
A Formal Veri�cation of the Alternating Bit Protocol

in the Calculus of Constructions

Marc Bezem

Jan Friso Groote

Department of Philosophy� Utrecht University

Heidelberglaan �� ���� CS Utrecht� The Netherlands

email� Marc�Bezem�phil�ruu�nl� JanFriso�Groote�phil�ruu�nl

Abstract

We report on a formal veri�cation of the Alternating Bit Protocol �ABP� in the Calculus of Constructions�
We outline a semi	formal correctness proof of the ABP with su
cient detail to be formalised� Thereafter
we show by examples how the formalised proof has been veri�ed by the automated proof checker Coq�
This is part of an ongoing project aiming at the mechanisation of reasoning in �extensions of� process
algebra� which we think important for the fruitful application of process algebra to concurrent systems�

Key Words � Phrases� protocol veri�cation� process algebra� typed lambda calculi�
	
�� Mathematics Subject Classi�cation� ��B
��
	
�� CR Categories� D����� D����� F���
�

� Introduction

We report on a formal veri�cation of the Alternating Bit Protocol ��� in the Calculus of Constructions�
as part of an ongoing project aiming at the mechanisation of reasoning in �extensions of� process
algebra	 Formal veri�cation distinguishes itself from veri�cation in the usual sense in that all proof
steps must follow precisely de�ned reasoning patterns� and every single detail must be taken into
account	 Correctness proofs for concurrent programs and protocols are of a combinatorial nature�
and therefore error prone	 We believe that� provided an automated proof checker is used� formal
veri�cation improves their level of correctness	 This is important� especially in certain applications
where it is expensive or sometimes even impossible to correct a problem after it manifests itself	
Besides� we see formal veri�cation also as a step towards the mechanisation of parts of the sometimes
tedious and boring reasoning in this �eld	
We adopt the algebraic approach of Bergstra and Klop �
�	 This approach is known as Algebra

of Communicating Processes �ACP�	 More precisely� we use an extension of ACP with abstract data
types called �CRL �Groote and Ponse ��
��	 A detailed proof system for �CRL is given in ����	 We
build upon this proof system for our veri�cation purposes	
For the proof veri�cation we resort to type theory	 Type theory �or typed lambda calculus� see

for example Barendregt �
�� provides a very expressive formalism in which �CRL can conveniently be
embedded	 Also� it has a long standing tradition of automated veri�cation of proofs �AUTOMATH ����
LCF ��
�� Nuprl ���� LEGO �����	 Without speci�c reason we chose the Calculus of Constructions of
Coquand and Huet ����� on which the interactive proof construction and veri�cation system Coq ����
has been based	
There are numerous examples of veri�cations of proofs of the correctness of programs and hardware	

See for instance ��� ���	 For examples related to process theory� we only know of Cleaveland and
Panangaden ���� who gave an implementation of Milner�s Calculus of Communicating Systems for

�



�

recursion�free processes ���� in the NuPrl system ���� and from Engberg� Gr�nning and Lamport �����
who veri�ed proofs in the Temporal Logic of Actions� which is a logic for specifying and reasoning
about concurrent systems	
We follow the lines as set out by Sellink in ����� who describes how �CRL �including recursive

processes� with its accompanying proof theory can be embedded in Coq	
From the current experiment we draw a number of conclusions	 Modeling process algebra in a

type theory based logic is not too di�cult �although there remain a number of fundamental questions
concerning the adequacy of our approach� these are mentioned below�	 A major technological problem
lies in dealing adequately with the large number of elementary proof steps that must all be exhibited
to be veri�able by machine	 Progress in this �eld can be de�ned as reducing the number of proof
steps that have to be speci�ed by the user	 The proof checker should have enough intelligence to
infer the �obvious� steps by itself	 One may think of relying more on general techniques� such as
uni�cation and matching� but also on specialised techniques such as conditional higher order term
rewriting	 Some initial experiments show that reductions of ��� of the length of the speci�ed proof
are possible	 Further improvement may be expected by devising process�algebra�tailored tactics that
subsume numerous elementary proof steps	
One may justi�ably question whether our approach is adequate	 Our formalisation uses all kinds of

sophisticated primitives of Coq� such as inductive de�nitions and higher order logic	 The reason for
this is pragmatic� in doing so we bene�t from the tactics that Coq provides to handle these primitives	
However� formalising notions of process algebra using these primitives does not necessarily exactly
preserve meaning and the consequences are not yet fully understood	 We do not know whether this
formalisation is conservative over �CRL � although non�conservativity would not be a problem as
long as all provable equations between processes are true under some preferred semantics	

To give an example� implication is encoded by the type constructor �� which corresponds to
constructive implication� whereas in the proof theory of �CRL the classical � was intended	 Another
example is our choice for inductive equality to represent equality between processes	 Logically speaking
this gives equality the Leibniz property� i	e	 two processes are equal if and only if they share the same
properties	 In a very expressive formalism such as Coq this is rather strong since in Coq one can
express much more properties than� for example� in �rst order algebra	
One may wonder why we have not attempted to understand our formalisation to its full extent

before applying it to the alternating bit protocol	 The reason for this is again pragmatic	 Our goal
is the automated veri�cation of correctness proofs for protocols and the present question is whether
type theory provides a feasible approach to this problem	 Despite the problems sketched above� we
have answered this question a�rmatively	
The paper is organised as follows	 In Section � we present the Alternating Bit Protocol �ABP�	

Section 
 gives an overview �CRL with its proof theory and outlines the correctness proof of the ABP
that has been veri�ed	 In Section � we illustrate our formalisation of this correctness proof in the
system Coq by a number of representative examples	

A �le called �ABP	v�� containing the full version of the veri�ed proof in the vernacular of Coq� can
be obtained by contacting the authors	

� The Alternating Bit Protocol

The Alternating Bit Protocol �ABP� is a communication protocol providing reliable transmission of
data through an unreliable �two�way� channel	 It consists of four components� a sender S� a receiverR�
a channel K from S to R and a channel L from R to S	 These components are connected according to
Figure �	 The numbered connection lines in Figure � represent gates� through which the components
can communicate	 The sender S reads data from the input at gate �� sends frames consisting of a bit
and a datum into the channel K at gate � and receives acknowledgement bits from channel L at gate
�	 These actions are represented by� respectively� r��d�� s��n� d� and r��n�	 The receiver R receives






Figure �� Alternating Bit Protocol	

frames from channel K at gate 
� writes data to the output at gate � and acknowledges receipts by
sending bits into the channel L at gate 
	 These actions are represented by r��n� d�� s��d� and s��n��
respectively	 All these r�s actions have their s�r counterpart in the component with which the gate in
question is shared	 Communication is synchronous� i	e	 only occurs when complementary r�s actions
are executed simultaneously at the same gate	 The resulting action is denoted by c� i	e	 ��sj � rj� � cj
for j � �� 
� 
� �	 The channels may corrupt data� but if they do so they are assumed to do this
explicitly by sending an error message� s���� for K and s���� for L	 Moreover� the channels are
assumed not to corrupt data ad in�nitum �in that case it is obviously impossible to ensure reliable
transmission�	
The ABP roughly works as follows� S reads a datum d from the input and starts sending frames

�e�� d� via K to R	 Once R receives a frame �e�� d� it writes d to the output and starts acknowledging
the receipt of frame �e�� d� by sending bits e� via L to S	 During this period occasional incoming
frames �e�� � � �� are ignored by R	 Process S only stops sending frames �e�� d� once an acknowledging
bit e� is received� and then reads a new datum d� from the input and starts sending frames �e�� d

�� to
R	 During this period occasional incoming acknowledgements e� are ignored by S	 Process R only
stops acknowledging with bit e� after a frame �e�� d

�� is received� then writes d� to the output and
starts acknowledging the receipt of frame �e�� d

�� by sending bits e� to S� and so on	 It should be
clear that the alternating bit is essential to distinguish new frames from old ones �note that it is not
excluded that d� � d� and to distinguish the acknowledgement of a new frame from that of an old one	
The question arises� is the ABP correct� This question can only be answered after having speci�ed

a correctness criterion� the ABP should behave externally like a bu�er	 This raises several other
questions� what is �the ABP�� what is �a bu�er� and what is �behave externally�� These questions
should be answered by giving formal speci�cations� instead of e	g	 the rough description of the ABP
above	 In the next section we provide the means to do this in a mathematical� semi�formal way	

� Semi�formal correctness proof

��� Process algebra

An algebra is usually a set together with a number of operations on that set� in principle axiomatised
by an equational theory	 Process algebra complies with this tradition	 The set is a set of processes
and the operations are � �alternative composition�� � �sequential composition�� k� k and � �parallel
merge� left merge and communication merge�	 Furthermore there is a constant � �deadlock� and an
encapsulation operator �H�x�� a constant � �silent step� and an abstraction �or hiding� operator �I�x��
as well as a sum operator

P
d�D�x� for possibly in�nite sums	 We refer to ��� for an explanation of



�

these operators	
Processes may use data	 We model this by exhibiting the data as arguments of the processes	 In

order to be able to reason about processes and data one needs a little more expressivity than just
process algebra	 The formalism �CRL from ��
�� combining process algebra with abstract data types�
provides already more than enough expressivity for our purpose here	
In ���� a proof system for �CRL has been given which allows to prove identities about processes	

Table � lists the axioms of ACP in �CRL� followed by the axioms of standard concurrency �Table 
��
the hiding operator �Table �� and the sum operator �Table 
�	 An important principle is RSP �Recur�
sive Speci�cation Principle� that says that each guarded recursive equation has at most one solution
�Table ��	 Furthermore� we use one standard law for abstraction �T�� and a rule enforcing fairness
�KFAR�� a variant of the rule in ����	 These are given in Table �	
The data types in �CRL are rather standard� and straightforward to read	 Therefore we refrain

from describing this part of �CRL in the present paper and refer to ��
�	 In Appendix A we give the
data types and some elementary lemmas that we use in this paper	 In the main text we write � for
checksum errors lce and sce� and omit the functions Tuple and tuple embedding a pair of datum and
bit� and a bit� respectively� into frames	

K �
P

x�Frame�r��x��i � s��x� � i � s������ �K

L �
P

n�frame�r��n��i � s��n� � i � s������ � L

S � S�e�� � S�e�� � S

S�n�bit� �
P

d�D�r��d� � S�n� d��

S�n�bit� d�D� � s��n� d� � T �n� d�

T �n�bit� d�D� � �r��toggle�n�� � r����� � S�n� d� � r��n�

R � R�e�� �R�e�� � R

R�n�bit� � �
P

d�D r��n� d� � r����� � s��n� �R�n��P
d�D�r��toggle�n�� d� � s��d� � s��toggle�n���

ABP � �H�S k K k L k R�

Table �� Speci�cation of ABP �H � fr�� s�� r�� s�� r�� s�� r�� s�g�	

��� Speci�cation and correctness criterion for ABP

The ABP can be described in many ways in �CRL	 We have taken the description given in ��� as
starting point �see Table ��	 The external behaviour of the ABP� where only activities at gates � and
� are visible� is supposed to be a one�element bu�er B� de�ned by the following equation	

B �
X

d�D
�r��d� � s��d�� � B�

So� we say that the ABP is correct if we can prove that

�I�ABP � � B

where I � fc�� c�� c�� c�� ig	 It is this equation of which we verify the proof	

��� Correctness proof for ABP

In this subsection we outline a semi�formal correctness proof for ABP	 This proof consists of three
stages	 We start with the linearisation of the speci�cation of ABP� which takes up �
� of ABP	v	
First we de�ne the following auxiliary processes�






A� x� y � y � x CF� n��n� � n� if ��n�� n�� � n�
A� x� �y � z� � �x� y� � z

A� x� x � x CF�� n��t�� � � � � tm��n��t�� � � � � tm� � n��t�� � � � � tm�

A� �x� y� � z � x � z � y � z if ��n�� n�� � n�
A� �x � y� � z � x � �y � z�

A� x� � � x CF� a�b � �

A� � � x � � if ��label�a�� label �b�� � �

CF�� ��ti � t�i�� n��t�� � � � � tm��n��t
�

�
� � � � � t�m� � �

CM� x k y � x k y � y k x� x�y for some � � i � m

CM� a k x � a � x

CM� a � x k y � a � �x k y� CF��� n��t�� � � � � tm��n��t
�

�� � � � � t
�

m�� � � if m �� m�

CM� �x� y� k z � x k z � y k z

CM� a � x�b � �a�b� � x

CM� a�b � x � �a�b� � x D� �H�a� � a if label�a� �� H

CM� a � x�b � y � �a�b� � �x k y� D� �H�a� � � if label�a� � H

CM	 �x� y��z � x�z � y�z D� �H�x � y� � �H�x� � �H�y�

CM
 x��y � z� � x�y � x�z D� �H�x � y� � �H�x� � �H�y�

Table �� The ACP axioms in �CRL	

SC� �x k y� k z � x k �y k z� SC� �x�y��z � x��y�z�

SC� x k � � x� SC� x��y k z� � �x�y� k z

SC� x�y � y�x Handshaking x��y�z� � �

Table 
� Axioms of Standard Concurrency �SC�	

TI� �I �a� � a if label�a� �� I

TI� �I �a� � � if label�a� � I

TI� �I �x� y� � �I�x� � �I�y�

TI� �I �x � y� � �I �x� � �I�y�

Table �� Axioms for abstraction	



�

SUM�
P

d�D p � p if d not free in p

SUM�
P

d�D p �
P

d�D�p�e�d�� if e not free in p

SUM�
P

d�D p � �
P

d�D p� � p

SUM�
P

d�D�p� � p�� �
P

d�D p� �
P

d�D p�
SUM�

P
d�D�p� � p�� �

P
d�D p� � p� if d not free in p�

SUM�
P

d�D�p� k p�� �
P

d�D p� k p� if d not free in p�
SUM�

P
d�D�p��p�� �

P
d�D p��p� if d not free in p�

SUM	
P

d�D �H�p� � �H�
P

d�D p�

SUM

P

d�D �I�p� � �I �
P

d�D p�

D

SUM��
p� � p�P

d�D p� �
P

d�D p�

provided d not free in
the assumptions of D

Table 
� Axioms for the sum operator	

RSP

�

m�

i��

�Gi�	 xj � pj� xj��nj �
m
j�� �Gi�	 xj � qj� xj��nj �

m
j����

pk� xk� � qk� xk�
where

	 G�� � � � � Gm is a guarded system of process equations�

	 for � � i � m the pi� xi� and qi� xi� are process terms�

	 the notation �� � ��mj�� abbreviates the m given� simultaneous substitutions	

Table �� The rule RSP	

T� a � � � a

KFAR�
x � i�d� � i�d� � x� y
� � �I�x� � � � �I�y�

if i � I

Table �� The rules for internal actions� KFAR� and T�



�

De�nition ���� As in Table �� H � fr�� s�� r�� s�� r�� s�� r�� s�g is a set of labels	

	 X � �H�S k K k L k R�	

	 X��d� � �H�S�e�� d� � S�e�� � S k K k L k R�	

	 X��d� � �H�T �e�� d� � S�e�� � S k K k L k s��e�� � R�e�� � R�	

	 Y � �H�S�e�� � S k K k L k R�e�� � R�	

	 Y ��d� � �H�S�e�� d� � S k K k L k R�e�� �R�	

	 Y ��d� � �H�T �e�� d� � S k K k L k s��e�� �R�	

We show that the auxiliary processes satisfy the following system of linear equations	 The names at
the right are those under which the results are saved in the �le ABP	v	

Lemma ����

	 X �
P

d�D�r��d� �X��d��� Lem�

	 X��d� � c��e�� d� � �i � c���� � c��e�� � �i � c���� � i � c��e��� �X��d� �
i � c��e�� d� � s��d� �X��d��� Lem��

	 X��d� � c��e�� � �i � c���� � c��e�� d� � �i � c���� � i � c��e�� d�� �X��d� � i � c��e�� � Y �� Lem��

	 Y �
P

d�D�r��d� � Y ��d��� Lem�

	 Y ��d� � c��e�� d� � �i � c���� � c��e�� � �i � c���� � i � c��e��� � Y ��d� �
i � c��e�� d� � s��d� � Y ��d��� Lem��

	 Y ��d� � c��e�� � �i � c���� � c��e�� d� � �i � c���� � i � c��e�� d�� � Y ��d� � i � c��e�� �X�� Lem��

Proof� We strictly follow the expansions as given in �
� ��	 As an example we show how the equation
Lem�� is derived	

X��d� �
�H�S�e�� d� � S�e�� � S k K k L k R� �
c��e�� d� � �H�T �e�� d� � S�e�� � S k �i � s��e�� d� � i � s����� �K k L k R� �
c��e�� d� � �i � �H�T �e�� d� � S�e�� � S k s��e�� d� �K k L k R��

i � �H�T �e�� d� � S�e�� � S k s���� �K k L k R� �
c��e�� d� � �i � c��e�� d� � �H�T �e�� d� � S�e�� � S k K k L k s��d� � s��e�� �R�e�� �R��

i � c���� � �H�T �e�� d� � S�e�� � S k K k L k s��e�� �R�e�� �R�e�� �R�� �
c��e�� d� � �i � c��e�� d� � s��d� � �H�T �e�� d� � S�e�� � S k K k L k s��e�� �R�e�� �R��

i � c���� � c��e�� � �H�T �e�� d� � S�e�� � S k K k �i � s��e�� � i � s����� � L� k R�� �
c��e�� d� � �i � c��e�� d� � s��d� �X��d� � i � c���� � c��e���

fi � �H�T �e�� d� � S�e�� � S k K k s��e�� � L k R��
i � �H�T �e�� d� � S�e�� � S k K k s����� � L k R�g� �

c��e�� d� � �i � c��e�� d� � s��d� �X��d� � i � c���� � c��e���
fi � c��e�� � �H�S�e�� d� � S�e�� � S k K k L k R��

i � c���� � �H�S�e�� d� � S�e�� � S k K k L k R�g� �
c��e�� d� � �i � c��e�� d� � s��d� �X��d� � i � c���� � c��e���

fi � c��e�� �X��d� � i � c���� �X��d�g� �
c��e�� d� � �i � c��e�� d� � s��d� �X��d� � i � c���� � c��e�� � fi � c��e�� � i � c����g �X��d���

�



�

Using only axioms in justifying merge expansions such as above would lead to a hardly attainable
proof� So the proof is split up in a number of basic lemmas� thus avoiding duplication of identical
reasoning patterns� Lemma ��� is a general lemma that can be applied to expand every merge of four
processes� There are no three and four party communications as we have assumed the Handshaking
axiom �Table ���

Lemma ���� Let x� y� z and u be variables that range over process terms�

�H �x k y k z k u� � EXPH�

�H�x k �y k z k u�� � �H�y k �x k z k u�� � �H�z k �x k y k u�� � �H�u k �x k y k z���
�H��z�u� k �x k y�� � �H��y�z� k �x k u�� � �H��y�u� k �x k z���
�H��x�y� k �z k u�� � �H��x�z� k �y k u�� � �H��x�u� k �y k z��

Whenever we apply EXPH� in our proof of the ABP we encounter terms such as

�H �K k �S�e�� d� � S�e�� � S k L k R��
�H ��K�L� k �S�e�� d� � S�e�� � S k R��
�H ��S�e�� d� � S�e�� � S��K� k �L k R��

that need to be expanded further� In order to do this there are about 	
 lemmas such as�

Lemma ���� Let x range over processes�

� � � �H�K k x�� LmerK

� � � �H��K�L� k x�� CommKL

� �H��S�d� b� � y�K� k x� � CommSn dK

c��b� d�� � �H���T �b� d� � y�i k i � s��b� d� �K � i � s���� �K k x�����

In CommSn dK a datum d and a bit b are transferred from the sender to the channel K� Our
calculations follow those in �
�� where the sum�elimination lemma is used �recall that the speci�cation
of K starts with a sum�� In the veri�cations of the ABP in ��� these complications remain invisible
as data is handled fully informally�
The next stage of the correctness proof of the ABP �covering the last 	� of ABP�v� consists of

applying Koomen�s Fair Abstraction Rule �KFAR�� This rule expresses that a process does not always
make the same choice of actions if it has several options� In other words� choices are fair� For the ABP
to function properly� we must assume that frames will not always get lost� but will at least sometimes
be delivered� Our calculations diverge from those in �	� �� where di�erent fairness rules have been
used�
We de�ne auxiliary processesX
��d�� X���d�� Y 
��d� and Y ���d� as follows �with I � � fc�� c�� c�� c�g��

X
��d� � i � s��d� � �I��X��d�� � i � i �X
��d�
X���d� � i � i �X���d� � i � �I��Y �
Y 
��d� � i � s��d� � �I��Y ��d�� � i � i � Y 
��d�
Y ���d� � i � i � Y ���d� � i � �I��X�

For these processes we can straightforwardly prove the following lemma�

Lemma ����

� �I��X
�d�� � � �X
��d�� LemLin�

� �I��X��d�� � � �X���d�� LemLin�

� �I��Y 
�d�� � � � Y 
��d�� LemLin�

� �I��Y ��d�� � � � Y ���d�� LemLin�

Proof� It is obvious that �I��X
�d�� satis�es the de�ning equation for X
��d� with an additional �
pre�xed at the right hand side of the ���� The other identities are proved likewise� �



�

The following step consists of showing the identities �where I �� � fig� by using Koomen�s Fair Ab�
straction Rule�

Lemma ����

� � � �I���X
��d�� � � � s��d� � �I����I��X��d���� KFLin�

� � � �I���X���d�� � � � �I����I��Y ��� KFLin�

� � � �I���Y 
��d�� � � � s��d� � �I����I��Y ��d���� KFLin�

� � � �I���Y ���d�� � � � �I����I� �X��� KFLin�

Proof� Straightforward using KFAR�� �

By the previous two lemmas it is straightforward to prove the correctness of the ABP�

Theorem ����

�I����I��ABP�� � B Hurrah

Proof� Show both sides of the equation a solution of�

Z �
X

d�D
�r��d� � s��d� �

X

d�D
�r��d� � s��d� � Z���

�

Since I � I � � I �� it follows that �I�ABP � � B� i�e� the correctness of the ABP� This last step actually
requires �I�x� � �I����I��x��� This is obvious and therefore we do not introduce new axioms which
allow us to prove this �see �
���

� Formal correctness proof

In this section we take some examples from the �le ABP�v to give an overview of di�erent aspects
which occur in the veri�cation� As the size of the �le is about �

Kbyte and since large parts of the
proof consist of repeating similar proof steps again and again� it is not useful to explain the whole �le�

��� r
� �� r�

In this subsection we prove that distinct actions are not equal� which takes up almost �
� of ABP�v�
We need this to show that actions do not occur in sets �see for instance rule D
 in Table ��� Following
��
� we model actions using an inductive type �see �
����

The actions are de�ned using the following de�nition�

Inductive Set act � r��act � r��act � r��act � r��act � r	�act

� s��act � s��act � s
�act � s��act � s	�act

� c��act � c��act � c��act � c	�act

� int�act� delta�act � tau�act�







This expresses that the set act consists of the actions r�� r��� � ��delta�tau and nothing more �r��
r��� � � are called the constructors of the inductive set act�� A proof principle saying so �actually the
induction principle for act� is automatically generated by the system Coq� Furthermore� a mecha�
nism called Match is generated which allows to build functions that can distinguish between di�erent
elements of the set act �actually the schema for primitive recursion of act�� Also in a more general
situation of an inductive de�nition facilities for induction and recursion with respect to the so�called
constructors of the inductive type are provided by Coq�
We want to show the following statement� which we announce to Coq as the goal to be proven by

the command Goal�

Goal 
��act�r��r���

Here 
 stands for �not�� which is in higher order type theory usually de�ned by �p�Prop�p�False
where Prop is the sort of propositions� In Coq notation� lambda abstraction is denoted by square
brackets� so that 
 abbreviates �p�Prop�p��False� The denotation �� � ��� � ��� � � is shorthand for an
inductively de�ned equality relation� Logically speaking� �act�r��r� amounts to Leibniz equality of
actions r� and r��
The Coq system responds �automatically� or after the command Show� with

� subgoal


��act�r��r��

meaning that we must prove 
��act�r��r�� from the empty set of premisses� In case the set of
premisses is not empty� they are listed below a line ���������������
The command Red replaces 
 by its de�nition and �after implicit ��reduction� the situation becomes

as follows�

Red�

� subgoal

��act�r��r����False

The command Intro introduces the premiss of the current goal as hypothesis and changes the goal
into the conclusion� Variants of this command are Intros �repeats Intro as many times as possible�
and Intro name �introduces the hypothesis under the name name� instead of under a default name��

Intro�

� subgoal

False

����������������������������

H � �act�r��r�

Completing this proof is not completely trivial� since it involves employing the mechanism to dis�
tinguish between the di�erent elements of an inductive type� We use this device in the following
de�nition�

Definition r�f � �a�act���Prop�Match a with True False False False False

False False False False False

False False False False

False False False��

In the de�nition above� a is of type act� If a matches the nth constructor in the inductive de�nition
of act� then the Match�expression yields the nth argument after with�







The idea of the proof is that �r�f r�� reduces to False and �r�f r�� to True and that these must
be equal if �act�r��r�� By proving True� which is trivial� we can then prove False� The following
sequence of commands �rst changes the goal False into �r�f r��� then substitutes r� for r� and
�nally completes the proof by using the canonical inhabitant I of True�

Change �r�f r���

Elim H�

Exact I�

The substitution of r� for r� is done through the command Elim H� The type of H is �act�r��r��
which is an inductive type due to the inductive de�nition of equality� The command Elim H refers to
the elimination rule that comes with every inductive de�nition �actually the typing rule for Match�
expressions�� In the case of inductive equality� the result is the desired substitution� For reasons
of space we have to refrain from explaining the command Elim H in a more general situation� The
command Exact allows one to prove a goal by giving a proof term explicitly�
Finally the lemma is saved under the name neqr�r� �not equal r� and r�� by the following command�

after which it can be used in any proof to follow�

Save neqr�r��

All other pairs of distinct actions are treated in the same way� We �nish this subsection by observing
that equality of identical actions �e�g� �act�r��r�� comes automatically with the �inductive� de�nition
of Leibniz equality�

��� r� �� H

In this subsection we show how to prove that action r� is not an element of the set H � The rep�
resentation we chose for the set H is the list H de�ned below� The context is assumed to contain
the set of lists of actions� ehlist�Set� inductively de�ned with constructors ehnil and ehcons� as
well as a predicate In ehlist�act �� ehlist �� Prop de�ning the membership relation in the usual
recursive way�

Definition H��ehcons r�

�ehcons r�

�ehcons r�

�ehcons r	

�ehcons s�

�ehcons s�

�ehcons s�

�ehcons s	 ehnil���������

The desired result r� 	� H is obtained from a more general lemma which we prove �rst�

Goal �a�act��
�act�a�r�����
�act�a�r�����
�act�a�r�����
�act�a�r	���

�
�act�a�s���� �
�act�a�s�����
�act�a�s�����
�act�a�s	���
�In�ehlist a H��

Here �a�act� stands for� for all a in act� Actually� the round brackets stand for ��abstraction in the
same way as square brackets stand for ��abstraction� A ��abstraction denotes a product type� The
type 
�� is actually also a product type� namely �x�
�� with x not occurring in � � The command
Intro and all its variants also work for product types in general� We enter the command Intros and
print the resulting situation�

Intros�




�

� subgoal


�In�ehlist a H�

����������������������������

H� � 
�act�a�s	

H	 � 
�act�a�s�

H� � 
�act�a�s�

H
 � 
�act�a�s�

H� � 
�act�a�r	

H� � 
�act�a�r�

H� � 
�act�a�r�

H� � 
�act�a�r�

a � act

We enter the following two commands for� respectively� expanding 
 in the goal and unfolding
�In ehlist r� H� according to the recursive de�nition of In ehlist�

Red�

Unfold In�ehlist�

� subgoal

���act�a�r��

����act�a�r��

����act�a�r��

����act�a�r	�

����act�a�s��

����act�a�s��

����act�a�s��

����act�a�s	�

��False�

��False

����������������������������

H� � 
�act�a�s	

H	 � 
�act�a�s�

H� � 
�act�a�s�

H
 � 
�act�a�s�

H� � 
�act�a�r	

H� � 
�act�a�r�

H� � 
�act�a�r�

H� � 
�act�a�r�

a � act

Here �� represents disjunction� The obvious way to continue is by introducing the premiss of this
implication as an assumption� This is done by an Intro� To continue we Eliminate the disjunction and
obtain two subgoals� since both disjuncts must imply the goal� By convention� disjunction associates
to the right�

Intro I��

Elim I��

� subgoals

��act�a�r����False

����������������������������

I� � ��act�a�r��




�

����act�a�r��

����act�a�r��

����act�a�r	�

����act�a�s��

����act�a�s������act�a�s������act�a�s	���False

H� � 
�act�a�s	

H	 � 
�act�a�s�

H� � 
�act�a�s�

H
 � 
�act�a�s�

H� � 
�act�a�r	

H� � 
�act�a�r�

H� � 
�act�a�r�

H� � 
�act�a�r�

a � act

subgoal � is�

���act�a�r��

����act�a�r��

����act�a�r	�

����act�a�s��

����act�a�s��

����act�a�s��

����act�a�s	�

��False�

��False

We continue with the �rst subgoal� Subgoal � is treated later� Due to the hypothesis H��
�act�a�r��
the �rst subgoal is proved by a simple application of the command

Assumption�

Subgoal � is similar but shorter than the goal obtained just before the command Intro I� above�
Although not explicitly shown� the same hypotheses as for Subgoal 
 may be used also for Subgoal
�� Therefore the proof is completed in a similar way by the following list of commands that nicely
re�ects the perfectly regular structure of this part of the proof�

Intro I�� Elim I�� Assumption�

Intro I�� Elim I�� Assumption�

Intro I
� Elim I
� Assumption�

Intro I�� Elim I�� Assumption�

Intro I	� Elim I	� Assumption�

Intro I�� Elim I�� Assumption�

Intro I�� Elim I�� Assumption�

Intro � Assumption�

Save HLemma�

The commands in the last but one line solve the goal False �� False� This goal could be solved
equally well by the command Exact �p�False� p��
The lemma just proved is used a number of times in the proof of the correctness of the ABP� It

would be very convenient if this and other basic lemmas� such as neqr�r� from the previous subsection�
could be applied automatically� This can be achieved with the following command� which adds these
lemmas to the so�called hint list�

Hint neqr�r� HLemma�




�

After this command� commands like Auto and Trivial are able to apply such lemmas and can
sometimes �nish a proof automatically� according to some �xed strategy�
In order to give the proof of r� 	� H we assume that all true negated equations such as neqr�r� are

added to the hint list� Now the proof can be given in the following satisfying way�

Goal 
�In�ehlist r� H��

Auto�

Save Inr�H�

��� EXP�

Having done the most important parts of the ground work for the actions� we can proceed by proving
useful results on processes�
In this subsection we show how axioms like CM
 from Table � are generalised to merges of three

and more processes� First we must declare the types of the operators listed in Subsection ��
� using
the command Parameter� Thereafter we list the axioms A
�A� in their Coq formulation� Note that
we have reversed some equations� as this is more convenient when rewriting with the Elim command�

Parameter proc �Set�

Parameter alt �proc��proc��proc�

Parameter seq �proc��proc��proc�

Parameter mer �proc��proc��proc�

Parameter Lmer �proc��proc��proc�

Parameter comm �proc��proc��proc�

Parameter sum ��D�Set��D��proc���proc�

Parameter enc �ehlist ��proc��proc�

Parameter hide �ehlist��proc��proc�

Section BPA�

Variable x�y�z�proc�

Axiom A�� Assumes �proc��alt x y���alt y x��

Axiom A�� Assumes �proc��alt x �alt y z����alt �alt x y� z��

Axiom A�� Assumes �proc�x��alt x x��

Axiom A
� Assumes �proc��alt �seq x z� �seq y z����seq �alt x y� z��

Axiom A�� Assumes �proc��seq x �seq y z����seq �seq x y� z��

Axiom A	� Assumes �proc�x��alt x Delta��

Axiom A�� Assumes �proc�Delta��seq Delta x��

End BPA�

Entering A� and A� without having declared Delta results in an error� Before declaring Delta we
must explain how we represent parameterised actions and processes�
There exist processes with and without data parameters� As this is unsystematic and prevents using

polymorphism in an elegant way� we decided to give all processes one data argument� If the process
originally had no arguments� then now it has the canonical element i of a �xed one�element type one
as argument� If the process originally had more than one argument� then now it has a tuple from a
cartesian product as argument�
A second point is that it is desirable to distinguish between the name of a process and its argument�

For example� in r��d� the name of the process is r� and its argument is d� �Process names are called
labels in �CRL� In semi�formal process theory� processes and their names are identi�ed �or confused��
so e�g� a stands both for the name of the atomic action a and for the action itself�� This is modelled
by using a �polymorphic� operator ia� mapping a data type� a process name and a argument of the
above data type into a process� Now one can understand the following encodings�




	

Parameter ia � �E�Set�act �� E �� proc�

Inductive Set one � i�one�

Definition Delta � �ia one delta i��

We list the axioms CM
�CM�� SC
�SC	 and Handshaking in their Coq formulation�

Section PARALLEL�OPERATORS�

Variable x�y�z�proc�

Variable E�F�Set�

Variable e�E�

Variable f�F�

Variable a�b �act�

Axiom CM�� Assumes �proc��alt �alt �Lmer x y� �Lmer y x�� �comm x y����mer x y��

Axiom CM�� Assumes �proc��seq �ia E a e� x���Lmer �ia E a e� x��

Axiom CM�� Assumes �proc��seq �ia E a e� �mer x y����Lmer �seq �ia E a e� x� y��

Axiom CM
� Assumes �proc��alt �Lmer x z� �Lmer y z����Lmer �alt x y� z��

Axiom CM�� Assumes �proc��seq �comm �ia E a e� �ia F b f�� x��

�comm �seq �ia E a e� x� �ia F b f���

Axiom CM	� Assumes �proc��seq �comm �ia E a e� �ia F b f�� x��

�comm �ia E a e� �seq �ia F b f� x���

Axiom CM�� Assumes �proc��seq �comm �ia E a e� �ia F b f�� �mer x y���

�comm �seq �ia E a e� x� �seq �ia F b f� y���

Axiom CM�� Assumes �proc��alt �comm x z� �comm y z����comm �alt x y� z��

Axiom CM�� Assumes �proc��alt �comm x y� �comm x z����comm x �alt y z���

End PARALLEL�OPERATORS�

Section STANDARD�CONCURRENCY�

Variable x�y�z�proc�

Axiom SC�� Assumes �proc��Lmer x �mer y z����Lmer �Lmer x y� z��

Axiom SC�� Assumes �proc��comm y x���comm x y��

Axiom SC
� Assumes �proc��comm x �comm y z����comm �comm x y� z��

Axiom SC�� Assumes �proc��Lmer �comm x y� z���comm x �Lmer y z���

Axiom Handshaking� Assumes �proc�Delta��comm x �comm y z���

End STANDARD�CONCURRENCY�

The lemma we want to prove is the following�

Goal �x�y�z�proc�

�proc��alt �Lmer x �mer y z��

�alt �Lmer y �mer x z��

�alt �Lmer z �mer x y��

�alt �Lmer �comm y z� x�

�alt �Lmer �comm x y� z�

�Lmer �comm x z� y������

��mer x �mer y z���

We give the �rst two commands and the remaining goal�

Intros� Elim CM��

� subgoal




�

�proc

��alt �Lmer x �mer y z��

�alt �Lmer y �mer x z��

�alt �Lmer z �mer x y��

�alt �Lmer �comm y z� x�

�alt �Lmer �comm x y� z� �Lmer �comm x z� y������

��alt �alt �Lmer x �mer y z�� �Lmer �mer y z� x�� �comm x �mer y z���

����������������������������

z � proc

y � proc

x � proc

Note that the �rst summand at the right hand side is already correct� To proceed we want to apply
CM
 to the third and fourth occurrence of �mer y z� in the equation� This is done by the �rst line
of commands from the following batch� By two applications of CM� and of CM� we distribute � and
k over �� Thereafter the new situation is printed�

Pattern � 
 �mer y z�� Elim CM��

Elim CM�� Elim CM��

Elim CM
� Elim CM
�

� subgoal

�proc

��alt �Lmer x �mer y z��

�alt �Lmer y �mer x z��

�alt �Lmer z �mer x y��

�alt �Lmer �comm y z� x�

�alt �Lmer �comm x y� z� �Lmer �comm x z� y������

��alt

�alt �Lmer x �mer y z��

�alt �alt �Lmer �Lmer y z� x� �Lmer �Lmer z y� x��

�Lmer �comm y z� x���

�alt �alt �comm x �Lmer y z�� �comm x �Lmer z y���

�comm x �comm y z����

����������������������������

z � proc

y � proc

x � proc

The proof continues with applications of SC
 and SC	� Thereafter the proof is �nished by application
of the axioms x��y�z� � � �Handshaking�� x� � � x �A�� and the associativity of � �A���

Elim SC�� Elim SC��

Elim SC�� Elim SC��

Elim Handshaking�

Elim A	�

Elim A�� Elim A�� Elim A��

The situation is now as given below� the only thing left to prove being �proc��mer x z� � �mer z

x� and �proc��mer x y� � �mer y x��

� subgoal




�

�proc

��alt �Lmer x �mer y z��

�alt �Lmer y �mer x z��

�alt �Lmer z �mer x y��

�alt �Lmer �comm y z� x�

�alt �Lmer �comm x y� z� �Lmer �comm x z� y������

��alt �Lmer x �mer y z��

�alt �Lmer y �mer z x��

�alt �Lmer z �mer y x��

�alt �Lmer �comm y z� x�

�alt �Lmer �comm x y� z� �Lmer �comm x z� y������

����������������������������

z � proc

y � proc

x � proc

This obviously requires a lemma� �x�y�proc��proc��mer x y� � �mer y x�� In a bottom�up style
proof this lemma should be available� We continue the proof in top�down style� as an example of the
Coq command Cut� Thereafter the new situation is printed by the command Show�

Cut �x�y�proc��proc��mer x y� � �mer y x��

Show�

� subgoals

��x�proc��y�proc���proc��mer x y���mer y x�����

��proc

��alt �Lmer x �mer y z��

�alt �Lmer y �mer x z��

�alt �Lmer z �mer x y��

�alt �Lmer �comm y z� x�

�alt �Lmer �comm x y� z� �Lmer �comm x z� y������

��alt �Lmer x �mer y z��

�alt �Lmer y �mer z x��

�alt �Lmer z �mer y x��

�alt �Lmer �comm y z� x�

�alt �Lmer �comm x y� z� �Lmer �comm x z� y������

�

����������������������������

z � proc

y � proc

x � proc

subgoal � is�

�x��proc��y��proc���proc��mer x� y����mer y� x���

What has happened is that the �rst subgoal is our previous goal weakened with the lemma as a
premiss� and the second subgoal is the lemma itself� The �rst subgoal is solved by Introducing the
lemma and using it two times� Thereafter the second subgoal is easily solved using CM
� SC� and
A
�

Intro H�

Elim �H x z��

Elim �H x y��

Trivial�




�

Intros�

Elim CM�� Elim CM��

Elim SC��

Elim �A� �Lmer x� y�� �Lmer y� x����

Trivial�

Save EXP��

��� K�L � �

In this subsection we prove that the channels K and L cannot communicate� This is part of the proof
of CommKL from Lemma ���� First we translate the speci�cations of the channels from Table 
 to
Coq�

Parameter K�one��proc�

Parameter L�one��proc�

Parameter frame � Set�

Parameter Frame � Set�

Parameter sce�frame�

Parameter lce�Frame�

Axiom ChanK� Assumes

�proc�

�sum Frame ��x�Frame�

�seq �ia Frame r� x�

�seq

�alt

�seq �ia one int i� �ia Frame s� x��

�seq �ia one int i� �ia Frame s� lce���

�K i�������K i��

Axiom ChanL� Assumes

�proc�

�sum frame ��n�frame�

�seq �ia frame r� n�

�seq

�alt

�seq �ia one int i� �ia frame s	 n��

�seq �ia one int i� �ia frame s	 sce���

�L i�������L i��

For reasons of space� not all axioms that are used in the proof are included in their Coq version in
this paper� For example� the SUM axioms used below are translations of the corresponding axioms
from Table 	� The axiom EXT given below does not correspond to any axiom of �CRL� but is natural
given our modeling of processes with data parameters� Thereafter the goal is given� as well as the
beginning of the proof�

Axiom EXT� Assumes �D�Set��x�y�D��proc���d�D��proc��x d���y d�����D��proc�x�y�

Goal �proc�Delta��comm �K i� �L i���




�

Elim ChanK�

Elim SUM��

The situation is now as follows�

� subgoal

�proc

�Delta

�sum Frame �d�Frame�

�comm

�seq �ia Frame r� d�

�seq

�alt �seq �ia one int i� �ia Frame s� d��

�seq �ia one int i� �ia Frame s� lce���

�K i���

�L i��

We proceed by using a new command� ElimType� The e�ect of a command ElimType �A�a��a� is
that all a��s in the goal are replaced by a��s and that �A�a��a� is added as a new subgoal� The
command ElimType can be regarded as a special case of the sequence of commands Cut� Intro and
Elim� We give the command and thereafter the new situation�

ElimType �Frame��proc��d�Frame�Delta�

�d�Frame�

�comm

�seq �ia Frame r� d�

�seq

�alt �seq �ia one int i� �ia Frame s� d��

�seq �ia one int i� �ia Frame s� lce���

�K i���

�L i���

� subgoals

�proc�Delta�sum Frame �d�Frame� Delta

subgoal � is�

�Frame��proc

��d�Frame�Delta

��d�Frame�

�comm

�seq �ia Frame r� d�

�seq

�alt �seq �ia one int i� �ia Frame s� d��

�seq �ia one int i� �ia Frame s� lce���

�K i���

�L i��

The �rst subgoal is settled easily by the next two commands� after which we continue with the proof
of the second subgoal� We use the command Apply� which applies the lemma or axiom whose name
is mentioned as argument of the command� To some extent� Apply is able to instantiate the lemma
or axiom so that its conclusion matches with the current goal� The fragment of the proof after Apply
EXT� Intro until the next Apply EXT� Intro is very similar to the beginning of the proof�

Elim SUM�� Trivial�



�


Apply EXT� Intro�

Elim ChanL�

Elim SC�� Elim SUM��

ElimType �frame��proc��d�frame�Delta�

�d��frame�

�comm

�seq �ia frame r� d��

�seq

�alt �seq �ia one int i� �ia frame s	 d���

�seq �ia one int i� �ia frame s	 sce���

�L i���

�seq �ia Frame r� d�

�seq

�alt �seq �ia one int i� �ia Frame s� d��

�seq �ia one int i� �ia Frame s� lce���

�K i�����

Elim SUM�� Trivial�

Apply EXT� Intro�

The situation is now as given below� It is clear that r� and r� cannot communicate� However�
proving the goal involves CM�� the Coq translations of A� and CF��� from Table �� as well as notEQfF
postulating that frame and Frame are distinct data types� For the sake of completeness we �nish this
subsection with the last part of the proof�

� subgoal

�proc

�Delta

��comm

�seq �ia frame r� d��

�seq

�alt �seq �ia one int i� �ia frame s	 d���

�seq �ia one int i� �ia frame s	 sce���

�L i���

�seq �ia Frame r� d�

�seq

�alt �seq �ia one int i� �ia Frame s� d��

�seq �ia one int i� �ia Frame s� lce���

�K i����

����������������������������

d� � frame

d � Frame

Elim CM��

Elim CF����

Elim A�� Trivial�

Exact notEQfF�

Save commKL�



�


��� A communication which is not �

In this subsection we prove ���s��b� � y�T �b� d� � y
�� k x� � c��b� � ��y k y

� k x�� For reasons of space
we are somewhat less detailed than in our previous proofs� We start with formulating T �b� d� and the
goal�

Axiom ProcTn�d� Assumes

�b�bit��d�D�

�proc�

�alt

�seq

�alt

�ia frame r	 �tuple�toggle b���

�ia frame r	 sce��

�Sn�d d b��

�ia frame r	 �tuple b�����Tn�d d b��

Goal

�x�y�y��proc��b�bit��d�D�

�proc�

�seq �ia frame c	 �tuple b��

�enc H �mer y �mer y� x�����

�enc H

�Lmer

�comm �seq �ia frame s	 �tuple b�� y� �seq �Tn�d d b� y��� x���

The proof starts in the obvious way and continues by pressing the communications as deep as possible
in the terms� until they are on the level of the atomic actions� Thereafter we give the new situation�

Intros�

Elim �ProcTn�d b d��

Elim A
� Elim A
� Elim A
�

Elim CM�� Elim CM��

Elim A�� Elim A��

Elim CM�� Elim CM�� Elim CM��

� subgoal

�proc

��seq �ia frame c	 �tuple b�� �enc H �mer y �mer y� x����

��enc H

�Lmer

�alt

�alt

�seq

�comm �ia frame s	 �tuple b��

�ia frame r	 �tuple �toggle b����

�mer y �seq �Sn�d d b� y����

�seq �comm �ia frame s	 �tuple b�� �ia frame r	 sce��

�mer y �seq �Sn�d d b� y�����

�seq �comm �ia frame s	 �tuple b�� �ia frame r	 �tuple b���

�mer y y����

x��



��

����������������������������

d � D

b � bit

y� � proc

y � proc

x � proc

We observe three communications� The �rst two fail �i�e� are �� since the arguments of r�� s� do not
match� The third succeeds yielding the atom c��b� according to the communication function� usually
called � �gamma in Coq�� Thereafter the goal is simpli�ed by eliminating the ��s using A�� A� and A
�
Finally CM� is applied to eliminate the k �

Elim CF���

Elim CF���

Elim CF��

Elim A��

Elim A	� Elim A�� Elim A	�

Elim CM��

� subgoals

�proc

��seq �ia frame c	 �tuple b�� �enc H �mer y �mer y� x����

��enc H �seq �ia frame �gamma s	 r	� �tuple b�� �mer �mer y y�� x���

����������������������������

d � D

b � bit

y� � proc

y � proc

x � proc

subgoal � is�


�frame��tuple b��sce

subgoal � is�


�frame��tuple b���tuple �toggle b��

The new situation is given above� With the �rst subgoal� one proceeds by reducing �gamma s	 r	�

to c	� Then one uses the fact that H does not contain c	 in order to press the encapsulation operator
beyond �ia frame c	 �tuple b�� by D	 and D
� Thereafter this subgoal can be easily settled� The
second and third subgoal can also easily be done using the axioms on data types�

Acknowledgements

We gratefully acknowledge Christine Paulin�Mohring and Randy Pollack for their critical comments
on our modeling of process algebra and for their help in experimenting with alternatives� Thanks
also go to Jan Bergstra� Leen Helmink� Gertjan Kamsteeg� Jaco van de Pol� Alex Sellink and Jan
Springintveld for their attention to this project and for their comments�

A De�nition of data types for the ABP

In this appendix we provide the data types that have been used in the speci�cation of the ABP�
Bool� bit� D� frame and Frame � The boldface denotation of Bool stems from that fact that Bool



��

is a standard data type of �CRL� In the �le ABP�v the declarations of the data types can be found
in the sections BOOL� BIT� DATA� frame and Frame� respectively�
Each �CRL speci�cation has a basic type Bool containing at least the elements true and false� This

data type is used in the conditional construct in �CRL� We have added some auxiliary functions for
convenience� The di�erences with the �CRL de�nition are mostly notational� To mention one point�
as the Elim command rewrites from right to left� we have directed our equations accordingly�

sort Bool

func true� false � Bool
andb� orb � Bool� Bool� Bool

notb � Bool� Bool

var b � Bool
rew andb�true� b� � b

andb�false� b� � false
orb�true� b� � true
orb�false� b� � b
notb�true� � false
notb�false� � true

The following de�nes the data type bit with elements e� and e�� which are added to the frames in the
ABP�

sort bit
func e�� e� � bit

eqbit � bit� bit� Bool

toggle � bit� bit
var b � bit
rew toggle�e�� � e�

toggle�e�� � e�
eqbit�b� b� � true
eqbit�b� toggle�b�� � false
eqbit�toggle�b�� b� � false

The following de�nition describes the data type of elements to be transferred� We only describe a few
properties necessary for the veri�cation of the ABP� An equality function eqD has been de�ned that
is necessary to compare elements of data type D in the conditional operator� In order to have the
rather desirable property that eqD�d� e� � true � d � e� we have introduced a selector function ifD
and four axioms� This is formulated in Lemma A�
� The axioms are due to Jan Bergstra�

sort D
func d� � D

eqD � D � D � Bool

ifD � Bool� D � D � D
var d� e � D
rew ifD �true� d� e� � d eqD�

ifD �false� d� e� � e eqD�

eqD �d� d� � true eqD	

ifD �eqD �d� e�� d� e� � e eqD


Lemma A��� Let d� e be variables of sort D�

� d � e� eqD �d� e� � true� eqD elim



��

� eqD �d� e� � true� d � e� eqD intro

� eqD �d� e� � false� d 	� e� eqD intro�

In the �le ABP�v a number of axioms are given of the form EQ saying that sorts D� Frame� frame �
etc� are di�erent� This is used in axiom CF��� in the �le ABP�v�
Next we give the de�ning operators and equations for small frames �frame� containing only a bit�

and large frames �Frame� containing both a bit and a data element� The functions sce and lce
abbreviate respectively small checksum error and large checksum error� For readability we write sce
and lce as � and we omit Tuple and tuple in the main text�

sort frame

var b� b�� b� � bit
d� e � frame

func tuple � bit� frame

sce � frame
eqf � frame � frame � Bool

iff � Bool� frame � frame � frame

rew eqf �sce� sce� � true eqf�

eqf �sce� tuple�b�� � false eqf�

eqf �tuple�b�� sce� � false eqf�

eqf �tuple�b��� tuple�b��� � eqbit�b�� b�� eqf�

iff �true� d� e� � d eqf�

iff �false� d� e� � e eqf�

eqf �d� d� � true eqf	

iff �eqf �d� e�� d� e� � e eqf


Lemma A�	� Let d� e be variables of sort frame �

� d � e� eqf �d� e� � true� eqf elim

� eqf �d� e� � true� d � e� eqf intro

� eqf �d� e� � false� d 	� e� eqf intro�

sort Frame

var b� b�� b� � bit
d� d�� d� � D
e� e� � Frame

func Tuple � bit� D � Frame

lce � Frame
eqF � Frame � Frame � Bool

ifF � Bool� Frame � Frame � Frame

rew eqF �lce� lce� � true eqF�

eqF �lce�Tuple�b� d�� � false eqF�

eqF �Tuple�b� d�� lce� � false eqF�

eqF �Tuple�b�� d���Tuple�b�� d��� � andb�eqbit�b�� b��� eqD �d�� d��� eqF�

ifF �true� e
�� e� � e� eqF�

ifF �false� e
�� e� � e eqF�

eqF �e� e� � true eqF	

ifF �eqF �e� e
��� e� e�� � e� eqF


Lemma A��� Let d� e be variables of sort Frame�



�	

� d � e� eqF �d� e� � true� eqF elim

� eqF �d� e� � true� d � e� eqF intro

� eqF �d� e� � false� d 	� e� eqF intro�

References

�
� J�C�M� Baeten� J�A� Bergstra� and J�W� Klop� Conditional axioms and 
	� calculus in process
algebra� In M� Wirsing� editor� Formal Description of Programming Concepts � III� Proceedings

of the �th IFIP WG ��� working conference� Ebberup 
���� pages 	���	� Amsterdam� 
����
North�Holland�

��� J�C�M� Baeten and W�P� Weijland� Process Algebra� Cambridge Tracts in Theoretical Computer
Science 
�� Cambridge University Press� 
��
�

��� H�P� Barendregt� Lambda calculi with types� In S� Abramsky� D�M� Gabbay� and T�S�E� Maibaum�
editors� Handbook of Logic in Computer Science� pages 

���
�� Oxford University Press� Oxford�

����

��� K�A� Bartlett� R�A� Scantlebury� and P�T� Wilkinson� A note on reliable full�duplex transmission
over half�duplex links� Communications of the ACM� 
����
���
� 
����

�	� J�A� Bergstra and J�W� Klop� Process algebra� speci�cation and veri�cation in bisimulation
semantics� In M� Hazewinkel� J�K� Lenstra� and L�G�L�T� Meertens� editors� Mathematics and

Computer Science II� CWI Monograph �� pages �
���� North�Holland� Amsterdam� 
����

��� G� Birtwistle and P�A� Subrahmanyam� editors� Current Trends in Hardware Veri�cation and

Automated Theorem Proving� Springer�Verlag� 
����

��� N�G� de Bruijn� A survey of the project AUTOMATH� In J�R� Hindley and J�P� Seldin� editors�
Essays on Combinatory Logic� Lambda Calculus and Formalism� pages 	�
��
�� Academic Press�
London� 
��
�

��� R� Cleaveland and P� Panangaden� Type theory and concurrency� International Journal of

Parallel Programming� 
��
	���
�� 
����

��� R�L� Constable� S�F� Allen� H�M� Bromley� W�R� Cleaveland� J�F� Cremer� R�W� Harper� D�J�
Howe� T�B� Knoblock� N�P� Mendler� P� Panangaden� J�T� Sasaki� and S�F� Smith� Implementing
Mathematics with the NuPrl Development System� Prentice�Hall� inc�� Englewood Cli�s� New
Jersey� �rst edition� 
����

�

� T� Coquand and G� Huet� The calculus of constructions� Information and Control� ����	�
�
�

����

�

� G� Dowek� A� Felty� H� Herbelin� G� Huet� C� Paulin�Mohring� and B� Werner� The Coq proof
assistant version 	�� user�s guide� Technical report� INRIA � Rocquencourt� 
��
�

�
�� U� Engberg� P� Gr�nning� and L� Lamport� Mechanical veri�cation of concurrent systems with
TLA� Technical report� Aarhus University� 
����

�
�� M�H� Gordon� R�M� Milner� and C� Wadsworth� Edinburg LCF� volume �� of Lecture Notes in

Computer Science� Springer�Verlag� Berlin� 
����

�
�� J�F� Groote and H� Korver� A correctness proof of the bakery protocol in �CRL� Technical
Report Logic Group Preprint Series No� �
� Utrecht University� 
����



��

�
	� J�F� Groote and A� Ponse� The syntax and semantics of �CRL� Technical Report CS�R�
���
CWI� Amsterdam� 
��
�

�
�� J�F� Groote and A� Ponse� Proof theory for �CRL� Technical Report CS�R�
��� CWI� Amster�
dam� 
��
�

�
�� Z� Luo� R� Pollack� and P� Taylor� How to use LEGO� Technical Report LFCS�TN���� University
of Edinburgh� Edinburgh� Scotland� October 
����

�
�� R� Milner� A Calculus of Communicating Systems� volume ��� Springer�Verlag� Berlin� 
��
�

�
�� C� Paulin�Mohring� Inductive de�nitions in the system Coq� Rules and properties� Technical
report� ENS Lyon� 
����

��
� M�P�A� Sellink� Verifying process algebra proofs in type theory� Technical report� Utrecht Uni�
versity� 
����

��
� V� Stavridou� T�F� Melham� and R�T� Boute� editors� Theorem Provers in Circuit Design� North�
Holland� 
����


