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Abstract

In this paper we study NNIL, the class of formulas of the In-
tuitionistic Propositional Calculus IPC with no nestings of impli-
cations to the left. We show that the formulas of this class are
precisely the formulas of the language of IPC that are preserved un-
der taking submodels of Kripke models for IPC (for various notions
of submodel). This makes NNIL an analogue of the purely univer-
sal formulas in Predicate Logic. We prove a number of interpolation
properties for NNIL, and explore the extent to which these properties
can be generalized to more complicated classes of formulas.

1 Introduction

In this paper we study a special class of formulas of the Intuitionistic Propo-
sitional Calculus IPC. This is the class of II;-formulas or NNIL-formulas'.
These formulas are the formulas without nestings of implications to the
left. Examples of NNIL-formulas are:

p, T, (p = (qv(r — )))al(gat) = ((r = p)v(s = 1))).

The usual Kripke semantics for IPC provides us with a translation of
IP(C-formulas to one-variable formulas of the Classical Predicate Calculus
(CQC). The NNIL-formulas are seen to translate to purely universal for-
mulas or II;-formulas in the sense of CQC. In fact our results imply that
every II;-formula in the sense of CQC, under certain further appropriate
general conditions shared by all IPC-formulas, is provably equivalent to a
NNIL-formula.

We will prove in this paper that the NNIL-formulas are precisely the
IPC-formulas preserved under taking submodels. Moreover the NNIL-
formulas satisfy the interrelated properties of left and right approximation
and (uniform) left and right interpolation. We define and discuss these
properties in section 3.

L As we will see ‘II;’ is the more systematic name for our formula class. The name ‘II;’,
however, was introduced only fairly recently. ‘NNIL’ on the other hand is in use since
1984. ‘NNIL’ is pronounced as ‘NIL’, where the first ‘N’ is pronounced with some slight
hesitation.
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1.1 Motivation

This paper is a case study concerned with the interplay of two sources
of complexity in IPC: the number of propositional variables occurring in
a formula, on the one hand, and the nesting degree of implications, on
the other. We take as focus of our study the nearly lowest complexity
class w.r.t., nesting degree, NNIL. It turns out that NNIL has some very
good properties, justifying its separate study: it satisfies strong versions of
interpolation and it is precisely the class preserved under taking submodels
of Kripke models.

NNIL lies at the intersection of rather diverse research interest of the
authors. We briefly mention a few of these, with pointers for further read-
ing, as this simple class of formulas turns out to be a useful concrete testing
ground for broad theoretical issues.

e In many cases classical model-theoretic properties, such as Lo$’s
Theorem or the Léwenheim-Skolem Theorem, can be transferred
to intuitionistic or modal propositional logic. The possibility of
such transfer can be systematically explored. See Andréka et al. 77,
van Benthem 1991b, de Rijke 1993.

e NNIL can be viewed as a fragment of IPC in an extended sense,
since it is generated like the language of IPC, restricting the for-
mation rule for implications. Thus the study of its interpolation
properties, has some interest for the study of interpolation in frag-
ments of IPC. For information on interpolation in fragments, see
Porebska 1985, Renardel de Lavalette 1981, 1986, 1989, Zucker 1978.
(There is also some work on the structure of finite fragments. See
de Jongh et al. 1991. The question of the structure of NNIL(p) will,
however, not be taken up in this paper.)

e The class NNIL turns up naturally in the study of the propositional
admissible rules for theories, like Heyting’s Arithmetic (HA). Us-
ing NNIL, one can fully characterize these rules, for the case, where
one restricts oneself to substitutions of ¥-formulas. For background
see e.g., de Jongh 1982, de Jongh and Visser 1993, Visser 1985 and
Visser 1994.

1.2 Historical note

We briefly outline the genesis of the paper. In 1983-1984, A. Visser was
studying the provability logic of Heyting’s Arithmetic HA. As a subproblem
he considered X;-substitutions of propositional formulas. NNIL emerged
from this work on HA. Two questions came up of a purely propositional
character. The first was whether the NNIL-formulas are precisely the ones
that are preserved under taking submodels of Kripke models. This question
was answered positively by Johan van Benthem (in correpondence with
Visser) using a model-theoretical argument close to the argument presented
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in this paper and, independently, by Visser using different methods (see
Visser 1985). Van Benthem’s proof appeared (for the case of temporal
logic) in his van Benthem 1991b. The other question was to prove NNIL-
interpolation. This question was posed in Visser 1985. In that paper, an
indirect proof for NNIL left-interpolation (see 1.1.4 in Visser 1985) was
given. A direct proof both for left and for right interpolation is given in
Renardel de Lavalette 1986. Renardel’s proofs are presented in section 4
of this paper.

1.3 Organization of the Paper

Section 2 contains the syntactical preliminaries. In remark 2.1 we formulate
a translation of IPC into predicate logic. We will see that via this transla-
tion implicational complexity in IPC corresponds to quantifier complexity
in predicate logic. Following the translation we will designate the classes
of implicational complexity as II,. In section 3 we consider properties
like uniform interpolation from a mildly abstract point of view. Section 4
provides a proof of NNIL interpolation using cut-elimination. Section 5
gives the basics of Kripke models and section 6 adds the basics of sub-
simulations between models. In this section we prove the promised result
that the NNIL-formulas are precisely the ones preserved under submod-
els. Section 7 contains the proof of uniform NNIL interpolation by model-
theoretical means. In section 8 we prove that (uniform) right interpolation
also holds for Iy, but that uniform left interpolation fails for II, and that
right interpolation fails for II3. Appendix A contains a characterization
of IPC as a fragment of Predicate Logic. In appendix B we develop the
notions of simulation appropriate for the model-theoretic characterization
of arbitrary II,,.
Each of the selections:

(1727374 >7 (172737576’7>7 (1727375767778>’ (17275767A>’ (172757B>'

can be read as a reasonably selfcontained paper, and, of course, each of
their unions can.

2 Syntax and Formula Classes

Let £ be the language of Intuitonistic Propositional Logic IPC. We take as
connectives: A, v, =, T and 1. —Aisdefined as A — L. PVis a fixed set of
propositional variables, denoted by p,q,.... For definiteness, we stipulate
that PV has cardinality 8y. None of our results, however, depends upon
this assumption. PV together with T, L is the set of atoms. A,B,C,. ..are
formulas; ', A, IV,. .. are finite (possibly empty) sets of formulas. We write
[,A for the union of T" and A ; T', A stands for I, {A}. Let P be a set of
propositional variables. We write £(P) for £ restricted to P. Similar
notation will be used for other classes of formulas. p,q,7,. .. will range over
finite sets of propositional variables.
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The substitution operator Alp := B] (“substitute B for all occurrences
of pin A”) is defined as usual. PV(A) is the set of of propositional variables
occurring in A.

We define a measure of complexity p, which counts the left-nesting of
— , as follows:

p(p) = p(L) = p(T) =
. p(AAB) = p(AvB) := maz(p(A), p(B))
e p(A—= B):=m (()+1p( )

We define I, := {A€L]| p(A)<n}. This name is explained by the transla-
tion presented in remark 2.1.

We will at some points confuse propositional formulas with their equiv-
alence classes modulo IPC-provable equivalence. Under this confusion IPC
becomes the Lindenbaum algebra Hpc, which is the free Heyting algebra?
on Ny generators.

O

Remark 2.1 (connection with Predicate Logic) We consider £xpip,
the language of Predicate Logic with constant b, relation symbols =, <
and with infinitely many unary predicate symbols P,Q,R,.... We define
the II,,- and 3, -formulas of our language as follows:

e IIp := Xy := all Boolean combinations of atomic formulas
e II,,+1 and X, are the smallest classes such that:

o En g HnJrl

o Hn g En+1

o II,,4+1 is closed under A , v and V

0 Y41 is closed under A , v and 3

oIf Ae En+1 and B € Hn+1; then A —» B € Hn+1

oIf Ae Hn+1 and B € En+1; then A —» B € Zn—i—l

Of course, our definition coincides, modulo provable equivalence, with the
more usual one based on the number of quantifier changes of formulas in
prenex normal form. We prefer the present definition, since under it all
formulas are literally —not merely modulo provable equivalence— in some
formula class.

Let Krip be the theory in £k, consisting of:

Classical Predicate Logic

The theory of identity for =

The theory of partial orders for < with bottom element b

Axioms expressing the persistence property: (Pz A z<y) — Py, for
all unary predicate symbols P

We translate formulas of IPC'into Lkyrip. I(A,z), the Kripke translation
of A at =, is defined by:

2For information about Heyting algebras, see Troelstra and van Dalen 1988b or see
Pitts 1992, section 4.
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I(p,z) =Pz, [(L,z) =1, I(T,z):=T
e I(AAB,x) :=I(A,z)AI(B,x)
e I(AvB,x) :=I(A,z)vI(B,z)
e I(A— B,x):=Vy >z(I(A,y) = I(B,y))

We have by a simple induction on A: I(A,x) € IT,(4).

Clearly, every Kripke model (see section 5) can be considered as a model
of Krip and vice versa. We have: k IFx A & K F I(A, k) where IF is Kripke
forcing (see section ref5) and F is the satisfaction relation of Predicate
Logic. One can show in analogy to a result of Johan van Benthem for
modal logic, that every one-variable formula A(z) of Lgryp, that is (i)
persistent and (ii) preserved under (partial) bisimulations, is CQC-provably
equivalent to a formula I(B,z) for some B € L. For a precise formulation
of the result and a proof, see appendix A.

As sketched above our measure of complexity corresponds via the
Kripke translation with depth of quantifier alternations. In modal logic
there is a similar correspondence: the relevant measure of complexity is
there depth of boz-diamond alternations. A striking difference between the
modal and the intuitionistic case is that the II,,(p) of modal logic are gener-
ally infinite modulo provable equivalence, where, as we will see, the II,, (p)
of IP(C are finite modulo provable equivalence.

Note, finally, that there are alternative hierarchies both for modal logic
and for IPC corresponding simply to depth of quantifiers. In IPC one
counts depth of implications; in modal logic one counts depth of boxes. For
this notion the complexity classes restricted to p’ are finite modulo provable
equivalence both in modal logic and in IPC. Q

The subject in this paper is the class NNIL := II;. As is easily seen
every formula in II,,;; is provably equivalent to a formula resulting from
substituting II,-formulas in a NNIL-formula.

Consider a NNIL-formula. Conjunctions and disjunctions in front of
implications can be removed using:

e F((AvB) - C) + (A= O)A(B = ())
e F((ANB) - (C)+ (A= (B— ()
So NNIL coincides modulo provable equivalence with NNILg, the small-

est class containing the propositional atoms, closed under conjunction and
disjunction and:

o if A € NNILy, then (p — A) € NNIL,
Theorem 2.2 NNIL(p) is finite (modulo provable equivalence).

Proof. Each element of NNIL(p) can be rewritten as a conjunction of
disjunctions of atoms and elements of the form: p — A, where A is in
NNIL(p\{p}). (To arrange that p does not occur in A one uses the fact
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that (p — B(p)) is equivalent to (p — B(T)).) So, the result follows
immediately with induction on the cardinality of p. a

By our earlier observation that every II,1(p)-formula can be obtained
by substituting II,,(p)-formulas in a NNIL-formula, it follows by induction
on n, that:

Theorem 2.3 IL,(p) is finite (modulo provable equivalence). a

I1,,(P) is a distributive lattice under A and v. Since it is finite, it is also
a Heyting algebra, with implication, say: —,, 5. Note that — need not be
—n, 5. We do have (for A, B € I1,(p)): - (A =, 3 B) = (A— B).

We end this section by introducing the various notions of interpolation
and approximation. Consider any class of formulas X. Define:

e X satisfies left-interpolation® (IPL) if for every p, ¢ and for every
A € X(p) and B € L£(q) with H A — B, there is an I in X (pn¢q) such
that H A — I and F I — B. [ is called the X left-interpolant.

e X satisfies right-interpolation (IPR) if for every p, ¢ and for every
A € L(p) and B € X(q) with H A — B, there is an I in X (pn¢q) such
that F A — I and F I — B. I is called the X left-interpolant.

e X satisfies uniform left-interpolation (UIPL) if for every B and every
P, there is a formula B*(p) € X (p), such that for all §and for all A €
X (q) satisfying gnPV(B) C p we have: - A - B &+ A — B*(p).
We call B*(p) the uniform X left-interpolant of B.

e X satisfies uniform right-interpolation (UIPR) if for every A, and p,
there is a formula A°(p) € X(P), such that for all ¢ and for all B €
X(q) satistying PV(A)ng C p we have: F A - B & F A°(p) — B.
We call A°(p) the uniform X right-interpolant of A.

e X satisfies left-approzimation (APL) if for every B, there is a formula
B*ec X,suchthat forall Ae X: FA—+ B&+A— B

e X satisfies right-approzimation (APR) if for every A, there is a for-
mula A° € X, such that forall B€ X: A —» B & F A° — B.

3 Closure and Interior Operations on the Lindenbaum al-
gebra of IPC

Many important classes of formulas can be represented (modulo provable
equivalence) as sets of fixed points of (or, equivalently, ranges of) closure
(interior) operations on the Lindenbaum algebra of IPC, Hpc. This al-
gebra is isomorphic to the free Heyting algebra on Ry generators. Let H
be the domain of H;pc. We write H pc (p) for the subalgebra obtained by
restricting Hype to H(P), the set of elements generated by p. Hipc(p) is
isomorphic to the free Heyting algebra generated from p.

30ur use of left and right is determined by whether the element of X is on the lefthand
side or on the righthand side in the relevant occurrence of ‘- A — B’.
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Note that if A is in H(p) and in H(q), then it is in H(pnq). Thus we
can coherently define PVj(A) as the minimum set of generators j, such
that A is in H(p). In this section we will notationally confuse formulas
and their equivalence classes (or their standard interpretations in H;p¢).
Note that PV(A) (for formula A)) is not necessarily identical to PV (A)
(for the corresponding equivalence class A). E.g., PV (p — p) = {p} and
PV, (p — p) = @

®: Hipe — Hipo is a closure operation if:

e A ®(A) (P is increasing)

e A<KB= ®(A) < ®(B) (P is monotonic)

e $(A) =d(®(4)) (P is idempotent)

W is a interior operation if ¥ is monotonic, idempotent and has the following
property:

e U(A) <A (VU is decreasing)

Note that if X = ®(H) for some closure operation ®, then ® is com-
pletely determined by X, since: ®(A4) = Min({B€X | A<B}). Thus ®(A)
is the smallest upper X -approximation of A. Similarly, for interior op-
erations ¥ we have: U(A) = Max({B€X | B<A}), the greatest lower
X -approzimation of A. We will sometimes write ®x and Xg to express
the dependence on X and a closure operation ®. We will use ¥y for a
corresponding interior operation.

The correspondence between closure (interior) operations and subsets
of H can also be viewed as follows. Let X be the partial order given by
X with the restriction to X of <, the ordering of Hpc. Let embx be the
embedding of X in Hjpc, considered as a partial order. embx is order
preserving and hence can be considered as a functor between X and H;pc
considered as categories. A closure operation ®, such that X is the range
of ®, corresponds precisely to a left adjoint of embx. This means that
® can be viewed as the unique functor (if there is one) from Hpc to X,
which satisfies:

VACHVBEX (8(A) < B & A < embx(B))

Similarly, an interior operation ¥, such that X is the range of ¥, corre-
sponds to a right adjoint of embx. I.e., ¥ is the unique functor (if there is
one) satsfying:

VAeXVBeH (A< ¥(B) < embx(A) < B)

We will view X" as a substructure of Hpc and, thus, we will employ these
equivalences, suppressing the ‘embx’.

It is well-known that, if ® is a closure operation, then Xg is closed
under A. Similarly, if ¥ is a interior operation, then Xy is closed under v.

Theorem 3.1 Suppose X is finite and closed under conjunction (disjunc-
tion), then ®x (Vx) exists.
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Proof. Trivial. Q

We call an operation © propositional variable preserving or, briefly,
preserving if:

o PVo(O(A)) € PVo(A).

Equivalently © is preserving if for all p ©(H (p)) C H(p).

We state a simple sufficient condition for closure (interior) operations to
be preserving. It is clear that a permutation of the propositional variables
induces a unique permutation of H.

Theorem 3.2 Suppose that © is a closure (interior) operation and that
X = Xop is closed under permutations of propositional variables. Then ©
1S Preserving.

Proof. Suppose e.g., that © is a closure operation and that X is closed
under permutations of the propositional variables. We have:

OcA<BeX & cA<BeX
o A<o"'BeX
& PA<o'BeX
& 0PA<BeX

Since ®A is in X, ofA is also in X and, hence, ©cA = 0®A. Suppose
A € H(p) and O(A) € H(p,q), where ¢ is disjoint from p. Let 7 be of
the same cardinality as ¢ and disjoint from both p' and §. Take o some
permutation that leaves Z fixed and interchanges ¢ and 7. We have:

©(4) =00A =00A € H(p,T).
Hence ©(A) € H(p,{)nH (P, ) = H(p). a

X is called PV-finite if, for each p, X (p) is finite. A closure (interior)
operation is called PV-finite if its image is.

A well-known example of a PV-finite, preserving closure operation is
double negation =—. X__ is the class of stable formulas.

A major discovery on IPC is the result by A. Pitts (Pitts’ Uniform
Interpolation Theorem, see Pitts 1992, Theorem 1). Pitts’ Theorem can
be rendered in our terminology as follows:

Theorem 3.3 (Pitts’ Uniform Interpolation Theorem) For every j
both ® () and VY (p) exist. Both operations are preserving. Q

We define: &p := ®p(y and Ap := ¥y . Equivalently Pitts’ result
can be viewed as providing a preserving closure operation 35 := ® 7 (py\ )
and a preserving interior operation Vi := ®g(py\. Note that e.g.,

A< Be H(PV\{p}) & A< B e H(PV\{p}).

This shows that dp has the defining property of existential quantification.
To see the equivalence of our two fromulations, we may e.g., define:
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e EPA := 3JA, where { is finite set of variables, disjoint from P, such
that A € H(p,q).

Since H(p) C H(PV\q), it is immediate that:
AGA< B e H(p) = A< B € H(p).
Conversely define:
e JpA := EGA, where §:= PV o(A)\p.
We have, using ordinary interpolation:
EGA< B e HPV\p) < 3TIcH(7) EGA<I< B e H(PV\p)

< 3JIeH(Q) A<I<Be H(PV\p)
& A< Be H(PV\p)

S. Ghilardi and M. Zawadowski in their Ghilardi and Zawadowski 77,
give an alternative proof of Pitts’ Theorem using Kripke models. The work
of Ghilardi and Zawadowski provides a Kripke semantics for the proposi-
tional quantifiers.

Lemma 3.4 Consider a closure operation ® and an interior operation V.
Let X := X¢ and Y := Yy. Then: X is closed under ¥ iff Y is closed
under ®.

Proof. We prove the left-to-right direction. Right-to-left is dual. Suppose
X is closed under ¥. Let A be in Y. We have: A < ®(A4) € X. Hence:
A=T(A) <I(P(A) € X. And so: ®(4) < &(¥(P(A))) = T(P(A)).
On the other hand: ¥(®(A4)) < ®(A). Ergo: ®(A) = ¥(P(A4)), and so
P(A) eY. a

Theorem 3.5 Let ® be a closure operation, then ® is preserving iff Xo is
closed under AP for all p. Similarly, let ¥ be an interior operation, then
U is preserving iff Xe is closed under Ep for all p.

Proof. Immediate by lemma 3.4. Q

It follows for example that Ap——A is stable.

Theorem 3.6 (Glueing Theorem) Consider any subset X of Hipc.
Then X 1is the image of a preserving closure operation iff each X (p) is
the image of a preserving closure operation. Similarly for interior.

Proof. Suppose X is the image of the preserving closure operation ®. It is
easily seen that £po ®* is a preserving closure operation with image X ().
E.g., by the fact that ® is preserving:

EPoPolPod =EFoPod =EFod

4We read composition in the order of application.
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Conversely suppose that for each j ©z is a preserving closure op-
eration with image X(p). Note that Oz(A4) € X(gnPV,y(4)). Con-
sider any A and any ¢ 2 PVo(4). We claim: OzA4) = Opy,a)(4).
First ©7(A) € X(PVy(A4)) and A < Oz(A), hence: Opy a)(4) <
Opvy(a)(0z(A)) = Oz(A). Conversely PVo(Opy,(a)(4)) C PVo(4) C 7
and A < @PVO(A) (A), hence: @(T(A) < ®PV0(A) (A)

Set: ®(A) := Opy,(a)(A). Consider any B with B € X and any ¢ with
Q'Q PV()(A)UPV[)(B) We find:

Opv,(a)(4) < B € H(G)

Q

It follows that if X is PV-finite and closed under conjunction, then X
is the image of a preserving closure operation if each ® x () is preserving.

Theorem 3.7 Suppose that X is the image of a preserving closure opera-
tion ® and that X is closed under Ep, then ® o Ep = EPo P.

Proof. Left to the reader. Q

We want to connect closure and interior operations to the notions of
interpolation and approximation introduced in section 2. Some care should
be taken here, since we switch between the algebraic and the syntactic. It
is easy to formulate algebraic variants of interpolation and approximation.
E.g., the algebraic counterpart of IPL looks as follows. Let X C H. We
have:

e X satisfies left-interpolation (IPL) if for every p, ¢ and for every
A€ X(p) and B € H(J) with A < B, there is an I in X (phq) such
that A < I < B. I is called the X left-interpolant.

It is easy to see that if we have one of our interpolation or approximation
properties for the syntactical class X, then ipso facto we have the property
for the corresponding algebraic class. The converse, however, does not
hold. The problem is that we do not demand that the syntactic class is
closed under provable equivalence. Consider for example the syntactic class
{(pr—p), (¢ = q)}. This class does not satisfy IPL. On the other hand, its
algebraic counterpart is {T, L}, which does satify IPL. It is not difficult to
see that it is sufficient for making the transition from an algebraic property
to the corresponding syntactical one, that X is wvariable-sound. Variable
soundness is defined as follows:

e X is variable-sound iff for all A € X there is a B € X such that A is
provably equivalent with B and PV (B) = PVy(A).

If X is closed under substitution of T, then X is variable-sound.
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Theorem 3.8 Consider any X C H. Suppose X satisfies IPR, X is PV-
finite and X is closed under finite conjunctions, then X is —modulo prov-
able equivalence— the image of a preserving closure operation. Similarly
for IPL, disjunctions and interior.

Proof. Consider A € H and let p':= PV(A). Define:
o(4) = \{Cex(@|A<C}
Clearly, PV(®(A)) C PVy(A)). Moreover:
<

P(A)<BeX & eX((p) ox(A)<I<BeX
< dIeX(p) ®(A)<I<BeX
& JeX(p) AI<BeX
& A< BeX
Hence @ is a preserving closure operation with range X. Q

Theorem 3.9 X satisfies APR(L) iff X is the image of a closure (inte-
rior) operation. (In fact (.)* and (.)° are the desired operations.)

Proof. Trivial. a

Theorem 3.10 The following are equivalent:

1. X is the image of a preserving closure (interior) operation
2. X satisfies UIPR(L)
3. X satisfies IPR(L) and APR(L)

Proof.

(1) = (2) Suppose e.g., X is the image of a preserving closure operation
®. Consider any A € H(q) and any p. Take A°(p) := ®EP(A). Since
both ® and £j are closure operations, we have: A < A°(p). Since @ is
preserving, we find that A°(p) is in H(p). Consider any B and 7 with
B € X(7) and assume that ¢n#* C p. Using ordinary interpolation,

we obtain:
A<B & 3dIeH(p) A<I<B
< 3dIeH(p) EPA<LI<B
& EPAL< B
& PEPALB

(2) = (3) Clearly, UIPR(L) implies IPR(L). To get e.g., APR from UIPR,
take: A°:= A°(PV(A)).

(3) = (1) Suppose e.g., IPR and APR. Define ®(A) := A°. It is immediate
that @ is a closure operation. We have A < A° and A° € X. So by
IPR there is a B € X(PV(A)) with A < B < A°. On the other
hand, by the defining property of (.)°, A° < B and, hence, A° = B.
We conclude that ® is preserving. Q
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4 Interpolation, the Proof-theoretic Approach

We prove that NNIL satisfies both left- and right-interpolation by a proof-
theoretic argument. The proof consists in constructing the interpolant [
from a (cut-free) proof of A-B in a sequent calculus. The results of section 3
imply that NNIL also satisfies uniform left- and right interpolation, since
NNIL is PV-finite and closed under disjunction and conjunction.

4.1 Basic Definitions

Definition 4.1.1 (Positive and negative occurrences) We define the

set of all positively [negatively] occurring propositional variables in A,
PV*(A) [PV~ (A)], by:

o PV*(T)=PV—(T)=PV+(L)=PV (L) =0
PV*(p) —{p} PV=(p) =10

PV+(AAB) PV+(AvB) = PV+(A)UPV+(B)
e PV—(AAB) = PV~ (AvB) = PV~ (A)UPV~(B)
PV*(A — B) = PV~ (B — A) = PV~ (A)UPV*(B)
Clearly, PV (A) = PV+(A)UPV ~(A).

Definition 4.1.2 (The derivation system) We use the sequent calcu-
lus given in table 1.

p IL,pkp
T T'FT
1 IL,L-C
'-A I'tB I'A,B+-C
AN — AR — A
I' - AAB I'AABFC
' A; I'A+-C I',B-C
v ———vVvR,i=1,2 vL
rk+ A1VA2 F,AVB F C
I'AFB I'-A I''BFC
- —— > R
'-rA— B rA—-B+FC

TABLE 1 The Sequence Calculus
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Related systems can be found in Schiitte 1962 and Takeuti 1975. All
these systems are equivalent in the sense that they yield the same class of
derivable formulas and that the following rule schemes may be derived:

CFE cut elimination: if TH Aand ' A+ B then '+ B
W weakening: if ' F A then ' A - A

S substitution: if I' - A then I'[p := B] F Alp := B]

PS positive substitution: if p ¢ PV~ (A) then A, (p — B) - A[p := B]
The proofs are standard.

4.2 Schiitte’s Interpolation Method

Schiitte gives in Schiitte 1962 a method to build an interpolant from a
derivation of A = B. This method yields for every derivable sequent I', A +
C an interpolant I satisfying:

-1, A IFC and PV(I) C PV(D)NPV(A,C).

Using the shorthand T'[I]JA + C for (T' F I and A, I + C), Schiitte’s
method is presented in table 2.

ipl [[TIA,pFp ip2 L, plp]AEp

iT L[TIAFT

ill T[TIA,LFC il2 T,L[LAFrC
T[LJA+A T[LIAFB
inR
F[Il/\IQ]A ~ AAB
T[L]JA,AFC T[LIB,AFC T A[LJA+FC T,B[LJAFC
ivL1 ivL2
F[Il/\Iz]A\/B, Ak C F,AVB[Il\/IQ]A F C
T[L]JA+A T[LIB,AFC A[LITFA T,B[LJAFC
i—L1 i—L2
F[Il/\Iz]A—)B, AFC F, A—)B[Il—)IQ]A FC

TABLE 2 Schiitte’s method

We explain this notation with an example. iAR means:
if THI, and I,,A+ A and T+ 1, and I,,A+ B, then
F"Il/\IQ and Il/\IZ,Al_A/\B.

So inR indicates how an interpolant for I'; A F AAB can be obtained from
interpolants for ') A F A and I'; A F B. For rules not mentioned here (AL,
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vR, = R, = R), the interpolant for the conclusion is the same as for the
premise.

Now the Interpolation theorem is proved as follows. Assume A F B,
then there is a derivation of A F B in the sequent calculus defined in 4.1.2.
With induction over the length of the derivation it is shown (using Schiitte’s
method) that any partition I'; A F C of a sequent in the derivation has an
interpolant I, i.e.,

T'+I,I,A+C and PV(I) C PV(T)nPV(A,C)

Hence A F B has an interpolant.
Applying Schiitte’s method to derivations of A F B with A € NNIL
does not always yield an I € NNIL:

plolFp dldptaq
— L
p—=qlp—=qlpkgq p,rlrlp—qbr
p,g—rllp—q) —=rlp—=qkr
A
palg—=r)lp—q) = rlp—qbr

%
prg=1)p—q) 2rlE(p—=q) =
It turns out that (i — L2), the only place where an — is added to I,
has to be modified. This will be done in the next subsection.

4.3 The Proof
We first prove NNIL left-interpolation and then NNIL right-interpolation.

Lemma 4.3.1 Assume ', A - C and I' C NNILy. Then there is an I
with:
i) THI and I,A+FC
i) PV(I) C PV(I)NPV(A,C)
iit) I € NNIL
iw) {CINPV~(I) C PV(A) (i.e., if C € PV~(I), then C € PV(A)).
Proof. Induction over the length of a derivation of I', A - C'.
If ' A F C is an axiom or the conclusion of a rule different from — L,
apply Schiitte’s method (4.2). (i)-(iv) follow directly by induction.
If T, A C is the conclusion of - L. Let A — B be the “new” formula
in the conclusion. We distinguish two cases: A -+ B €Tl or A - B € A.
Case 1: A —- B €T. Then A - B € NNILg, so A is a propositional
variable, p say. By the induction hypothesis, we have a I with I"U{p —
B} =T and I, I, with:
a) "I LL,AFp, T, BFIy; I,,A-C
b) PV(I;) C PV(I")APV(A,p); PV(Iy) C PV(I', B)nPV(A,C)
¢) I,I, € NNIL
d) pe PV—(I) = p € PV(A); {CInPV~(I5) C PV(A)

— L
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Now we must find an I and show that (i)-(iv) hold. We consider three
subcases.

Subcase 1A: C =p. Put I :=I;. Ad (i): T + I follows from I'" - I; (by
(a)), I'" C T and W. We get (ii), (iii) and (iv) directly from (b), (c) and
(d).
Subcase 1B: C # p, p € PV(A). Put I :=I1A(p = I»).

Ad (i):
Flapl_p FlapaBl_IQ ((L,W)
I';p— B,p+ I,
IMMp—=BFIL (a,W) IMp—sBrFp— 1

I',p— BFLa(p— L) ie,THI

Il,A l_p (a) Il,IQ,Al_C (G,,W)
Il,p—) IQ,A FC
Il/\(p—) IQ),A FC i.e., I,A FC

Ad (ii): PV (L, Iz) C PV(I)NnPV(A,C) is easy; as I' = T"u{p — B}
and p € PV(A) we also have p € PV(I')NPV (A, C), so

PV(I) = PV(I,)UPV (I,)u{p} C PV(I)NPV(A,C).

Ad (iii): I,,I, € NNIL (by (c)), so I = Iia(p — I,) € NNIL by
definition of NNIL.

Ad (iv): Assume C' € PV~ (I), then C € PV~ (I;) UPV~(Iz), for C' #
p. Now if C € PV~ (I;) then C € PV(A)u{p} by (b), so C € PV(A)
(for C # p); and if C' € PV~ (I3) then C € PV(A) by (d). Conclusion:
C € PV(A) and (iv) is proved.

Subcase 1C: C #p,p ¢ PV(A). Put I :=1, [p:= I].

Ad (i): Asin Subcase 1B, we have I'',p — B+ I1a(p — I2); by (d) and
p ¢ PV(A) we have p ¢ PV~ (I1), so I, (p = Iy) - I by PS; now apply
CE and we get I, p — B+ I, ie., '+ I. Furthermore:

[1,A F p g
Lip:=L],ArL (p¢PV(A)) IQ,AFCCE

Il[p = IQ],A FC i.e., I,A FC

Ad (ii):
PV(I) = (PV(I)\{p})uPV (L)
c (PVI)NPV(A,p)\{p})u(PV (", B)nPV (A, C))
= PV(I',B)nPV(A,C) C PV(I)NPV(A,C)
using (b).

Ad (iii): I € NNIL follows from (c) and p ¢ PV~ (I;), a consequence
of (d) and p ¢ PV(A).
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Ad (iv): Assume C € PV~ (I), then C € PV~ (I;)UPV~(I1) (for p ¢
PV (1), see (i)). Now continue as for (iv) under 1B.

Case 2: A — B € A. Apply (i — L1) of Schiitte’s method: it yields an
interpolant I = I1 Al and (i)-(iv) follow directly. a

As a corollary, we immediately have NNIL left-interpolation (using that
NNIL and NNILg coincide modulo IPC-provable equivalence). Right- in-
terpolation is somewhat easier. We prove it now.

Lemma 4.3.2 IfT', A+ C, then there is an I with
i) THI; I,AFC
i) PV(I) C PV(I)NPV(A,C)
ii1) if C € NNILy and A C PV, then I € NNILg
iv) if L C PV, then I = piA...Apy for some py,...,p, € PV.

Proof. Induction over the length of a derivation of I', A - C'.

If ' A F C is an axiom or the conclusion of a rule different from — L,
then apply Schiitte’s method. If I'; A F C' is the conclusion of — L, then
we distinguish three cases.

Case 1: A—- B €T, C € NNILy, A C PV. Here i — L2 of Schiitte’s
method prescribes the interpolant I; — I». This interpolant satisfies (i)
and (ii), but in general not (iii) (only if I; € PV). However, I; is the
interpolant of A, I + A (with I such that I' = T'U{A — B} ) and
A C PV, so (by (iv) of the induction hypothesis) I = pia...Ap,. Now put
I'=p; = (...(pp = I2)...), then I = I, — I, so [ satisfies (i) and (ii);
also I € NNIL, for I, € NNILy (by induction hypothesis). (iv) is trivially
satisfied.

Case 2: A — B €T, (C ¢ NNILy or A\PV # ). Now follow I — L2
of Schiitte’s method, then (i), (ii) are satisfied, (iii) and (iv) are trivially
true.

Case 3: A— B ¢T. Then A —» B € A. Now follow i — L1 of Schiitte’s
method: this yields an interpolant I = I; Al for which (i), (ii) hold. (iii) is
trivially true (for A — B € A) and (iv) follows by the induction hypothesis.

a

As a corollary we have NNIL right-interpolation.

Remark 4.3.3 (Positive and negative occurrence) Schiitte’s method
yields an interpolant I for A-B with:

+ PVT(I)C PV (ANPVT(B), PV (I) C PV (ANPV~(B)

However, our adaptation of Schiitte’s method used in 4.3.1 does not respect
(£): e.g., in subcase 1B we have p € PV —(I), but p € PV (A)uPV—(C)
is not excluded. We therefore state the following open problem: does NNIL
interpolation hold if (+) is added? a
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5 Kripke Models

We suppose that the reader is familiar with Kripke models for IPC (see
for example Troelstra and van Dalen 1988a, or Smoryriski 1973). To fix
notations: a Kripke model is a structure K = (K,b, <, P,IF) , where K is
a non-empty set of nodes; < is a partial ordering; b € K is the bottom
element w.r.t. < ; P is a set of propositional variables; I is the atomic
forcing relation on P: it is a relation between nodes and propositional
variables in P, satisfying:

k<k' and k- p= k' I-p (persistence).

IF is extended to £(P) in the standard way. The resulting relation is again
persistent. We will say that K is a P-model if its set of propositional
variables is P. A model is finite if all its components are finite.

Our Kripke models are what is usually called rooted Kripke models.
In many contexts it is more natural to omit the root. However, for the
purposes of the present paper it is more convenient to have all our models
rooted.

We write K IF A for: b IF A (or equivalently: Vk € K k IF A). Let
P be a finite set of propositional variables. We will write K(7) for the
result of restricting the atomic forcing of K to §. For any k€K, K[k] is
the model (K', k,<',P,IF"), where K’ := {k'| k<k'} and where <’ and
I are the restrictions of < respectively IF to K'. (We will often simply
write < and I for <" and IF'.) We write Th(K) := {AeL]| K IF A},
Thx(K) := {AeX | K IF A}, where X is a set of formulas. We will often
write Thx (k) for Thx (K[k]).

The central result connecting structures and language is:

Theorem 5.1 (Kripke Completeness) We have:
IPC + A< For all (finite) PV(A)-models K: KI+ A. Q

6 Subsimulations
We start by repeating some well-known notions about relations. Define:
e £(RoS)y = Iz zRzSy
° a:}ABy & yRx
e IDx CX x X and zIDxy & x=y,lie, [IDx ={{z,z)| z € X}
Let K an M be P-models. A relation R on K x M has the zig-property
(w.r.t K and M ) if:
e kRm = VpeP(k Ik p < m ik p)
e k' >kRm = dm' KRm' > m, ie., >0oR C Ro >

We will say that R is zig. We do not require that R preserves roots, i.e.,
bx Rbyi. We will also call R a subsimulation of K in M . The “sub” witnesses
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that roots are not necessarily preserved. Note that the empty relation is a
subsimulation between any two models.

R is total if Vke K AmeM kRm. If R is zig and root-preserving we say
that R is +-zig. We will say that a +-zig R is a simulation. Note that
simulations are, in our context, automatically total. R is zag if R is zig,
etcetera. Define:

R:K <M :& R is a total subsimulation of K in M
K<M:&3JdJRR:K<M
R:K <t M :& R is a simulation of K in M
K=<tM:©3JRR:K<tM

The existence of simulations and the existence of total subsimulations
is related in essentially simple ways. It is good to have total subsimulations
since they are “definable” in a way in which subsimulations are not (see
section 7). It is good to have simulations, since they are better for con-

structions on models. We give two connections between the two notions.
First note that :

K <M = for all k€K there is an meM : K[k] < M[m].

Moreover: K < M < for some m € M: K <t M[m]. Secondly take K* to
be the result of adding a new root b to K with:

e biFp:&KlFpand MIFp
We have: K < M < K™ <t M. We leave the simple verifications to the

reader.
We list the basic facts about (sub)simulations.

Theorem 6.1 Let B be a set of subsimulations. Then |JP is a subsimu-
lation. It follows that the set of subsimulations has a mazimum. Moreover
if one of the elements of P is total (root-preserving), then |JP is total
(root-preserving).

Proof. trivial. a

Note that R defined by: kRm :& K[k] =T M[m], is the maximum
subsimulation.

Theorem 6.2 We have:

e REK<H Mand S:M<H N=RoS: K=< N
[ ] IDK:KjJrK

Proof. Trivial. a

6.2 tells us that <(*) is a preorder. We write =(*) for the induced equiv-
alence relation. Note that if K=M and R : K < M, then RU{(bk, bwm)} is
a simulation. It follows that K =T M. So = and =T coincide.
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A relation R between K and M is a bisimulation if R and R are both
subsimulations. If a bisimulation is total and surjective, we can always
extend it to preserve roots. We write:

e R: K~ M for: R is a total, surjective bisimulation between K and
M
e KM:3JdRR:K~M
It is easy to see that ~ is an equivalence relation and that: K ~ M =
K = M. Bisimulations are closed under unions, so the set of bisimulations

between K and M has a maximum. Note that R with kRm & Klk] ~
M[m], is the maximal bisimulation between K and M.

Example 6.3 The following is an example of two models U and V with
U=V but not U~ V.

op O\ /O Y4
@) @)
U \Y
(If an atom is not displayed at a node, then it is not forced.) Q

In section 7 we will see that, if we restrict ourselves to p~-models, then
the number of =-equivalence classes is finite (in contrast to the number
of ~-equivalence classes). In the two subsequent theorems we relate total
subsimulations and simulations with the behaviour of models on the for-
mulas of IPC. A converse of 6.4 (for p~models) will be proved in section 7.
(6.5 has a number of somewhat weakened converses, but we won’t prove
them in this paper.)

Theorem 6.4 Let R be zig. Then: kRm = ThNN[L(m) - ThNN]L(k‘). It
follows immediately that: K X M = Thyn, (M) C Thyni(K).

Proof. By induction on NNIL,. E.g., suppose kRm I+ (p — A) for
A € NNILy and k < k' IF p. Then for some m': ¥’ Rm’ > m and hence,
m' Ik p. Since m' > m Ik (p — A), it follows that m' IF A and hence by the
Induction Hypothesis: k' IF A. We may conclude that &k IF (p — A). a

Theorem 6.5 K~ M = Th(K) = Th(M).
Proof. By induction on L. Q

Define:

K <y M:& 3F(F : K <M and F is a function)

KCM:o K C M, <gC<uy and lrg=lry| K

K gfu” M:& KCM <g=<wm ﬂ(K X K)

K Cini M:& K Cpyy Mand for allm <y m’ € K: m € K orm = by
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For all these notions we have the obvious +-versions, e.g., for K CT M we
demand that bx = by;. Note:

Kch M@KC]‘&”MandforallmSMm'EK: m € K,

=ini =
and:

We will now prove the central result of the present section. It will give
us (in section 7) both the desired result on uniform interpolation and the
desired analogue of Lo§’s Theorem.

Theorem 6.6 (Lifting Theorem) Let ¢, p and 7 be disjoint sets of vari-
ables. Let K be a §, p-model and let Ml be a , 7-model. Suppose K(7) =(+)
M(p). Then there are {,p,7-models K, M' such that: K ~ K(q,p),
K g;ﬂ M and M ~ M (p, 7).

Proof. We first give the proof for the +-case. Assume R : K(p) < M(p).
We construct the promised new models. We first specify K'. (We index the
various relations to keep track of where we are. Later we will omit these
indices.) Define:

o K':={(k,m)| kRm} (So K’ is just R viewed as a set of pairs.)
o (k,m) <g (k',m') : &k <g k' and m <y m/
[ b]Kr = <bK,bM>
o P =057
e (kkm)lbg s: o klrgsormlby s
Note that:

s€qp= ({k,m)lFgs& kg s)
sep, 7= ({(k,m)lrx s < mlkk s)
Define B by: kB(k',m) :< k = k'. It is immediate that B : K ~ K'(q, p).
We specify M'.
M= {{k,m)| Im'eM kRm' <m m}
w (k',m') &k <g k' and m <y m’

—~—

® o o o o
N~
g?
e
= IA
7
o~
g

Note that:

q€q= ((k,m)lrmw g kb q)

peP= (klrx p= (k,m) lFw p)

s € P, P = ({(k,m) lFyy s & mlky s)

(k,m) € K' and m <yym' = (k,m') € K' and (k,m) <m (k,m')
Define C' by: mC(k,m'y & m = m'. It is easily seen that C : M ~
M (p, 7). Finally it is immediate that: K Q;ull M.
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We turn to the case without +. Assume R : K(p) < M(p). Without loss
of generality we may assume that there is precisely one element mg in M
with bx Rmg. Extend K with a new bottom b to K™ so that RU{(b,bym)} :
KT <t M. We may take the forcing at b for the elements of ¢ arbitrary
within the bounds dictated by persistence. Now apply the construction
described above to K+ and M to obtain models K*' and M. Finally we
drop the bottom of Kt to obtain a model K’ with bottom (bx,mq). It is
easy to see that the pair K', M satisfies the conditions of the theorem. QO

6.6 goes through even in case some of ¢, p' and 7 are infinite. However,
such a generalization does not seem very urgent. An immediate conse-
quence of the proof is that for any ¢-model K and for any #~model M with
¢ and 7 disjoint, there is a ¢, ™model N such that K ~ N(¢) and M ~ N(7).
(Take R in the proof the universal relation between K and M.)

Corollary 6.7 Suppose K and M are p-models. Then:

K=" MeIK,MKeK M ~M

Proof. “=” Is immediate from 6.6, taking ¢ =7 = (. “<” Suppose that:
K~ K g;ﬂ M' ~ M. It follows that: K <* K <(+) M' <+ M. Hence:
K <) M. Q

Corollary 6.8 Suppose K and M are p-models. Then:
K=< Me K K~K <P M

Proof. Note, by inspecting the proof of 6.6, that in 6.7 the total, surjective
bisimulation C' between M and M is in fact a function (and thus a p-
morphism). a

We can improve our result to obtain models embedded via Qg:{i).

Theorem 6.9 (Strengthened Lifting Theorem) Let ¢, § and 7 be dis-
joint sets of variables. Let K be a ¢,p-model and let M be a P, F-model.
Suppose K(7) <(T) M(7). Then there are ,p,7-models K', M such that:
K ~ K (¢,5), K C7) M and M ~ M (5,7).
Proof. We just specify the new models for the the +-case and leave the
routine verification and the extension to the case without + to the reader.
K’ is given as follows:

o K':={(k,m,m)| kRm}
(k,m,m) <g (k',m',m'y : & k <k k' and m <y m/
b]Kr = <bK, bM, bM>
Pk = q,p,7
(k,m,m) Ik s:< kg s or m by s.
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M’ is the following model:
M':= {(k,m,n) | kRm <pmn}

m=n, k<xk' and m<ym/',
or: k=k, m=m' and n<yn’

(k,m,n)<wy (K',m',n') &

bM = (bK, bM, bM>
Pwr = 4, 0,7
(k,m,n) F M's :< k- Ks or n |- Ms. a

Corollary 6.10 Suppose K and M are p-models. Then:
K<H Me IK, M K~K ) M ~ M

=ing

Proof. Like the proof of 6.7. Q

Let < be any relation between models. A formula A is <-robust if
o foral M(MIF A= foral N<M: NI A)
Theorem 6.11 The following are equivalent:
i) A is <-robust
1) A is =1-robust
ii1) A is C-robust
iv) A is Cpu-robust
v) A is Cipi-robust
Proof. Trivially (i) = (i4) = (iti) = (iv) = (v). We prove (v) = (3).
Suppose A is C;p;-robust and that K < M I A. By 6.9 there are K/,

M’ with K ~ K' C;,; M ~ M. By bisimulation M I A. By robustness
K' I A. By bisimulation again: K I+ A. a

7 NNIL and Subsimulations
7.1 Normal forms
To each model K and finite set of atoms P, we assign NNIL(p)-formulas
vk (p) and nk (p) as follows:
e vx(p) ;== V{AeNNIL(p) | K ¥ A}

e nx(p) := N{AeNNIL(p) | K I+ A}
Define also:

o px(P) == V{pep| KK p}

o x(p) := N{pep| K IF p}

If from the context it is clear that we are considering a model K we write
v (p) for vigqy (P) and similarly for 7, p and .

Theorem 7.1.1 KW vk (p) and K IF nk(p)
Proof. Obvious. a
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Theorem 7.1.2 Consider two p-models K and M. Then:

K XM & Thyninp M) C Thynip (K)
Proof. “=” is immediate from 6.4. “<” Suppose Thynizz (M) C
ThNNIL(ﬁ) (K) Define R by:

e kRm :& Thi)‘(k) g Thﬁ(m) and Th’NNIL(i)’) (m) g ThNNIL(ﬁ) (k?)
Then R is total, zig. To show that R is total consider any k£ in K. Clearly,
K W 7 (p) — vi(p) and hence by assumption (since (7 (p) — vi(p)) €
NNIL(p)): M ¥ 7 (p) — vi (D). It follows that for some m: m IF 7 (p) and
m W v (p). Ergo: kRm.

To prove that R is zig suppose kRm. It follows that:

Thynrrp (M[m]) © Thyniw ) (K[E]).

Hence by the previous argument R restricted to the domains of K[k] and
M[m] is total. But this gives us precisely the zig-property. a

Theorem 7.1.3 Let K and M be p-models. Then:
K <M & M ¥ vg(p) & KIF mu(p)-
Proof. Immediate from 7.1.2. Q

Theorem 7.1.4 Let K and M be p-models. Then:

K XM &k vk (p) = vm(p) ©F mx(p) = mu(p)-

Proof. Suppose K < M. If N W vy(p), then M < N and hence K X N, so
N W vk (p). By the Completeness Theorem, we may conclude: + vk (p) —
vm(p). For the converse assume F vg(p) — vm(P). Since M ¥ vy(p), it
follows that M W¥ vk (). Hence by 7.1.3: K < M.

Suppose K < M. If N IF ng(p), then N < K and hence N < M. Tt
follows that N IF 7(p). By the Completeness Theorem: b nx (5) — nv(D)-
For the converse suppose F nx(p) — nu(p). Since K Ik nx(p), it follows
that K IF ny(p), and hence that K < M. a

Theorem 7.1.5 The number of =-equivalence classes of p-models is finite.

Proof. By 7.14 for p~models K and M : K =M <t vg(p) « vm(p). But
there are only finitely many NNIL(p)-formulas modulo provable equiva-
lence. Q

7.2 Interpolation

We want to prove the uniform interpolation theorem. Clearly, if the uniform
left-interpolant A*(p) exists, then it is equivalent to \/{BENNIL(p)| F
B — A}. So we define:
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o A*(p) := V{BENNIL(p)| F B — A}

and prove that this formula is the uniform left-interpolant. Similarly, we
define:

e A°(p) := AN{BENNIL(p)| + A - B}
and prove that it is the uniform right-interpolant.

Theorem 7.2.1 (Uniform Interpolation Theorem) NNIL satisfies uni-
form interpolation.

Proof. Consider formulas A and B and a finite set of propositional vari-
ables p. Let PV (A) C p,7 and PV(B) C ¢, p for §,p,7 disjoint. Suppose
FA— B.

We show that B*(p) is the uniform NNIL left-interpolant of B. Clearly,
F B*(p) — B, so it is sufficient to show:

if A€ NNIL, then - A — B*(p).

Suppose A € NNIL and ¥ A — B*(p). Let M be a p,7model such that
M IF A and M ¥ B*(p). Suppose nu(p) - B, then nv(p) - B*(p) by the
definition of B*(p). But then M IF B*(5). Quod non. Ergo nw(p) ¥ B. By
the Completeness Theorem there is a ¢, p~model K such that K IF ny(p)
and K ¥ B. By 7.1.3: K(p) < M(p). We apply the Lifting Theorem 6.6
to obtain ¢, P, models K', M' such that: K ~ K'(7,p), K < M' and
M ~ M (p, 7). We find K' ¥ B and M I+ A. Since K' <M and A € NNIL
we get: K IF A. Ergo ¥ A — B. A contradiction. So - A — B*(p).

Let A be —again— an arbitrary formula. We show that A°(p) is the
uniform NNIL right-interpolant of A. Clearly, F A — A°(p), so it is suffi-
cient to show:

if B € NNIL, then + A°(p) — B.
Suppose B € NNIL and ¥ A°(p) — B. Let K be a ¢, p-model such that
K IF A°(p) and K ¥ B. Suppose A F vk(p), then A°(p) F vk(p) by the
definition of A°(p). But then K I+ vg(p). Quod non. Ergo A ¥ vk (p). By
the Completeness Theorem there is a p, #~model M such that M IF A and
M ¥ vk(p). By 7.1.3: K(p) < M(p). We apply the Lifting Theorem 6.6
to obtain ¢, p,7models K', M' such that: K ~ K/(7,p),K < M and
M ~ M'(p,7). We find K ¥ B and M' IF A. Since K < M' we get:
M ¥ B. Ergo ¥ A — B. A contradiction. So - B — A*(p). a

Note that by the results of section 3 it also follows that the NNIL
approximants A* and A° exist. Moreover if PV (A) C p, then:

F A" < A*(P) and + A° « A°(D).
We give an alternative characterization of A*(p) and A°(p).
Theorem 7.2.2 Consider A € L(P,§). We have:
i) A" o A K¥ A}
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i) b A°(p) < V{nx(p)| K- A}
Proof. (i) “—=” Suppose K ¥ A, then K ¥ A*(p) and hence by the

definition of vk (p): F A*(P) — vk(P). Ergo: F A*(p) = A{vk(p) | KW A}.
“” Suppose that ¥ A{vk(p) | K¥ A} - A. Then for some M:

M I A{vk (D) | K ¥ A} and MK A.

But then M IF vm(p), quod non. Hence - A{vx(p)| K¥ A} — A and so
by the definition of A*(p): - A{vk(P) | KK A} — A*(p).
(ii) “+” Suppose K IF A, then K I A°(p) and hence by the definition

of nk(p) :F nx(p) — A°(P). Ergo: F \/{nx(P) | Kk A} — A°(p).
“—” Suppose that ¥ A — \/{nx(p) | KIF A}. Then for some M :

M- A and MU \/{nx(7) | K I A}.

But then M ¥ nm(p), quod non. Hence F A — \/{nx(p) | K IF A} and so
by the definition of A°(p): F A°(p) — \V{nk(P) | K IF A}. a

7.3 Modal Operators
Define:

e MIFOA: VK <MK IF A
e MIF(O1A: & VK < MK IF A
e MIFOA: = IK>-MKIF A

Theorem 7.3.1 Consider M and A € L(p). Then:

i) MIFO1A e MIFQAe MIF A*
ii) MIF OA & M- A°

Proof. (i) The first equivalence is immediate by 6.8. We prove the second
equivalence. “<” By 6.4. “=” Suppose M ¥ A*. We have M ¥ A*(p).
Then by 7.2.2 for some K with KW A: M ¥ v (p). Clearly, we may assume
that K is a p-model. It follows that K < M(5). For some (possibly infinite)
7, disjoint from 7, M is a P, 7model. By the Lifting Theorem 6.6 we can
find a p,#model K such that: K ~ K'(p) and K < M. Hence there is a
K with K ¥ A and K' < M. Ergo M ¥ OA.

Ad (ii): “=" Suppose IK > M K IF A. Then K IF A°(p) and hence
M Ik A°(p), i.e., M IF A°. “<” Suppose M |+ A°. By 7.2.2 for some K
with K IF A: M IF ng(p). We may assume that K is a p-model. We find
M(p) % K. For some (possibly infinite) ¢, disjoint from p, M is a ¢, -
model. By the Lifting Theorem 6.6 we can find a ¢, p-model K’ such that:
K ~ K'(p) and M < K'. Hence there is a K with K' IF A and M <X K.
Ergo M IF O A. Q

Question 7.3.2 Is there a reasonable, complete set of inference rules for
(O? The same question for & and for () and < together. Q
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Example 7.3.3 Define M IF AA < VK C M K I A. Consider the
model U of 6.3. Clearly, U I A((—=—p — p) — (pv—p)), but U ¥ (pv-p).
Moreover:
((==p = p) = (pv—p))* = (pv—p).

(One way of quickly seeing this, is by inspecting the Rieger-Nishimura
Lattice, see Troelstra and van Dalen 1988a, pp 49-50. The only NNIL
(p)-formulas are (modulo provable equivalence): L1, p, —p, pv—p) and
T. Alternatively one may apply the algorithm specified in Visser 1985
or Visser 1994. A third way is to use the argument presented in 7.5.3.) So
7.3.1(i) does not generalize to A. a

7.4 An Analogue of Los’s Theorem
Theorem 7.4.1 A is <-robust < A is in NNIL.
Proof. “«<” is immediate by 6.4. “=” Let A be a <-robust formula in

L(p). Suppose K IF A, then K IF OA and hence by 7.3.1: KIF A*. Ergo
F A<+ A*. So A is in NNIL. Q

Note that by 6.11 we can replace <-robustness in the conclusion of 7.4.1
by each of: <;-robustness, C-robustness, Cg,;-robustness, C;,;-robustness.

Corollary 7.4.2 We have:

I(A,z) is T-provably equivalent to a

A is a NNIL-formula < Iy -formula of predicate logic.

Proof. “=” By 2.1. “<” Suppose I(A,z) is T-provably equivalent to
a II;-formula of predicate logic. Then I(A,x) is preserved under taking
submodels of models of 7. But this means that A is C-robust. By the
above consequence of 7.4.1 it follows that A is in NNIL. Q

In appendix A we show how 7.4.2 can be improved.

7.5 Anti-model-descriptions

Let K be a finite model. There is a pleasant way of characterizing vk (p) as
a formula giving an “anti-description”. Remember:

o px(p) := \/{pep| KW¥ p}
o mx(p) := A{pep| K I+ p}
Define:

o ax(p) = mx(P) = (px(P)v V{axm (P) | bx < k})

We again employ the convention of the empty conjunction being T and
the empty disjunction being 1. Modulo provable equivalence ak(p) can
be written more efficiently, by restricting ourselves to the immediate strict
<-successors of bk in the last disjunction of the definition. Clearly, ak(p) €
NNIL(p).
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Theorem 7.5.1 KW ax(p).

Proof. We prove by induction on the converse of <, that k W ay(p).
Suppose k I ag(p). Since, clearly, k IF 7 (p) and k ¥ v (p), it follows
that & IF \/{aw (P) | k < k'} and hence, for some k' > k, k IF ay (p). This
contradicts the induction hypothesis. a

Theorem 7.5.2 F ak(p) < vk(P).

Proof. “—” Is immediate by 7.5.1 and the definition of vk (p).

“” We prove by induction on de depth of k£ in K that for all A €
NNIL(p): k¥ A =F A — «ap(p). Consider k. The proof proceeds by
a subinduction on A in NNILy(p). The cases of atoms, conjunction and
disjunction are straightforward. Suppose A is of the form p — B. In case
k IF p we find: £ ¥ B. Hence by our subinduction hypothesis: - B —
a(P). Since p is a conjunct of 7 (p), we find: F (p = B) — ax(p). In case
kW p there is a k' > k such that k' I p and k' ¥ B. It follows by our main
induction hypothesis that - (p — B) — ay (p). Hence by the definition of
ax(@: - (b B) = ax(i). a

Example 7.5.3 Consider the characterization of A* of 7.2.2. Note that
by 7.1.4 we can restrict the conjunction to vk (p) for K a representative of a
<-minimal =-equivalence class X such that M ¥ A for some M € X. This
insight allows us to use 7.5.2 for actual computation of A*(p). We compute
e.g.,
A= ((=—p = p) = (pv-p))"

Consider the models U and V of example 6.3. It is easy to see that any
model K such that K ¥ A has V as a submodel. Moreover V ¥ A and
U=V. So:

a* = ay = A0 = Vo VIR = (Vv 0)h = (v-).

8 Beyond NNIL

Can we extend our results to the higher complexity classes? It turns out
that the characterization of the complexity classes in terms of an appro-
priate notion of simulation extends in an immediate way. How to do this
is sketched in appendix B. In this section we show that yes we can get
uniform right interpolation for Il;, but no we cannot get uniform left in-
terpolation for Ils, and no we cannot get uniform right interpolation for
I13. These classes are PV-finite by 2.3 and closed under disjunction and
conjunction. So by the results of section 3, it follows that II5 does not have
IPL and that II3 does not have IPR.
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Let K and M be prmodels. A pair of relations R, S is a 2-subsimulation
between K and M, if R is a subsimulation between K and M, and S is a
subsimulation between M and K and R C S. We write:

e R,S:K =<y M :& R,S is a 2-subsimulation between K and M and
R is total

e R,S: K=< M:& R,S:K=sM, and R is root preserving

e K=<, M:= IR, SK <o M

e K=<y M:& 3R, SK<f M

Note that we have: K <2 M & 3meM K <5 M[m]. Note that if R is
root preserving, then S is also root preserving.

Theorem 8.1 Suppose K and M are p-models. Then:
K< M& ThH2(5) (M) - Thl'lz(i)‘) (K)
Proof. This theorem is a special case of B.4.3. a

Define:

o A%(p) == N{Bellz(p)| A+ B}
o A*:= A*(PV(4))

Theorem 8.2 Let A € £ and B € Il,. Suppose A+ B, then A® - B.
Proof. Let ¢ O PV(A)UPV(B), p:= PV(A). Suppose A* ¥ B. Let K be
a g-model such that K I+ A®* and K ¥ B. Suppose
A, N{CellL () | bk I+ C} = \/{DeIL(p) | bk ¥ D}.
It follows that:
A* = \{Cell () | bk I+ C} = \/{DeIL(p) | bx ¥ D}.
But this contradicts the fact that bk IF A®(p). Hence:

A, N{Cel () | bx I+ C} ¥ \[{DeT(5) | bk ¥ D}.
Let M be a p-model such that:
M I A,M - A{CEeTL () | bk IF C} and MK \/{Dey(5)| bx ¥ D}.

It follows that for some R, S: R, S : K(p) <5 M IF A. We will construct a
g-model N such that: (a) M ~ N(p), (b) K <2 N. It immediately follows
that N IF A and hence N I B. But then K IF B. A contradiction. Ergo
A* F B.

We take:
N = {(m, k)| mSk}
(m, k) <y (m' k'Y :&m <ym' and k <g k'
bN = <bM, bK>
Pn:i=q
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o (mkYlFyg:& klFg g
Since S is total, zig from M to K(p), it follows that M ~ N(p)). Define S’
from N to K by:

o (m,k)S'K :&k=1F
By definition S’ is total, zig. Finally R’ from K to N by:

e kR (m,k'y . k =k Rm

It is immediate that R' C S (if (m, k) € N, then mSk). Also it is easy to
see that R’ is total, zig. a

It follows that A® is the IIy right-approximant of A. Moreover (.)® is
preserving. Hence, by 3.9 and 3.10, we have uniform II, right-interpolation.
By 3.5, it follows that I, is closed under Pitts universal quantification.

Let X be any formula class. We write: 3X := {dpA | A€ X, pe PV}
and VX :={VpA|Ae X, pe PV}.

Theorem 8.3 JIl, = VII3 = L.

Proof. Suppose A € L(p). Let ¢ be a set of variables disjoint from g that
is in 1-1 correspondence with the subformulas of the form (B — C) of A.
Let the correspondence be q. We define 7 : Sub(A) — Sub(A) as follows:

e 7 commutes with atoms, conjunction and disjunction
e T(B—C):=q(B—C)
Define:
e EQ:=AN{g(B=C)« (T(B)=>T(C))|(B—C)e Sub(A)}
Note that EQ is II5. Finally we put:
o A% :=APEQAT (A))
o A :=VY{(EQ — T(A))
Note that A# € 3II, and A% € VII;. By elementary reasoning in second
order propositional logic we find: - A ++ A# and - A «+ A5, a

Theorem 8.3 illustrates that in general the growth of implicational com-
plexity in constructing the Pitts interpolants is necessary.

Theorem 8.4 Iy does not satisfy (uniform) left interpolation and that 113
does not satisfy (uniform) right interpolation.

Proof. We treat the case of II,. The other case is similar. Suppose
I1, satisfies left interpolation. Since I, is PV-finite and closed under dis-
junction, it is, by 3.10, the image of a PVP-interior operation. By 3.5, it
follows that II, is closed under Pitts existential quantification. Quod non,
by 8.3. a
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A IP(C as a Fragment of Predicate Logic

In this appendix we characterize the formulas of IPL as first order formulas
which are persistent and preserved under bisimulation. The result is a
variation on Johan van Benthem’s characterization of the formulas of modal
propositional logic as the first order formulas that are preserved under
bisimulation. See van Benthem 1976.

In 2.1 we introduced the theory Krip in predicate logic of Kripke models.
Let A(z) be any L grip-formula in one variable.

We say that A(z) is persistent if for any Krip-model (or equivalently:
IPC-model) K and for any k, k' in K:

(k<k' and KE A(k)) = KE A(K').
We say that A(x) is preserved under bisimulations if for all Krip-models K
and M and for all bisimulations R between K and M, we have:
if kRm and KE A(k), then M E A(m).

We say that A(z) is upwards preserved under (.)[.] if for all Krip-models
K and all £ in K:
if KE A(k), then K[k] E A(k).
We say that A(z) is downwards preserved under (.)[.] if for all Krip-models
K and all £ in K
if Klk] E A(k), then K E A(k).
Theorem A.1 Suppose A(x) is (1) persistent and (2) preserved under
bisimulations, then there is a B € L, such that Krip - A(z) < I(B, ).
We postpone the proof a bit to take a closer look at (1) and (2) first.
Note that (2) is equivalent to the conjunction of:
2a) A(z) is preserved under total, surjective bisimulations
2b) A(x) is downwards preserved under [.](.)
2¢) A(zx) is upwards preserved under [.](.)
We give separating examples for the four conditions (1), ..., (2c), Each
example is designated by the one condition it doesn’t satisfy.
—(1) —P(x)
=(2a) Vy(z<y — y<z)
=(2b) YyP(y)
=(2¢) Fy~P(y)
Proof of A.1. Suppose A(z) satisfies (1) and (2). Let:
e A(z):={I(B,z)| Krip + A(z) — I(B,z)}

If Krip, A(z) b A(z), we are easily done by compactness. If Krip, A(z) ¥
A(z), then, by results in Chang and Keisler 1977, chapters 4 and 5 (alter-
natively: see van Benthem 1991a, chapter 15 or de Rijke 1993, chapter 6),
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there is an w-saturated Krip-model K and an element k£ of K, such that
K E A(k) and K E —A(k). Let:
e O(z) := {A(z)}u{I(B,z) | k IFx BYu{-I(C,z)| k ¥k C}

We claim that ©(z) is consistent. If not, there are finite sets of IPC-
formulas X and Y such that for every B in X: k IFg B and for every C in
Y: k W¥g C and such that:

Krip - ~(A(x)n N{I(B,z)| B € X}» \{~I(C,2)| C €Y}).
Hence:

Krip = A(z) — (\{I(B,x)| B€ X} —» \/{I(C,2)| C € Y}).
By predicate logic, we find that:
Krip = Vy>zA(y) — Vy>2(\{I(B,y)| B€ X} = \/{I(C,y)| C € Y}).
By the persistence of A(z), it follows that:

Krip - A(z) - Vy>2(/\{I(B,y) | B€ X} = \/{I(C,y)| C € V}).
Finally, by the definition if I, we get:
Krip - (A(z) > T(A X = \/ V), 2).

But, then, on the one hand, (A X — VYY) € A(z), and, on the other hand,
KEIT(ANX = VY),k). A contradiction.

Let M be an w-saturated Krip-model of ©(z), say M E ©(m). We define
R between the nodes of K and M as follows:

e k'Rm' . VBeL(K' |Frx B & m' kv B)
We claim that R is a bisimulation. Suppose e.g., k" > k'Rm'. Take:
o I'(z) :={z >m'}U{I(B,z) | k" IFx B}u{=I(C,z)| k" ¥k C}

We claim that T'(z) is finitely satisfiable in M. By w-saturatedness it will
follow that there is an m' > m satisfying I'(z). Hence k" Rm/'.

Consider any finite X and Y such that for all B in X: k" IFx B and
for all C in Y: k" Wk C. Then evidently ¥ W¥x (AX — VY). Since
E'Rm/', it follows that: m' Wy (AX — VY). We may conclude that for
some m'" > m': m" by AX and m” Wy /Y. Evidently m' satisfies:
{z >m}u{I(B,z)| B € X}u{-I(C,z)|C € Y}.

Since kRm and M F A(m), we have K F A(k). A contradiction. So
Krip, A(z) F A(x). a

Suppose A(zx) satisfies (1) and (2) and is II; in Krip. By A.1, A(zx)
is Krip-provably equivalent to I(B,z) for some B € L. A(z) is preserved
under taking submodels (for predicate logic). Hence B will be preserved
under taking submodels (for IPC). Hence, by the consequence of 7.4.1,
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B is IPC-provably equivalent to a NNIL-formula C. Ergo A(z) is Krip-
provably equivalent to I(C,z) with C' in NNIL. Thus the II;-formulas of
Krip, satisfying (1) and (2), correspond precisely to the NNIL-formulas.

B Appendix: Zigzag-simulations

In this appendix we describe the notion of simulation appropriate for the
I1- hierarchy of IPC.

B.1 Extended Numbers

It is pleasant, but not strictly necessary, to have some rules for calculating
with infinity, at hand. Let w := wu{co}. We give w* the obvious ordering.
We let «, 3, ...range over w™ and we let m, n, ...range over w. Define:

e + has its usual meaning on w
e 0+ a:=a+00:=00
ea=-f:=0ifa<pf,m=n:=m-—-nifn<m,oo=n:=0o0
Note that:
ba<f+yea=p<y
It follows e.g., that for X C w:

sup(X) —a=sup({B8 = a| B € X}).

Another important principle —easily verified— is:
g If min(B,7) < oo, then (a+8) =y=(a=(y=8)+(B+"7)
Immediate consequences are:
o1 if min(8,v) < oo and v < 3, then (a+8) ~y=a+ (8~ 7)
12 (a+n) =n=a«a
Finally we have:

fifa<p, thena+(8=-a)=p4

B.2 Basics of Zigzag-simulations

A zigzag-simulation® R between P-models K and M is a quaternary relation
between K, { zig,zag }, w™ and M, satisfying the conditions below. We will
consider R also as a {zig, zag} x wt-indexed set of binary relations between
K and M, writing kR, om for (k,3,a,m) € R. We put: z/z?} := zag and
zag := zig. We give the conditions:

i) kR.ig,om = Thp(k) O Thp(m), kR.ag,am = Thp(k) C Thp(m)

it) o> 0and k' > kR,;5om = there is an m' with k'R;; om' > m

5The designation zigzag-connection has been used to refer to total bisimulations, in
van Benthem 1984. Since, however, this name for bisimulations didn’t catch, we feel
justified to employ a variant of it for a different notion. zigzag-simulations are closely
related to, but different from bounded bisimulations.
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i71) a >0 and kRq5om < m' = there is a k' with k < k'R,49 om/
iv) a>0and kR; ,m = kR. m
o=
We call (ii) the zig-property and (iii) the zag-property.
If we set k =p m :& Thp(k) O Thp(m), we can also formulate our
conditions as:

Z) Rzig,a gt'P; Rzag,a c t’P
”) a>0=> oRzig,a c Rzig,ao >
i) @ > 0= Rug.00 <C< oRuaga

)

w) a>0= R;, C R,
a1

We write:

o kRym & kRig om and kR 49, om
e kRm :& kRom

Note that by (iv) it follows that: kR; com < kRoom.
A binary relation R between K and M is a bisimulation between K and
M iff R* := {(k,3,00,m)| kRm} is a zigzag-simulation. We will simply
confuse bisimulations R with the corresponding zigzag-simulations R¥.
Suppose R is an zigzag-simulation between K and M and that S is an
zigzag-simulation between M and N. The composition R o S is given by:

¢ (RoS);0:=R;00°S5;a

It is easily seen that zigzag-simulations are closed under composition.
Suppose R is a set of zigzag-simulations between K and M. It is easy to
verify that |JR is again a zigzag-simulation between K and M. It follows
that there is always a maximal zigzag-simulation between two models.
Suppose R is a zigzag-simulation between K and M. The inverse R is
given by:

—

o (B)ai=(R;,)

where (.) is the usual inverse of binary relations. Clearly, zigzag-simulations

—

are closed under (.).
Counsider a zigzag-simulation R between K and M. Define R[a] by:

o kR[a]; sm & kR; i pm

We say that R is downwards closed if for all o < 8: R; 3 C R; .. The
downwards closure R| of a zigzag-simulation R is the smallest downwards
closed relation extending it.

Note that if R is downwards closed we automatically have for g > 0:

for all a<p=1:R; 3 C R .
Theorem B.2.1 et R be a zigzag-simulation. We have:

i) Rla] is an zigzag-simulation
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i1) The downwards closure of R is a zigzag-simulation

Proof. (i) We verify the zig-property of R[a]. Suppose 8 > 0 and k' >
kR[] g.5m. It follows that k' > kR,y o+sm. Hence there is an m' > m
with k'R, o+pm'. Hence k'R[a],4,3m'. The zag-property is analogous.
Finally we have for 8 > 0:

kR[a];sm = kR;atpm

= m
=
3a+(B1)
= kR[al. m
3:.8+1

ii) It is sufficient to show that: R| = |J{R[a]| @ € w'}. This is
immediate from:

Fy B< d kR & Jy <L d kR
v A<y an o v A<y an 3,B+(v*ﬁ)m

& Iy B<y and kR[y = B];,sm
& Ja kR[a];,sm

The first equivalence is by f. To prove the “<”-direction of the third
equivalence, we need to show that for all a there is a v > 3, such that
B+a=p0+(y=p). In case 8 < 00, we can take v := a + 3 (by §2). If
B = oo, take, v := a

For k€K, we define 1k := {k'eK | k < k'}. Suppose R is a zigzag-
simulation between K and M. Let k € K and m € M. Then R[(tk x tm),
the restriction of R to Tk x tm, is a zigzag-simulation between K[k] and
M[m].

B.3 Preorders based on Zigzag-simulations
Let K and M be rooted P-models. Define:

e R: K =<, M & R is a zigzag-simulation between K and M and

dmeM bKRu'g’am

e KX, Me3IdRR: K<, M

e Ky M K<, Mand M <, K
Theorem B.3.1 <, s a partial preordering.

Proof. Clearly, ID : K <, K, where:

o ID:={(k,3,a,k)| a € wt,3 € {zig,za9},k € K}

Moreover if R: K <, M and S: M <, N, then Ro S : K <, N. a

Theorem B.3.2

R is a zigzag-simulation between K and M and

K~,M& 3R
b]KRzig,abM and bKRzag,abM-
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Proof. “«<” Trivial. “="” Suppose S : K <, M and T": M <, K. Take:
e R := {(bx, zig, a, bm), (bx, zag, a, bM>}USUf

We have to show that R is a zigzag-simulation. For some m, bgS.ig,om.
Hence Thp(bg) 2 Thp(m) 2 Thp(by). Similarly in the other direction.
It follows that Thp(bg) = Thp(by). We leave the rest of the verification
to the reader. Q

Theorem B.3.3
K< M & dmeM K ~, M[m)]
Proof. left to the reader. a

B.4 Main Results

Theorem B.4.1 Suppose that R is a zigzag-simulation between the P-
models K and M. Then:

kRu’g’am = Thna('p) (k‘) D) Thna('p) (m)

kR.ag0m = Thy,p)(k) C Thy,p)(m)
Proof. By induction on A in £(P), simultaneous for all k, m, «, zig and
zag. The cases of atoms, conjunction and disjunction are trivial. Suppose
e.g., kRsgam,(B — C) € II, and k ¥ (B — C). Then for some k' >
kk' IF B and k' ¥ C. By the zig-property there is an m' > m such that
k'R g, om' and hence by the induction hypothesis m' ¥ C'. Moreover B will

be in II ;1(73), so by the Induction Hypothesis applied for a—1, noting
that k'R m', we find: m’ IF B. Ergo m ¥ (B — C). a

zag,a—1
Theorem B.4.2 Suppose K and M are P-models. Then:
K 2o M= Thry, p)(M) C Thi, p)(K).
Proof. Left to the reader. Q

Theorem B.4.3 Suppose K and M are p-models. Then:
Thi, (M) € Th, (5 (K) = K 2, M.

Proof. Suppose K and M are p-models and Th, 5 (M) C Th, (5 (K).
We want to prove: K <,, M. Define:
o kR,gim & Thl‘[;(if) (k) D Thl‘[i(ﬁ) (m), and i > 0 = ThHi,l(ﬁ) (k) C
Thni—l(ﬁ) (m)
® kR,p9,im & ThHi(if) (k) C Thl‘[i(ﬁ‘) (m) and i > 0 = Thni—l(ﬁ) (k) 2
Thni—l(ﬁ) (m)
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We check that Ris an zigzag-simulation.
Suppose e.g., ¢ > 0 and kR, ;m. We verify the zig-property. Suppose
k <K'. Let:

o (k) = (N{BEW_1(7) | ¥' I BY — V{CEIL(5) | k' ¥ C})

Clearly, k ¥ n;(k") and n;(k') € II;(p). Ergo m W n;(k’). But, then, for
some m' > m:

m' - N{BEM;_1(5) | k' I B} and m' ¥ \[{C€IL;(5)| k' ¥ C}.

It follows that k'R ;m’.
We leave the rest of the verification to the reader. Since by ¥ 1, (bk),
we can find an m such that: xR, ;m. Q
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