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M; s j= Aiexpand '

,M; s j= :Bi:'
, 9s0 2 B(i; s)[M; s0 j= ']
, B(i; s)\ [[']] 6= ;
, B0(i; s) 6= ;
, M0; s j= :Bi�

,M; s j= hdoi(expand ')i:Bi�

Clause 4: Let M0; s = r(i; contract ')(M; s).

M; s j= Aicontract '

,M; s j= :Ki'

) ' 62 B�' (i;M; s) (by B�4)
,M0; s 6j= Bi'

,M; s j= hdoi(contract ')i:Bi'

Clause 5:

M; s j= Aicontract :'
,M; s j= Aicontract :' ^ hdoi(contract :')i:Bi:' (Clause 4)
,M; s j= Aicontract :' ^ [doi(contract :')]:Bi:' (Proposition 3.17)
,M; s j= Aicontract :' ^ [doi(contract :')]Aiexpand '

,M; s j= Ai(contract :'; expand ')
,M; s j= Airevise '

�

3.43. Proposition. For all agents i, and for all propositional formulae ' we
have:

� j= Aiexpand '! Cani(expand ';Bi' ^ :Bi�)
� j= Aicontract '! Cani(contract ';:Bi')
� j= Aicontract :'! Cani(revise ';Bi' ^ :Bi�)

Proof: We show the �rst clause; the other clauses are analogous.

j= [doi(expand ')]Bi' Proposition 3.6, clause 1
, j= hdoi(expand ')iBi' Proposition 3.7, clause 2
, j= Kihdoi(expand ')iBi' (*) Proposition 2.6, clause 5

j= Aiexpand '! hdoi(expand ')i:Bi� Proposition 3.41, clause 2
j= Ki(Aiexpand '! hdoi(expand ')i:Bi�) Proposition 2.6, clause 5
j= KiAiexpand '! Kihdoi(expand ')i:Bi� (**) Proposition 2.6, clause 1

Now assumeM; s j= Aiexpand ' for some arbitrary Kripke modelM with state
s. Then alsoM; s j= KiAiexpand ' by Clause 1 of Proposition 3.41. Hence us-
ing (*) and (**) it follows thatM; s j= KiAiexpand'^Kihdoi(expand')iBi'^
Kihdoi(expand ')i:Bi�. Hence M; s j= Ki(hdoi(expand ')i(Bi' ^ :Bi�) ^
Aiexpand ') and thus M; s j= Cani(expand ';Bi' ^ :Bi�).
�
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Hence in both cases B2(i; s) � B1(i; s), hence B(i;M1; s) � B(i;M2; s),
and thus B?+' (i;M; s)� B?'^ (i;M; s).

�

3.39. Proposition. For all Kripke modelsM with state s, for all agents i, and
for all propositional formulae ' we have:

� if :' 2 K(i;M; s) then B?'(i;M; s) = B?.
� if :' 62 B(i;M; s) then B?'(i;M; s) = Th(B(i;M; s)[ f'g).
� if :' 2 B(i;M; s)nK(i;M; s) then B?'(i;M; s) = Th(K(i;M; s)[f'g) if
the de�nition of r for the contract action is based on the AiG function
for M.

Proof: LetM be some Kripke model with state s, let i be some agent, and let '
be some arbitrary propositional formula. LetM0; s = r(i; contract:')(M; s),
and letM00; s = r(i; expand ')(M0; s) = r(i; revise ')(M; s). We successively
prove the three cases.

� Suppose :' 2 K(i;M; s). Then by de�nition it follows thatM0; s =M; s,
and hence M0; s j= Bi:'. Then the expansion with ' of the beliefs of
agent i in M0; s leads to a model M00 such that B00(i; s) = ;, and hence
B?'(i;M; s) = B(i;M00; s) = B?.

� Suppose :' 62 B(i;M; s). In this case it follows from B?3 and B?4
that B?'(i;M; s) = B+

' (i;M; s), and using Proposition 3.13 it follows that
B?'(i;M; s) = Th(B(i;M; s)[ f'g).

� Suppose :' 2 B(i;M; s) n K(i;M; s). Then by de�nition of the AiG
function it follows that B0(i; s) = B(i; s) [ ([s]R(i) \ [[']]). By de�nition
of r(i; expand ') it follows that B00(i; s) = B0(i; s)\ [[']], hence B00(i; s) =
(B(i; s)[ ([s]R(i) \ [[']])) \ [[']], and since :' 2 B(i;M; s) it follows that
B00(i; s) = [s]R(i)\ [[']]. By an argument similar to that given in the proof
of Proposition 3.13 it is shown that B?'(i;M; s) = Th(K(i;M; s)[ f'g).

�

3.41. Proposition. For all agents i and for all propositional formulae ' we
have:

� j= Aiexpand '$ KiAiexpand '

� j= Aiexpand '! hdoi(expand ')i:Bi�

� j= Aicontract '$ KiAicontract '

� j= Aicontract '! hdoi(contract ')i:Bi'

� j= Airevise '$ Aicontract :'
� j= Airevise '! hdoi(revise ')i(Bi' ^ :Bi�)

Proof: The �rst and the third clause are straightforward consequences of the
sixth and the �fth clause of Proposition 2.8 respectively. Clause 6 is a com-
bination of clauses 2, 4, and 5. The other clauses are proved as follows. Let
M be some Kripke model with state s, let i be some agent and let ' be some
propositional formula.
Clause 2: Let M0; s = r(i; expand ')(M; s).
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�(i; s;:') \ [[ ]] � �(i; s;:' _ : ), then B2(i; s) � B1(i; s), and there-
fore B(i;M1; s) � B(i;M2; s). So to prove that �(i; s;:') \ [[ ]] �
�(i; s;:'_: ). Since j= Ki((:'_: )^ (:'_ )$ :'), we have by �4
that �(i; s;:') = �(i; s; (:'_ : ) ^ (:' _  )). From �5 it follows that
�(i; s; (:'_: )^ (:'_ ))� �(i; s;:'_: )[�(i; s;:'_ ). From �1
we conclude that �(i; s;:'_: )� [['^ ]] and �(i; s;:'_ )� [['^: ]].
Since �(i; s;:') � [[']] we have that �(i; s;:')\ [[ ]] � [[' ^  ]]. Hence
�(i; s;:')\ [[ ]] � �(i; s;:'_ : ), which was to be proved.

(B?8) Suppose : 62 B?'(i;M; s). To keep our proof understandable we intro-
duce the following de�nitions:

� M11; s = r(i; revise ')(M; s)
� M1; s = r(i; expand  )(M11; s)
� M21; s = r(i; contract :' _ : )(M; s)
� M2; s = r(i; expand ' ^  )(M21; s) = r(i; revise ' ^  )(M; s)

Using similar arguments as in the proof of B?7 we �nd that:

� B11(i; s) = (B(i; s)[ �(i; s;:'))\ [[']] = (B(i; s)\ [[']])[ �(i; s;:')
� B1(i; s) = B11(i; s)\ [[ ]]
� B21(i; s) = B(i; s)[ �(i; s;:'_ : )
� B2(i; s) = (B(i; s)[ �(i; s;:'_ : ))\ [['^  ]] =

(B(i; s)\ [[' ^  ]])[ �(i; s;:'_ : )

Now to prove that B2(i; s) � B1(i; s). For then B(i;M1; s) � B(i;M2; s)
which means that B?+' (i;M; s) � B?'^ (i;M; s). We distinguish two
cases:

� :' 2 B(i;M; s). Then B(i; s) � [[:']], and thus B(i; s) \ [[']] = ;.
Hence B11(i; s) = �(i; s;:') and B1(i; s) = �(i; s;:') \ [[ ]]. In
this case also :' _ : 2 B(i;M; s). Hence B(i; s) \ [[' ^  ]] = ;,
and thus B2(i; s) = �(i; s;:' _ : ). Since : 62 B?'(i;M; s), it
follows that B11(i; s)\ [[ ]] 6= ;, and thus �(i; s;:')\ [[ ]] 6= ;. From
�1 it follows that �(i; s;:')\ [[' ^  ]] = �(i; s;:')\ [[']] \ [[ ]] =
�(i; s;:')\ [[ ]] 6= ;. Then since j= Ki((:' _ : )^ :' $ :'), we
have by �4 that �(i; s; (:'_: )^:')\ [['^ ]] 6= ;, and by �6 that
�(i; s;:'_: )� �(i; s; (:'_: )^:') = �(i; s;:'). Since by �1,
�(i; s;:'_ : ) � [[' ^  ]], and given that [[' ^  ]] � [[ ]], it follows
that �(i; s;:'_ : ) � �(i; s;:')\ [[ ]]. Hence B2(i; s) � B1(i; s).

� :' 62 B(i;M; s). Note that in this case :' _ : 62 B(i;M; s): for if
:'_: 2 B(i;M; s) and :' 62 B(i;M; s), then from B?4, B+2 and
B+3 it follows that f:' _ : ; 'g � B?'(i;M; s). Since B?'(i;M; s)
is deductively closed by B?1 it follows that : 2 B?'(i;M; s) which
contradicts the assumption that  62 B?'(i;M; s). Hence :' _ : 62
B(i;M; s). This implies that both B(i; s)\ [[']] 6= ; and B(i; s)\ [['^
 ]] 6= ;. Then it follows by �2 that both �(i; s;:') � B(i; s) and
�(i; s;:'_ : ) � B(i; s). Thus B11(i; s) = B(i; s)\ [[']], B1(i; s) =
(B(i; s)\[[']])\[[ ]], B21(i; s) = B(i; s), and B2(i; s) = B(i; s)\[['^ ]].
Since for all S0 � S it holds that (S0 \ [[']])\ [[ ]] = S0 \ [['^ ]], for
all purely propositional formulae ' and  , it follows that B1(i; s) =
B2(i; s).
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(B?7) B?'^ (i;M; s)� B?+' (i;M; s).

(B?8) If : 62 B?'(i;M; s), then B?+' (i;M; s)� B?'^ (i;M; s).

Proof: LetM be some Kripke model with state s, and let i be some agent. Let
� be an arbitrary selection function forM. Let ' be some propositional formula,
and let M0; s = r(i; contract :')(M; s), let M00; s = r(i; expand ')(M0; s) =
r(i; revise ')(M; s), and let M000; s = r(i; expand ')(M; s).

(B?1) This postulate is shown in the same way as the corresponding postulates
for belief expansion and contraction.

(B?2) Note thatB?'(i;M; s) = B(i;M00; s) = B+
' (i;M

0; s). FromB+2 it follows
that ' 2 B+

' (i;M
0; s), which su�ces to conclude that the postulate is

validated.
(B?3) By de�nition of r for contract and expand it follows that B00(i; s) =

(B(i; s) [ �(i; s;:')) \ [[']]. Now if some formula  2 B?'(i;M; s), this
means thatM00; s00 j=  for all s00 2 (B(i; s)[�(i; s;:'))\ [[']]. Since  is
purely propositional this implies thatM; s00 j=  for all s00 2 (B(i; s)\[[']]).
By de�nition of r(i; expand ') we have that B000(i; s) = B(i; s)\ [[']]. But
then M000; s000 j=  for all s000 2 B000(i; s), and hence M000; s j= Bi , which
implies that  2 B+

' (i;M; s).
(B?4) If :' 62 B(i;M; s), then B(i; s) \ [[']] 6= ;. From demand �2 of se-

lection functions, it follows that B0(i; s) = B(i; s). Hence B00(i; s) =
B(i; s)\ [[']]. Also B000(i; s) = B(i; s)\ [[']], and M00; s j= Bi i� M000; s j=
Bi for all propositional formula  . Thus B+

' (i;M; s) = B(i;M000; s) =
B(i;M00; s) = B?'(i;M; s).

(B?5) We prove two implications.

`)' Suppose B?'(i;M; s) = B?. This implies that B00(i; s) = ;. Hence by
de�nition of r for contract and expand this implies that (B(i; s)[
�(i; s;:')) \ [[']] = ;. In particular this implies that �(i; s;:') \
[[']] = ;, and since by �1, �(i; s;:') � [[']], we conclude that
�(i; s;:') = ;. It follows by demand �3 that [s]R(i) \ [[']] = ;. This
implies that M; s0 j= :' for all s0 2 [s]R(i) and thus M; s j= Ki:'.

`(' SupposeM; s j= Ki:'. Then by demand �3, �(i; s;:') = ;. Hence
B(i; s) � [[:']] and B0(i; s) � [[:']]. But then B00(i; s) = B0(i; s) \
[[']] = ;, and hence B?'(i;M; s) = B(i;M00; s) = B?.

(B?6) Suppose M; s j= Ki(' $  ). Then also M; s j= Ki(:' $ : ),
and from demand �4 it follows that �(i; s;:') = �(i; s;: ). Hence
r(i; contract ')(M; s) = r(i; contract )(M; s) =M0; s. Also B0(i; s)\
[[']] = B0(i; s) \ [[ ]], and r(i; expand ')(M0; s) = r(i; expand  )(M0; s).
But then r(i; revise ')(M; s) = r(i; revise  )(M; s), and therefore
B?'(i;M; s) = B? (i;M; s).

(B?7) Assume that M1; s = r(i; revise (' ^  ))(M; s), and assume fur-
thermore that M2; s = r(i; revise '; expand  )(M; s). From the def-
initions of r for revisions, contractions and expansions, it follows that
B1(i; s) = (B(i; s) [ �(i; s;:'_ : )) \ [[' ^  ]] and B2(i; s) = (B(i; s) [
�(i; s;:'))\[[']]\[[ ]]. Hence B1(i; s) = (B(i; s)\[['^ ]])[�(i; s;:'_: )
and B2(i; s) = (B(i; s) \ [[' ^  ]]) [ (�(i; s;:') \ [[ ]]). Hence, should
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3.33. Proposition. For all agents i, and for all propositional formulae ',  
and # we have:

� j= [doi(revise ')]Bi'

� j= [doi(revise ')]Bi#! [doi(expand ')]Bi#.
� j= :Bi:'! ([doi(expand ')]Bi#$ [doi(revise ')]Bi#).
� j= Ki:'$ [doi(revise ')]Bi�.
� j= Ki('$  )! ([doi(revise ')]Bi#$ [doi(revise  )]Bi#).
� j= [doi(revise (' ^  )]Bi#! [doi(revise '; expand  )]Bi#.
� j= :[doi(revise ')]Bi: !

([doi(revise '; expand  )]Bi#! [doi(revise ('^  )]Bi#).

Proof: All clauses follow directly from Theorem 3.38. The �rst clause of Propo-
sition 3.16 follows from B?2 and so on until the last clause that follows from
B?8.
�

3.34. Proposition. For all agents i, for all propositional formulae ', and for
all formulae  we have:

� j= hdoi(revise ')itt
� j= hdoi(revise ')i $ [doi(revise ')] 
� j= hdoi(revise '; revise ')i $ hdoi(revise ')i 

Proof: Directly from Def. 3.32.
�

3.35. Proposition. For all agents i, and for all propositional formulae ' and
 we have:

� j= Ki:'$ [doi(revise ')]Bi�

� j= :Bi:'! ([doi(revise ')]Bi $ Bi('!  ))
� j= :Ki:'^Bi:'! ([doi(revise ')]Bi $ Ki('!  )) if the de�nition
of r for the contract action is for all models based on the AiG function.

Proof: The �rst clause follows directly from the �rst clause of Proposition 3.39.
The second clause is proved by the same argument as given in the proof of
Proposition 3.8. The third clause is analogous to the second clause: note that
by the Deduction Theorem for propositional classical logic  2 Th(K(i;M; s)[
f'g) is equivalent with '!  2 Th(K(i;M; s)).
�

3.38. Theorem. Let M be some Kripke model. For all agents i, for all s 2 M
and for all formulae ' and  the following are true.

(B?1) B?'(i;M; s) is a belief set.
(B?2) ' 2 B?'(i;M; s).
(B?3) B?'(i;M; s)� B+

' (i;M; s).
(B?4) If :' 62 B(i;M; s) then B+

' (i;M; s)� B?'(i;M; s).
(B?5) B(i;M; s) = B? if and only if M; s j= Ki:'.
(B?6) If M; s j= Ki('$  ) then B?'(i;M; s) = B? (i;M; s).
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x &0(x) x &0(x)

�1 : ? fs0g �9 : :p ^ :q fs0g
�2 : p ^ q fs1; s3g �10 : (:p ^ :q) _ (p ^ q) fs1; s2g
�3 : p ^ :q fs0g �11 : :q fs0g
�4 : p fs2; s3g �12 : :(:p ^ q) fs2g
�5 : :p ^ q fs0g �13 : :p fs0g
�6 : q fs1; s3g �14 : :(p ^ :q) fs1g

�7 : (:p ^ q) _ (p ^ :q) fs0g �15 : :p _ :q fs0g
�8 : p _ q fs3g �16 : > ;

De�ne for all s 2 S, &(1; s; ') = &(�j) for the unique �j such that ' 2 [�j]cl,
where [�j ]cl denotes the equivalence class of �j in classical propositional logic.

A.2. Lemma. For & as de�ned above we have:

� & is an s-selection function for M.
� & is not a selection function for M.

Proof: We successively show both clauses.

� It is easily checked that & validates the demands S1 through S3 as given
in Def. 3.14, leaving only S4 to be shown. To prove S4 it needs to be
shown that for any pair ';  of formulae holds that

&(1; s; ')� [[: ]] & &(1; s;  )� [[:']])
&(1; s; ') = &(1; s;  ) (y)

If at least one of ' and  is in any of [�2j+1]cl for j = 0 : : :7 it is easily
checked that (y) indeed holds. The case where one of ' and  is in [�16]cl
is trivial, leaving only the cases where both ' and  are in any of [�2j]cl
for j = 1 : : :7. We show the cases where ' 2 [�2]cl and  2 [�2j]cl for
j = 2 : : :7. All other cases can be checked in a similar fashion. So let
' 2 [�2]cl; we distinguish the six cases for  :

�  2 [�4]cl: since &0(�2) 6� [[:�4]] this case goes through.
�  2 [�6]cl: since &0(�6) = &0(�2) this case goes through.
�  2 [�8]cl: since &0(�2) 6� [[:�8]] this case goes through.
�  2 [�10]cl: since &0(�2) 6� [[:�10]] this case goes through.
�  2 [�12]cl: since &0(�2) 6� [[:�12]] this case goes through.
�  2 [�14]cl: since &0(�2) 6� [[:�14]] this case goes through.

Hence & is indeed an s-selection function for M.
� Note that &(i; s; p^q) = fs1; s3g, and hence &(i; s; p^q)\ [[:p]] = fs3g 6= ;.
However &(i; s; p) = fs2; s3g 6� &(i; s; p^ q), and hence & does not validate
demand �6.

�

De�ning the semantics for the contract action based on the function & would
yield that:

� B�p^q(1;M; s0) = Th(f(p^ q) _ (p ^ :q) _ (:p ^ :q)g)
� B�p (1;M; s0) = Th(f(p ^ q)_ (:p ^ q) _ (:p ^ :q)g)

Hence although p 62 B�p^q(i;M; s0), B�p (i;M; s0) 6� B�p^q(1;M; s0), thereby
contradicting postulate B�8.
�
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3.30. Proposition. For all models M, and for all functions & : A�S �L0 !
}(S) it holds that if & is a selection function for M then & is an s-selection
function for M.

Proof: Let some Kripke model M and function & be given such that & is
a selection function for M. We show that & satis�es the demands for an s-
selection function. The properties S1 through S3 follow directly from demands
�1 through �3, leaving only S4 to be proved. Hence assume that :' is true at
all states from &(i; s;  ) and : is true at all states from &(i; s; '). This implies
that &(i; s;  )� [[:']] and &(i; s; ')� [[: ]]. From �1 it follows that &(i; s; ')�
[s]R(i) \ [[:']], and hence &(i; s; ') � [s]R(i) \ [[:']] \ [[: ]]). Analogously it
follows that &(i; s;  ) � [s]R(i) \ [[:']] \ [[: ]]. If either [s]R(i) \ [[:']] = ; or
[s]R(i)\ [[: ]] = ;, then both &(i; s; ') = ; and &(i; s;  ) = ; and hence S4 would
be met. Hence assume that [s]R(i)\ [[:']] 6= ; and [s]R(i)\ [[: ]] 6= ;. Then also
[s]R(i)\ [[:'_: ]] 6= ;. From �3 it follows that none of &(i; s; '), &(i; s;  ) and
&(i; s; '^  ) is empty. By �5 we have that &(i; s; '^  ) � &(i; s; ')[ &(i; s;  ).
Hence &(i; s; '^ )� ([s]R(i)\ [[:']]\ [[: ]]) (y). Then &(i; s; '^ )\ [[:']] 6= ;,
and hence by �6 we have that &(i; s; ') � &(i; s; ' ^  ) (z). Analogously we
have that &(i; s;  )� &(i; s; '^  ). Hence &(i; s; '^  ) = &(i; s; ')[ &(i; s;  ).

Now j= Ki((:'_ )^'$ '^ ). Hence by �4, &(i; s; '^ ) = &(i; s; (:'_
 ) ^ '). From �5 it follows that &(i; s; ' ^  ) � &(i; s;:' _  ) [ &(i; s; ').
Since by �1, &(i; s;:' _  ) � [[' ^ : ]], it follows from (y) that &(i; s; ' ^
 ) \ &(i; s;:' _  ) = ;. Hence &(i; s; ' ^  ) � &(i; s; '). Combining this
with (z) yields that &(i; s; ' ^  ) = &(i; s; '). By an analogous argument we
conclude from j= Ki((: _')^ $ '^ ) that &(i; s; '^ ) = &(i; s;  ). Thus
&(i; s; ') = &(i; s;  ), which su�ces to conclude that & validates S4. Thus & is
an s-selection function.
�

3.31. Proposition. Some Kripke model M and function & : A � S � L0 !
}(S) exists, such that & is a s-selection function for M, but not a selection
function. Furthermore, when de�ning contractions based on the function &, not
all G�ardenfors postulates for belief contraction are validated.

Proof: Consider the language L based on the sets � = fp; qg A = f1g, and At

is arbitrary. Consider the Kripke model M = hS; �;R;B;r; ci such that

� S = fs0; : : : ; s3g,
� �(p; sj) = 1 i� j 2 f0; 1g, �(q; sj) = 1 i� j 2 f0; 2g,
� R(1) = S2,
� B(1; s) = fs0g,
� r and c are arbitrary.

De�ne the function &0 as follows:
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case of the proof of �5, we conclude that �a(i; s; '^ ) = �a(i; s; ')[
�a(i; s;  ).

� B(i; s)\ [[:'_: ]] 6= ;. In this case �a(i; s; '^ ) = B(i; s)\ [[:'_
: ]], and since �a(i; s; ' ^  ) \ [[:']] 6= ;, also B(i; s) \ [[:']] 6= ;.
Hence �a(i; s; ') = B(i; s)\ [[:']]. Now if B(i; s)\ [[: ]] = ; it follows
by an identical argument as given in the third clause of the proof of
�5 that �a(i; s; ' ^  ) = �a(i; s; '). If B(i; s) \ [[: ]] 6= ; it follows
by an identical argument as given in the fourth clause of the proof
of �5 that �a(i; s; '^  ) = �a(i; s; ')[ �a(i; s;  ).

Since in both cases �a(i; s; ') � �a(i; s; '^  ) we conclude that demand
�6 is validated.

�

3.27. Proposition. For all agents i, and for all propositional formulae ' and
 we have:

� j= :Bi'! ([doi(contract ')]Bi $ Bi )
� j= Bi' ! ([doi(contract ')]Bi $ (Bi ^ Ki(:' !  ))) if the def-
inition of r for the contract action is for all models based on the AiG
function.

Proof: Directly from Proposition 3.28.
�

3.28. Proposition. For all Kripke modelsM with state s, for all agents i, and
for all propositional formulae ' and  we have:

� ' 62 B(i;M; s)) ( 2 B�' (i;M; s),  2 B(i;M; s))
� ' 2 B(i;M; s))
( 2 B�' (i;M; s) ,  2 B(i;M; s) & (:' !  ) 2 K(i;M; s)) if the
de�nition of r for the contract action is based on the AiG function for
M.

Proof: Let M be some Kripke model with state s, let i be some agent, and let
';  be propositional formula.

� Suppose ' 62 B(i;M; s). By B�3 we have that B�' (i;M; s) = B(i;M; s),
and hence  2 B�' (i;M; s) i�  2 B(i;M; s).

� Suppose ' 2 B(i;M; s). Let M0; s = r(i; contract ')(M; s).

 2 B�' (i;M; s)

,  2 B(i;M0; s)
,M0; s0 j=  for all s0 2 B0(i; s)
,M0; s0 j=  for all s0 2 B(i; s)[ �a(i; s; ')
,M0; s0 j=  for all s0 2 B(i; s) and M0; s0 j=  for all s0 2 �a(i; s; ')
,M; s0 j=  for all s0 2 B(i; s) and M; s0 j=  for all s0 2 [s]R(i) \ [[:']]
,M; s j= Bi and M; s j= Ki(:'!  )
,  2 B(i;M; s) and :'!  2 K(i;M; s)

�
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� ' 62 B(i;M; s). In this case B(i; s)\ [[:']] 6= ;. Hence by �2, �(i; s; ')�
B(i; s). Then S(B(i;M; s)?') = ff 2 L0 j 8s

0 2 B(i; s)[M; s0 j=  ]gg.
Hence \S(B(i;M; s)?') = f 2 L0 j 8s0 2 B(i; s)[M; s j=  ]g =
B(i;M; s). If ' 62 B(i;M; s) it follows by B�3 that B�' (i;M; s) =
B(i;M; s) and thus B�' (i;M; s) = \S(B(i;M; s)?').

� ' 2 B(i;M; s). Let � 2 B�' (i;M; s) be arbitrary. Then M; s0 j= � for
all s0 2 B(i; s) [ �(i; s; '). But then � 2 f 2 L0 j 8s

0 2 B(i; s) [
fs00g[M; s0 j=  ]g for all s00 2 �(i; s; '). Hence � 2 \ff 2 L0 j 8s0 2
B(i; s) [ fs00g[M; s0 j=  ]g j s00 2 �(i; s; ')g. Also for all � 2 \ff 2
L0 j 8s0 2 B(i; s) [ fs00g[M; s0 j=  ]g j s00 2 �(i; s; ')g it holds that
M; s0 j= � for all s0 2 B(i; s) [ �(i; s; '), and thus B�' (i;M; s) = \ff 2
L0 j 8s0 2 B(i; s)[ fs00g[M; s0 j=  ]g j s00 2 �(i; s; ')g.

�

3.26. Proposition. The AiG function �a as given in Def. 3.25 is a selection
function.

Proof: We successively show that the AiG function satis�es the demands for
selection functions. So assume that �a is the AiG function for some model M
with states s; s0, and let i be some agent and ' and  be propositional formulae.

�0: Suppose s0 2 [s]R(i). Then B(i; s) = B(i; s0) and [s]R(i) = [s0]R(i) and
hence demand �0 is met.

�1: Since �a(i; s; ') = B(i; s)\ [[:']]� [s]R(i)\ [[:']] if B(i; s)\ [[:']] 6= ;, and
�a(i; s; ') = [s]R(i) \ [[:']] otherwise, demand �1 is indeed met.

�2: Since �a(i; s; ') = B(i; s) \ [[:']] � B(i; s) if B(i; s) \ [[:']] 6= ;, demand
�2 is obviously satis�ed.

�3: Demand �3 follows directly from the de�nition of the AiG function.
�4: If M; s j= Ki(' $  ), then both B(i; s) \ [[:']] = B(i; s) \ [[: ]] and

[s]R(i) \ [[:']] = [s]R(i) \ [[:']], which su�ces to conclude �4.
�5: We distinguish four cases:

� B(i; s)\ [[:']] = ;;B(i; s)\ [[: ]] = ;. In this case also B(i; s)\ [[:'_
: ]] = ;. Hence �a(i; s; '^ ) = [s]R(i)\[[:'_: ]] = [s]R(i)\([[:']][
[[: ]]) = ([s]R(i) \ [[:']])[ ([s]R(i) \ [[: ]]) = �a(i; s; ')[ �a(i; s;  ).

� B(i; s) \ [[:']] = ;;B(i; s) \ [[: ]] 6= ;. In this case B(i; s) \ [[:' _
: ]] = B(i; s) \ [[: ]]. Since B(i; s) \ [[: ]] 6= ;, it follows that
�a(i; s; '^  ) = �a(i; s;  ).

� B(i; s)\ [[:']] 6= ;;B(i; s)\ [[: ]] = ;. This case is completely anal-
ogous to the previous one.

� B(i; s)\[[:']] 6= ;;B(i; s)\[[: ]] 6= ;. Then also B(i; s)\[[:('^ )]] 6=
;. In this case �a(i; s; '^ ) = B(i; s)\ [[:'_: ]] = B(i; s)\([[:']][
[[: ]]) = (B(i; s)\ [[:']])[ (B(i; s)\ [[: ]]) = �a(i; s; ')[ �a(i; s;  ).

Since in all four cases �a(i; s; '^ )� �a(i; s; ')[�a(i; s;  ), we conclude
that �5 is validated.

�6: We distinguish two cases:

� B(i; s) \ [[:' _ : ]] = ;. In this case both B(i; s) \ [[:']] = ; and
B(i; s)\ [[: ]] = ;, and by an identical argument as given in the �rst
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as in 3.15 but with � replaced by an arbitrary function & : A� S � L0 ! }(S).
Then it holds that:

� If & satis�es �1 then B�5 is validated.
� If & satis�es �2 then B�3 is validated.
� Given that & satis�es �1 it is the case that if & satis�es �3 then B�4 is
validated.

� If & satis�es �4 then B�6 is validated.
� If & satis�es �5 then B�7 is validated.
� If & satis�es �6 then B�8 is validated.

Proof: The proof is a straightforwardmodi�cation of the proof of Theorem 3.20
and therefore left to the reader.
�

3.23. Proposition. Let M be some Kripke model with state s, and let i be
some agent. Assume that r(i; contract ')(M; s) is de�ned as in 3.15 with �
replaced by an arbitrary function &. Then if contract is to meet the demands
presented in Theorem 3.20 it follows that:

� &(i; s; ')� [s]R(i)
� B(i; s)\ [[:']] = ;& [s]R(i) \ [[:']] 6= ; ) &(i; s; ')\ [[:']] 6= ;

Proof: We successively show both cases. So let M be some Kripke model with
state s, let i be some agent and let & : A � S � L0 ! }(S) be some function.

� Since the result of a contraction is by B�1 forced to be a well-de�ned
Kripke model, it holds that in the model that results from a contraction
the set of doxastic alternatives is contained in the set of epistemic alter-
natives. Hence the worlds that are to be added -these are the worlds from
&(i; s; ')- are to be a subset of the set of epistemic alternatives [s]R(i).

� Assume that B(i; s) \ [[:']] = ; and [s]R(i) \ [[:']] 6= ;, for some ' 2 L0.
Then ' 2 B(i;M; s) and M; s 6j= Ki', hence from B�4 it follows that
in the model that results from the contraction, agent i does no longer
believe ' in state s. But this implies that some world not supporting '
must have been added to the set of doxastic alternatives of the agent, and
thus &(i; s; ')\ [[:']] 6= ;.

�

3.24. Proposition. Let some Kripke model M with state s, and agent i be
given. Let � be some selection function for M. De�ne for propositional formu-
lae ':

� B(i;M; s)?'= B(i;M; s) if ' 2 K(i;M; s)
� B(i;M; s)?' = ff 2 L0 j 8s0 2 B(i; s) [ fs00g[M; s0 j=  ]g j s00 2
[s]R(i) \ [[:']]g if ' 62 K(i;M; s)

� S(B(i;M; s)?') = ff 2 L0 j 8s0 2 B(i; s) [ fs00g[M; s0 j=  ]g j s00 2
�(i; s; ')g

Then B�' (i;M; s) = \S(B(i;M; s)?').

Proof: Let M be some Kripke model, let i be some agent, and let ' be some
propositional formula. We distinguish two cases.
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(B�3) If ' 62 B(i;M; s), then M; s0 j= :' for some s0 2 B(i; s). Then B(i; s)\
[[:']] 6= ;, and by �2 it follows that �(i; s; ') � B(i; s). Thus B0(i; s) =
B(i; s) and hence B�' (i;M; s) = B(i;M; s).

(B�4) If M; s 6j= Ki', then [s]R(i) \ [[:']] 6= ;. Hence by �3, �(i; s; ') 6= ;,
and thus, by �1, B0(i; s) contains some s0 such that M; s0 j= :'. Since
' is propositional, then also M0; s0 j= :', and hence M0; s 6j= Bi'. Thus
' 62 B�' (i;M; s).

(B�5) Suppose ' 2 B(i;M; s). We distinguish two cases:

� M; s j= Ki'. Then �(i; s; ') = ; by �3. Hence B0(i; s) = B(i; s),
and B�' (i;M; s) = B(i;M; s). Then B�+'' (i;M; s) = B+

' (i;M; s).
Now since ' 2 B(i;M; s) it follows by B+4 that B�+'' (i;M; s) =
B(i;M; s).

� M; s 6j= Ki'. Then B0(i; s) = B(i; s)[S 0 where S 0 = �(i; s; '). From
�1 it follows that S0 � [[:']]. Let M00; s = r(i; expand ')(M0; s).
Then by Def. 3.5 it follows that B00(i; s) = B0(i; s)\ [[']]. Now since
B0(i; s) = B(i; s) [ S0 and since ' 2 B(i;M; s), and thus B(i; s) \
[[']] = B(i; s), we have that B00(i; s) = B(i; s). Hence B�+'' (i;M; s) =
B(i;M; s).

Since in both cases B(i;M; s) = B�+'' (i;M; s), we conclude that postulate
B�5 is satis�ed.

(B�6) Suppose M; s j= Ki('$  ). Then from �4 it follows that �(i; s; ') =
�(i; s;  ). Hence r(i; contract  )(M; s) = M0; s, and B�' (i;M; s) =

B� (i;M; s).

(B�7) Let � 2 B�' (i;M; s)\ B� (i;M; s). This implies that M; s0 j= � for all
s0 2 B(i; s)[�(i; s; ')[�(i; s;  ). Since by �5, �(i; s; '^ )� �(i; s; ')[
�(i; s;  ), it follows that M; s0 j= � for all s0 2 B(i; s) [ �(i; s; ' ^  ).
But then � 2 B�'^ (i;M; s). Since � was chosen arbitrarily it follows that

B�' (i;M; s)\ B� (i;M; s)� B�'^ (i;M; s).

(B�8) Suppose ' 62 B�'^ (i;M; s). Let M00; s = r(i; contract ('^ ))(M; s).
We distinguish two cases:

� ' 62 B(i;M; s). Then also '^ 62 B(i;M; s), since B(i;M; s) is a be-
lief set. From B�3 it then follows that B�' (i;M; s) and B�'^ (i;M; s)
are both equal to B(i;M; s).

� ' 2 B(i;M; s). Since ' 62 B�'^ (i;M; s), it follows that some
s0 2 �(i; s; '^ ) exists such thatM00; s0 j= :', and since ' is propo-
sitional, also M; s0 j= :'. But then �(i; s; '^  ) \ [[:']] 6= ;, and
by �6 it follows that �(i; s; ') � �(i; s; '^  ). Next, for all formu-
lae � 2 B�'^ (i;M; s), M; s0 j= � for all s0 2 B(i; s) [ �(i; s; '^  ).
Since �(i; s; ') � �(i; s; ' ^  ) it follows that M; s0 j= � for all
s0 2 B(i; s)[ �(i; s; '), and hence B�'^ (i;M; s)� B�' (i;M; s).

Since in both cases B�'^ (i;M; s)� B�' (i;M; s), we conclude that postu-

late B�8 is satis�ed.

�

3.21. Proposition. Let M be some Kripke model with state s, let i be some
agent and ' some propositional formula. Let r(i; contract ')(M; s) be de�ned
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� j= [doi(contract ')]Bi ! Bi 

� j= :Bi'! ([doi(contract ')]Bi $ Bi )
� j= :Ki'! [doi(contract ')]:Bi'

� j= Bi'! (Bi ! [doi(contract '; expand ')]Bi )
� j= Ki('$  )! ([doi(contract ')]Bi#$ [doi(contract  )]Bi#)
� j= ([doi(contract ')]Bi# ^ [doi(contract  )]Bi#)!

[doi(contract (' ^  )]Bi#

� j= [doi(contract (' ^  )]:Bi'!
([doi(contract ('^  )]Bi#! [doi(contract ')]Bi#)

Proof: All clauses follow directly from Theorem 3.20. The �rst clause of Propo-
sition 3.16 follows from B�2 and so on until the last clause that follows from
B�8.
�

3.17. Proposition. For all agents i, for all propositional formulae ', and for
all formulae  we have:

� j= hdoi(contract ')itt
� j= hdoi(contract ')i $ [doi(contract ')] 
� j= hdoi(contract '; contract ')i $ hdoi(contract ')i 

Proof: Directly from Def. 3.15.
�

3.20. Theorem. Let M be some Kripke model. For all agents i, for all s 2 M
and for all formulae ' and  the following are true.

(B�1) B�' (i;M; s) is a belief set.
(B�2) B�' (i;M; s)� B(i;M; s).
(B�3) If ' 62 B(i;M; s) then B�' (i;M; s) = B(i;M; s).
(B�4) If M; s 6j= Ki' then ' 62 B�' (i;M; s).
(B�5) If ' 2 B(i;M; s) then B(i;M; s)� B�+'' (i;M; s).

(B�6) If M; s j= Ki('$  ) then B�' (i;M; s) = B� (i;M; s).

(B�7) B�' (i;M; s)\ B� (i;M; s)� B�'^ (i;M; s).

(B�8) If ' 62 B�'^ (i;M; s) then B�'^ (i;M; s)� B�' (i;M; s).

Proof: Let M be some Kripke model with state s, and let i be some agent.
Let � be an arbitrary selection function forM. Let ' be some arbitrary propo-
sitional formula, and let M0; s = r(i; contract ')(M; s). We show that con-
tractions based on � satisfy the G�ardenfors postulates.

(B�1) This postulate is easily seen to be satis�ed: in the case where B0(i; s) =
;, B(i;M0; s) = B?, and otherwise B(i;M0; s) is consistent and deduc-
tively closed by de�nition of j= for Bi'.

(B�2) By demand �1 it follows that �(i; s; ') yields a set of states from M.
It is easily seen that for propositional formulae it holds that if M; s0 j= '

for all s0 2 S0 then for all S00 � S0, M; s00 j= ' for all s00 2 S00. Now if
 2 B�' (i;M; s), then M; s0 j=  for all s0 2 B(i; s) [ �(i; s; '). Hence
M; s0 j=  for all s0 2 B(i; s), and thus  2 B(i;M; s).
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(B+1) This postulate follows straightforwardly from the de�nition of r for the
expand action. If the resulting model M0 is such that B0(i; s) = ; then
B+
' (i;M; s) = B?, and otherwise B+

' (i;M; s) is consistent and deduc-
tively closed by de�nition of j= for belief formulae.

(B+2) Since ' is a propositional formula, it follows by de�nition of r for expand
that M0; s0 j= ' for all s0 2 B0(i; s). Hence M0; s j= Bi' and thus
' 2 B+

' (i;M; s).
(B+3) Let  2 B(i;M; s). Then M; s0 j=  for all  2 B(i; s). Now B0(i; s) �

B(i; s) and since  is propositional it follows that M0; s0 j=  for all
s0 2 B0(i; s). Hence M0; s j= Bi and thus  2 B+

' (i;M; s).
(B+4) Suppose ' 2 B(i;M; s). Then M; s0 j= ' for all s0 2 B(i; s). Since '

is propositional it follows that B(i; s)\ [[']] = B(i; s) and hence B0(i; s) =
B(i; s). Then M0; s = M; s, and hence B+

' (i;M; s) = B(i;M0; s) =
B(i;M; s).

(B+5) The proof that this postulate is validated is most easily given as a direct
consequence of Proposition 3.13. For if B(i;M; s) � B(i;M0; s0) then
Th(B(i;M; s) \ f'g) � Th(B(i;M0; s0) \ f'g) and thus B+

' (i;M; s) �
B+
' (i;M

0; s0). Since the proof of Proposition 3.13 does not depend on
B+5, this postulate is validated.

(B+6) From B+2, B+3 and the fact that belief sets are deductively closed, it
follows that Th(B(i;M; s)[ f'g) � B+

' (i;M; s). From Proposition 3.13,
the proof of which does not depend on B+6, it follows that B+

' (i;M; s)
is indeed the smallest set that satis�es B+1 through B+5.

�

3.13. Proposition. For all Kripke models M with states s, for all agents i,
and for all propositional formulae ' we have:

B+
' (i;M; s) = Th(B(i;M; s)[ f'g)

Proof: We prove that the two sets are equal by proving that each set is a subset
of the other one. So let M be some Kripke model with state s, let i be some
agent, ' be some propositional formula.

`�' This is shown by the argument given in the proof of B+6: from B+2,
B+3 and the fact that beliefs sets are deductively closed, it follows that
Th(B(i;M; s)[ f'g) � B+

' (i;M; s).
`�' Suppose that the propositional formula  2 B+

' (i;M; s). If M0; s =
r(i; expand ')(M; s) this implies that M0; s0 j=  for all s0 2 B0(i; s).
Since  is a propositional formula, and since B0(i; s) = B(i; s) \ [[']], it
follows that M; s0 j=  for all s0 2 B(i; s) such that M; s0 j= '. Hence
M; s0 j= (' !  ) for all s0 2 B(i; s). Then ' !  2 B(i;M; s) and
thus  2 Th(B(i;M; s) [ f'g). Since  is arbitrary it follows that
B+
' (i;M; s)� Th(B(i;M; s)[ f'g).

�

3.16. Proposition. For all agents i, and propositional formulae ',  and #
we have:
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3.7. Proposition. For all agents i, for all propositional formulae ', and for
all formulae  we have:

� j= hdoi(expand ')itt
� j= hdoi(expand ')i $ [doi(expand ')] 
� j= hdoi(expand '; expand ')i $ hdoi(expand ')i 

Proof: Directly from Def. 3.5.
�

3.8. Proposition. For all agents i, for all propositional formulae ' and  we
have:

� j= [doi(expand ')]Bi $ Bi('!  )

Proof: Let M be some Kripke model with state s, let i be some agent and let
' and  be arbitrary propositional formulae. Then:

M; s j= [doi(expand ')]Bi 

,  2 B+
' (i;M; s) (De�nition of B+

' (i;M; s))
,  2 Th(B(i;M; s)[ f'g) (Proposition 3.13)
,� ('!  ) 2 Th(B(i;M; s))
, M; s j= Bi('!  ) (De�nition of B(i;M; s))

The starred equivalence holds due to the Deduction Theorem for propositional
classical logic, which states that for sets of formulae � and formulae ' and  ,
 2 Th(�[ f'g) holds i� ('!  ) 2 Th(�) holds.
�

3.9. Corollary. For all agents i, for all propositional formulae ' and  we
have:

� j= [doi(expand ')]Bi�$ Bi:'

Proof: The corollary follows directly from Proposition 3.8 and the observation
that :' and '! � are equivalent formulae.
�

3.12. Theorem. Let M and M0 be Kripke models, with s in M and s0 in M0,
and let i be some agent. The following is valid for all ' 2 L0.

(B+1) B+
' (i;M; s) is a belief set, i.e., B+

' (i;M; s) is either equal to B? or it is
consistent and deductively closed.

(B+2) ' 2 B+
' (i;M; s).

(B+3) B(i;M; s)� B+
' (i;M; s).

(B+4) If ' 2 B(i;M; s) then B+
' (i;M; s) = B(i;M; s).

(B+5) If B(i;M; s)� B(i;M0; s0), then B+
' (i;M; s)� B+

' (i;M
0; s0).

(B+6) B+
' (i;M; s) is the smallest set that satis�es the postulates 1 { 5 as given

above.

Proof: Let M be some Kripke model with state s, let i be some agent, ' be
some propositional formula, and let
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� To prove: j= :Bi'! Bi:Bi'. Let M be some Kripke model with state
s, let i be some agent and let ' be some formula.

M; s j= :Bi'

, 9s0 2 B(i; s)[M; s0 6j= ']
) 8s00 2 s9s0 2 B(i; s)[M; s0 6j= ']
) 8s00 2 B(i; s)9s0 2 B(i; s)[M; s0 6j= ']
,M; s00 j= :Bi' for all s00 2 B(i; s)
,M; s j= Bi:Bi'

� To prove: j= :Bi�! (Bi:Bi'! :Bi'). Let M be some Kripke model
with state s, let i be some agent and let ' be some formula. Suppose
M; s j= :Bi�, then B(i; s) 6= ;. Then:

M; s j= Bi:Bi'

,M; s0 j= :Bi' for all s0 2 B(i; s)
, 8s0 2 B(i; s)9s00 2 B(i; s)[M; s00 6j= ']
, 9s00 2 B(i; s)[M; s00 j= :'] (`)': since B(i; s) 6= ;)
,M; s j= :Bi'

�

3.2. Proposition. LetM = hS; �;R;B;r; ci be some Kripke model with s 2 S,
and let M0 = hS0; �0;R0;B0; r0; c0i be some Kripke model with s0 2 S0. Then it
holds that:

8p 2 �[�(p; s) = �0(p; s0)]) 8 2 L0[M; s j=  ,M0; s0 j=  ]

Proof: The proposition is shown by induction on the structure of  .

1. If  2 � then the proposition is trivial.
2. If  = : 1 where  1 is purely propositional then:

M; s j= : 1
, not(M; s j=  1)
, not(M0; s0 j=  1) (Induction Hypothesis)
,M0; s0 j= : 1

3. If  =  1 _  2 where  1;  2 purely propositional then:

M; s j=  1 _  2
,M; s j=  1 or M; s j=  2

,M0; s0 j=  1 or M
0; s0 j=  2 (Induction Hypothesis)

,M0; s0 j=  1 _  2
�

3.6. Proposition. For all agents i, and for all propositional formulae ' and
 we have:

� j= [doi(expand ')]Bi'

� j= Bi ! [doi(expand ')]Bi 

� j= Bi'! (Bi $ [doi(expand ')]Bi )

Proof: All clauses follow directly from Theorem 3.12. The �rst clause of Propo-
sition 3.6 follows from B+2, the second clause follows from B+3, and the third
clause follows from B+4.
�
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A. Appendix: the proofs

A.1. Remark. For reasons imposed by the demand for informational economy,
in some of the proofs given below references are made to proofs that are given
later on. In this cases the latter proof is either more elaborate or more instruc-
tive than the former one.

2.6. Proposition. For all agents i and formulae ' and  we have:

� j= Ki('!  )! (Ki'! Ki )
� j= Ki'! '

� j= Ki'! KiKi'

� j= :Ki'! Ki:Ki'

� j= ')j= Ki'

Proof: The proof of this proposition is fairly standard, and can be found at
various places in the literature [1, 16, 25].
�

2.7. Proposition. For all agents i and formulae ' and  we have:

� j= Bi('!  )! (Bi'! Bi )
� j= Bi'! BiBi'

� j= :Bi'! Bi:Bi'

� j= ' ) j= Bi'

Proof: Again the proof of this proposition is standard [1, 16, 25].
�

2.8. Proposition. For all agents i and formulae ' we have:

� j= Ki'! Bi'

� j= :Bi�! (Ki:'! :Bi')
� j= KiKi'$ Ki'

� j= KiBi'$ Bi'

� j= Ki:Ki'$ :Ki'

� j= Ki:Bi'$ :Bi'

� j= Ki'! BiKi'

� j= :Bi�! (BiKi'! Ki')
� j= BiBi'$ Bi'

� j= :Ki'! Bi:Ki'

� j= :Bi�! (Bi:Ki'! :Ki')
� j= :Bi'! Bi:Bi'

� j= :Bi�! (Bi:Bi'! :Bi')

Proof: All cases are easily shown. As an example we show the last two cases.
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� Cannoti(�; ') � Ki(:hdoi(�)i'_ :Ai�).

Due to the speci�c properties of the belief-changing actions with respect to
results, opportunities, and abilities, some remarkable validities can be shown.

3.43. Proposition. For all agents i, and for all propositional formulae ' we
have:

� j= Aiexpand '! Cani(expand ';Bi' ^ :Bi�)
� j= Aicontract '! Cani(contract ';:Bi')
� j= Aicontract :'! Cani(revise ';Bi' ^ :Bi�)

Intuitively, Proposition 3.43 states that any agent that has the ability to
perform some belief-changing action knows that this action is feasible and be-
haves the way it should, i.e., the agent knows that this action is a correct and
feasible plan to change its beliefs in the desired way.

4. Discussion

In this paper we de�ned actions that model three well-known changes of be-
lief, viz. expansions, contractions, and revisions. We characterized the states of
a�airs that result from execution of these actions, the conditions that decide
whether agents have the opportunity to perform these actions, and the capaci-
ties that agents should posses in order to be able to perform these actions. The
action that models belief contractions is de�ned using the notion of selection
functions. These are functions that select a subset of the set of epistemic al-
ternatives of an agent that is to be added to its set of doxastic alternatives,
in order to contract its set of beliefs. We prove that our kind of selection
functions resemble both the selection functions proposed by Stalnaker [33] and
partial meet contraction functions as de�ned by G�ardenfors [5]. The action that
models belief revision is de�ned in terms of a contraction and an expansion in
a way suggested by the Levi identity [21]. We showed that our belief-changing
actions satisfy (semantic, agent-oriented variants of) the G�ardenfors postulates
for belief expansions, belief contractions, and belief revisions, thereby support-
ing our claim that the formalization that we present is both an intuitively and
philosophically acceptable one.

With regard to the topics covered in this paper, our future research will
concentrate on agents acquiring information from multiple sources. For in this
case, the reliability of the information and the source determines whether and
how the beliefs of the agents should change. Actions that model belief revisions
will obviously play an important part in situations like these. A general and
important topic of future research will be the treatment of the motivational
aspect of agents.
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c(i; expand ')(M; s) = 1 , M; s j= :Bi:'
c(i; contract ')(M; s) = 1 , M; s j= :Ki'

c(i; revise ')(M; s) = c(i; contract :'; expand ')(M; s)

The �rst clause of Def. 3.40 states that an agent is able to expand its set
of beliefs with a formula if and only if it does not already believe the negation
of the formula. The second clause formalizes the idea that an agent is able to
remove some formula from its set of beliefs if and only if it does not consider
the formula to be one of its principles. The ability for the revise action is
de�ned through the Levi identity.

3.41. Proposition. For all agents i and for all propositional formulae ' we
have:

� j= Aiexpand '$ KiAiexpand '

� j= Aiexpand '! hdoi(expand ')i:Bi�

� j= Aicontract '$ KiAicontract '

� j= Aicontract '! hdoi(contract ')i:Bi'

� j= Airevise '$ Aicontract :'
� j= Airevise '! hdoi(revise ')i(Bi' ^ :Bi�)

The �rst and third clause of Proposition 3.41 state that agents know of their
ability to expand and contract their beliefs; a consequence of the �fth clause
is that agents also know of their ability to revise their beliefs. The second,
fourth and sixth clause formalize the idea that belief changes of which the
agent is capable, behave the way they should, i.e., an expansion does not result
in absurd belief sets, a contraction leads to disbelief in the contracted formula,
and a revision results in the combination of these two.

3.4.1. The Can-predicate and the Cannot-predicate

Inspired by the concepts introduced by Moore [27], we de�ned our own ver-
sion of the Can-predicate and the Cannot-predicate [11]. Intuitively these
predicates formalize the knowledge and the reasoning of agents regarding the
(in)correctness and (in)feasibility of their plans to achieve certain goals, and as
such these predicates deal with important aspects of the agents' planning.

The de�nition of these predicates is based on the idea that an agent i knows
that action � is a correct plan to achieve ' if and only if it knows that hdoi(�)i'
holds. Agent i knows that � is a feasible plan for ' if and only if it knows that it
is able to do �, i.e., KiAi� holds. This intuition is formalized in the de�nition
of the Can-predicate as we give it. We furthermore de�ne the Cannot-predicate,
which has as its intended meaning that the agent knows that it cannot reach
some goal ' by performing some action �, since it knows that either the action
does not lead to the desired goal or it is not capable of performing the action,
i.e., the agent knows that the action is either an incorrect or an infeasible plan.

3.42. Definition. For all agents i, action � and formula ', the Can-predicate
and the Cannot-predicate are de�ned as follows.

� Cani(�; ') � Ki(hdoi(�)i'^Ai�).
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3.38. Theorem. Let M be some Kripke model. For all agents i, for all s 2 M
and for all formulae ' and  the following are true.

(B?1) B?'(i;M; s) is a belief set.
(B?2) ' 2 B?'(i;M; s).
(B?3) B?'(i;M; s)� B+

' (i;M; s).
(B?4) If :' 62 B(i;M; s) then B+

' (i;M; s)� B?'(i;M; s).
(B?5) B(i;M; s) = B? if and only if M; s j= Ki:'.
(B?6) If M; s j= Ki('$  ) then B?'(i;M; s) = B? (i;M; s).

(B?7) B?'^ (i;M; s)� B?+' (i;M; s).

(B?8) If : 62 B?'(i;M; s), then B?+' (i;M; s)� B?'^ (i;M; s).

Also the result of Proposition 3.35 can be rephrased in terms that make it
more in line with the framework of G�ardenfors.

3.39. Proposition. For all Kripke modelsM with state s, for all agents i, and
for all propositional formulae ' we have:

� if :' 2 K(i;M; s) then B?'(i;M; s) = B?.
� if :' 62 B(i;M; s) then B?'(i;M; s) = Th(B(i;M; s)[ f'g).
� if :' 2 B(i;M; s)nK(i;M; s) then B?'(i;M; s) = Th(K(i;M; s)[f'g) if
the de�nition of r for the contract action is based on the AiG function
for M.

3.4. The ability to change one's mind

In the previous (sub)sections, we dealt with the formalization of the opportunity
for and the result of the actions that model the belief changes of agents. Here
we look at the ability of agents to change their beliefs.

For `mental' actions, like testing (observing) and communicating, the abili-
ties of agents are closely related to their (lack of) knowledge and/or belief. This
observation seems to hold a fortiori for the abstract actions that cause agents
to change their beliefs. For when testing and communicating, at least some
interaction takes place, either with the real world in case of testing, or with
other agents when communicating, whereas the changing of beliefs is a strictly
mental, agent-internal, activity. Therefore, it seems natural to let the ability of
an agent to change its beliefs be determined by its mental state only.

The intuitive idea behind the de�nitions as we present them, is that the
ability to change one's beliefs can be used to guide the changes that the beliefs
of an agent undergo. In particular, if an agent is able to change its beliefs
in a certain way, then this change of belief should neither result in an absurd
belief set nor cause no change at all. Another point of attention is given by the
observation that the Levi identity should also be respected for abilities, i.e., an
agent is capable of revising its beliefs with a formula ' if and only if it is able
to contract its beliefs with :' and thereafter perform an expansion with '.

3.40. Definition. Let M be some Kripke model with state s, let i be some
agent and let ' be some propositional formula. The capability function c is for
the expand, contract and revise actions de�ned by:
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3.35. Proposition (Characterization of revisions). For all agents i,
and for all propositional formulae ' and  we have:

� j= Ki:'$ [doi(revise ')]Bi�

� j= :Bi:'! ([doi(revise ')]Bi $ Bi('!  ))
� j= :Ki:'^Bi:'! ([doi(revise ')]Bi $ Ki('!  )) if the de�nition
of r for the contract action is for all models based on the AiG function.

The �rst clause of Proposition 3.35 states that in cases where an agent knows
the negation of some formula to be true, a revision with this formula results in
absurd beliefs. The second clause states that in situations where the negation
of some formula is not believed, revising beliefs with the formula amounts to an
expansion with the formula. The last clause is possibly the most mysterious
one. It states that in situations that are not of the kinds described in the
�rst two clauses, formulae are believed after a revision with ' if it is known on
beforehand that ' implies the formula, i.e., the belief set of the agent after a
revision with ' consists of all those formulae that are known to be implied by
'.

3.3.1. Revisions and the G�ardenfors postulates

The G�ardenfors postulates for belief revision are given below. In these pos-
tulates K, ' and K+

' are assumed to have their usual connotation, and K?
'

denotes the revision of K with the formula '. The absurd belief set, consisting
of all formulae from the language, is denoted by K?.

3.36. Definition. The G�ardenfors postulates for belief revision:

(G?1) K?
' is a belief set.

(G?2) ' 2 K?
'.

(G?3) K?
' � K+

' .
(G?4) If :' 62 K then K+

' � K?
'.

(G?5) K?
' = K? if and only if ` :'.

(G?6) If ` '$  then K?
' = K?

 .

(G?7) K?
'^ � (K?

')
+
 .

(G?8) If : 62 K?
', then (K?

')
+
 � K?

'^ .

When de�ning revision through the Levi identity, starting from expansions
and contractions that satisfy the appropriate postulates, the G�ardenfors postu-
lates for belief revision are met [5, 21]. The same holds in our framework, i.e.,
our revision action behaves like a belief revision in the sense of G�ardenfors.

3.37. Definition. The revision of B(i;M; s) with a propositional formula ',
notation B?'(i;M; s) is de�ned by:

B?'(i;M; s) = f 2 L0 j M; s j= [doi(revise ')]Bi g

The sequence of a revision with ' followed by an expansion with  of B(i;M; s),
notation B?+' (i;M; s), is de�ned by:

B?+' (i;M; s) = f# 2 L0 j M; s j= [doi(revise '; expand  )]Bi#g
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3.33. Proposition. For all agents i, and for all propositional formulae ',  
and # we have:

� j= [doi(revise ')]Bi'

� j= [doi(revise ')]Bi#! [doi(expand ')]Bi#

� j= :Bi:'! ([doi(expand ')]Bi#$ [doi(revise ')]Bi#)
� j= Ki:'$ [doi(revise ')]Bi�

� j= Ki('$  )! ([doi(revise ')]Bi#$ [doi(revise  )]Bi#)
� j= [doi(revise (' ^  )]Bi#! [doi(revise '; expand  )]Bi#

� j= :[doi(revise ')]Bi: !
([doi(revise '; expand  )]Bi#! [doi(revise ('^  )]Bi#)

The �rst clause of Proposition 3.33 states that agents believe ' as the result
of revising their beliefs with '. The second clause states that a revision with
' results in a belief set that is contained in the belief set that results from an
expansion with ', i.e., changing the belief set to incorporate ' in a consistent
manner (if possible) -this is a revision with '- results in a subset of the set
of beliefs that results from straightforward inserting ' in the belief set -an
expansion with '. The third clause formalizes the idea that expansion is a
special kind of revision: in cases where :' is not believed, expanding with '
and revising with ' amount to the same action. The left-to-right implication
of the fourth clause states that if :' is known, i.e., :' is one of the formulae
that the agent will never part from, then the revision with ' results in the
absurd belief set, i.e., the agent believes � as a result of revising with '. The
right-to-left implication of the fourth clause states that the absurd belief set
will result only if a revision with a non-revisable formula is performed. The
�fth clause states that revisions with formulae that are known to be equivalent
have identical results. The sixth clause formalizes the idea that the revision
with the conjunction ' ^  results in a belief set that is a subset of the belief
set that results from a revision with ' followed by an expansion with  . The
last clause states that if a revision with ' does not result in : being believed,
then the belief set that results from revising with ' ^  is a superset of the
belief set that results from a revision with ' followed by an expansion with  .
As G�ardenfors remarks, these last two clauses provide for some sort of minimal
change condition on revisions.

As was the case for expansions and contractions, revisions are realizable,
deterministic and idempotent.

3.34. Proposition. For all agents i, for all propositional formulae ', and for
all formulae  we have:

� j= hdoi(revise ')itt
� j= hdoi(revise ')i $ [doi(revise ')] 
� j= hdoi(revise '; revise ')i $ hdoi(revise ')i 

The belief sets resulting from application of the revise action can be char-
acterized analogously to the characterization of contract as given in Proposi-
tion 3.27.
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would result in selection functions, and vice versa. To investigate this relation
in our framework we introduce the notion of s-selection functions. Basically
these s-selection functions can be seen as conditional selection functions that
are at some points adapted to make them more in line with our framework.

3.29. Definition. Let some model M be given. A function s : A � S � }(S)
is an s-selection function forM if and only if it meets the following constraints
for all i 2 A; s 2 S and for all propositional formulae ' and  .

S1: :' is true at all states from s(i; s; ')
S2: s(i; s; ') is empty only if s0 is (epistemically) inaccessible from s for all

worlds s0 in which :' holds.
S3: if B(i; s)\ [[:']] 6= ; then s(i; s; ')� B(i; s)
S4: if :' is true at all states from s(i; s;  ) and : is true at all states from

s(i; s; '), then s(i; s; ') = s(i; s;  )

It turns out that all selection functions for a given model, are also s-selection
functions for the model. The converse does however not hold.

3.30. Proposition. For all models M, and for all functions & : A�S �L0 !
}(S) it holds that if & is a selection function for M then & is an s-selection
function for M.

3.31. Proposition. Some Kripke model M and function & : A � S � L0 !
}(S) exists, such that & is an s-selection function for M, but not a selection
function. Furthermore, when de�ning contractions based on the function &, not
all G�ardenfors postulates for belief contraction are validated.

3.3. The revise action

Having de�ned actions that model expansions and contractions, we now de�ne
actions that model revisions. A revision is a change of belief in which the belief
status of some formula is reversed, i.e., for some formula :' that is believed on
beforehand, ' is believed as the result of a revision with '. In de�ning actions
that model revisions we essentially use the Levi identity [21]. Levi showed that
revisions can be de�ned in terms of contractions and expansions: a revision with
some formula ' can be brought about as a contraction with :' followed by an
expansion with '. Given the de�nitions of contractions and expansions of the
previous sections and the fact that the class of actions Ac that we consider is
closed under sequential composition, the Levi identity provides for a means to
de�ne revisions as the sequential composition of a contraction and an expansion
action.

3.32. Definition. Let some modelM = hS; �;R;B; r; ci with s 2 S, and some
agent i and propositional formula ' be given. We de�ne:

r(i; revise ')(M; s) = r(i; contract :'; expand ')(M; s)

De�nition 3.32 indeed provides for an intuitively acceptable formalization
of belief revision.
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The belief states following application of the contract action can completely
be characterized in terms of a priori information, i.e., knowledge and belief, of
the agent. In one of the clauses given below it is presupposed that r for the
contract action is based on the AiG function, the other clause holds for general
selection functions.

3.27. Proposition (Characterization of contractions). For all agents
i, and for all propositional formulae ' and  we have:

� j= :Bi'! ([doi(contract ')]Bi $ Bi )
� j= Bi' ! ([doi(contract ')]Bi $ (Bi ^ Ki(:' !  ))) if the def-
inition of r for the contract action is for all models based on the AiG
function.

Again the result of Proposition 3.27 can be rephrased to make it more in
line with a result stated by G�ardenfors [5] for full meet contraction functions.

3.28. Proposition. For all Kripke modelsM with state s, for all agents i, and
for all propositional formulae ' and  we have:

� ' 62 B(i;M; s)) ( 2 B�' (i;M; s),  2 B(i;M; s))
� ' 2 B(i;M; s))
( 2 B�' (i;M; s) ,  2 B(i;M; s) & (:' !  ) 2 K(i;M; s)) if the
de�nition of r for the contract action is based on the AiG function for
M.

Besides the relation between our kind of selection functions and the partial
meet contraction functions of G�ardenfors, another interesting relation exists
between our selection functions and those de�ned by Stalnaker [33]. Stalnaker
uses selection functions (to avoid confusion we use the term conditional selection
functions to refer to selection functions in the sense of Stalnaker) in the context
of a Kripke style semantics for conditional logic. Given a Kripke model M and
a state s in M, a conditional selection f when applied to a pair ('; s) yields
the most preferred or most reasonable world given ' and s. Stalnaker gives four
demands that a reasonable conditional selection function should meet:

1. ' is true at f('; s).
2. f('; s) is unde�ned only if s0 is inaccessible from s for all worlds s0 in

which ' holds.
3. if ' is true at s then f('; s) = s.
4. if ' is true at f( ; s) and  is true at f('; s) then f('; s) = f( ; s).

Intuitively, there seems to be at least some resemblance between Stalnaker's
ideas underlying conditional selection function and the ideas underlying our
selection functions. For although conditional selection functions aim at yield-
ing a single world that satis�es a given formula and selection functions aim
at yielding a set of worlds that falsify a given formula, both aim at yielding
reasonable results. For conditional selection functions this reasonableness is en-
forced through the demands given above whereas for selection functions this
is enforced through the demands �1 through �6 as given in Def. 3.14. One
could ask whether imposing demands similar to those proposed by Stalnaker
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of maximal subsets of K that do not entail '. More formal, K�
' = \S(K?'),

where K?' is the set of belief sets K0 that fail to imply ' and are maximal
subsets of K, and S is a function that selects some of the elements of K?'.

The intuitive idea behind our notion of selection functions resembles that
of partial meet contraction functions. Whereas in partial meet contraction
functions some of the maximal subsets not implying the contracted formula
are selected, our selection function selects some of the maximal subsets of the
belief set given the model. This can be seen as follows. Assume some Kripke
model M with state s and agent i to be given. Assume furthermore that
M; s j= Bi'^:Ki' for some propositional formulae '. Given this model, it is
obvious that adding any of the worlds from [s]R(i)\ [[:']] to the set of doxastic
alternatives of i results in a model in which the agent no longer believes '.
Furthermore, under the constraints implied by Fig. 3, it is even so obvious that
it is su�cient to add exactly one of the worlds from [s]R(i) \ [[:']] in order to
result in a model in which the agent no longer believes '. From this point of
view, a selection function selects some of the maximal subsets of a belief set,
and the resulting belief set is the intersection of these maximal subsets, all with
respect to the model M. The following proposition formalizes these informal
ideas.

3.24. Proposition. Let some Kripke model M with state s, and agent i be
given. Let � be some selection function for M. De�ne for propositional formu-
lae ':

� B(i;M; s)?'= ffB(i;M; s)gg if ' 2 K(i;M; s)
� B(i;M; s)?' = ff 2 L0 j 8s0 2 B(i; s) [ fs00g[M; s0 j=  ]g j s00 2
[s]R(i) \ [[:']]g if ' 62 K(i;M; s)

� S(B(i;M; s)?') = ff 2 L0 j 8s0 2 B(i; s) [ fs00g[M; s0 j=  ]g j s00 2
�(i; s; ')g

Then B�' (i;M; s) = \S(B(i;M; s)?').

The resemblance with the partial meet contraction functions suggest a con-
crete implementation of selection functions. The full meet contraction function
of G�ardenfors de�nes the contraction of a belief setK with a formula ' to be the
intersection of all maximal subsets of K that do not imply '. In our framework
this amounts to a selection function that simply adds all the possible worlds
from the epistemic equivalence class that do not support the formula that is to
be contracted, if the formula is accepted on beforehand. If the formula is not
accepted on beforehand, no new worlds are added.

3.25. Definition (All is Good). Let M be a Kripke model. The AiG function
�a is for all i 2 A, s 2M, and ' in L0 de�ned by:

� �a(i; s; ') = B(i; s) \ [[:']] if B(i; s)\ [[:']] 6= ;.
� �a(i; s; ') = [s]R(i) \ [[:']] otherwise.

3.26. Proposition. The AiG function �a as given in Def. 3.25 is a selection
function.
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&(1; s; ') = ft0; u0g if M; t0 6j= '

&(1; s; ') = ft0g if M j= '

&(1; s; ') = ft 2 T j M; t 6j= 'g [ ft0g if M; t0 j= '&M 6j= '&' `cl p
&(1; s; ') = fu 2 U j M; u 6j= 'g [ ft0g if M; t0 j= '&M 6j= '&' 6`cl p

The function & is not a selection function for M. In particular, & does meet
only one of the demands given in Def. 3.14. To see this, take some arbitrary
s 2 S.

� Since & yields identical results for all s 2 S, demand �0 is met.
� Since t0 2 &(1; s; p) and t0 62 [[:p]], demand �1 is not met.
� Since u0 2 &(1; s;:p) and u0 62 B(1; s), demand �2 is not met.
� Although S \ [[:tt]] = ;, &(1; s; tt) = ft0g, and hence demand �3 is not
met.

� Although M; t0 j= K1(:q $ (p ^ :q)), &(1; s;:q) = ft0; u0; u2g whereas
&(1; s; p^ :q) = ft0; t2g and hence demand �4 is not met.

� Since it is the case that &(1; s; p ^ q) = ft0; t1; t2g, &(1; s; p) = ft0; t2g
and &(1; s; q) = ft0; u1; u2g, &(1; s; p^ q) 6� &(1; s; p)[ &(1; s; q), and hence
demand �5 is not met.

� Although &(1; s; q ^ p) \ [[:q]] = ft1; t2g 6= ;, &(1; s; q) 6� &(1; s; q ^ p) and
hence demand �6 is not met.

Hence & is by no means a selection function for M. It can however be checked
that when de�ning r(1; contract ')(M; s) based on the non-selection function
& , all the postulates given in Theorem 3.20 are validated3 .

Despite the negative results of Example 3.22, we can prove that when de�n-
ing r for the contract action based on some function & that adds doxastic
alternatives (hence in accordance with Fig. 3), validation of the G�ardenfors
postulates imposes some weak variants of the demands for selection functions
on & .

3.23. Proposition. Let M be some Kripke model with state s, and let i be
some agent. Assume that r(i; contract ')(M; s) is de�ned as in 3.15 with �
replaced by an arbitrary function & : A � S � L0 ! }(S). Then if contract is
to meet the demands presented in Theorem 3.20 it follows that:

� &(i; s; ')� [s]R(i)
� B(i; s)\ [[:']] = ;& [s]R(i) \ [[:']] 6= ; ) &(i; s; ')\ [[:']] 6= ;

The fact that our approach using selection functions de�nes a contraction
function which satis�es the G�ardenfors postulates is not as surprising as it
might seem at �rst sight. Fact of the matter is that our selection functions can
be seen as model-based, knowledge-restricted partial meet contraction functions
as de�ned by G�ardenfors [5]. A partial meet contraction function performs
contractions as follows. Given a belief set K and a formula ' that is to be
contracted, a partial meet contraction function yields the intersection of a set

3One way to see this is by remarking that & is a variant of the selection function �a as
presented in Def. 3.25 in which it is used that T and U worlds are identical on the propositional
level.
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(B�1) B�' (i;M; s) is a belief set.
(B�2) B�' (i;M; s)� B(i;M; s).
(B�3) If ' 62 B(i;M; s) then B�' (i;M; s) = B(i;M; s).
(B�4) If M; s 6j= Ki' then ' 62 B�' (i;M; s).
(B�5) If ' 2 B(i;M; s) then B(i;M; s)� B�+'' (i;M; s).

(B�6) If M; s j= Ki('$  ) then B�' (i;M; s) = B� (i;M; s).

(B�7) B�' (i;M; s)\ B� (i;M; s)� B�'^ (i;M; s).

(B�8) If ' 62 B�'^ (i;M; s) then B�'^ (i;M; s)� B�' (i;M; s).

3.2.2. Selection functions revisited

There is a more or less direct relation between the demands imposed on selection
functions and the G�ardenfors postulates for contraction. This relation is given
in the following proposition, leading to a re�nement of the results obtained in
Theorem 3.20.

3.21. Proposition. Let M be some Kripke model with state s, let i be some
agent and ' some propositional formula. Let r(i; contract ')(M; s) be de�ned
as in 3.15 but with � replaced by an arbitrary function & : A� S � L0 ! }(S).
Then it holds that:

� If & satis�es �1 then B�5 is validated.
� If & satis�es �2 then B�3 is validated.
� Given that & satis�es �1 it is the case that if & satis�es �3 then B�4 is
validated.

� If & satis�es �4 then B�6 is validated.
� If & satis�es �5 then B�7 is validated.
� If & satis�es �6 then B�8 is validated.

The implications given in Proposition 3.21 cannot be generalized to equiv-
alences. That is, the conditions imposed on selection functions are su�cient
to bring about validation of the postulates for belief contraction but are not
necessary to do so. The following example sheds some more light on this issue.

3.22. Example. Consider the single-agent language L, based on � = fp; qg
and At = fag. Consider the Kripke model M = hS; �;R;B; r; ci where

� S = T [ U ; T = ft0; t1; t2g;U = fu0; u1; u2g,
� �(p; tj) = 1 i� �(p; uj) = 1 i� j = 0 or j = 1
�(q; tj) = 1 i� �(q; uj) = 1 i� j = 0,

� R(1) = S2,
� B(1; s) = ft0g for all s 2 S,
� r is arbitrary,
� c(1; a)(t) = 1 for all t 2 T , c(1; a)(u) = 0 for all t 2 U .

Note that although the elements of T are copies of the elements of U (and vice
versa) on the propositional level, they do not satisfy the same set of formula.
For M; t j= A1a for each t 2 T whereas M; u j= :A1a for all u 2 U . De�ne
the function & : A � S � L0 ! }(S) for all s 2 S as follows:
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believed both after a contraction with ' and after a contraction with  are
believed after a contraction with '^ . The last clause states that if a contrac-
tion with ' ^  results in ' not being believed, then in order to contract ' no
more formulae need to be removed than those that were removed in order to
contract ' ^  . This last clause is related to the property of minimal change
for contractions.

As was the case for expansions, contractions are also realizable, determinis-
tic, and idempotent.

3.17. Proposition. For all agents i, for all propositional formulae ', and for
all formulae  we have:

� j= hdoi(contract ')itt
� j= hdoi(contract ')i $ [doi(contract ')] 
� j= hdoi(contract '; contract ')i $ hdoi(contract ')i 

3.2.1. Contractions and the G�ardenfors postulates

The G�ardenfors postulates for belief contraction are given below. In these
postulates K, ';  and K+

' are assumed to have their usual connotation, and
K�

' denotes the contraction of K with the formula '.

3.18. Definition. The G�ardenfors postulates for belief contraction:

(G�1) K�
' is a belief set.

(G�2) K�

' � K.
(G�3) If ' 62 K then K�

' = K.
(G�4) If 6` ' then ' 62 K�

' .
(G�5) If ' 2 K then K � (K�

' )
+
' .

(G�6) If ` '$  then K�

' = K�

 .

(G�7) K�

' \K
�

 � K�

'^ .

(G�8) If ' 62 K�

'^ then K�

'^ � K�

' .

Using the de�nition of the contract action as given in 3.15, it is indeed the
case that this action models contractions in the sense of G�ardenfors. As was the
case for belief expansions, we have to modify the postulates for belief contraction
somewhat to account for the agent-oriented, semantics based character of our
framework.

3.19. Definition. The contraction of B(i;M; s) with a propositional formula
', notation B�' (i;M; s) is de�ned by:

B�' (i;M; s) = f 2 L0 j M; s j= [doi(contract ')]Bi g

The sequence of a contraction with ' followed by an expansion with  of
B(i;M; s), notation B�+' (i;M; s), is de�ned by:

B�+' (i;M; s) = f# 2 L0 j M; s j= [doi(contract '; expand  )]Bi#g

3.20. Theorem. Let M be some Kripke model. For all agents i, for all s 2 M
and for all formulae ' and  the following are true.
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for all i 2 A; s; s0 2 S and for all propositional formulae ' and  .

�0: �(i; s; ') = �(i; s0; ') if s0 2 [s]R(i).
�1: �(i; s; ')� [s]R(i) \ [[:']].
�2: �(i; s; ')� B(i; s) if B(i; s)\ [[:']] 6= ;.
�3: �(i; s; ') = ; i� [s]R(i) \ [[:']] = ;.
�4: if M; s j= Ki('$  ) then �(i; s; ') = �(i; s;  ).
�5: �(i; s; '^  ) � �(i; s; ')[ �(i; s;  ).
�6: if �(i; s; '^  )\ [[:']] 6= ; then �(i; s; ')� �(i; s; '^  ).

The de�nition of the contract action is based on the use of selection func-
tions: a contraction is performed by adding exactly those worlds that are se-
lected by the selection function to the set of doxastic alternatives of the agent.

3.15. Definition. Let some model M = hS; �;R;B; r; ci with s 2 S, and an
agent i and propositional formula ' be given. Let furthermore � be an arbitrary
but �xed selection function for M. We de�ne:

r(i; contract ')(M; s) =M0; s where
M0 = hS; �;R;B0; r; ci with
B0(i0; s0) = B(i0; s0) if i0 6= i or s0 62 [s]R(i)
B0(i; s0) = B(i; s0) [ �(i; s; ') for all s0 2 [s]R(i)

Using selection functions to de�ne the semantics for the contract action
indeed results in an acceptable formalization of belief contraction.

3.16. Proposition. For all agents i, and propositional formulae ',  and #
we have:

� j= [doi(contract ')]Bi ! Bi 

� j= :Bi'! ([doi(contract ')]Bi $ Bi )
� j= :Ki'! [doi(contract ')]:Bi'

� j= Bi'! (Bi ! [doi(contract '; expand ')]Bi )
� j= Ki('$  )! ([doi(contract ')]Bi#$ [doi(contract  )]Bi#)
� j= ([doi(contract ')]Bi# ^ [doi(contract  )]Bi#)!

[doi(contract (' ^  )]Bi#

� j= [doi(contract (' ^  )]:Bi'!
([doi(contract ('^  )]Bi#! [doi(contract ')]Bi#)

The �rst clause of Proposition 3.16 states that a contraction results in a
belief set that is contained in the belief set before the contraction. The second
clause state that in situations in which ' is not believed, nothing changes as the
result of contracting '. Again this property re
ects the criterion of informa-
tional economy. The third clause states that a contraction with a contractable
formula, this is a formula that the agent is willing to part from, results in the
agent not believing the contracted formula. The fourth clause states that all
beliefs in the original belief set are recovered after a contraction with a formula
followed by an expansion with the same formula. The �fth clause states that
contractions with formulae that are known to be equivalent, result in identi-
cal belief sets. The sixth clause formalizes the idea that all formulae that are
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3.2. The contract action

A belief contraction is the change of belief through which in general some for-
mula that is believed on beforehand is no longer believed afterwards. As such,
apparent beliefs that an agent has are turned into doubts as the result of a
contraction. In terms of our framework this comes down to expanding the set
of doxastic alternatives of an agent in order to encompass at least one state not
satisfying the formula that is to be contracted. Our approach towards belief
contraction is based on the following ideas.

:p

p

pp

p

p

p

:p

:p

p

s

B(i; [s]R(i))

[s]R(i)

p

:p

:p

p p

p

p

p :p

:p

:p

:p

Figure 3: Contraction in Kripke models

In Fig. 3 agent i believes p since p holds in all its doxastic alternatives.
When contracting p from the belief set of the agent, some of the :p worlds are
added to the set of doxastic alternatives of the agent. In order to end up with
well-de�ned Kripke models, these worlds that are to be added, need to be in
the set of epistemic alternatives of s. For in the Kripke models de�ned in 2.3,
the set of doxastic alternatives for a given agent in a given state is contained
in its set of epistemic alternatives in that state. Thus the worlds that are to be
added to the set of doxastic alternatives of the agent are elements of the set of
epistemic alternatives not supporting p. In Fig. 3 this is the rightmost part of
[s]R(i) separated through the dotted line.

The problem with contractions de�ned in this way is that it is not straight-
forward as to decide which worlds need to be added. From the basic idea that
knowledge -acting as the principles of agents- provides some sort of lower bound
of the belief set of an agent, it is clear that in the case of a contraction with
' some states need to be added that are elements of the set of epistemic al-
ternatives of the agent and do not support ', but it is not clear exactly which
elements of this set need to be chosen. That is, in Fig. 3 it is clear that the
worlds to be chosen should be among the �ve rightmost worlds in [s]R(i), but it
is not clear which of these worlds need to be added.

The approach that we propose is based on the use of so called selection
functions. These are functions that (whenever possible) select a subset of the
set of epistemic alternatives in such a way that the resulting contract action
behaves in a reasonable, intuitively acceptably way.

3.14. Definition. Let some model M be given. A function � : A� S � L0 !
}(S) is a selection function forM if and only if it meets the following constraints
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(G+2) ' 2 K+
' .

(G+3) K � K+
' .

(G+4) If ' 2 K then K+
' = K.

(G+5) If K � H then K+
' � H+

' .
(G+6) For all belief sets K, and all sentences ', K+

' is the smallest set that
satis�es G+1 { G+5.

It turns out that our expand action can be seen as providing a belief ex-
pansion in the sense of G�ardenfors. To formulate the G�ardenfors postulates
in our framework we introduce our own kind of belief sets. These belief sets
are model-based and indexed with a particular agent. Furthermore the notion
of knowledge sets, as providing the principles or prejudices that the agent will
never part from, is de�ned below.

3.11. Definition. Let M be some Kripke model with s 2 M. The belief set
of agent i in M; s, notation B(i;M; s), is de�ned by:

B(i;M; s) = f' 2 L0 j M; s j= Bi'g

The knowledge set of agent i in M; s, notation K(i;M; s), is de�ned by:

K(i;M; s) = f' 2 L0 j M; s j= Ki'g

The expansion of B(i;M; s) with a formula ' 2 L0, notation B
+
' (i;M; s), is

de�ned by:

B+
' (i;M; s) = f 2 L0 j M; s j= [doi(expand ')]Bi g

The unique absurd belief set B? is de�ned to be L0.

3.12. Theorem. Let M and M0 be Kripke models, with s in M and s0 in M0,
and let i be some agent. The following is valid for all ' 2 L0.

(B+1) B+
' (i;M; s) is a belief set, i.e., B+

' (i;M; s) is either equal to B? or it is
consistent and deductively closed.

(B+2) ' 2 B+
' (i;M; s).

(B+3) B(i;M; s)� B+
' (i;M; s).

(B+4) If ' 2 B(i;M; s) then B+
' (i;M; s) = B(i;M; s).

(B+5) If B(i;M; s)� B(i;M0; s0), then B+
' (i;M; s)� B+

' (i;M
0; s0).

(B+6) B+
' (i;M; s) is the smallest set that satis�es the postulates B+1 { B+5

as given above.

G�ardenfors shows that the postulates formulated in Def. 3.10 completely es-
tablish expansions [5]. Whereas the postulates for contraction and revision leave
some degrees of freedom in de�ning contractions and revisions, G+1 through
G+5 uniquely de�ne expansions. Proposition 3.13 -a rephrasing of Proposi-
tion 3.8- states that the same holds in our framework, and furthermore, the
unique de�nition that we end up with is identical to the one given by G�ardenfors.

3.13. Proposition. For all Kripke models M with states s, for all agents i,
and for all propositional formulae ' we have:

B+
' (i;M; s) = Th(B(i;M; s)[ f'g)
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in situations like these. Note that the �rst two clauses combined indicate that
our de�nition of belief, and in particular the fact that we allow absurd belief
sets, is a natural one. For an expansion with some formula ' in a situation
in which :' is already believed, results in the agent believing both ' and :'
and hence having inconsistent beliefs. The last clause states that in situations
where some formula is already believed, nothing is changed as the result of an
expansion with that formula. This latter property is suggested by the criterion
of informational economy [5], which states that since information is in general
not gratuitous unnecessary losses of information are to be avoided.

The expand action is furthermore realizable, deterministic and idempotent.
Realizability of an action implies that agents have the opportunity to perform
the action regardless of the situation, determinism of an action means that
performing the action results in a unique state of a�airs, and idempotence of
an action implies that performing the action twice -or an arbitrary number of
times- has the same e�ect as performing the action just once.

3.7. Proposition. For all agents i, for all propositional formulae ', and for
all formulae  we have:

� j= hdoi(expand ')itt
� j= hdoi(expand ')i $ [doi(expand ')] 
� j= hdoi(expand '; expand ')i $ hdoi(expand ')i 

It turns out that expansions as formalized in Def. 3.5 can be completely
characterized as follows.

3.8. Proposition (Characterization of expansions). For all agents i,
for all propositional formulae ' and  we have:

� j= [doi(expand ')]Bi $ Bi('!  )

Proposition 3.8 states that some (propositional) formula  is believed after
an expansion with ' if and only if the agent believes that ' implies  on
beforehand. As a special case of Proposition 3.8 we can prove that an expansion
with some formula results in the agent having absurd beliefs if and only if the
agent believes the negation of the formula on beforehand.

3.9. Corollary. For all agents i, for all propositional formulae ' and  we
have:

� j= [doi(expand ')]Bi�$ Bi:'

3.1.1. Expansions and the G�ardenfors postulates

As for contractions and revisions, G�ardenfors proposes some rationality pos-
tulates that describe belief expansions [5]. These postulates are given below,
where K and H denote arbitrary belief sets, ' denotes some formula, and the
expansion of K with ' is denoted by K+

' .

3.10. Definition. The G�ardenfors postulates for belief expansion:

(G+1) K+
' is a belief set.
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p restricts the set of doxastic alternatives of the agent to those that support p.
This is graphically depicted in Fig. 2.

p

:p

:p

p

p

p

B

Figure 2: The set of doxastic alternatives after an expansion with p.

Note that in the resulting model it is indeed the case that the agent believes
p, whereas it did not believe p on beforehand.

The de�nition of the r function for expansions is a direct formalization of
the intuitive ideas given above: if some agent i performs an expansion with
some formula ' in a world s in the model M, the result of this will be that
afterwards i has restricted its set of doxastic alternatives to those states that
satisfy '.

3.5. Definition. Let some model M = hS; �;R;B;r; ci with s 2 S, and some
agent i and propositional formula ' be given. We de�ne:

r(i; expand ')(M; s) =M0; s where
M0 = hS; �;R;B0; r; ci with
B0(i0; s0) = B(i0; s0) if i0 6= i or s0 62 [s]R(i)
B0(i; s0) = B(i; s0) \ [[']] if s0 2 [s]R(i)

De�nition 3.5 provides for an intuitively acceptable formalization of belief
expansions as can be seen in the following proposition.

3.6. Proposition. For all agents i, and for all propositional formulae ' and
 we have:

� j= [doi(expand ')]Bi'

� j= Bi ! [doi(expand ')]Bi 

� j= Bi'! (Bi $ [doi(expand ')]Bi )

The �rst clause of Proposition 3.6 states that an expansion with some for-
mula results in the formula being believed. The second clause states that beliefs
are persistent under expansions. In this clause the restriction to propositional
formulae  is in general necessary. For consider a situation in which an agent
does not believe ' and therefore believes that it does not believe ' (cf. clause
12 of Proposition 2.8). After expanding its beliefs with ', the agent believes '
and, assuming that the resulting belief set is not the absurd one, it no longer
believes that it does not believe '. Hence not all beliefs of the agent persist
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3.2. Proposition. LetM = hS; �;R;B; r; ci be some Kripke model with s 2 S,
and let M0 = hS0; �0;R0;B0; r0; c0i be some Kripke model with s0 2 S0. Then it
holds that:

8p 2 �[�(p; s) = �0(p; s0)]) 8 2 L0[M; s j=  ,M0; s0 j=  ]

The result of Proposition 3.2 is used at various places in the proofs of the
other propositions, theorems, and corollaries of this paper (see appendix A).

3.3. Convention. In the rest of this paper we follow the convention that when-
ever some model M = hS; �;R;B; r; ci is clear from the context, [[']] denotes
the set of states that satisfy ', i.e., [[']] = fs 2 S j M; s j= 'g. The relation
`cl� }(L0)�L0 is the derivability relation of classical propositional logic. The
function Th : }(L0) ! }(L0) that yields for every set � of propositional for-
mula the set f' 2 L0 j � `cl 'g is the deductive closure operator associated
with the derivability relation `cl. Note that both `cl and Th work strictly on a
propositional level; it is for example neither the case that fBipg `cl p_ :p nor
is it the case that fpg `cl Bip _ :Bip.

3.1. The expand action

Informally, a belief expansion is an action that leads to a state of a�airs in
which some formula is believed. In our framework uncertainties of agents are
formalized through the di�erent doxastic alternatives that the agent has: if an
agent does neither believe ' nor :' then it considers both doxastic alternatives
supporting ' and doxastic alternatives supporting :' possible. Expanding
the beliefs of the agent with ' then comes down to declaring all alternatives
supporting :' to be `doxastically impossible', i.e., on the ground of its beliefs
the agent no longer considers these alternatives to be possible. Hence the
expansion of the belief set of an agent is modelled through a restriction of
its set of doxastic alternatives. The following example makes this point more
clear.

3.4. Example. Consider a Kripke model M of which the relevant part is given
in Fig. 1.

p

:p
p

:p

p

p

B

Figure 1: The set of doxastic alternatives before an expansion with p.

In the situation sketched in Fig. 1, the agent considers both worlds sup-
porting p and worlds supporting :p possible. An expansion with the formula
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3. j= KiKi'$ Ki'

4. j= KiBi'$ Bi'

5. j= Ki:Ki'$ :Ki'

6. j= Ki:Bi'$ :Bi'

7. j= Ki'! BiKi'

8. j= :Bi�! (BiKi'! Ki')
9. j= BiBi'$ Bi'

10. j= :Ki'! Bi:Ki'

11. j= :Bi�! (Bi:Ki'! :Ki')
12. j= :Bi'! Bi:Bi'

13. j= :Bi�! (Bi:Bi'! :Bi')

3. Actions that change one's mind

As explained in Sect. 1, our approach towards belief changes in the agent-
oriented, semantics based framework of Sect. 2 is based on the idea that belief
changes are brought about by actions that the agents may perform. By per-
forming belief-changing actions, agents expand, contract and revise their beliefs.
We think of these belief-changing actions as working within the boundary set
by the knowledge of the agents, i.e., knowledge is �xed within a given state of
the model and does not change as the result of belief-changing actions. In this
way knowledge can be seen as representing the beliefs that the agent will stick
to against all odds.

From a syntactical point of view, the class of actions Ac is extended with
three new, belief-changing, actions.

3.1. Definition. The class Ac of actions (and hence the language L) as de�ned
in 2.1 is extended as follows:

if ' 2 L0 then expand '; contract '; revise ' 2 Ac

The main reason underlying the restriction to propositional formulae in
Def. 3.1 is the fact that changes of belief concerning non-propositional, and in
particular doxastic formulae, are not very well understood. It is not at all clear
what it means to revise the beliefs of some agent i with the formula p ^ :Bip:
does or doesn't the agent believe p^:Bip after its beliefs are revised with this
formula?2 On the other hand, changes of belief with propositional formulae
are not only well understood and thoroughly investigated [5], but propositional
formulae do also have some properties that are very useful in our semantic
framework. The following proposition formalizes the most useful property of
propositional formulae: the truth value of propositional formulae in a state of
a model depends on the valuation for that state only.

2The natural language variant `p, and i does not believe p' of the formula p ^ :Bip is
considered by Thijsse ([34], pp. 131-132) to be a typical example of a non-contradictory
sentence but a contradictory utterance. This implies that although the sentence in itself
is consistent, it is not consistent to believe the sentence.
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2.5. Remark. With regard to the abilities of agents, the motivation for the
choices made in Def. 2.4 is the following. The de�nition of c(i; confirm ')(s)
expresses that an agent is able to get con�rmation for a formula ' i� ' holds.
Note that the de�nitions of r(i; confirm ') and c(i; confirm ') imply that in
circumstances such that ' holds, the agents both have the opportunity and the
ability to con�rm '. An agent is capable of performing a sequential composi-
tion �1;�2 i� it is capable of performing �1 and it is capable of executing �2
after it has performed �1. An agent is capable of performing a conditional com-
position, if either it is able to get con�rmation for the condition and thereafter
perform the then-part, or it is able to con�rm the negation of the condition
and perform the else-part afterwards. An agent is capable of performing a
repetitive composition while ' do �1 od i� it is able to perform the action
(confirm ';�1)

k; confirm :' for some k 2 IN.

When de�ning the R and B functions as in Def. 2.3, we end up with a notion
of knowledge that satis�es an S5 axiomatization, and a notion of belief that
satis�es a K45 axiomatization. The main di�erence between this approach
towards knowledge and belief and the usual ones [10, 18, 23] is that our notion
of belief does not satisfy the D-axiom :(Bi'^Bi:'). The reason for this is that
the approach towards belief expansions [5] that we use in de�ning our expansion
action presupposes the existence of inconsistent belief sets: expansions may
result in the agent having inconsistent, or absurd, beliefs.

2.6. Proposition (S5 Validities for Knowledge). For all agents i and
formulae ' and  we have:

� j= Ki('!  )! (Ki'! Ki )
� j= Ki'! '

� j= Ki'! KiKi'

� j= :Ki'! Ki:Ki'

� j= ')j= Ki'

2.7. Proposition (K45 Validities for Belief). For all agents i and for-
mulae ' and  we have:

� j= Bi('!  )! (Bi'! Bi )
� j= Bi'! BiBi'

� j= :Bi'! Bi:Bi'

� j= ' ) j= Bi'

In proving validities concerning the relation between knowledge and belief, it
has to be taken into account that in our approach agents may have inconsistent
beliefs (this proviso is visible in the second, eight, eleventh and last clause of
Proposition 2.8). Apart from this fact, knowledge and belief are related to each
other as in the system of Kraus & Lehmann [10, 18].

2.8. Proposition. For all agents i and formulae ' we have:

1. j= Ki'! Bi'

2. j= :Bi�! (Ki:'! :Bi')

6



4. B : A�S ! }(S) is a function that yields the set of doxastic alternatives
for a given agent in a given state. To model the kind of belief that we like
to model it is demanded that for all agents i; i0 and for all possible worlds
s and s0 it holds that:

� B(i; s) = B(i; s0) if s0 2 [s]R(i)
� B(i; s) � [s]R(i)

5. r : A�At! S ! }(S) is such that r(i; a)(s) yields the (possibly empty)
state transition in s caused by the event doi(a). This function is such
that for all atomic actions a it holds that jr(i; a)(s)j � 1 for all i and s,
i.e., these events are deterministic.

6. c : A � At ! S ! bool is the capability function such that c(i; a)(s)
indicates whether the agent i is capable of performing the action a in s.

2.4. Definition. Let M = hS; �;R;B;r; ci be some Kripke model from M.
For propositional symbols, negated formulae, and conjunctions, M; s j= ' is
inductively de�ned as usual. For the other clauses M; s j= ' is de�ned as
follows:

M; s j= Ki' ,8s0 2 S[(s; s0) 2 R(i))M; s0 j= ']
M; s j= Bi' ,8s0 2 S[s0 2 B(i; s))M; s0 j= ']
M; s j= hdoi(�)i' ,9M0; s0[M0; s0 2 r(i; �)(M; s)&M0; s0 j= ']
M; s j= Ai� ,c(i; �)(M; s) = 1

where r and c are de�ned by:
r : A�Ac! (M� S) [ S ! }(M� S)
r(i; a)(M; s) = M; r(i; a)(s)
r(i; confirm ')(M; s) = f(M; s)g if M; s j= ' and ; otherwise
r(i; �1;�2)(M; s) = r(i; �2)(r(i; �1)(M; s))
r(i; if ' then �1 = r(i; �1)(M; s) if M; s j= ' and

else �2 fi)(M; s) r(i; �2)(M; s) otherwise
r(i; while ' do �1 od)(M; s) = f(M0; s0) j 9k 2 IN9M0; s0 : : :9Mk; sk

[M0; s0 =M; s&Mk; sk =M0; s0& 8j < k

[Mj+1; sj+1 = r(i; confirm ';�1)(Mj; sj)]
&M0; s0 j= :']g

where r(i; �)(;) = ;
and
c : A�Ac! (M� S) [ S ! bool

c(i; a)(M; s) = c(i; a)(s)
c(i; confirm ')(M; s) = 1 if M; s j= ' and 0 otherwise
c(i; �1;�2)(M; s) = c(i; �1)(M; s) & c(i; �2)(r(i; �1)(M; s))
c(i; if ' then �1 = c(i; confirm ';�1)(M; s) or

else �2 fi)(M; s) c(i; confirm :';�2)(M; s)
c(i; while ' do �1 od)(M; s) = 1 if 9k 2 IN[c(i; (confirm ';�1)

k;
confirm :')(M; s) = 1]

and 0 otherwise
where c(i; �)(;) = 1.

Satis�ability and validity are de�ned as usual.
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of a�airs satisfying ' would result. Besides the possibility to formalize both
opportunities and results when using dynamic logic, another advantage lies in
the compatibility of epistemic and dynamic logic from a semantic point of view:
the possible world semantics can be used to provide meaning both to epistemic
and dynamic notions.

2.1. The formal de�nitions

2.1. Definition. Let a �nite set A = f1; : : : ; ng of agents, and some denu-
merable sets � of propositional symbols and At of atomic actions be given.
The language L and the class of actions Ac are de�ned by mutual induction as
follows.

1. L is the smallest superset of � such that

� if ';  2 L then :'; '_  2 L,
� if i 2 A, � 2 Ac and ' 2 L then Ki';Bi'; hdoi(�)i';Ai� 2 L.

2. Ac is the smallest superset of At such that

� if ' 2 L then confirm ' 2 Ac,
� if �1 2 Ac and �2 2 Ac then �1;�2 2 Ac,
� if ' 2 L and �1; �2 2 Ac then if ' then �1 else �2 fi 2 Ac,
� if ' 2 L and �1 2 Ac then while ' do �1 od 2 Ac.

The purely propositional fragment of L is denoted by L0.

The constructs ^; !;$; tt;�;Mi' and [doi(�)]' are de�ned in the usual
way. Other additional constructs are introduced by de�nitional abbreviation:
skip is confirm tt, fail is confirm �, �0 is skip, and �n+1 is �;�n.

2.2. Remark. The confirm action behaves essentially like the test actions in
dynamic logic [6, 8]. As such this action di�ers substantially from tests as
they are looked upon by humans: these genuine tests are usually assumed to
contribute to the knowledge (or belief) of the agent that performs the test
[24], whereas by performing confirm ' it is just veri�ed (checked, con�rmed)
that ' holds. The meaning of the other actions in Ac is respectively: the
atomic action, sequential composition, conditional composition, and repetitive
composition. Furthermore, skip denotes the empty action, and fail denotes
the never succeeding action.

In the following de�nitions it is assumed that some set bool = f0; 1g of
truth values is given.

2.3. Definition. The class M of Kripke models contains all tuples M =
hS; �;R;B; r; ci such that

1. S is a set of possible worlds, or states.
2. � : ��S ! bool is a total function that assigns a truth value to propo-

sitional symbols in possible worlds.
3. R : A ! }(S � S) is a function that yields the epistemic accessibility

relations for a given agent. Since we assume to deal with S5 models, it
is demanded that R(i) is an equivalence relation for all i. For reasons of
practical convenience we de�ne [s]R(i) to be fs

0 2 S j (s; s0) 2 R(i)g.
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abilities, opportunities, and results; furthermore the formal de�nitions of our
framework are given. We also elaborate on the notion of informative actions. In
Sect. 3 we introduce actions that model expansions, revisions, and contractions.
We de�ne the states of a�airs following these actions, conditions that need to
be ful�lled for agents to have the opportunity to perform these actions, and
(mental) capacities that agents should have to be capable of performing these
actions. Furthermore we show that these actions satisfy (slightly adapted)
versions of the G�ardenfors postulates. In Sect. 4 we summarize and discuss
options for further research. The appendix contains the proofs of all theorems,
propositions and corollaries given in this paper.

2. Knowledge, belief, abilities, opportunities, and results

As already stated in Sect. 1, for the moment we restrict ourselves to infor-
mational and action aspects of rational agents. At the informational level we
consider both knowledge and belief. Formalizing these notions has been a sub-
ject of continuing research both in analytical philosophy and in AI [7, 9, 26].
In representing knowledge and belief we follow, both from a syntactical and a
semantic point of view, the approach common in epistemic and doxastic logic:
the formula Ki' denotes the fact that agent i knows ', and the formula Bi'

denotes the fact that agent i beliefs '. For the semantics we use Kripke-style
possible worlds models.

At the action level we consider results, abilities and opportunities. In de�n-
ing the result of an action, we follow ideas of Von Wright [39], in which the
state of a�airs brought about by execution of the action is de�ned to be its
result. An important aspect of any investigation of action is the relation that
exists between ability and opportunity. In order to successfully complete an ac-
tion, both the opportunity and the ability to perform the action are necessary.
Although these notions are interconnected, they are surely not identical [17]:
the abilities of agents can be seen as comprising mental and physical powers,
moral capacities, and human and physical possibility, whereas the opportunity
to perform actions is best described by the notion of circumstantial possibility.
A nice example that illustrates the di�erence between ability and opportunity
is that of a lion in a zoo [3]: although the lion will (ideally) never have the op-
portunity to eat a zebra, it certainly has the ability to do so. We propose that
in order to make our formalization of rational agents, like for instance robots,
as accurate and realistic as possible, abilities and opportunities need also be
distinguished in AI environments. The abilities of the agents are formalized via
the Ai operator; the formula Ai� denotes the fact that agent i has the ability
to do �. When using the de�nitions of opportunities and results as given above,
the framework of (propositional) dynamic logic provides an excellent means to
formalize these notions. Using events doi(�) to refer to the performance of
the action � by the agent i, we consider the formulae hdoi(�)i' and [doi(�)]'.
In our deterministic framework, hdoi(�)i' is the stronger of these formulae; it
represents the fact that the agent i has the opportunity to do � and that doing
� leads to '. The formula [doi(�)]' is noncommittal about the opportunity
of the agent to do � but states that should the opportunity arise, only states
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aspects like knowledge and belief (for a survey see [4, 7, 25]), and motivational1

aspects like commitments and obligations [2]. Recent developments include the
work on agent-oriented programming [31, 35], the BDI-architecture for formal-
izing rational agents [28, 29, 30], logics for the speci�cation and veri�cation of
multi-agent systems [36, 37], logics for agents with bounded rationality [14, 15],
and cognitive robotics [19, 20] (for a survey on recent developments see [13, 38]).

In our research [11, 12, 22, 23, 24] we de�ned a theorist logic for rational
agents, i.e., a logic that is used to specify, and to reason about, (various aspects
of) the behaviour of rational agents. In our framework we concentrate on
informational and action aspects, leaving motivational aspects (for the moment)
out of consideration. In the basic architecture the knowledge and abilities of
agents, as well as the opportunities for and the results of their actions are
formalized. In this framework it can for instance be modelled that an agent
knows that some action is a correct plan to achieve some goal since it knows that
performing the action will lead to the goal, and that it knows that an action
is a feasible plan since the agent knows of its ability to perform the action. In
subsequent research we extended our framework with nondeterministic actions
[12], epistemic tests [24], communicative actions [22] and actions that model
default reasoning [23].

The aim of this paper is a formalization of belief-changing actions in the
framework mentioned above. We consider three kinds of belief-changing ac-
tions: expansions, contractions and revisions. Informally speaking, expansions
result in some formula being believed, contractions result in some formula no
longer being believed, and revisions reverse the belief status of a formula, i.e.,
for some formula that is believed on beforehand the negation is believed af-
terwards. As for any action in our framework, we de�ne the states of a�airs
resulting from execution of belief-changing actions, conditions that need to be
satis�ed in order for agents to have the opportunity to perform these actions,
and capacities that the agents must posses in order to be capable of performing
these actions. The resulting de�nitions provide for an intuitively acceptable
formalization of expansions, contractions and revisions that furthermore satisfy
the G�ardenfors postulates for belief changes [5]. Although already intrinsically
interesting from a philosophical point of view, belief-changing actions are par-
ticularly important when formalizing rational agents that acquire information
from multiple sources. For whenever some source provides reliable information
that contradicts the information that an agent already has, the agent has to
change its beliefs if it wants to incorporate this new information whilst keeping
its set of beliefs consistent, and this is where belief-changing actions play a
part. The formalization of this kind of multiple-source information acquisition
is subject of further research.

1.1. Organization of the paper

The rest of the paper is organized as follows.
To sketch the context and the area of application of this research, we start

in Sect. 2 with the (re)introduction of some of our ideas on knowledge, belief,

1The terms informational and motivational are both due to Shoham [32].
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Abstract

In this paper we study the dynamics of belief from an agent-oriented,
semantics-based point of view. In a formal framework used to specify and
to reason about formal agents, we de�ne actions that model three well-
known changes of belief, viz. expansions, contractions, and revisions. We
treat these belief changes as full-
edged actions by de�ning both the op-

portunity for and result of these actions, and the ability of agents to apply
these belief-changing actions. In de�ning the result of the contraction ac-
tion we introduce the concept of selection functions. These are special
functions that select a subset of the set of states that is to be added to
the set of doxastic alternatives of an agent, thereby contracting its set of
beliefs. The action that models belief revisions is de�ned as the sequen-
tial composition of a contraction and an expansion. We show that these
belief-changing actions are de�ned in an intuitively acceptable, reasonable
way by proving that the G�ardenfors postulates for belief changes are val-
idated. The ability of agents to apply belief-changing actions is de�ned
in terms of their knowledge and belief. These de�nitions are such that
actions that an agent is capable of performing lead to desired states of
a�airs. The resulting framework provides an intuitively acceptable yet
simple formalization of expansions, contractions and revisions as actions
in a dynamic/epistemic, agent-oriented framework.

Content Areas: Belief Revision, Knowledge Representation,

Reasoning about Action.

1. Introduction

The formalization of rational agents is a topic of continuing interest in Arti�cial
Intelligence. Research on this subject has held the limelight ever since the pio-
neering work of Moore [26, 27] in which knowledge and actions are considered.
Over the years important contributions have been made on both informational
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