performed relative
to a local state that maps variables to their associated values but by to mental state that
consists of attitudes as beliefs and goals.

The remainder of this paper is organised as follows. In Section 2, we de ne a general
multi-agent programming language for systems of agents that interact with each other
by means of a rendezvous communication scheme. In Section 3, develop an operational
model of the programming language by means of a transition system. We study the
relation of the framework with the existing agent communication languages kqml and
fipa-acl in Section 4. Finally, we round off in Section 5 by suggesting several issues
for future research.

Operational Semantics for Agent Communication Languages 83

2 Syntax

In this section, we de ne a general programming language for multi-agent systems that
covers the basic ingredients to describe the operational semantics of agent communica-
tion languages. In particular, we assume that a multi-agent system consists of a dynamic
collection of agents in which new agents can be integrated, and where the interaction
between the agents proceeds via a rendezvous communication scheme. Each agent is
assigned a mental state comprised of a belief state and a goal state that can be inspected
and updated. Additionally, an agent is assumed to be an instance of an agent class that
de nes the methods the agent can invoke itself as well as can be called by other agents
in the system. Finally, the behaviour of an agent is governed by a program consisting
of the standard programming constructs of sequential composition, non-deterministic
choice, parallel composition and recursion.

De nition 1 (First-order language)

– A signatureL is a tuple 〈R,F〉, whereR is a collection of predicate symbols andF a
collection of function symbols. The 0-ary function symbols are called constants. We
assume a set Ident of constants to represent agent identi ers with typical elements
i, j and k.

– We assume a set Var of logical variables with typical elements x, y and z.
– The set Ter (typical element t) of terms overL is the smallest set that satis es Var ⊆

Ter and secondly, if t1, . . . , tk ∈ Ter and F ∈ F of arity k then F (t1, . . . , tk) ∈
Ter . A term is closed if it contains no variables from Var .

– The set For (typical element ϕ,ψ) is the smallest set that contains a set ForVar of
formula variables (typical element X) and additionally satis es: if t1, t2, . . . , tk ∈
Ter and R ∈ R of arity k then (t1 = t2), R(t1, . . . , tk) ∈ For and if ϕ,ψ ∈ For
and x ∈ Var then ¬ϕ, ϕ ∧ ψ, ∃xϕ ∈ For .

We de ne a mechanism of inferring conclusions from rst-order information stores,
which accounts for conclusions that contain free variables (cf. [9]). The idea of the
derivation of a formula ?xψ from an information store ϕ is that the free occurrences of
the variables x (we use boldface notation to denote sequences) are substituted for in ψ
by a closed term such that the resulting formula becomes a consequence of ϕ.

De nition 2 (Ground substitutions) A ground substitution ∆ is modeled as a nite
conjunction of equalities of the form x = t, where x ∈ Var and t is a closed term in
Ter . We require that ∆ binds each variable to at most one term. Moreover, we will use
dom(∆) to denote the variables for which ∆ is de ned.

For all formulae ϕ and substitutions ∆, we de ne ϕ⊕∆ to be the formula ϕ in which
all free occurrences of the variables of dom(∆) have been substituted for by their
corresponding value in ∆.

De nition 3 (Ground uni er s) Given the formulae ϕ,ψ ∈ For and the sequence x of
variables, a substitution∆ is called a ground uni er for the pair (ϕ, ?xψ), ifdom(∆) = x
and ϕ ` (ψ ⊕∆), where ` denotes the standard rst-order entailment relation.

84 R.M. van Eijk et al.

We will use the notation ϕ `∆ ψ to denote that ∆ is a ground uni er for (ϕ,ψ). For
instance, the substitution x = a is a ground uni er for (ϕ,ψ), where ϕ is given by
∀x(P (x) → Q(x)) ∧ P (a) ∧ P (b) and ψ equals ?xQ(x), and so is the substitution
x = b. This shows that ground uni ers are not necessarily unique.

We assume a set Func of functions that map formula variables to formulae, with
typical element θ. We assume a function · such that ϕ · θ yields the formula ϕ in which
all formula variables have been replaced by the formula given by the function θ. Addi-
tionally, we use the notation θ{ϕ/X} to denote a function that yields ϕ on the input X
and the value yielded by the function θ on all other inputs. For instance, we have that
∃x(x = a ∧X1 ∧X2) · θ where θ = θ′{P (a)/X2}{¬Q(a)/X1}, is de ned to be the
formula ∃x(x = a ∧ ¬Q(a) ∧ P (a)).

We assume a set Class of agent classes with typical elementC, a set Meth of methods
with typical element m and an operator ◦ to update belief states. Additionally, the set
Goal is comprised of goal states with typical elementG. A goal state is a set of elements
of the formm(ϕ)⇒ i, denoting a goal to execute the methodmwith actual parameterϕ
(we consider methods with only one parameter, the generalisation to methods with more
than one parameter is obvious). The constant i denotes the agent to which the result of
the execution is to be sent back.

De nition 4 (Syntax of programming language)

a ::= X ← ϕ | X ← a | query(?xϕ) | update(ϕ) | m(ϕ) | integrate(C, S) |

request(ιx.ψ,m(ϕ)) | accept(m) | handle(m)

S ::= a;S | S1 + S2 | S1 & S2 | skip

A ::= 〈i, S, (ϕ,G), θ〉

If an action a is of the form X ← ϕ it denotes the assignment of the formula ϕ to the
formula variableX , while an action of the formX ← a stands for the assignment of the
result of executing the action a toX . The action query(?xϕ) denotes the query whether
the formula ϕ follows from the agent’s belief state modulo a ground substitution of the
variables x, while the action update(ϕ) represents the update of the belief state with ϕ.
An agent executes the action request(ιx.ψ,m(ϕ)) to send an agent x that satis es the
formulaψ a request to execute the methodmwith actual parameterϕ. An agent executes
the actionm(ϕ) to invoke its methodmwith parameterϕ. The action accept(m) denotes
the acceptance of a request to execute a method in m, while the action handle(m) is
employed to select and execute an invocation of one of the methods m from the goal
state. The difference between both actions is that the former lls the goal state whereas
the latter empties it. Finally, the action integrate(C, S) is used to integrate an instance of
the agent classC in the agent system, which thereupon will start to execute the statement
S. A class is de ned as a collection of method declarations of the form m(ϕ) :− S,
where m is the name of the method, ϕ denotes its formal parameter and S is its body
statement.

Operational Semantics for Agent Communication Languages 85

A statement is either the sequential composition a;S of an action and a statement,
the non-deterministic choice S1 + S2 between two statements, the parallel composition
S1 & S2 of two statements or an empty statement skip.

An agent A consists of an identi er i that distinguishes it from all other agents, a
program S that governs its behaviour, a mental state (for which we will use the symbol
Λ) consisting of a belief state ϕ and a goal state G. For technical convenience we also
include in the agent con guration an auxiliary function θ that is used to map formula
variables to formulae. Implicitly, we assume that each agent is an instance of an agent
class, which means that the methods the agent can invoke are those that are de ned in
its class. Finally, a multi-agent system A is a set of agents.

3 Operational Semantics

An elegant mechanism of de ning the operational semantics of a programming language
is that of a transition system. Such a system, which was originally developed by Plotkin
(cf. [14]) constitutes a means to formally derive the individual computation steps of a
program. In its most general form a transition looks as: P, σ −→ P ′, σ′ where P and P ′

are two programs and σ and σ′ are some stores of information. The transition denotes
a computation step of the program P which changes the store of information σ to σ′,
where P ′ is identi ed to be the part of the program P that still needs to be executed.
Transitions are formally derived by means of transition rules of the form:

P1, σ1 −→ P ′
1, σ

′
1 · · · Pn, σn −→ P ′

n, σ
′
n

P, σ −→ P ′, σ′

Such a rule denotes that the transition below the line can be derived if the transitions
above the line are derivable. Sometimes, we will write transition rules with several
transitions below the line. They are used to abbreviate a collection of rules each having
one of these transitions as its conclusion. A rule with no transitions above the line is
called an axiom. A collection of transition rules de nes a transition system.

The advantage of using transitions systems is that they allow the operational seman-
tics to closely follow the syntactic structure of the language. As an effect, if we view the
con gurations P, σ as an abstract model of a machine then the transitions specify the
actions that this machine can subsequently perform. In fact, this machine would act as
an interpreter for the language.

The transition system for our programming language derives transitions of the form:
A −→ A′. Usually, we will omit from notation the agents in A that do not affect
nor are affected by the transition. Additionally, besides agent con gurations of the form
〈i, S, Λ, θ〉, we will employ con gurations that are of the form 〈i, a, Λ, θ〉 and 〈i, ϕ, Λ, θ〉
in which the second element is not a statement but an action a or a result ϕ of executing
an action.

De nition 5 (Transition for the substitution of formula variables)

〈i, a, Λ, θ〉 −→ 〈i, a · θ, Λ, θ〉
where a · θ denotes the obvious extension of the operator · to atomic actions: e.g.,
(X ← ϕ) · θ = X ← (ϕ · θ) and query(ϕ) · θ = query(ϕ · θ).

86 R.M. van Eijk et al.

In the transition rule all formula variables that occur in a formula in the action a are
replaced by their associated value given by the function θ.

De nition 6 (Transitions for assignment)

〈i, a, Λ, θ〉 −→ 〈i, ϕ, Λ′, θ′〉
〈i,X ← a, Λ, θ〉 −→ 〈i,X ← ϕ,Λ′, θ′〉 〈i,X ← ϕ,Λ, θ〉 −→ 〈i, ϕ, Λ, θ{ϕ/X}〉

The rst rule states how the transition for X ← a can be derived from the transition
for a, viz. the result ϕ of executing a is assigned to the formula variable X . The second
rule shows that the assignment X ← ϕ results in an update of θ such that it yields ϕ for
the input X . We take the result of executing X ← ϕ to be ϕ in order to model nested
assignments as for instance X ′ ← (X ← ϕ), which assigns ϕ to both X and X ′.

De nition 7 (Transition for query)

〈i, query(?xψ), (ϕ,G), θ〉 −→ 〈i, ψ′, (ϕ,G), θ〉,
where we distinguish the following options for ψ′:

(1) a substitution ∆, where ∆ ∈ S
(2) a formula ψ ⊕∆, where ∆ ∈ S
(3) the formula

∧
1≤i≤n(ψ ⊕∆i)

and S = {∆1, . . . , ∆n} denotes the set of distinct ground uni ers for (ϕ, ?xψ).

The choices above model different interpretations of querying the agent’s belief state.
The rst is one in which the result of the query is a ground uni er (provided that such
a uni er exists). It is either the empty substitution denoting that the formula ψ is a
classical consequence of the belief state, or a non-empty substitution de ning a value
for the variables x. For instance, the following transition is derivable:

〈i, query(?xP (x)), Λ, θ〉 −→ 〈i, x = a, Λ, θ〉
where Λ = (P (a) ∧ P (b), G). Note that this transition is not necessarily unique, as
shown by the following transition that is derivable as well:

〈i, query(?xP (x)), Λ, θ〉 −→ 〈i, x = b, Λ, θ〉
The second option is to apply the derived substitution to ϕ and yield this formula as the
result of the query. In this case, the transition looks like:

〈i, query(?xP (x)), Λ, θ〉 −→ {〈i, P (a), Λ, θ〉}
Finally, there is the option to yield an exhaustive description comprised of all instances
of the formula ϕ. The transition is then given by:

〈i, query(?xP (x)), Λ, θ〉 −→ 〈i, P (a) ∧ P (b), Λ, θ〉
We refer to the rst option as the substitution interpretation, while the latter two are
called the derive-one and the derive-all interpretations, respectively. Unless indicated
otherwise, we will in this paper assume that the derive-one interpretation is in force.

Operational Semantics for Agent Communication Languages 87

De nition 8 (Transition for update)

〈i, update(ψ), (ϕ,G), θ〉 −→ 〈i, true, (ϕ ◦ ψ,G), θ〉
The transition for updates amounts to the incorporation of the formula ψ in the agent’s
belief state, where it is required that ψ does not contain any formula variables. We will
not go into the details of the operator ◦, we assume it to be a parameter of the framework
(see [12] for more details). We take the formula true as the result of the update.

De nition 9 (Transition for sending a request) If ϕ1 `x=i2 ψ and m ∈m then:

〈i1, request(ιx.ψ,m(ϕ)), Λ1, θ1〉, 〈i2, accept(m), Λ2, θ2〉 −→
〈i1,wait(i2), Λ1, θ1〉, 〈i2, true, Λ′

2, θ2〉

where Λ1 = (ϕ1, G1) and Λ2 = (ϕ2, G2) and Λ′
2 = (ϕ2, G2 ∪ {m(ϕ)⇒ i1}).

In the classical notion of a rendezvous, the computation step of the agent i2 that fol-
lows the rst synchronisation, would be the execution of the method invocation m(ϕ).
However, as mentioned before, a crucial characteristic of agent-oriented programming
is that computations are performed relative to a mental state. Hence, the decision when
to execute the method invocation should be based upon this state rather than that it is
executed without any regard for the agent’s current beliefs and goals. This is why the
invocation m(ϕ) is not executed immediately but added to the agent’s goal state, along
with the identi er i1 representing the agent that the result of the invocation is to be sent
back to. The construct wait(i2) is used in the operational semantics to mark that the
execution of this thread in i1 is blocked until the result from i2 has been received (see
also de nition 12). We remark that in order to keep things simple here, we assume that
i1 cannot concurrently invoke (in another thread) any other method of i2.

Finally, the construct ιx.ψ denotes a witness for x that satis es the formula ψ. The
condition that x = i2 is a ground uni er for (ϕ1, ?xψ) requires this witness to be i2.
For instance, we have Agent(i2) `x=i2?xAgent(x), where Agent(x) is used to express
that x is an agent in the system (see also de nition 13).

De nition 10 (Transition for method invocation) Ifm is declared asm(X) :− T then:

〈i,m(ψ), Λ, θ〉 −→ 〈i, S ⇒ i, Λ, θ〉,
where S equals T [ψ/X], which denotes the body statement T of m in which the actual
parameter ψ has been substituted for the formal parameter X .

Note that in comparison with standard concurrent programming, the parameter-passing
mechanism in our framework is rather high-level, as formulae themselves constitute
 rst-class values with which methods can be invoked. The construct S ⇒ i denotes that
the result of executing the statement S should be sent back to the agent i.

De nition 11 (Transition for handling goals)
If m is declared as m(X) :− T and m ∈m then:

〈i, handle(m), Λ, θ〉 −→ 〈i, S ⇒ j, Λ′, θ〉,
where S = T [ψ/X] and Λ = (ϕ,G ∪ {m(ψ)⇒ j}) and Λ′ = (ϕ,G).

88 R.M. van Eijk et al.

The presence of goal states yields the need for a mechanism of controlling the selection
and execution of goals, which is a mechanism that is not present in the traditional
concurrent language pool. The above transition re ects a straightforward approach in
which one of the invocations of a method m (if present) is taken from the goal state and
identi ed to be subsequently executed.

De nition 12 (Transitions for returning the result)

〈i1,wait(i2), Λ1, θ1〉, 〈i2, ϕ⇒ i1, Λ2, θ2〉 −→〈i1, ϕ, Λ1, θ1〉, 〈i2, true, Λ2, θ2〉
〈i, ϕ⇒ i, Λ, θ〉 −→ 〈i, ϕ, Λ, θ〉

If a computation of a method invocation has terminated with a result ϕ then the second
synchronisation of the rendezvous takes place, in which this result is communicated back
to the agent i1. The second rule deals with the case the invocation has been executed on
behalf of the agent itself.

De nition 13 (Transition for integration)

〈i, integrate(C, S), Λ, θ〉 −→ 〈i,Agent(j), Λ, θ〉, 〈j, S, (true, {}),⊥〉,
where j ∈ Ident is a fresh agent identi er and⊥ denotes the totally unde ned function.

The transition rule de nes the integration of an instance of the agent class C. It shows
how the agent system is expanded with a new agent j that starts its execution with the
statement S where its initial mental state is de ned to be the empty one. The methods
that the integrated agent can invoke are given by the methods of C.

The result of the integration is formulated by the information Agent(j), which ex-
presses that the agent with identi er j is part of the multi-agent system.

De nition 14 (Transition rules for the construct S ⇒ j)

〈i, S, Λ, θ〉 −→ 〈i, S′, Λ′, θ′〉
〈i, S ⇒ j, Λ, θ〉 −→ 〈i, S′ ⇒ j, Λ′, θ′〉

〈i, S, Λ, θ〉 −→ 〈i, ϕ, Λ′, θ′〉
〈i, S ⇒ j, Λ, θ〉 −→ 〈i, ϕ⇒ j, Λ′, θ′〉

The transition for the construct S ⇒ j can be derived from the transition for the sta-
tement S. The rst transition rule deals with the case that S does not terminate after
one computation step: S′ denotes the part of S that still needs to be executed, while the
second rule deals with the case that S terminates with a result ϕ.

De nition 15 (Transition rule for sequential composition)

〈i, a, Λ, θ〉 −→ 〈i, ϕ, Λ′, θ′〉
〈i, a;S,Λ, θ〉 −→ 〈i, S, Λ′, θ′〉

The transition for the sequential composition of an action a and a statement S can be
derived from the transition for the action a. Note that the resultϕ of executing a is simply
ignored, because (possibly) it has already been processed in Λ′ and θ′. For instance, we
can derive the transition 〈i, (X ← ϕ);S,Λ, θ〉 −→ 〈i, S, Λ, θ{ϕ/X}〉.

Operational Semantics for Agent Communication Languages 89

De nition 16 (Transition rules for non-deterministic choice)

〈i, S1, Λ, θ〉 −→ 〈i, S′
1, Λ

′, θ′〉
〈i, S1 + S2, Λ, θ〉 −→ 〈i, S′

1, Λ
′, θ′〉

〈i, S2 + S1, Λ, θ〉 −→ 〈i, S′
1, Λ

′, θ′〉

〈i, S1, Λ, θ〉 −→ 〈i, ϕ, Λ′, θ′〉
〈i, S1 + S2, Λ, θ〉 −→ 〈i, ϕ, Λ′, θ′〉
〈i, S2 + S1, Λ, θ〉 −→ 〈i, ϕ, Λ′, θ′〉

The transition for the non-deterministic choice S + T between two statements can be
derived from the transition of either S or T . The second rule deals with termination.

De nition 17 (Transition rules for internal parallelism)

〈i, S1, Λ, θ〉 −→ 〈i, S′
1, Λ

′, θ′〉
〈i, S1 & S2, Λ, θ〉 −→ 〈i, S′

1 & S2, Λ
′, θ′〉

〈i, S2 & S1, Λ, θ〉 −→ 〈i, S2 & S′
1, Λ

′, θ′〉

〈i, S1, Λ, θ〉 −→ 〈i, ϕ, Λ′, θ′〉
〈i, S1 & S2, Λ, θ〉 −→ 〈i, S2, Λ

′, θ′〉
〈i, S2 & S1, Λ, θ〉 −→ 〈i, S2, Λ

′, θ′〉
The internal parallel composition S & T of two statements is modeled by means of an
interleaving of the computation steps of S and T .

De nition 18 (Transition rule for skip statement)

〈i, skip, Λ, θ〉 −→ 〈i, true, Λ, θ〉
The statement skip does not effect Λ and θ and yields the result true.

Example. LetA be an agent system (used in a library, for instance) consisting of a client
agent i and additionally two server agents j and k. Consider the situation that the client
i is looking for a biography on Elvis Presley and hence, asks the serving agent j for it.

The methods of the servers j and k are de ned as follows:

answer :− (accept(ask) + handle(ask)); answer
ask(X) :− query(X) + request(ιx.Server(x), ask(X))

The method answer is a recursive procedure in which in each round either a new ask -
message is accepted or an ask -message is selected from the goal state and subsequently
executed. Additionally, the method ask corresponds to a choice between querying the
private information store (belief state) for an appropriate document and passing the que-
stion on to another server. We assume that the mental state Λ2 of agent j is given by
(¬P (a)∧Server(k), {}) and the mental state Λ3 of k is given by (P (b), {}), where we
use the predicate P to denote that a document is a biography of Elvis Presley. Consider
the initial con guration of the agent system A:

〈i,X ← request(j, ask(?xP (x))); update(X), Λ1,⊥〉,
〈j, answer , Λ2,⊥〉,
〈k, answer , Λ3,⊥〉,

The agent i thus asks the agent j for the information ?xP (x) and subsequently will
add the result of the query to its belief state. The following then constitutes a sequence
of transitions (computation) starting with the above con guration.

90 R.M. van Eijk et al.

−→
〈i,X ← request(j, ask(?xP (x))); update(X), Λ1,⊥〉,
〈j, (accept(ask) + handle(ask)); answer , Λ2,⊥〉,
〈k, answer , Λ3,⊥〉 −→

〈i,X ← wait(j); update(X), Λ1,⊥〉,
〈j, answer , Λ′

2,⊥〉,
〈k, answer , Λ3,⊥〉 −→
where Λ′

2 = (¬P (a) ∧ Server(k), {ask(?xP (x))⇒ i})

〈i,X ← wait(j); update(X), Λ1,⊥〉,
〈j, (accept(ask) + handle(ask)); answer , Λ′

2,⊥〉,
〈k, answer , Λ3,⊥〉 −→

〈i,X ← wait(j); update(X), Λ1,⊥〉,
〈j, (query(?xP (x)) + request(ιx.Server(x), ask(?xP (x)))⇒ i); answer , Λ2,⊥〉,
〈k, answer , Λ3,⊥〉 −→

〈i,X ← wait(j); update(X), Λ1,⊥〉,
〈j, (query(?xP (x)) + request(ιx.Server(x), ask(?xP (x)))⇒ i); answer , Λ2,⊥〉,
〈k, (accept(ask) + handle(ask)); answer , Λ3,⊥〉 −→

〈i,X ← wait(j); update(X), Λ1,⊥〉,
〈j, (wait(k)⇒ i); answer , Λ2,⊥〉,
〈k, answer , Λ′

3,⊥〉 −→
where Λ′

3 = (P (b), {ask(?xP (x))⇒ j})

〈i,X ← wait(j); update(X), Λ1,⊥〉,
〈j, (wait(k)⇒ i); answer , Λ2,⊥〉,
〈k, (accept(ask) + handle(ask)); answer , Λ′

3,⊥〉 −→

〈i,X ← wait(j); update(X), Λ1,⊥〉,
〈j, (wait(k)⇒ i); answer , Λ2,⊥〉,
〈k, (query(?xP (x))⇒ j); answer , Λ3,⊥〉 −→

〈i,X ← wait(j); update(X), Λ1,⊥〉,
〈j, (wait(k)⇒ i); answer , Λ2,⊥〉,
〈k, (P (b)⇒ j); answer , Λ3,⊥〉 −→

〈i,X ← wait(j); update(X), Λ1,⊥〉,
〈j, (P (b)⇒ i); answer , Λ2,⊥〉,
〈k, answer , Λ3,⊥〉 −→

Operational Semantics for Agent Communication Languages 91

〈i,X ← P (b); update(X), Λ1,⊥〉,
〈j, answer , Λ2,⊥〉,
〈k, answer , Λ3,⊥〉 −→

〈i, update(X), Λ1, {P (b)/X}〉,
〈j, answer , Λ2,⊥〉,
〈k, answer , Λ3,⊥〉 −→

〈i, true, (P (b), {}), {P (b)/X}〉,
〈j, answer , Λ2,⊥〉,
〈k, answer , Λ3,⊥〉 −→

4 Related Work

The research on multi-agent systems has resulted in the development of various agent
communication languages, none of which however has yet been assigned a satisfactory
formal semantics. And it is this lack of a clear semantics that in our opinion constitutes
one of the major hindrances for an agent communication language to become widely
accepted. In this section, we discuss the relation of our framework with two of these
languages, viz. the agent communication languages kqml and fipa-acl.

KQML. The Knowledge Query and Manipulation Language (kqml) provides a langu-
age for the exchange of knowledge and information in multi-agent systems (cf. [10]). It
de nes the format of a collection of messages that are exchanged between communica-
ting agents. The main constituents of a kqml message are a performative that indicates
the purpose of the message, its content expressed in some representation language and
 nally , the identities of the sender and the receiver.

The semantics of a kqml message are given by the following three ingredients: (1)
a precondition on the mental states of the sender and receiver before the communication
of the message, (2) a postcondition that should hold after the communication and (3)
a completion condition that should hold after the conversation of which this message
was a constituent, has terminated. The language in which these conditions are expressed
consists of logical combinations of the following v e operators: bel(i, ϕ) denoting thatϕ
is in the knowledge base of i and know(i, ϕ), want(i, ϕ) and intend(i, ϕ), expressing
that i knows ϕ, wants ϕ and is committed to ϕ, respectively. Finally, process(i,m)
denotes that the message m will be processed by the agent i.

An important feature of the framework is that the communication of a message is
not an action that occurs in isolation, but it takes place in the context of a conversation
comprised of a sequence of communications. In this wider context, the semantics of the
kqml messages can be thought of de ning correct conversations. That is, the precondi-
tion of a message determines the collection of messages that are allowed to precede the
message, while the postcondition lays down the messages that are permitted to succeed
the message. Additionally, in case the completion condition is a logical consequence of
the postcondition, the conversation can be identi ed to have successfully terminated.

92 R.M. van Eijk et al.

For instance, the following sequence of messages constitutes a typical conversation:

advertise(i, j,ask-if(j, i, ϕ)), ask-if(j, i, ϕ) and tell(i, j, ϕ)

Let us examine the constituents of this conversation in more detail. First, the pre-, post-
and completion conditions for a message advertise(i, j,m) are as follows, where in
this case m is given by ask-if(j, i, ϕ):

(1) intend(i, process(i,m))
(2) know(i, know(j, intend(i, process(i,m))))∧

know(j, intend(i, process(i,m)))
(3) know(j, intend(i, process(i,m)))

The intuitive meaning of the message advertise(i, j,m) amounts to letting the agent
j know that i has the intention to process the message m. Additionally, the fact that
the completion condition coincides with the postcondition, implies that this message
constitutes a conversation by itself.

In our framework, we have a slightly different mechanism: there is the primitive of
the form accept(m), which re ects the agent’s intention to accept a message that is in
the collection m. It has the advantage above the kqml message advertise(i, j,m) that
it is very e xible as it speci es the messages that will currently be accepted; a subsequent
occurrence of the primitive in the agent program might specify a sub-, super- or even a
completely disjoint set.

Secondly, the conditions for a message ask-if(j, i, ϕ) are as follows:

(1)
∨
ψ∈Γ (want(j, know(j, ψ)))∧

know(j, intend(i, process(i,m)))∧
intend(i, process(i,m))

(2)
∨
ψ∈Γ (intend(j, know(j, ψ)))∧

know(i,
∨
ψ∈Γ (want(j, know(j, ψ))))

(3)
∨
ψ∈Γ (know(j, ψ))

where m is given by ask-if(j, i, ϕ) and Γ equals {bel(i, ϕ), bel(i,¬ϕ),¬bel(i, ϕ)}.
The intuitive meaning of the message ask-if(j, i, ϕ) amounts to letting the agent

i know that j wants to know whether i believes ϕ, believes ¬ϕ or does not believe ϕ.
The second and third conjunct of the precondition re ect the requirement that the mes-
sage is to be preceded by an advertise(i, j,m) message. Additionally, the completion
condition indicates that the conversation of which this message is a constituent, has not
successfully terminated until the agent j knows one of the formulae in k. As kqml ab-
stracts away from the content language of messages, it is not clear to us why the formula
bel(i,¬ϕ) is an element of the set Γ , as it refers to an operator ¬ in the content language
(which in principle, does not need to be present at all). In particular, if the agent j wants
to know whether i believes ¬ϕ it can use the message ask-if(j, i,¬ϕ).

Thirdly, the conditions for the message tell(i, j, ϕ) are as follows:

(1) bel(i, ϕ) ∧ know(i,want(j, know(j, bel(i, ϕ))))∧
intend(j, know(j, bel(i, ϕ)))

(2) know(i, know(j, bel(i, ϕ))) ∧ know(j, bel(i, ϕ))
(3) know(j, bel(i, ϕ))

Operational Semantics for Agent Communication Languages 93

The intuitive meaning of the message is to let the agent j know that i believes the
formula ϕ to be true. The rst conjunct of the precondition states that i should in-
deed believe the formula ϕ, where the second and third conjunct should indicate that
the message is to be preceded by a message of the form ask-if(j, i, ϕ). Here we see
why it is so important to have a formal framework to give semantics to a language:
mistakes are easily made. The postcondition

∨
ψ∈Γ (intend(j, know(j, ψ))) where Γ =

{bel(i, ϕ), bel(i,¬ϕ),¬bel(i, ϕ)} of the ask -if message, does not entail the precondi-
tion intend(j, know(j, bel(i, ϕ))) of the tell message. Hence, with this semantics the
reception of an ask-if(j, i, ϕ) message is not suf cient to be able to send a tell(i, j, ϕ)
message. Additionally, the nesting of knowledge operators seems to be quite arbitrary:
it is unclear why the nesting of knowledge operators in the postcondition is restricted to
depth two, and for instance does not include know(j, know(i, know(j, bel(i, ϕ)))).

Our concern with de ning the semantics of communication in the manner as em-
ployed for kqml, is that it still does not yield an exact meaning of agent communication.
The kqml semantics is de ned in terms of operators for which the semantics themselves
remain unde ned. For instance, the exact difference between the operators want and
intend remains unclear.

Moreover, in contrast to the approach employed in this paper, there is a gap between
the syntactic structure of the language and its semantics, which is due to the use of rather
high-level operators. In our framework however, the operational semantics closely follow
the syntactic structure of the language, which opens up the possibility of developing an
interpreter for the language on the basis of this operational description. This is due to
the fact that the con gurations of an agent system can be seen as an abstract model of a
machine, where its transitions de ne the actions that it can perform. In fact this machine
would act as an interpreter for the language.

Thirdly, we believe that the kqml semantics impose too strong requirements on
the agents with respect to their reactions towards incoming messages. We believe that
these reactions are agent-dependent and hence should not be part of the semantics of
messages. For instance, in our framework, consider three agents each having one the
following de nitions of the method ask(X):

ask(X) :− query(X) + query(¬X)
ask(X) :− X ′ ← query(X);X ′′ ← ¬X ′

ask(X) :− request(ιx.Agent(x), ask(X))

The rst agent tests its belief state and checks whether it entails the formula X or
its negation. This corresponds to the reaction imposed by the kqml semantics for the
ask-if(X) message. On the other hand, the second agent checks whether its belief state
entailsX and subsequently delivers the negation of what it believes to hold (note that the
result of the sequential composition of two actions is given by the result of the second
action). In kqml this reaction is simply ruled out. However, in our opinion this reaction
is not a result of the semantics of the message but of the characteristics of the receiving
agent. We believe that any reaction should be allowed, as for instance shown by the third
agent, which simply passes the message along to another agent and delivers the result
that it receives from this agent.

94 R.M. van Eijk et al.

FIPA-ACL. Besides the language kqml there is a second proposal for a standard agent
communication language, which is developed by the organisation fipa. This language,
which we will refer to as the fipa-acl, also prescribes the syntax and semantics of a
collection of message types (cf. [11]). The format of these messages is almost equal to
that of kqml, while their semantics are given by means of (1) a precondition on the
mental state of the sender that should hold prior to the dispatch of the message and (2)
the expected effect of the message.

There are four primitive messages; viz. 〈i, inform(j, ϕ)〉 and 〈i, confirm(j, ϕ)〉 in
which the agent i tells the agent j that it believes the formula ϕ to hold and a message
〈i, disconfirm(j, ϕ)〉 in which the agent i tells the agent j that it believes the negation
of ϕ to hold. The difference between the inform and con rm message is that the former
is employed in case agent i has no beliefs about the beliefs of j concerning ϕ, i.e., it
does not believe that j believes ϕ or its negation or is uncertain about ϕ or its negation,
whereas the latter is used in case i believes that j is uncertain about ϕ. Thirdly, the
discon rm message is used for situations in which i believes the negation of ϕ and
additionally that j believes ϕ or is uncertain about ϕ. The expected effect of informing
ϕ, con rming ϕ and discon rming ¬ϕ is the same: the receiver believes ϕ.

The fourth primitive message is of the form 〈i, request(j, a)〉 in which i requests the
agent j to perform the action a. The condition for this message is that i believes that the
agent j will be the only agent performing a and that it does not believe that j has already
an intention of doing a. Additionally, the part of the precondition of a that concerns the
mental attitudes of i should additionally hold.

All other messages are de ned in terms of these primitives together with the ope-
rators ; for sequential composition and | for non-deterministic choice. An example of
a composite message is 〈i, query-if(j, ϕ)〉, which is an abbreviation for the construct
〈i, request(j, 〈j, inform(i, ϕ)〉 | 〈j, inform(i,¬ϕ)〉)〉.Analogous to kqml, there remains
a gap between the syntax of the communication language and the semantic description
given in terms of high-level modal operators as those for (nested) belief and uncertainty.
We think however that the operational model outlined in this paper, could act as a rst
step in the development of an operational description of the fipa-acl.

5 Future Research

In this paper, we have outlined a basic programming language for systems of commu-
nicating agents that interact with each other via a rendezvous communication scheme.
In subsequent research, we will study the extension of the framework with a notion of
agent expertise in the form of a vocabulary or signature together with the incorporation
of object-oriented features as subtyping and inheritance. Inheritance would then not be
restricted to the inheritance of methods but could also involve the inheritance of exper-
tise. Another issue is the study in what way the current framework could be used to
develop an operational semantic model for existing agent communication languages.

Operational Semantics for Agent Communication Languages 95

References

1. P.H.M. America, J. de Bakker, J.N. Kok, and J. Rutten. Operational semantics of a parallel
object-oriented language. In Conference Record of the 13th Annual ACM Symposium on
Principles of Programming Languages, pages 194–208, St. Petersburg Beach, Florida, 1986.

2. G.R.Andrews. Concurrent Programming, Principles and Practice. The Benjamin/Cummings
Publishing Company, Inc., Redwood City, California, 1991.

3. A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transactions on
Computer Systems, 2:39–59, 1984.

4. P. Cohen and H. Levesque. Communicative actions for arti cial agents. In Proceedings of
the First International Conference on Multi-Agent Systems, 1995.

5. M. Colombetti. Semantic, normative and practical aspects of agent communication. In this
volume.

6. R.M. van Eijk, F.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. A language for modular
information-passing agents. In K. R. Apt, editor, CWI Quarterly, Special issue on Constraint
Programming, volume 11, pages 273–297. CWI, Amsterdam, 1998.

7. R.M. van Eijk, F.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. Systems of communicating
agents. In Henri Prade, editor, Proceedings of the 13th biennial European Conference on
Arti cial Intelligence (ECAI-98), pages 293–297, Brighton, UK, 1998. John Wiley & Sons,
Ltd.

8. R.M. van Eijk, F.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. Information-passing and
belief revision in multi-agent systems. In J. P. M. Müller, M. P. Singh, and A. S. Rao, editors,
Intelligent Agents V — Proceedings of 5th International Workshop on Agent Theories, Archi-
tectures, and Languages (ATAL’98), volume 1555 of Lecture Notes in Arti cial Intelligence,
pages 29–45. Springer-Verlag, Heidelberg, 1999.

9. R.M. van Eijk, F.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. Open multi-agent systems:
Agent communication and integration. In Intelligent Agents VI, Proceedings of 6th Interna-
tional Workshop on Agent Theories, Architectures, and Languages (ATAL’99), Lecture Notes
in Arti cial Intelligence. Springer-Verlag, Heidelberg, 2000.

10. T. Finin, D. McKay, R. Fritzson, and R. McEntire. KQML: An Information and Knowledge
Exchange Protocol. In Kazuhiro Fuchi and Toshio Yokoi, editors, Knowledge Building and
Knowledge Sharing. Ohmsha and IOS Press, 1994.

11. Foundation For Intelligent Physical Agents. Fipa’97 speci cation part 2 – agent communi-
cation language. Version dated 10th October 1997.

12. P. Gärdenfors. Knowledge in ux: Modelling the dynamics of epistemic states. Bradford
books, MIT, Cambridge, 1988.

13. K.V. Hindriks, F.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. A formal semantics
for an abstract agent programming language. In M.P. Singh, A. Rao, and M.J. Wooldridge,
editors, Proceedings of Fourth International Workshop on Agent Theories, Architectures and
Languages (ATAL’97), volume 1365 of LNAI, pages 215–229. Springer-Verlag, 1998.

14. G. Plotkin. A structured approach to operational semantics. Technical Report DAIMI FN-19,
Computer Science Department, Aarhus University, 1981.

15. B. Thomsen. A calculus of higher order communicating systems. In Conference Record of
the 16th Annual ACM Symposium on Principles of Programming Languages, pages 143–153,
1989.

16. M. Wooldridge and N. Jennings. Intelligent agents: theory and practice. The Knowledge
Engineering Review, 10(2):115–152, 1995.

	Introduction
	Syntax
	Operational Semantics
	Related Work
	Future Research

