
Incremental semantics for propositional texts

C�F�M� Vermeulen�

Abstract

In this paper we are concerned with the special requirements that a semantics of

texts should meet� It is argued that a semantics of texts should be incremental and

should satisfy the break in principle� We develop a semantics for propositional texts

that satis�es these constraints� We will see that our requirements do not only apply to

the semantics but also have consequences for the syntax� The interaction between text

structure and text meaning will turn out to be of crucial importance to the semantics

of texts�

We develop two versions of the semantics� one representational� one in update style�

� Introduction

Traditionally in formal semantics the attention has been focussed on the interpretation
of sentences� But since it was argued� that the semantics of texts requires more than
a straightforward extension of the techniques developed for sentences� text semantics has
become a respectable topic of research� It is now quite generally recognised that special tools
have to be developed for the analysis of typically text level phenomena such as anaphora�
The tools that have been developed for the semantics of texts� also have been put to use in the
analysis of sentences� For example in Discourse Representation Theory �by �Kamp�� and File
Change Semantics �by �Heim�� it is argued that anaphors that �nd their antecedent within
the sentence can best be treated in the same way as anaphors that �nd their antecedent in
another sentence in the text� The so	called donkey sentence is a good example of a situation
where this approach pays o
�

If a farmer owns a donkey� he beats it�

In the approaches mentioned above� this sentence obtains the required interpretation in a
natural way� while this is quite hard in traditional sentential semantics� So the semantics of
texts has led to the development of new techniques which have proved useful for the study
of old problems in sentential semantics�
In this paper we are concerned with the consequences of this shift of attention for the re	
quirements on the formal methods that are used� In sentence semantics the all important
methodological constraint is compositionality� But it seems that the compositionality prin	
ciple� as it stands� is not appropriate for the semantics of texts� Instead we propose other
constraints� incrementality� �pure� compositionality and the break in principle� We will de	
velop an incremental semantics for propositional texts that satis�es the break in principle�

�Research Institute for Language and Speech �O�T�S��� Arts Department� Utrecht University� Trans ���
�	�
 JK Utrecht� the Netherlands �Kees�Vermeulen�let�ruu�nl��

�By �Kamp� and �Heim� for example�

Hence our semantics will illustrate the way in which these principles work for a simple�
propositional language�
The incrementality principle is inspired by the observation that we can interpret texts as
we hear them� If we want to understand a text we do not have to wait for the text to be
completed before we can start our interpretation� We can simply start as soon as we hear
the �rst word and then we build up our interpretation step by step� It is also clear that for
large texts this is the only possible procedure� We cannot �rst read a large text� a book
say� and only after that start to interpret it� Of course� we do not always choose to work
strictly incrementally � sometimes it might be convenient to wait a bit� for example until
the end of the sentence � but this waiting cannot be extended inde�nitely� And anyway� it
should never be necessary� Although it might be convenient to wait sometimes� in principle
the text should allow us to interpret it without delay�
This is the way we want to look at our observation concerning incrementality� It simply is
not true that we always do interpret texts incrementally� There are numerous occasions on
which we chose to read a text not simply from beginning to end� but in some other order��

Perhaps this is exactly what the reader has done with this text� But all the time we rely
on the fact that a text allows for an incremental interpretation� And this will also be our
constraint on the formalism� we do not demand that everything is done incrementally� but
merely that everything can be done incrementally�
Note that here we are talking about the text level� We do not want to claim here that
everything that happens in the semantics of natural language has to be accounted for incre	
mentally� It is not excluded that some micro level phenomena behave di
erently� Intuitions
about incrementality typically apply to the macro level and this is also the level for which
text semantics is designed�
The incrementality constraint gives rise to an important di
erence with sentence seman	
tics� In sentence semantics we allow ourselves to use information about the structure of the
sentence in its interpretation� When we start interpreting a sentence we assume that its
structure is known� Then we can let the structure tell us how the meanings of the sentence
parts have to be glued together to form the meaning of the sentence� This is how the compo	
sitionality principle works in traditional sentence semantics� But in the current� incremental
set up we cannot use this method� For we want to do justice to the observation that we can
interpret a text as we hear it� Thereby we cannot let some kind of structural analysis precede
the interpretation process� Instead it seems that the analyses of meaning and structure have
to be performed at the same time� Therefore the compositionality principle is� in its usual
form� not appropriate for text semantics�
Instead we will use a more modest form of compositionality than we are used to in sentence
semantics� Of course the meaning of the text as a whole is composed from the meanings
of the parts of the text� we do not want foreign elements to in
uence the interpretation of
a text� But we cannot assume that information about the structure of the text will tell us
how the parts have to be put together� The structure of the text has to be discovered at
the same time as the meaning of the text� Our modest form of the compositionality will be
called pure compositionality� it simply states that the meaning of a text depends on nothing
but the meaning of its parts�
The last constraint that we impose on text semantics is the break in principle� We have
argued that it is always possible to interpret a text� even if it is clear that the text is as yet
incomplete and that more is to follow� But then it is inevitable that also our interpretations

�Note that it is harder to imagine a non
incremental treatment of a spoken text�

�

will have this property� they are incomplete or partial in this sense� We do not mean that
there will be room for doubt about the meaning of such an incomplete text� What we mean
is that the interpretation of a text will allow for combination with material from other parts
of the text� the parts that are to follow�
If we follow this line of reasoning a little further� we see that it is not only natural to require
that we be able to interpret un�nished texts� but also other kinds of incomplete texts� In fact
we want to be able to interpret all continuous parts� or segments� of texts� It seems that not
only if we have not yet heard the last part of a text� but also if we have not heard the �rst
part of a text� we are able to understand exactly what is being said� Of course we may have
missed some important clues in such a situation� So our understanding of what is being said
can again in general only be partial� But this partiality is in the result of the interpretation
only� We can interpret everything that is being said completely� yet the information that
we get out of such a text fragment is only partial� the information becomes complete in
combination with other� previous� partial interpretations� This seems to be what happens
when you hear in on a conversation� in a train for example� you can understand everything
that is being said� even though you may have missed the beginning of the story� This leads
to the formulation of the break in principle� that guarantees that wherever we break in in a
text� we will always be able to understand what is being said� In other words the break in
principle says that every segment of a text should be interpretable�
From what has been said it should be clear that the break in principle can only hold if we
have in the semantics objects that are� in some sense� partial meanings�
This principle has serious consequences in presence of the compositionality principle� Ac	
cording to the break in principle anything is a meaningful part of a text� Hence a text can
be decomposed in many di
erent ways and it seems reasonable to assume that each of these
decompositions should allow us to compute the meaning of the text� It is also desirable that
di
erent decompositions lead to the same result� as long as we are not considering texts that
are ambiguous� Thereby the three principles together demand that text meanings form an
associative algebra� we want the meaning of the whole to be composed uniformly from the
meanings of the parts and each decomposition into parts should give the same result� In
particular an incremental decomposition has to be available�
So the situation is as follows�

Pure Compositionality� The meaning of a text can be computed �uniformly�
from the meaning of its parts�

Incrementality� The meaning of a text can be computed by a process of inter	
pretation that strictly follows the order of presentation�

Break in principle� Any segment of a text can be interpreted� �In general its
meaning will be partial��

Together these requirements amount to�

Associativity� Text meanings form an algebra with an associative operation
�which we will call the merger� by which the meanings can be glued together�

We see that the general story for text semantics is quite di
erent from what we are used to
in sentential semantics� In sentential semantics we allow ourselves to use information about
the structure of the sentence and we can postpone our interpretation process until all the

�

structural information is available� We cannot a
ord to treat the structure of texts in the
same way� we have to be able interpret a text as we hear it�

The semantics we give in this paper incorporates the three principles� we give an incremental
semantics of texts that satis�es the break in principle� The texts that we study are very
simple� they are built up from propositional variables� the atomic texts� The only kind of
text structure that we consider is the kind we �nd in reasonings� This kind of structure is
usually indicated by phrases such as �suppose that�� �assume for the moment�� �hence�� �so��
etc� It also occurs at sentence level� typically in �if� � �then� sentences�
In general it can be quite di�cult to detect the structure of a text� often it is only indicated
vaguely or implicitly� Then it can be quite hard to determine what is going on� But the
problem of the detection of text structure does not concern us here� We will focus on the
interpretation of text structure� At this point it may not be entirely clear to the reader what
interpretation of structure is supposed to mean� But this will become clear later on when
we see in practice how structure and meaning interact in our set up�
Since we are not trying to deal with the detection of �implicit� structural clues here� we
might as well assume that all clues are given explicitly� In our formal language if � then and
end are used for this purpose� The intended interpretation of a text of the form if � then �

end is the implication ��� ����

The formal language that we will work with is de�ned as follows�

De�nition ��� Let a vocabulary of atomic texts A be given� We de�ne the texts over A�
TextA� as follows�

if� then � end � TextA

� � TextA

p � A � p � TextA

� � TextA � � � TextA � �� � TextA

As one can see� we treat if� then and end simply as basic texts � even though we plan to use
them as structural indicators � and there are no structural restrictions on texts� they are
simply built up by concatenation� Sometimes the concatenation of texts can be pronounced
as �and��
This way we can get funny texts that have no sensible interpretation� This agrees with the
view on text structure that we developed above� the structure of a text has to be analysed
at the same time as its meaning� We cannot assume beforehand that the texts that we have
to analyse are well formed� If the text is not well formed� then we will have to �nd this out
as we proceed�
Maybe it is good to recall that an atomic text such as if does not only stand for the word
�if�� but also for a phrase such as �let�s assume the following�� So an expression such as if p�
which at �rst sight seems highly ungrammatical� can correspond to a quite sensible text
such as Let�s assume that p holds�
Proofs are a good example of texts that have this kind of structure� They typically consist
of a network of assumptions and conclusions of a kind that is very similar to the structure

�Note that we only consider texts in which the assumptions are given before their conclusions�

�

of the texts of TextA� Therefore� one of the things that we would like to do is to present a
deduction system in which proofs are considered as a special kind of texts� texts of which
the construction satis�es a number of additional syntactic constraints�� We will not develop
such a deduction system in this paper� but we intend to present it in another paper�
In the end we would also like to have a sentence level semantics that satis�es the incre	
mentality constraint and the break in principle� We already explained above that it is not
automatically clear that this can be done� But then we can just try and see which phenom	
ena exactly resist an incremental treatment� We will not attempt anything like that here�
nor do we pretend that it is clear how we could extend the approach in that direction� It
seems that in sentences many phenomena occur that do not have a counterpart at the level
of texts�� But at the same time it is clear that some phenomena in sentences simply are
special cases of text phenomena� Here we think of donkey anaphors� for example� but also
of �if� � �then� constructions� which seem to be nothing but an internalisation of the kind of
text structure that is the topic of this paper�

� Texts as Sequences

In this section we present our �rst attempt at an incremental semantics for TextA� The
�nal version will be presented in the next section� This �rst attempt that serves to illustrate
one important feature of our approach� It can be seen as a solution to one important
problem that arises in incremental semantics� non	associativity� It was pointed out above
that an incremental semantics satisfying the break in principle will always be associative�
So non	associative features of texts are problematic� In TextA an �if� � �then� construction
intuitively causes non	associativity� For the interpretation of a simple concatenation of basic
texts p � A� we do not have to worry about non	associativity� �pq�r and p�qr� give the same
information� So any bracketing of such simple texts will do� But if the special elements if�
then and end occur in a text� then we have to be more careful�
Consider� for example� the text p if q then r end� This text gives the information that p
and also that if q then r end� This suggests that we have to interpret if q then r end

�rst as one component of the text before we can add it to our interpretation of p� This
corresponds to a bracketing p �if q then r end�� But we have to allow for an incremental
interpretation of this text� So it seems that we will only be able to handle the bracketing
�����p if� q� then� r� end��
The solution that we give for this problem in this section will work in general when an
incremental treatment of such non	associative phenomena is needed� The solution can be
summarised by one word� memory� In our semantics we will allow ourselves to have more
than one slot where information can be stored� We will not only have a slot for our current
state of information� but we will also have slots for some speci�c information states that we
used to be in� So we remember our information history�
Now� when we have to interpret p if q then r end� we can �rst interpret p� We store the
information that p in our memory before we interpret q� This information is again stored
before we interpret r� Now we can construct from the information that we have stored the
information that if q then r� Finally this information can be added to the information that

�We like to call this view on proofs the proofs as texts perspective� Together with the texts as trees

perspective that will be developed in this paper� we get the slogan� proofs as texts as trees�
�Some problems are discussed in �Visser� Meanings in Time�� who considers a very limited fragment�

�

p� Note that we do not need brackets to tell us how we have to store the information� the
special elements if� then and end will tell us exactly what has to be done�
This story can be formalised as follows� In the semantics we will always assume that some
Heyting algebra �HA for short� I is given to provide the basic information items�
Recall that Heyting algebras are de�ned as follows�

De�nition ���
� A lattice is a structure L � �L������ such that the binary operations
� and � satisfy the following conditions�

�a� b�� c � a � �b� c� �associativity of ��
�a� b�� c � a � �b� c� �associativity of ��
a � b � b � a �commutativity of ��
a � b � b � a �commutativity of ��
a � a � a �idempotency of ��
a � a � a �idempotency of ��
a � �a � b� � a ��rst absorption law�
a � �a � b� � a �second absorption law�

In a lattice L we can de�ne an ordering by�

a � b � a � b � a�

�� A Heyting algebra is a structure I � �I���������� such that �I����� is a lattice� �
is the least element of I and � is a binary operation such that

��� � �� � ��� � ��� � �� � ����

We call the elements of I information states� An information history is a �nite� non	empty
sequence of information states� We de�ne the interpretation of texts �� ���� as a partial
function on information histories� We will assume that for each atomic text p � A an
information state �p is given� �p is the information that p�

De�nition ��� We de�ne for each � the update function ��� as follows�� Let an information
history � � ���� � � � � �n� �n 	 �� be given�

���� � ���� � � � � �n��� �n � ��
��p� � ���� � � � � �n��� �n � �p�
��if � � ���� � � � � �n��� �n�
�
��then� � ���� � � � � �n��� �n�
�
��end� � ���� � � � � �n�� � ��n�� � �n��
����� � ���������

Furthermore we de�ne truth as follows�

For � � I we de�ne ��� j� � i� ������ � ���� We say that � is true in ��
We write j� � i� �
� j� �� We say that � is true �in I��

�We will use post�x notation for function application and we will adapt the notation for function compo

sition accordingly�

�

A good example of an information algebra I that the reader can keep in mind in what is to
follow can be found� for example� in �Veltman��s update semantics� He uses an information
algebra that is de�ned as follows�

De�nition ��� Let a vocabulary A of atomic expressions be given�

Let W
��A�� w �W is called a possible world �or possibility��

Let I
��W�� I is the information algebra �over A�� ordered by �� The elements � � I are
called information states�

Here the w � W are called possible worlds because each subset w � A corresponds to a way
the world might be� the atomic propositions� or possible facts� in w might be exactly the
things that are true� while all other atomic propositions are false� In information state � we
know that one of the w � � is the real world� but we do not know exactly which one�
It is clear that I is a Heyting algebra since I � ��W � is an �atomic� Boolean algebra� So
De�nition ��� applies� The canonical choice for �p �p � A� is� �p ���fpg� � fw � fpg � wg�
There is nothing deep behind our choice of HAs as information algebras� We have chosen
HAs because we do not want to worry here about the de�nitions of the conjunction and
implication of information states� Thus working in a HA allows us to concentrate on the
other problems for our semantics and this is in fact all that we want from them� Therefore
any other structure with well de�ned operations of conjunction and implication can serve
equally well as I� One interesting example of a suitable information algebra I that is not a
HA is the algebra of DRS meanings as de�ned in �Zeevat��

De�nition ��� gives us the right result for texts like p if q then r end� it is easy to check
that now�

�
��p if q then r end� � ��p � ��q � �r��

And the semantics is incremental and associative� as required�� But the semantics is not
satisfactory in every respect� the structural contribution of the special elements if � then and
end is not represented in the best possible way� We see� for example� that in our semantics
if and then get the same meaning� �if � � �then�� Thereby also �if p then q end� �
�then p if q end�� This implies that for our semantics the texts if p then q end and
then p if q end are equally acceptable� which intuitively� of course� they are not� So our
semantics cannot distinguish a coherent from an incoherent text� This would imply that
we have to determine in advance whether or a text is coherent or not� Which brings us
back to the treatment of text structure� if we had a grammar of texts that would simply
rule out then p if q end as ungrammatical� no problems would arise� But we have already
explained that this is not the way things should be done in text semantics� Even if we have
a text grammar that rules out then p if q end as ungrammatical� we still want to �nd out
during the interpretation that the expression is illegal according to this grammar� We need
a situation in which un	wellformedness is indicated in the semantics by some kind of failure
or error behaviour�
At this point the only kind of semantic failure that occurs is partiality� some expressions
generate partial functions� This indicates that the text is left incomplete� i�e� we need some

�This is clear since function composition is associative�

�

preceding material to be able to make sense of the text� For example end will only be de�ned
on information histories of length greater than two� indicating that it should be preceded
by two expressions that generate locations in memory�	 But unfortunately end is not able
to distinguish if 	locations from then	locations� Therefore the partiality in the semantics
cannot rule out then p if q end�
Here we see in a concrete example how the interplay between syntax and semantics is a
crucial topic in incremental semantics� We have introduced the incrementality requirement
on the semantics of texts� since we feel that we can interpret texts as we hear them� But if
we are only able to interpret well formed texts� then we also have to be able to decide about
the well formedness of a text as we hear it�
In what follows we will usually concentrate on the meaning of texts� but in fact ever more
re�ned incremental well formedness test will become implicitly available in our machinery
as we proceed�

� Texts as Trees

In this section we attack the problem that we discovered for the semantics with information
histories� We saw that we cannot see in the semantics whether a text is well formed or not�
The reason for this is that the di
erent locations in the information histories do not show
why they where created� were they created by if in order to store an assumption or were
they created by then in order to store a conclusion� Once we can answer this question we
are done�
Therfore we want to be able to distinguish the if places from the then places in our infor	
mation histories� In order to do that we simply add structure to the information histories�
instead of using sequences to represent our memory� we will use binary trees� We will use
the left branches in the trees to �temporarily� store the antecedents of implications and
the right branches will be used for the conclusions� The �end� command will tell us that
the implication is complete� Clearly this way the if information can be distinguished from
the then information by its position in the structure� This will enable us to decide in the
semantics whether a text is well	formed or not� We call this idea� that the information that
we �nd in texts is structured in a tree	like con�guration� the texts as trees perspective�
Note that after end we can actually construct the implication in the Heyting algebra� and
we no longer need the tree structure� As a consequence not all binary trees have to occur in
the semantics� We can restrict ourselves to trees of the following kind�

De�nition ��� Let a Heyting algebra I be given� We de�ne the update trees over I� UI� as
follows�
If � � I� then ��� � UI�
If � � I and � � UI� then ��� �� � UI�
If � � I� �� � I� � � UI then ��� ����� �� � UI�

Maybe one does not immediately recognise these objects as binary trees� They can be read as
follows� the general format is ��� ����� �� where � is itself an update tree� The �rst component
contains the information so far� �� We think of it as a
ag at the root of the tree� The second
component� ����� contains the material that we have assumed� It is stored in the left branch
of the tree� The third component� the right branch� is used for the conclusion� If one of

�In fact all partiality in the semantics of de�nition
�
 originates from the partiality of end�

�

the components is not in use� we do not write it down�
 So we simply have ��� if we are
not processing an implication at the moment� and we have ��� �� if we are building up the
antecedent of an implication� All components are �lled� ��� ����� ��� if we have arived at the
conclusion of the implication� Since we always compute the e
ect of an implication as soon
as we can �see the de�nition of �end� below�� at most one of the three components � the
rightmost � is not an element of I� So we can keep the following pictures in mind�

(ι,σ) (ι,(ι ’),σ)

a tree of the form

σ

ι ι

ι

σ

’
a tree of the form

ι

a tree of the form

(ι)

Each time the simplest example of such a con�guration arises when � is of the form ������
Before we de�ne the interpretation of our texts on these update trees� we introduce the
notion of the �nal segment of a tree� This notion will be of use in the de�nition of the
update semantics� The fact that we can distinguish the �nal segment in a tree from the
other parts shows that the structure of the trees as we have de�ned them can be interpreted
�historically�� from a tree we reconstruct its construction process� We can tell which parts
were built �rst and which parts later�

	We could have chosen to �ll the places that are not in use with a dummy tree� but we prefer not to
introduce a foreign element into the picture� As it is the tree consists of elements of the Heyting algebra
only� �Note that ��� cannot play the role of the dummy tree� If we use ��� as dummy we will get confused
if we are processing expressions such as if � then � end��

�

De�nition ��� We de�ne for each tree � its �nal segment� segf���� as follows�

segf ����� � ����
segf ���� ������ � ��� ������
segf ���� ����� ������� � ��� ����� �������
segf ���� ��� � segf ���

if �
� �����
segf ���� ����� ��� � segf ���

if �
� ������

We will write ������ for � to emphasise that segf��� � 	 and �f����g for the tree that results
from replacing 	� the �nal segment of �� by 	� in �� If it is clear from the context what 	 is�
we simply write �f��g� ��

We can now de�ne the incremental semantics of our propositional texts� with each proposi	
tion � we associate a partial function on update trees� ���� as follows�

De�nition ��� Let � � UI be given� The following clauses de�ne the update functions ���
for � � TextA�

����������� � �f�� ���g�
������� ��������� � �f���� �� � ���g�
�������� ����� ��������� � �f����� ����� �� ����g�

���������p� � �f�� � �p�g�
������� �������p� � �f���� �� � �p��g�
�������� ����� �������p� � �f����� ����� �� � �p��g�

���������if � � �f��� ����g�
������� �������if � � �f���� ��� �����g�
�������� ����� �������if � � �f����� ����� ��� �����g�

������� �������then� � �f���� ���� ����g�
�������� ����� �������end� � �f���� � ��� � ���g�
����� � ����������

In these clauses the update functions are de�ned for certain con�gurations of the �nal seg	
ment of �� If the �nal segment of � does not have this con�guration� the function is unde	
�ned� As before� we can de�ne truth as follows�

For � � I we de�ne ��� j� � i� ������ � ���� We say that � is true in ��
We write j� � i� �
� j� �� We say that � is true �in I��

Note that for ���� �p� and �if � we do not need the entire �nal segment� only the very latest
information state in the con�guration� �� is required� In �then� and �end� we see how the
structure of the �nal segment matters in the updating process� if the �nal segment has the
wrong shape the update functions are unde�ned�

�
The notation is analogous to the notation ��x� in predicate logic to indicate the free variable x in � and
the notation ��a� for � with x substituted by a� Note that here two di�erent notations are necessary because
we do not have� in general� segf ��f����g� � ��� Take for example � � ��� ����� ��� ���� � and �� � ������ Then
segf ��� � ��� ���� and segf ��f������ ���� �g � ��� ����� �������

��

In the following example we see how the updating process works�

Example�

�
��if p then q end� �
�
� �
���p then q end� �
�
� ��p���then q end� �
�
� ��p�� �
���q end� �
�
� ��p�� �
� �q���end� �
��p �
� �q� �
��p � �q�

We give pictures for two of the stages in the process�

T

ι
p

]T [if p()

T

ι
p

ι
q

T [if p() then q]

Now we can introduce the following notions of well formedness for texts�

�� ��� is grammatical if ��� is a total function and �
���� � ��� for some � � I�

�� ��� is right incomplete �but left complete� if ��� is a total function and �
����
� ����

�� ��� is left incomplete �and possibly right incomplete� if ��� is a partial function but
���
� ��

�� ��� is incoherent if ��� � ��

�� The texts that are not incoherent are called coherent�

Here we use grammatical for well formed in the strict sense� In the loose sense all coherent
expressions are well formed� they can occur as a segment of a grammatical text� For example�
in our terminology if p then q is coherent � it falls under case � � and if p then q end is
grammatical� then p if q end is an example of an incoherent text�
Note that� for now� among the left incomplete texts we cannot distinguish the right complete
from the right incomplete texts� both then q end and then q fall under ��
At this point we have an incremental semantics for our propositional texts that can dis	
tinguish if from then� This means that structural de�ciencies of a text of TextA can be
detected as we are interpreting it� The methodological constraints are also satis�ed� for
any text segment we can compute its meaning as an update function� Since composition of
�partial� functions is an associative operation� associativity is satis�ed�
This means that we have done our job� But we have done it in a special way� using update
functions as meanings� In the remaining part of the paper we will see whether it is necessary
to use an update formulation of the semantics�

��

� Trees as an Update Algebra

��� Update Algebras

So far we have given the semantics of texts in terms of update functions� For some purposes
the meaning as update view is misleading� Sometimes we do not only want to see the e
ect
of a sentence meaning� we also want to look into the meaning of a sentence� In �Visser��� we
�nd the notion of an update algebra� If an update semantics can be de�ned in terms of an
update algebra� then there is a natural harmony between the update view on meaning and
the so	called representational view� in this case the elements of the update algebra represent
the update functions� If the update functions allow for such a representation� then clearly
no con
ict between the di
erent ways of looking at meanings arises�
In this section we present trees as an update algebra� Thus a representational interpretation
of texts is obtained which is in harmony with the update interpretation that we have de�ned
in the previous section� Visser de�nes his update algebras as follows�

De�nition ��� A merge algebra M is a structure �X�S� id� ��� where id � S � X and
where �X� id� �� is a monoid �with identity element id��

S is the set of states of the algebra� � is called the merger�

A merge algebra M � �X�S� id� �� is an update algebra if M satis�es the following
principle� called OTAT� x � y � S � x � S�

Intuitively� the states are the information objects that are not partial� They do not have
to be interpreted in the light of previous information� They can be combined with other
information objects� but this is not necessary� The other objects in X are partial� they
steel bits of information from previous information states��� In an update algebra adding
information later� on the righthand side does not help to satisfy such a demand for previous
information� on the lefthand side� Visser calls this the Once a Thief� Always a Thief� or
OTAT principle� The OTAT principle introduces the essential asymmetry in the formalism�
The elements of a merge algebra �X�S� �� id� generate canonical update functions on the set
S of states as follows�

For each x � X we de�ne �x � S � S as follows�

s�x � s � x if s � x � S� Otherwise s�x is unde�ned�

It is not clear in general which functions should be allowed as update functions� Of course
the set of update functions over S should contain the �x� But apart from the canonical
update functions that we have de�ned above one might want to consider other functions�
for example a might	operator as in �Veltman��
It is clear that the class of update functions should be closed under function composition�
if you update your information state with some update function and then update the result
with another update function� then� surely� this whole process should also count as an
update function� Hence the update functions over S form a monoid� say �FS � �� Id�� where
f�x � x � Xg � FS and Id� �id���

���Visser� Actions under Presupposition�
��It might be helpful to think about the partiality of information in terms of evaluation� the truthvalue of

the information from a state� s � S can be determined independently� But partial information �x � XnS�
can be evaluated only if it is preceded by a suitable context�

��Here � stands for function composition�

��

Now the notion of an update algebra is inspired by the following fact�

Proposition ��� Let a merge algebra �X�S� �� id� be given� Consider the monoid of update
functions �FS � ���id�� De�ne � � �X� �� id�� �FS � ���id� by x� � �x� Then�
� is a homomorphism of monoids i� �X�S� �� id� is an update algebra����

The fact that � is a homomorphism guarantees that �x�y � �x � �y � This implies that

�x��y�z� �

�x ��y�z �

�x � ��y ��z� � ��x � �y� � �z �

��x�y� � �z

��x�y��z

�by associativity of function composition�� Thereby updating with the elements of an update
algebra is a process that can be done incrementally and satis�es the break in principle�

��� Partial trees

Now we show that update trees �t the update algebra picture� We de�ne a monoid of trees
such that we �nd the update functions of de�nition ��� among its canonical updates� Then
it will be clear that the text semantics that we have developed so far can be handled in a
representational semantics as well as in update style�
In order to make an update algebra of trees we have to �nd a suitable notion of partial tree�
We obtain this notion by taking a di
erent perspective on trees� instead of regarding trees
as �xed objects� we now treat them as things that grow� In our set up it is the process
of growth that we are mainly interested in� since this is where the update functions come
in� we have seen that updates with the information that we �nd in texts are represented as
instructions to build update trees�
The construction process follows a �xed route through the tree� left	to	right� top	down path�
If we want to analyse the construction process of some tree we simply have to follow this
path� In this way the stages of the construction process are represented in the tree by the
segments of the path���

Now we make the following step� we no longer distinguish between a tree and its construction
process� So we think of trees only in terms of the left	to	right� top	to	bottom path through
the tree� Then it is but a small step to consider the segments of such a path as partial
trees� We take these segments as the elements of the update algebra� Note that among the
elements of update algebra we will �nd segments that actually correspond to an update tree�
These will be the states of the update algebra�
In the following de�nition we describe the tree segments systematically� �We will use the
terms �partial� tree� �tree� path and �tree� segment to refer to them��

��For a proof we refer to �Visser� Actions under Presupposition�
��Maybe the reader has noticed that our habit of collapsing completed subtrees somewhat disturbs the

analogy between the construction and the path� For the moment we will ignore this mismatch� but it will be
taken care of later�

��

De�nition ��� We de�ne the �partial� trees over some HA I� TI� inductively� In our def	
inition we have to distinguish the subclasses downTI� for the down trees and upTI� for the
up trees���

� � � I � ��� � downTI � upTI�
�� � � I� � � downTI � ��� �� � downTI�
�� � � I� � � upTI � ��� �� � upTI�
�� �� �� � I� � � downTI � ��� ����� �� � downTI�
�� �� �� � I� � � upTI � ��� ���� ��� � upTI�

downTI � upTI � TI
�� ��� �� � downTI� ���� �� � upTI � ���� �� �� � TI�

��

��
 � upTI� 	 � downTI � �
� 	� � TI�
�� � � TI�

Each of these clauses corresponds to a kind of segment through an update tree� Note that
we distinguish down trees and up trees� The down trees � cases ��� and ��� � are the
segments that actually correspond to an update tree� These paths start at some root � and
then go down into the tree below that root� With these segments we can simply think of
the pictures of trees that we also used in the previous section� We just have to add arrows
to indicate the direction of the path�

a generic down tree

 a down tree of the form

(ι,σ)

 a down tree of the form

(ι,(ι ’),σ)

The up trees � cases ��� ans ��� � are the mirror images of the down trees� They are
segments that start somewhere in a tree and then go up to its root� For up trees we use as
pictures the mirror images of the pictures for down trees�

’

a generic up tree

an up tree of the form

(σ,ι)

an up tree of the form

(σ,(ι),ι)

��This terminology will be explained below
��Note that either � � � for some � � upTI or � � ������ �� for some �� � I� � � upTI� Similarly for ���

��

Now we have seen the path segments that start at a root and go down into the tree and the
path segments that start somewhere in the tree and climb up to the root� This leaves two
cases to consider� the segments that both start and �nish at a root and the segments that
neither start nor �nish at a root�
The �rst case gives those segments that actually describe a completed subtree� Since we are
in the habit of collapsing completed subtrees� we will not �nd many of these paths in our
trees� Only the degenerate case can occur� where a path starts at a root and does not leave
it� This case is handled by ��� in the de�nition� Such a tree is both a down and an up tree�
The second case� of the segments that neither start nor �nish at a root� can again be
divided into two cases� First there are the paths that describe a jump from assumption to
conclusion� These paths not meet the root of the tree in which they occur� They are the
bridges between left and right branches of trees� We describe them in case ��� and we use
the following pictures for them�

a tree of the form

(λ,ρ)

But there is another kind of segment that does not start or �nish at a root� This case is
described by ���� Here the comparison with paths in binary trees breaks down� As one can
see in ���� we are in a situation where an up tree is followed by a down tree� The up tree
moves up to some root� and then the down tree moves down from this root� In the path of
a binary tree this cannot happen� each node has just one subtree below it and if we have
completed the path through this subtree� the only way to continue the path is by going to
the next node �on the right hand side�� This is the point where we see how our habit of
collapsing subtrees somewhat spoils the analogy with the paths� For in our situation� if the
path through some subtree is completed� we collapse this subtree and add the result of this
collapse to the node� After we have collapsed the tree� there is only a node left� Then we
can simply start a new subtree from this same node� Case ��� describes this moment when
one subtree is completed and the next one is built at the same node��	 For this situation we
use the following kind of picture�

a tree of the form

(σ ’ ,ι,σ)

Finally there is the tree �� In fact � is not really a tree� we will use � to describe the
situation in which the construction process has reached the error state� something has gone

��We will use these situations in the representation of the conjunction of two implications�
if p then q end if r then s end�
The information of both these implications should be stored at the same node�

��

wrong and we no longer know what to do� So � does not correspond to the empty tree��

In fact it is just the opposite� the empty tree is harmless and really does not do anything�
�� on the other hand� is lethal in all situations�

Now we know how to think about partial trees as tree paths� Sometimes it is even easier to
think of them in terms of their basic components� We distinguish the following basic trees�

De�nition ��� We distinguish the following basic trees in TI�

��� is a basic tree for each � � I� �Think of an atomic text �p���

�
� �
�� is a basic tree� �Think of the instruction �if ���

��
��
� is a basic tree� �Think of the instruction �end���

��
�� �
�� is a basic tree� �Think of the instruction �then���

In a picture�

(ι) (T ,(T)) (TT))((T),(T))),

We can think of all tree segments in terms of these basic segments� big segments are obtained
by glueing together these basic segments� Before we can make this precise� we have to explain
how tree segments are glued together� This is the topic of the next section�

��� The merger of trees

In this section we describe how segments of tree paths can be merged into bigger segments�
This merging operation will be the monoidal operation of the update algebra of partial trees�
The basic idea behind the merger of trees is easy� if two tree segments � and � � have to be
merged� we �rst complete the path described by � an then we simply continue along the
path described by � �� Or rather� we try to continue along � �� For� if we try to merge two
paths� something can go wrong��� Consider the following examples of such a situation� ��

=

�	Here ��� plays the role of the empty tree�
�
It may help to compare the cases where the merger goes wrong with the cases where the update functions

of the previous section where unde�ned�
��We use � as notation for the merger and � to indicate the point where the segments are glued together�

Note that this is not really necessary since the arrows already give enough information to determine what
should go where�

��

=

If we simply glue together the segments as indicated in the pictures� we get something which�
although it makes sense geometrically� is useless in our set up� For it is clear that the result
is not a segment of a �left	to	right� top	down� path through a binary tree� In these cases we
reach the error state� for which we have introduced ����

In most cases� however� things will not go wrong� For example� if � is a down tree� i�e� a
path downwards from some root� and also � � is a down tree� then it is clear that the result
of glueing � and � � together� will always be a sensible path through an update tree� In fact
it is clear that the result will be a downtree as well�

=

There are also cases where � is not itself a down tree� but does look like a down tree at
the point of contact� These cases � where � is of one of the forms ���� �� �� or �
� 	� �for a
non	trivial tree 	� � work similarly so we do not have to discuss them separately���

In the dual case� where two up trees meet� we cannot meet any problems either�

=

A third kind of situation where the merger cannot go wrong is the situation where an up
tree is merged with a down tree� As was noted above� this is a case where our geometrical
intuitions about paths have to be stretched a little� In these cases the �rst tree� which is an
uptree� and the second tree� which is a down tree� should be thought of as hanging at the
same root� but not at the same time� The second tree can only be built after the collapse of
the �rst tree� In pictures this looks as follows�

��So � can also be read as �unde�ned��
��This is why we will ignore this kind of situation in what follows� We can concentrate on what happens

at the point of contact�

��

=

But the merger of trees can give rise to problems when a down tree and an up tree meet� In
such a situation the second path� up the tree� has to �t in the tree associated with the �rst
path�

=

?

We have already seen situations where this goes wrong� In both examples it was easy to
see in advance that something would go wrong� but in general this can be quite di�cult�
Fortunately we do not have to see it in advance� We can simply check it step by step�
as we are performing the merger� In each step of the merging process our actions will be
determined by what we �nd locally� at the point of contact� There we just have to check
whether the �nal segment of the �rst tree and initial segment of the second tree match� We
have already de�ned the notion of the �nal segment for update trees� i�e for down trees�
Here we extend this notion to partial trees� We also de�ne the dual notion of the initial
segment of a tree� that gives for each path the con�guration that we �nd at the beginning
of the path� If we were dealing with down trees only� we would always �nd a root at the
beginning of our paths� But since we also have up trees� there are more ways in which a
path can start�

De�nition ��	 We de�ne the functions segf and segi on trees in TI as follows�
segf ����� � ���� segi����� � ����
segf ���� ��� � ���� segi���� ��� � ����
segf ���� ������ � ���� ������� segi����

��� ��� � ������ ���
segf ���� ��� � segf���� segi���� ��� � segi����

if �
� ����� if �
� �����
segf ���� ����� ������� � ��� ����� ������� segi�������� ����� ��� � ������� ����� ���
segf ���� ����� ��� � segf ���� segi���� ��

��� ��� � segi����
if �
� ������ if �
� ������

segf ����� �� ��� � segf ���� ���� segi���
�� �� ��� � segi���

�� ����
segf ��
� ����� � �
� ����� segi����� 	�� � ����� 	��
segf ��
� 	�� � segf �	�� segi��
� 	�� � segi�
��

if 	
� ���� if

� ����
segf ��� � �� segi��� � ��

We will keep the same notation for �nal segments� writing � ����� to indicate that segf ��� � 	

and �f��g if we have substituted 	� for the �nal segment of � � For initial segments we
introduce similar notation� ������ and f��g� �

��

If we want to indicate the �nal or initial segment in a picture� this looks as follows�

a down tree with
final segment indicated

an up tree with
initial segment indicated

We need the �nal and the initial segment to keep track of shape of the path at its end and
beginning respectively� Note that up trees have a trivial �nal segment� of the form ���� and
that down trees have a trivial initial segment� Another interesting case are the trees of the
form �
� 	�� but we will not discuss this case until we need it�
We have included a clause for � in the de�nition� Of course the �nal or initial segment of
the unde�ned tree is not a particularly useful notion� but this way segf and segi become
total functions� This will make some technical details slightly more elegant later on�
Now we can get back to our description of the merger of a down tree with an up tree� We
see that when a down tree and an up tree meet� there are two possibilities� Either the �nal
segment of the �rst tree and the initial segment of the second tree clash as in the examples
above� Then we reach the error state� there is a local mismatch between the two paths�
Or else the �nal and initial segments have one of the following shapes�

= =

collapse

= =

collapse

In the two cases indicated here we see that locally the paths match� The �nal segment
and the initial segment together form a complete subtree� Now we can simply compute the
information of this subtree� collapse the subtree itself and add the information at its root���

Then the two trees will have a new �nal and initial segment� and we can check again whether
these match� Continuing in this fashion� we either reach the error state at some point or we
reach a situation which is no longer of this type� I�e� either the down tree of the �rst path

��We have to chose in which of the two trees to store the information of the subtree� We will prove later on
that the choice does not really matter� If the reader cannot wait for this� she can also store the information
in both trees�

��

is absorbed by the second path� or the up tree of the second path is absorbed by the �rst
path� Then we are in a situation where at the point of contact it is not the case that a down
tree and an up tree meet�
Before we make formal sense of this pictorial explanation� we have to consider one more
case� This is the case where one �or two� of the trees is of the shape �
� 	�� We already
explained above that� if the �rst tree is of this form and in case 	 is not a trivial tree� �
� 	�
behaves just like a down tree at the point of contact� But if 	 � ��� for some � � I� then
the bridge shape of �
� 	� is relevant� This explains the de�nition of the �nal segment� if
	 � ���� then segf ��
� 	�� � �
� 	�� Else we just get segf��
� 	�� � segf �	��
In such a bridge shaped situation a clash can occur� for example in�

= 0

If we simply glue together these paths� then we get something that cannot occur in a binary
tree� What we get reminds us of the second example of a mismatch discussed above�
There can also be a match between the bridge and the initial segment� This again reminds
us of something that we have seen before� But now� even if the trees match� we never get a
complete subtree� So we do not get a collapse� In a picture�

=

We see that we do not get a complete subtree� so there is no collapse�
Of course we also have the symmetrical situation� where the second tree is ����� 	�� which is
handled analogously�

��

Now we are ready for the formal de�nition of the merger of partial trees� It will simply be
summary of the explanation above�

De�nition ��
 We de�ne the merger of two trees � and � �� � � � �� We distinguish the
following cases� considering all combinations of �nal and initial segments�

� � �
�
� � � � � � �

� ����
��� � ��������� �

We distinguish four subcases �

���� � ����
a
� ��� � ���

��� ��� � ����
b
� ��� �� � ���

���� � ���� �
��

c
� ��� � ��� �

��

��� ��� � ���� �
��

d
� ��� �� � ��� �

��

� ����
� ������� � ��������� �
�
� �f��
� ���� � ��������� ��g

� ����
��� � �������� ������
� �

� f�� ����
��� � ���� � ���g�
�

� ����
� ����� ������� � ��������� �
�
� �f��
� ����� ���� � ��������� ��g

� ����
��� � �������� ����� ������ �
�
� f�� ����
��� � ���� � ����� ���g� �

� ����
� ����� ������� � �������� ������ �
�
� ��f��
�g � ��� � �� � ���� � f����g�

�

� ����
� ������� � �������� ����� ������ �
	
� �f��
�g � ���� � �� � ��� � f����g�

��

�
� ����� � ��������� �

� �
� ���� � ��������� ��

� ����
��� � ������ 	�
��
� �� ����
��� � ���� � 	�

�
� ����� � �������� ������ �
��
� f��� ��
� � ���� � ���g� �

� ����
� ������� � ������ 	�
��
� �f��
� ���� � ���� � ��g

� ����
� ������� � �������� ������ �
��
� �

� ����
� ����� ������� � �������� ����� ������ �
��
� �

� ����
� ����� ������� � ������ 	�
��
� �

�
� ����� � �������� ����� ������ �
��
� �

�
� ����� � ������ 	�
��
� �

The de�nition contains a lot of cases� one for each combination of �nal and initial segment�
For each case there is also a symmetrical one� In our presentation each case is followed by
its mirror image�
Each case in this de�nition has already been covered in the pictorial explanation above� The
cases ���� ��� and ��� are cases where the second tree is a down tree� These are easy cases�
where we can just glue the paths together and nothing can go wrong� The cases ���� ���
and ���� are dual� here the �rst tree is an up tree� Case ��� is the situation where an up
tree is followed by a down tree� This is also a situation in which nothing can go wrong� The
real work has to be done in the remaining cases� ����	����� where either a down tree meets
an up tree or else one of the trees has a bridge shape� Here we can make one step of the
computation as indicated and then we continue with the new situation�

��

We give one last example of how this works in pictures� In the example we see how a down
tree and an uptree are merged� In the �rst step the �nal and initial segment match� So a
subtree is completed and the result� �� � � �
�� is added to the second tree� In the next
step we see that the �nal segment and the initial segment do not match� We reach the error
state� �� and the computation stops�

=

ι κ μ

(ι ^ κ−>μ)

= 0

Now it is not di�cult to prove our claim that the class of the trees over I can be generated
from the basic trees with the merge operation ��

Lemma � �Generation Lemma� If � � TI� then � can be constructed from basic trees
with a �nite number of applications of ��

Proof� In the proof we follow the inductive de�nition of TI� We will assume that the
conditions of its clauses are satis�ed� �Recall that for all � � downTI� segi��� is of the form
��� and that for � � upTI� segf ��� is of the form �����

�� ��� � TI is a basic tree�

�� If � is constructed from basic trees� then ��� � ��
� �
�� � �� gives a construction of
��� �� from basic trees�

�� If � is constructed from basic trees� then �� � ��
��
�� � ��� gives a construction of
��� �� from basic trees�

�� If � is constructed from basic trees� then ��� � ��
� �
�� � ����� � ���
�� �
�� � ���� gives
the required construction of ��� ����� ���

�� If � is constructed from basic trees� then ���� � ��
�� �
��� � ����� � ��
��
�� � ��� gives
the required construction of ��� ����� ���

�� If �� and � are constructed from basic trees� then ��� � ���
��
�� ����� ��
� �
��������
gives the required construction of ���� �� ���

�� If
 and 	 are constructed from basic trees� then
 � ���
�� �
��� 	� gives the required
construction of �
� 	��

�� � � ��
�� �
�� � ��
�� �
���

�

��

��� Associativity

Now we go on to prove that the merger is an associative operation on partial trees� thus
ensuring that what we have de�ned is a monoid� We �nd that� because of the generation
lemma� the following result su�ces to prove associativity�

Proposition ��
 �Basic Associativity� Let two trees � and � � and a basic tree � be given�
Then �� � �� � � � � � � �� � � ���

Proof� Appendix A� �

We can extend this associativity result as follows�

Proposition ��� �Full Associativity� Let three trees ��� ��� �� � TI be given� Then�

��� � ��� � �� � �� � ��� � ����

Proof� By the generation lemma we can write the �i as products of basic trees� Let n� be
the number of basic trees we need for ��� The proof will be by induction on n��
If n� � �� then �� is a basic tree and we are done by the previous proposition� So let
n� � n� � and assume that the statement holds whenever n� � n� �� Then �� is a product
of basic trees and can be written �by the induction hypothesis� �� � � � � for some tree �

and a basic tree �� Now�

��� � ��� � �� �

��� � �� � ��� � �� � �by induction hypothesis on ���

���� � �� � �� � �� � �by induction hypothesis on �� � �� � ���

��� � �� � �� � ��� � �by induction hypothesis �for n� � ���

�� � �� � �� � ���� � �by induction hypothesis �� is smaller than �� ��

�� � ��� � �� � ��� � �by induction hypothesis on � � �� � ����

�� � ��� � ����

This proves the proposition�
�

Now it is clear that the partial trees as we have de�ned them in this section form a monoid�
This means that the partial trees may provide a suitable setting for text semantics� in section
� associativity was introduced as the methodological constraint on text semantics�
The next step is to check that the partial trees actually form an update algebra� as the title
of this section promised� with as states the update trees of the previous section� After that
we have to see whether the update functions of section � really can be represented in this
update algebra�

Proposition ��� �TI� downTI� �� �
�� is an update algebra�

Proof� We know that �TI� �� is a monoid� It is clear that �
� is its unit� It is not di�cult
to check that OTAT holds�

if � � � � � downTI� then already � � TI�

�

��

� Trees and Texts

In section � we have seen that texts can be interpreted as update functions on down trees
and in section � we have seen how trees form an update algebra� In this section we make
the relation between the semantics of section � and the trees of section � precise� First we
de�ne the tree representation of a text�

De�nition 	�� For a text � � TextA we de�ne its tree representation ����� � TI�

����� � ����

��p�� � ��p��

��if �� � �
� �
���

��then�� � ��
�� �
���

��end�� � ��
��
��

������ � ����� � ������

Now we can check that this tree representation indeed generates the update functions from
section ��

Proposition 	�� Let a text � � TextA be given� Then ��� � �

����

Proof� The proof for the basic cases�� p� if � then and end consists of a careful comparison of
the clauses of de�nition ��� with the corresponding clauses in de�nition ������ For compound
texts� ��� the result is a direct consequence of the fact that TI is an update algebra�

���� � ��� � ��� � �

��� � �

��� � �

����

��� � �

�����

�

So we have an equivalent representational semantics for the update semantics of section ��
Thereby we also inherit the notion of truth from section �� The following corollary can even
been seen as an explanation of the notion of truth we de�ned there� it turns out that texts
that are true �in I� have �
� as representation�

Corollary � Let a text � � TextA be given� Then � is true i� ����� � �
��

Proof� Recall that � is true i
 �
���� � �
�� Hence � is true i
 �
������� � �
� i
 ����� � �
��
�

With the tree representation of texts we have obtained a more re�ned test of well formedness�
the grammatical texts have a trivial tree representation � ��� for some � � I � the coherent
texts are precisely the texts that are not represented by � and the left �respectively right�
complete texts are the texts that have a down �up� tree as a representation� The advantage
over the test with the update functions is that we can now easily distinguish among the
trees that are both left and right incomplete from the texts that are just left incomplete�

��Of course we have to read � as unde�ned �or vice versa��

��

� Concluding remarks

The main conclusion of this paper is that an incremental semantics �of texts� is feasible�
even if typically non	associative phenomena occur� The general strategy to deal with these
phenomena is to exchange non	associativity for structured memory�
We have introduced a non	trivial kind of structure on the memory slots in order to be able
to distinguish semantically the contribution of the di
erent kinds of items that we store in
the slots� in our case assumptions and conclusions� As a result we have obtained trees as
texts� In the general case other� more complex� structures will probably be called for� but
the strategy of using structured memory will still work�
It was also shown that the update view on semantics and our tree semantics are compatible�
We have been able to �t our update functions in the general frame of Visser�s update algebras�
In an update algebra the static meanings generate update functions canonically� but it is not
excluded that also other update functions exist� This seems to represent a very reasonable
view on the relation between static and dynamic semantics� it is hard to imagine static
meanings that do not give rise naturally to update functions��� but� at least at �rst sight� it
is not clear that all ways to update information states should be representable statically� as
the meaning of some text��� our text language simply might not be rich enough�
We have used binary trees to represent slots in memory� For the kind of texts we consider
this is not an unreasonable choice� But our ways of reasoning do not always �t the binary
format��	 For example� we tend to use intermediary conclusions� as in

Suppose Mary shows up� Then she will bring her dog along with her� And
therefore Bob and his cat will be forced to leave�

If we want to represent such situations in our approach� binary trees will not be su�cient�
We would need structures of
exible length to handle an arbitrary number of intermediary
conclusions� This would make the objects in our semantics more complex� Another problem
would be the semantics of end� there we would have to compute the content of such a
complex structure� But it is not obvious how this should be done� The relation between the
three statements in the example clearly is not very simple and there is room for discussion
about what exactly this relation is� For example� is the fact that �if Mary shows up� then she
will bring her dog� part of the evidence on which we base our conclusion that �Bob and his
cat will leave�� Or does the conclusion only depend on the information that �Mary shows up�
and that �she will bring her dog along with her� and not on the causal connection between
these events�
There is another point to be made about the kind of structure that we use� It is clear that
we use binary trees��
 but not all binary trees occur in our semantics� This is a consequence
of the strategy to compute the content of an implication as soon as this is possible� It is
because of this strategy that our structures remain relatively simple� But maybe this is an
unjusti�ed simpli�cation� maybe there is reason to distinguish the step of actually computing

��The fact that most static notions of meaning give rise to update functions� is also noticed by �van
Benthem��

��Although the idea is already implicit in �Visser� Actions under Presupposition�� it was Patrick Blackburn
who pointed out to me that one can think about the relation between update semantics and static meanings
in terms of representable functions�

��In �Zeinstra� an attempt is made to work with a more �exible language� She also makes an attempt at
an incremental semantics�

�	Or rather� we use segments of depth �rst paths through binary trees�

��

the content of an implication from the step of simply interpreting it� The step where we
distroy the if � � � then structure and compute its information content in the Heyting algebra
could be postponed for a while� Then we can remember the structure of the text explicitly
until we choose to perform that computation��� It is not di�cult to adapt our semantics to
this e
ect�
We have already made a remark about the connection of our work with Discourse Repre	
sentation Theory� DRT for short� instead of propositional texts we could also use basic
Discourse Representation Structures �DRSs�� Thus we would obtain a formulation of DRT

which satis�es the constraints mentioned in the introduction� Also in the formulation of
�Kamp� tree structures �DRSs�� are introduced for the interpretation of texts� But the way
in which they are handled is not very elegant� Complete if � � � then structures � subtrees
� are treated as conditions� the kind of thing that can only be added to a DRS in one
sweep� This is a clear disadvantage if we also want to consider if � � � then structures that
are stretched out over several sentences� It also is a rather counterintuitive procedure for
the interpretation of �deeply� nested if � � � then constructions� So our tree algebras can be
used to improve the formal de�nitions of DRT in this respect�
There is also a relation between this work and the work of Visser��� he also tries to obtain
an incremental semantics by using structured semantics� His stacking cells are in fact quite
similar to our trees� A stacking cell consist of a number of pop	levels� a stem and a number
of push	levels� So the general format is �pop� stem� push�� This corresponds to the general
format ���� �� �� of the trees in TI� the up tree �� corresponds to the pop in a stacking cell�
the root � corresponds to the stem and the down tree � corresponds to the push	levels� Our
structures are less elegant because we allow for a split in each level� splitting it in an if and
a then part� This results in a nesting of levels which makes the interaction between trees
more complicated than the interaction of Visser�s stacking cells� Still it can be shown�� that
the partial tree structure can be simulated with a special kind of stacking cells�
Finally a remark about other kinds of texts� The texts in this paper are all of the same
kind� the kind that comes with if � � � then structure� But in the general case di
erent types
of texts are mixed� We �nd small arguments in long stories� in which not only a course of
events is described� but also more or less extensive comments on these events are included�
Each of these kinds of texts has its own peculiarities which have to be taken into account in
the semantics� In fact it seems that in a text we �nd a nesting of these types of texts��� each
of which has features that are crucial for the interpretation of the text and the sentences of
which it is made up�

A Appendix

We use this appendix to present the proof of the basic associativity result �proposition ����
that is essential for the associativity of �� The notation is as in section ��

�
I would like to thank Marcus Kracht for discussion on this point� �Kracht� defends a similar distinction
for other connectives as well�

��In fact the author is not only in�uenced by �Visser�� in text� but also by Albert Visser� in person� He has
made many useful suggestions and has asked many useful questions�

��By Albert Visser� personal communication�
��This nesting is not unlike the nesting of di�erent kinds of modalities� each of which introduces us into a

di�erent kind of world in which di�erent kinds of laws rule�

��

Proposition A�� �Basic Associativity� Let two trees � and � � and a basic tree � be
given� Then �� � �� � � � � � � �� � � ���

Proof�
We can assume that � �� ����� and � � � ������ ��
Now we distinguish two situations�

either��� segf�� � �� � segf �	 � �� and segi�� � �
�� � segi�� �
��

or

not� segf �� � �� � segf �	 � �� and segi�� � �
�� � segi�� �
��

First we discuss the situation where not segf �� ��� � segf �	��� and segi����
�� � segi���
��

Assume �rst that segf �� � ��
� segf�	 � ��� This can only happen if � � � gives rise to a
collapse� Then either

	 � ���� ����� ����� and � � ��
��
�

or

	 � ���� ����� and � � ��
�� �
��
��

We will discuss the �rst case� The second one is handled analogously� So � �� ��f��
�g���� �
����
Note that it is not possible that also � � � � gives rise to a collapse� So we know that
segi�� � �

�� � segi�� �
�� This means that segi�� � �
�� � ��
��
� ��� � � � ����� where ��

is the leftmost node of
���

This gives us�

�� � �� � � � �

��f���g���� � ����� � � �

and

� � �� � � �� �

�� ������� ������ � � � �

��f���g���� � ����� � f����g�� � � ���

Since segi�� � �
�� � � � ����� we see that f����g�� � � ���� �� So the result follows�

The case where segi�� � � ��
� segi�� �
� follows by symmetry�

In the second case segf�� � �� � segf �	 � �� and segi�� � � �� � segi�� �
�� Now it su�ces
to check that for all choices of 	� ��
 we have

�	 � �� �
 � 	 � �� �
��

It is clear that this su�ces� since � is speci�ed entirely in terms of the �nal and initial
segments� We have to check the following �� combinations�� of 	i � �k �
j�

��This �rst case includes the case where one of �� � is equal to ��
��The terminology leftmost node should be clear� it is the point where the path segment � starts� We could

de�ne this notion properly� but feel that this would only confuse matters�
��We skip the really trivial cases where �i� �j � ��

��

	 � segf ��� �
 � segi��
��

��� ���� ��� �����

��� ���� ����� �
� �
�� ������� �
�

��

��� ���� ����� ����� ��
��
� ������� ��
�

��� �
�

��

��� �
� ����� ��
�� �
�� ������� 	�

We distinguish cases according to the value of k� For each case we handle the easy combi	
nations� i�e� the combinations where either the error state� �� is reached or else three trees
with the same �direction� have to be merged� For also if 	i� �k and
j are all down trees
�or symmetrically all up trees�� then associativity is obvious� For each case we will specify
which are the remaining combinations�

k � � � Note that now � does not change the form of the �nal or the initial segment� There	
fore 	i � �� �
j � � i
 	i �
j � �� This is the case if� i � j � �� i � j � �� i �
j � � or fi� jg � f�� �g� Also if all three trees are down trees or all three trees are up
trees� no problem can arise� This is the case if one of i� j is equal to ��

There are four remaining cases� 	i � �� �
j for i � � and j � f�� �g or� symmetrically�
j � � and i � f�� �g�

k � � � Note that �� is a down tree� Hence the �nal segment of 	i � �� will have the same
shape as ��� This implies that 	i � �� �
j � � i
 �� �
j � �� This is the case
precisely when j � �� The other easy combinations are those where all trees are down
trees� This is the case whenever j � ��

The eight remaining combinations are those where j � f�� �g�

k � � � By symmetry with the previous case we may conclude that the cases 	i ����
j with
i � f�� �g remain�

k � � � Note that �� has both a non	trivial initial and �nal segment� This means that it
behaves both as a down tree �when merging with
j� and as an uptree �when merging
with 	i�� As a consequence there are no easy cases with just three up trees or just
three down trees� we only have � cases as easy cases�

We see that 	i����
j � � can be the case only if already 	i ��� � � or ���
j � ��
This is the case whenever i � f�� �g or j � f�� �g�

The four remaining cases are those in which fi� jg � f�� �g�

We �nd that there are � � � � � � � � �� cases left to consider� By symmetry it su�ces
to check twelve of these �if these twelve are chosen carefully�� For example� checking the
following twelve cases su�ces to �nish the proof�

��

	� � �� �
� ���� ����� ��� ������� ��
�

��� �
�

��

	� � �� �
� ���� ����� ��� ������� 	�

	� � �� �
� ���� �
� �
�� ������� ��
�

��� �
�

��

	� � �� �
� ���� ����� �
� �
�� ������� ��
�

��� �
�

��

	� � �� �
� ���� ����� ����� �
� �
�� ������� ��
�

��� �
�

��

	� � �� �
� �
� ����� �
� �
�� ������� ��
�

��� �
�

��

	� � �� �
� ���� �
� �
�� ������� 	�

	� � �� �
� ���� ����� �
� �
�� ������� 	�

	� � �� �
� ���� ����� ����� �
� �
�� ������� 	�

	� � �� �
� �
� ����� �
� �
�� ������� 	�

	� � �� �
� ���� ��
�� �
�� �����

	� � �� �
� ���� ��
�� �
�� ������� �
�

��

We leave it to the industrious reader to check these cases� �In fact the cases where either
	i � �k or �k �
j collapses have already been discussed above��
This completes the proof of the proposition� �

We have to admit that the proof is a bit clumsy� But at least it is pretty straightforward as
well� the main work is a lot of trivial case checking� By general observations we have been
able to reduce the number of cases that actually have to be checked to twelve�
An alternative proof has been proposed by Albert Visser� It is possible to embed the partial
trees in a term rewriting system� Termtree say� such that the term rewriting procedure
actually computes the merger� The terms of Termtree would be sequences of basic terms
among which we �nd our basic trees� A typical rewriting rule for Termtree would look
something like�

���� ����� � ������ ����� � ���� ��� � ���� ������

Now the proof of the associativity would follow from two observations about Termtree�

� The normal forms of Termtree are exactly the partial trees of TI�

� Termtree has strong normalisation�

Then we would know that di
erent ways of rewriting the terms �or� computing the merger�
would give the same result�
We have chosen not to present this proof in detail� although it is more elegant than the
direct proof� One reason is that we would have to introduce a lot of notions for no other
reason than to make the proof readable� Another reason is that the resulting proof is not
really shorter� the term rewriting system has a lot of rules �it has to do the same thing
as the de�nition of the merger which has �� cases�� which makes the normalisation proof
tedious�

B References

Groenendijk� J� and M� Stokhof �Dynamic Predicate Logic�� Linguistics and Philoso	
phy� ��� ����

Heim� I� �File Change Semantics and the Familiarity Theory of De�nites�� in� Bau!erle et
al �eds�� Meaning� Use and Interpretation of Language� Berlin� ����

��

Kamp� H� �A Theory of Truth and Semantic Representation�� in� Groenendijk et al� �eds��
Formal Methods in the Study of Language Mathematisch Centrum� Amsterdam ����

Kracht� M� When can you say �it��� Bericht der Gruppe Logik� Wissenstheorie und Infor	
mation� Freie Universit!at Berlin� ����

Veltman� F� �Defaults in Update Semantics�� manuscript University of Amsterdam� �����
to appear in� Journal of Philosophical Logic

Visser� A� Actions under Presupposition� Logic Group Preprint Series no� ��� Utrecht
University� ����

Visser� A� Lazy and Quarrelsome Brackets� Logic Group Preprint Series� Utrecht Univer	
sity� ����

Visser� A� Meanings in Time� manuscript

Zeevat� H� �A Compositional Version of Discourse Representation Theory� Linguistics and
Philosophy� ��� ����

Zeinstra� L� Reasoning as Discourse� Master�s Thesis� Philosophy Department Utrecht
University� ����

��

