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Abstract. This paper proposes a decentralized approach for modeling
information flow in ambient environments. We study how query and noti-
fication mechanisms can be used to reduce the amount of information ex-
changed between agents. We will propose qualitative criteria which state
whether querying a concept is appropriate given the logical structure of
an agent’s knowledge base. Furthermore, we will propose quantitative
criteria which state which concept is most likely to be most informative,
given an agent’s information needs and its experience with past events.

1 Introduction

Effective and efficient information sharing is of fundamental importance for am-
bient intelligence. On the one hand, sufficient information should be exchanged
between sensors, devices and users to maximally employ the potential use of the
information present in the system. On the other hand, when vast amounts of
data are available, information overload becomes a serious issue. Therefore, only
the relevant information must be communicated. The problem of information
sharing is complicated as the different components in the system typically rep-
resent their information at different levels of abstraction. For example, a sensor
may deal with low-level information about Temperature, whereas an inference
system used for crisis management may deal with high-level concepts such as
Fire and Emergency. Another complication is the openness of the system, i.e.
new devices may enter and leave the system at any time. This means that the
different devices should be capable of organizing their communication networks
themselves.

Many approaches that aim at guiding the information flow in ambient envi-
ronments adopt a centralized approach [4, 9]. One central component is assumed
which collects all information and provides access to this information to all other
components. Although this approach imposes a clear organization on the infor-
mation flow, it also raises a number of problems. Firstly, the system becomes
brittle as the functioning of the whole system is dependent on one component.
Secondly, the central distributor must be able to deal with the heterogeneities
of all other components in the system. This makes it very difficult to design this
component, particularly because it is not known beforehand which components
will constitute the system.



Therefore, we adopt a decentralized approach by treating every component
in a uniform way, i.e. as a fully autonomous agent. In this way, the problem of
modeling the information flow no longer needs to be addressed as a whole (as in
the centralized approach), but is split up in smaller problems which are handled
by the individual agents. Every agent must have sufficient communicative skills
to satisfy its information needs in an environment with heterogeneous agents
that represent information at different levels of abstraction. Furthermore, the
agent’s communicative behavior should be minimal such that as few messages
as possible are exchanged between them. This is needed to prevent information
overload of the agent itself and of the agents around it.

In this paper we will provide a conceptual framework in which information
needs and different levels of abstraction can be clearly represented. We also
discuss two communication mechanisms, i.e. query and notification requests. We
investigate which queries or notification requests can best be posed to reduce
the amount of exchanged messages to a minimum.

Our approach to these two issues is as follows. An agent’s knowledge base is
specified as a multi-context system [6], i.e. it contains multiple contexts that are
related by mappings that specify translations between them. A context consists
of a set of concepts regarded relevant by an agent for performing one of its tasks.
These may be a concepts like User-Location and User-Identity, which contain
important contextual information for a user interface agent [10]. Also, these may
be concepts like Fire and Emergency which are relevant to a crisis management
agent, or Temperature which is relevant to a temperature sensor. The agent’s
information needs can be precisely represented using contexts. For example, if
the information needs are defined as the context that contains Fire, we assume
that the agent desires to know whether Fire is true or not, at each time instance.

Typically, two agents have some contexts in common and some contexts that
differ. The agents can only communicate information that is represented in a
common context. This ensures that the language used by the sending agent is
understood by the receiving agent. Because the agents may view their world
at a different level of abstraction, information may also be represented in a
non-common context. In this case, the sending agent must translate the non-
common representation to a common representation to become understood by
the receiving agent. Thus, the agents must be able to translate between different
contexts fluently.

The central question addressed in this paper is which concepts in one context
are best to query or request for notification to resolve the information needs
stated in another context. We will first approach this issue by formulating several
qualitative criteria. In this way, the agent can use the logical structure of its
knowledge base to decide whether querying a concept is appropriate. Because
the agent bases its decision on prior knowledge, these criteria are applicable
from the moment the agent joins the system. We will then approach the issue by
formulating several quantitative criteria. This enables the agent to use its past
experience to decide which concepts are most relevant among those concepts
satisfying the qualitative criteria. Because the agent bases this decision on past



experience, these criteria only become applicable after the agent has been in the
system for some time.

The paper is organized as follows. In Section 2, we introduce the concep-
tual framework. In Section 3, we discuss the qualitative criteria for selecting the
best concept to query or to be notified about. Section 4 discusses the quantita-
tive criteria. Section 5 presents a conclusion and indicates directions for further
research.

2 Framework

An agent’s knowledge base is represented using description logic [1]. A descrip-
tion logic knowledge base consists of a TBox and an ABox. The TBox stores con-
cepts and their definitions (like an ontology), and the ABox stores sentences con-
structed using these concepts. The TBox represents general knowledge about a
problem domain, which is not subject to changes. The ABox represents problem-
specific knowledge that is subject to occasional or even continuous change [1].

Because time plays an important role in our framework, we assume that the
domain of discourse is specified as a set of time instances. This means that a
concept is interpreted as a set of time instances to which the concept applies.
For example, if the concept Fire is interpreted as {¢3,t5}, it means that there
was fire at time instances t3 and t5. We use a special variable NOW to denote the
current time instance. This can be implemented by adopting one central time
reference for all agents which instantiates the agents’ NOwW variables with the
current time.

We adopt the description logic ALC(D) [2] as a concept language. With-
out going into the formal semantics, we will briefly discuss its constructs. Con-
cepts are composed using atomic concepts and concept constructors, i.e. M (con-
junction), U (disjunction), — (negation). For example, the concept Cloudy M
= Rainy refers to the concept Cloudy and not Rainy. Furthermore, the lan-
guage contains constructs for reasoning with numbers. For example, the con-
struct >50( Temperature) refers to the concept that Temperature is greater than
or equal to 50 degrees.

The TBox is specified as a number of inclusion axioms of the form ¢ C d,
meaning that the interpretation of c is a subset of the interpretation of d, i.e. all
instances of ¢ are also instances of d. For example, the TBox axiom Cloudy =
—Rainy means that all time instances at which it was Cloudy are time instances
at which it was not Rainy. The ABox is specified as a number of membership
assertions of the form c¢(t) meaning that ¢ is an instance of ¢. For example the
ABox assertion Rainy(t/) means that it is rainy at time instance t4. For ¢(t) we
will sometimes simply write that c is true at time instance ¢t. For —c(t), we will
sometimes write that c is false at time ¢.

Different contexts are implemented by prefixing the atomic concept names
with a context identifier (similar to [3]). For example, if the concepts Rainy
and Cloudy are all defined within context C1, a TBox axiom that relates these
concepts may be C1:Cloudy C —C1:Rainy. TBox axioms may also be used to
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Fig. 1. Example Agents

define relations between concepts in different contexts. In this case, they are
called context mappings (also known as bridge rules [6]).

Ezample 1.

Figure 1 illustrates six example agents. The agents’ TBoxes are subdivided in
different contexts which are mapped using context mappings. The TBoxes of
Ag-4, Ag-5 and Ag-6 are specified below:

Ag-4

C1:Cloudy © —C1:Rainy
C1:Rainy M <o(C3:GroundTemp) T C4:BlackIceDanger
C1:Sunny C — C4:BlackIceDanger
Ag-5
>50(C3:AirTemp) M >10(C2:CO2) C C5:Fire
Ag-6
C4:BlackIceDanger T C6:Dangerous
Ch5:Fire C C6:Emergency

As illustrated in this example, different agents represent their information at
different levels of abstraction. They also occupy different roles in the system.
The agents Ag-1, Ag-2 and Ag-3 represent low level information and perform
the role of a sensor, i.e. they acquire information by sensing their environment.
The agent Ag-4 is capable of processing the information produced by the sensors
Ag-1 and Ag-3 (using the shared contexts C1 and C3). Likewise, Ag-5 is capable
of processing the information produced by the sensors Ag-2 and Ag-3. They
interpret this sensor information in terms of a higher context (C4 for Ag-4 and



C5 for Ag-5). These agents perform the role of an aggregator [5], i.e. they acquire
information from multiple sensors and derive the consequences in terms of a
higher level context. The agent Ag-5 can process the information produced by
the aggregators and raises the level of abstraction in order to present it to the
user, i.e. it functions as an interpreter [5]. One may think of Ag-6 as a PDA
which, for instance, shows a green light when it is safe, a red light when it is
dangerous, and a red light flashing in case of an emergency.

A description logic TBox provides proper means to model an agent’s informa-
tion needs [12] because it is based on an open world assumption [1]. This means
that when a concept assertion ¢(t) is absent in the ABox, neither ¢(¢), nor —¢(t)
will be derived, i.e. the truth value remains unknown. Because the information
needs apply to the current time instance NOW, we can say that the information
needs on ¢ are only fulfilled if either ¢(NOW) or —¢(NOW) can be derived. In this
case, we say that the agent knows-whether c¢. This is defined as follows.

Definition 1. Know-whether
An agent knows-whether ¢, iff KB = ¢(NOW) or KB = —¢(NOW)

In the above definition KB |= means it follows from the knowledge base that.
We assume that every agent has its information needs specified as a set of con-
cepts. For example, suppose that Ag-6 has the information need Emergency,
Dangerous and Safe. This means that it wishes to know-whether Emergency,
Dangerous and Safe. Because the current time instance NOW increases once in
a while, an agent that knows-whether a concept is true at one moment, may no
longer do so after some time has passed. This causes a continuous information
need for the agent.

A sensor can sense the value of a concept from its environment in order to
meet its information needs. Other agents must communicate with other agents
for this purpose. For example, for Ag-6 to know-whether C6:Dangerous is true,
it may query C4:BlackIceDanger from Ag-4. This raises an information need for
Ag-4, namely CJ:BlacklceDanger. Subsequently, Ag-4 may query Cl-concepts
from Ag-1 and C3-concepts from Ag-3. In turn, this raises information needs by
Ag-1 and Ag-3. Because these agents are sensors, they sense these values from
the environment in order to answer the query.

Fundamental to this process is that, through the chain of queries from end
user to sensor, high-level concepts are translated into lower-level concepts that
can eventually be observed by sensors. To realize this reduction in information
abstraction, an agent must adequately use its context mappings to translate
between different contexts. The next section discusses this in further depth.

3 Qualitative criteria

Given the conceptual framework introduced in the previous section, we will
regard the following question: given that an agent desires to know whether ¢ in
context C;, which concepts d in C; are informative?



A first class of concepts that can be readily qualified as informative con-
tains those concepts whose membership either implies or excludes membership
of concept C; : c. Suppose that C; : d is such a concept. If the agent knew that
d(NOw), the agent would know either ¢(NOW) or —¢(NOw). In other words, the
agent knows-whether c. Formally, this condition between C; : d and C; : ¢ can
be specified as follows: either d C ¢, or d C —ec.

Sometimes, membership of a concept can only be decided by posing multiple
queries to different agents, a process known as query dissemination [7]. In Exam-
ple 1, Fire is such a concept as it must be decided using CO2 from context C2
and AirTemp from context C3. Consequently, for Ag-5 to know whether Fire,
it must query Ag-2 for CO2 and Ag-3 for AirTemp. Because neither CO2 nor
AirTemp directly causes the agent to know-whether Fire, the condition discussed
earlier must be generalized.

A concept d is called informative for concept c if d can be regarded as part of
what must be known to exclude or conclude membership of concept c. Formally,
this is defined as follows.

Definition 2. Informative
Concept d € C; is informative for concept c € C; iff there exists d' for which

— (KBlEdNd Ccor KB=dNd C —c), and
— (KBEd Zcand KBEd £ —¢)

This definition states that a concept d is informative for concept ¢, if two
conditions hold. The first condition states that, together with some other con-
cept d’ which stems from any context, d and d’ must imply ¢ or —c. The second
condition states that membership of d’ alone does not imply ¢ or —c. Hence,
the information about d is really necessary for the conclusion. Note that, when
concept d by itself is sufficient to imply ¢ or —¢, then d also qualifies as informa-
tive. This can be easily shown be taking for concept d’, the concept T (which is
defined as a superconcept of all other concepts).

The idea of querying informative concepts is similar to backward chaining in
expert systems [11]. To know the truth-value of a consequent, all truth-values of
the conjuncts in the antecedent must be known. We would call all these conjuncts
informative.

An example of the previously defined notions is given below.

Ezxample 2. Suppose that Ag-4 in Example 1 has information need BlackIceDan-
ger. We can derive the following.

— (C1:Sunny is informative

— = (C1:Sunny is not informative

— (1:Rainy is informative

— <o(C3:GroundTemp) is informative
— >50(C3:AirTemp) is not informative
— (1:Cloudy is not informative



3.1 Query and Notification requests

We can now state the qualitative criteria for querying a concept. These criteria
state which concepts in one context are potentially useful to query for an agent
that wishes to know whether a concept in another context is true.

An agent that queries a concept d does not know whether the answer will
provide information that d or that —d. Therefore, if only one of the concepts d
or —d is informative, a query on concept d is appropriate. This is specified as
follows.

Specification 1 Query: Qualitative criteria

An agent may query concept C; : d to know whether C; : c iff
— d is informative for ¢ or —d is informative for c, and

— the agent does not know whether d.

Note that querying a concept d to know whether ¢, might enable the agent
know-whether ¢, but need not necessarily do so. For example, C1:Sunny is in-
formative for C4:BlackIceDanger but —C1:Sunny is not. When the answer to a
query on Sunny is "no”, the agent does still not know whether BlackIceDanger.

Besides posing queries, a common interaction mechanism in ambient envi-
ronments is a request for notification [9]. By requesting notification of a certain
concept, an agent gets notified whenever that concept becomes true. The issue
when it is best to query or request for notification will be addressed in Section
4.1. Here, we will be concerned with the issue which concepts are best to request
for notification.

Contrary to queries, an agent that requests notification of concept d, only
gets an answer when d is the case, and not when —d is the case. When the agent
did not receive any information about d, it assumes that —d is the case. Because
notification requests are intended to reduce the information exchange, the agent
should anticipate on not receiving a message. Therefore, the negation of the
concept about which it will be notified must be informative. This is formalized
as follows.

Specification 2 Request for notification: Qualitative criteria
An agent may request for notification of C; : d to know whether C; : ¢ iff

— —d is informative for c

The criteria specified in 1 and 2 are rather loose, i.e. they do not exclude
any concept that could potentially be useful to query or request for notification.
Therefore, several options are left open for the agent. In Example 2, the non-
informative concepts C38:Airtemp and C1:Cloudy are ruled out. The concepts
C1:Sunny, C1:Rainy and C3:Groundtemp are all left as possible options to query.
Using the logical structure of the knowledge base, it is not possible to decide
which of these options is best.

For example, if the answer to a query on Sunny is likely to return that Sunny
holds, this is a good query, as it immediately enables the agent to know whether
BlackIceDanger. However, if a query on Sunny is likely to return that —Sunny



holds, it may be better to query CI:Rainy and C8:GroundTemp instead. Such
a decision must be based on an expectation of the answer. These quantitative
issues are discussed in the following section.

4 Quantitative criteria

To take into account what a likely answer to a query will be, we will use the
notion of information gain [8]. An agent profits most when it queries a concept
with the highest information gain.

Before we will discuss information gain, we will discuss an underlying measure
from information theory, i.e. information entropy. We will apply this measure to
characterize the degree of which the truth value of a concept differs over time.
A concept that is true at all time instances has entropy 0, i.e. it is maximally
pure. Likewise, a concept which is false in all time instances has entropy 0. A
concept that is true for half of the time instances, and false for the other half of
the time instances has entropy 1, i.e. it is maximally impure. Before we give a
formal definition, we introduce the following terminology:

— A is the domain of discourse, i.e. the set of time instances which have passed.
— A°={t € A|KB = c(t)} (the set of time instances at which ¢ was true)
— A7 = {t € AIKB = —¢(t)} (the set of time instances at which ¢ was false)

Information entropy can now be formalized as follows.

Definition 3. Entropy
Entropy(KB, A, c¢) = —plogy p — nlogy n, where
e p= i’;—AAL (the proportion of time instances at which ¢ was true)

o n = % (the proportion of time instances at which ¢ was false)

In the above definition, # is used to denote the number of instances in a set.

Ezxample 3. This example demonstrates how information entropy can be calcu-
lated using an agent’s ABox. The table below shows the ABox of Ag-4, after
eight time instances have passed. It shows which concepts are true (t) and which
are false (f) at which time instances.

The entropy of Sunny can be calculated as follows. Entropy (KB, {¢1..t8}, sunny) =
—% log2% - glogzg = 0.543. The entropy of BlacklceDanger is calculated as
Entropy(KB, {t1..t8}, BlackIceDanger) = —2log, 3 — 2log, 2 = 0.954. This
indicates that the concept Sunny differs less over time than the concept Black-
IceDanger.

Information gain is formally defined as the expected reduction in entropy after
the truth value of a concept is known.

Definition 4. Information Gain

Gain(KB, A, ¢, ¢) =Entropy(KB, A, ') — 7Z;—AACEntropy(KB7 Al )
—%&CE71757’0193/([(B7 Ae )
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Fig. 2. The ABox of Ag-4 after 8 time instances

Ezxample 4. Suppose that Ag-4 wishes to know whether BlacklceDanger. The
information gain of Sunny can be calculated as follows. Gain(KB, {t1..t8}, Blac-
klceDanger , Sunny) = Entropy(KB, {t1..t8}, BlacklceDanger) — %En‘cropy(KB7
{t5}, BlackIceDanger) — éEntropy(KB, {t1,t2,t3,t4,16,t7,t8}, BlacklceDanger)
= 0.954 - %- 0 - %- 0.985 = 0.092. In a similar way, it can be calculated
that the information gain of Rainy is 0.348, and that the information gain of

<o(GroundTemp) is 0.584.

4.1 Query and Notification requests

To know whether a concept in context Cj is true, it is best to query a concept in
C; with the highest information gain. This idea corresponds to ID3, an algorithm
for making a decision tree with as few checks as possible [8]. However, contrary
to a decision tree, we only use the information gain for efficiency. The final
outcome is based on the logical rules, and not on the set of training examples.
For example, a query on Sunny is regarded as not very efficient, because it has a
relatively low information gain. The best concept to query is Groundtemp, with
the highest information gain. This idea is specified below.

Specification 3 Query: Quantitative criteria

Let CQ be the set of concepts that meet the qualitative criteria of querying to
know whether C; : c¢. The best concept to query is concept d € CQ for which
Gain(KB, A, ¢,d) is mazimal.

We will now describe the quantitative criteria for deciding whether to query
or to request for notification. This decision is based on the expected answer.
When the entropy among the answers is low, many queries will return the same
answer. In this case, it is better to request for notification as this will reduce the
information exchange. When the entropy among the answers is high, a request
for notification does not substantially reduce the information flow. In this case
queries are preferred. This is specified below.

Specification 4 Query or Notify: Quantitative criteria

Let ¢ be a concept that matches the qualitative criteria for query and notify. If
entropy of c¢ is low and #A™¢ > #A° then request for notification on c, else
query ¢



For example, a request for notification on Sunny is preferred over a query because
Sunny has relatively low entropy. For GroundTemp, a query would be preferred.

5 Conclusion and Future Research

In this paper, we have presented a decentralized approach for modeling informa-
tion flow in ambient environments. In particular, we have investigated the use
of queries and requests for notifications in multi-context systems. We have iden-
tified qualitative criteria, based on backtracking techniques, and quantitative
criteria, based on entropy measures, for translating between different contexts.
These criteria are useful to minimize the information flow between agents.

We plan to perform simulation experiments to experimentally explore the
information flows that occur when every agent uses the proposed communication
mechanism. Furthermore, we plan to extend this line of research by modeling
more complex information needs which are based on the task models of agents.
We believe that the approach presented here provides a solid basis to study
the more complex interaction mechanisms that are required to deal with this
scenario. Finally, we aim at studying the quality of decisions when the agents
have not completely satisfied their information needs. This requires us to extend
the model to take the decision making process into account.
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