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1 Introduction

Interpretations are much used in metamathematics. The first application that comes to
mind is their use in reductive Hilbert-style programs. Think of the kind of program
proposed by Simpson, Feferman or Nelson (see Simpson[1988], Feferman[1988],
Nelson[1986]). Here they serve to compare the strength of theories, or better to prove
conservation results within a properly week theory. An advantage of using
interpretations is that even if their use should -perhaps- be classified as a proof-
theoretical method, it is often possible to employ a model-theoretical heuristics. An
example is given in section 7.2 where a conservation result due to Paris & Wilkie,
which is proven by amodel-theoretical argument, is formalized in a week theory. For
more discussion of and perspective on the use of interpretability in reductive
programs the reader is referred to Feferman[1988].

A second application is the use of an interpretation of Elementary Syntax e.g in
proving Godel's Second Incompleteness Theorem: here the interpretation is essential
both for the significance of the result and for the heuristics of the argument.

The notion of reative interpretability was made explicit in Tarski, Mostowski,
Robinson [1953]; it was systematicaly studied in the twin pioneering papers
Feferman[1960] and Orey[1961]. Lattices of interpretability types were considered in
much detal eg in Montague[1958], Mycielski[1962, 1977], Svedar[197§],
Lindstrom[1979], Pudl&k[19834]. Theinterest in these lattices is clearly motivated by
the view that interpretability is an adequate means for comparison of strength of
theories. Characterizations of relative interpretability for various kinds of theories
were obtained by H§ek applying the Orey Compactness Theorem (for essentialy
reflexive theories) and by Friedman and Pudl& independently (for finitely
axiomatized sequential theories;, see respectively Smorynski[1985b] and
Pudl&k[1985]; a presentation of part of Friedman's result isgivenin sections 7.2, 7.3).

Both Solovay and Lindstrom proved that reative interpretability over essentiadly
reflexive theories like PA or ZFC is complete IT, (see Lindstrom[1979], Solovay[?]).

To be more specific for example the set of Z;-sentences S such that ZFC interprets
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ZFC+S is complete IT,. This awesome complexity has suggested to some that the
usua notion alowstoo many interpretations. I'm not quite convinced: nobody said we
haveto use dl of them. Another response is to study restrictions of the usual notion:
thereis still room for alot of experimentation here.

Modal logicsfor interpretability werefirst studied by Hgjek and then by Svejdar (see
Haek [1981], Svedar[1983]). They studied logics with moda operators for
provability and interpretability and with witness comparison relations. In Svejdar's
system a number of important arguments can be formulated. Moreover Svedar
provides a number of different interpretations of his system. What one seeks in a
Svejdar-type approach (which is analogous to Smorynski's approach in his
"Ubiquitous Fixed Point Calculation") isasystem that is as weak as possible, but ill
codifies the relevant class of arguments, the point being unification and simplication
of anumber of specific arguments from the literature. There is no need for the system
to be complete w.r.t. any set of interpretations.

The approach in this paper is somewhat different: the focus of interest isto find logics
that are sound and complete for interpretations in a given theory (or class of theories).
If we know that alogic is sound and complete for interpretations in a given theory and
amodal formula ¢ is consistent with the logic, then we know that we can find an
interpretation of ¢ that is consistent with the given theory. Typicaly this interpretation
is explicitly given by the proof of the Completeness Theorem.

Solovay's Compl eteness Theorem for provability logic is remarkably general: we have
the samelogic, viz. Lob'sLogic L, for al theories T with the following properties. (i)
they have aX;-pro- vability predicate, (ii) they extend IAG+EXP, and (iii) they do not
prove their own n-iterated inconsistency (i.e. O¢N.L) for any n. (If atheory T satisfies
(i) and (ii), but not (iii) let n* be the least n such that THO "L, then the provability
logic of T isL+ 0N L. Suppose T has an R, *-provability predicate, extends |Ay+Q;
and has property (iii), then we know that L is sound for interpretationsin T, but we do
not know in genera whether L is complete for interpretationsin T. Specificaly itis an
open question what the provability logic of 1Ay+€2; is.) From one point of view the
generality of Solovay'stheorem is adisadvantage: one cannot expect information from
it connected with specific properties of the theory considered. In this respect
interpretability fares better: it turns out, for example, that properties like finiteness and
essentia reflexivity induce essentialy different interpretability principles.
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We study two kinds of questions. Let some property = of theories be given: (i) which
interpretability principles are valid in dl theories satisfying =2, and (ii) does =
determine the interpretability principles vaid for interpretations in any given theory T
satisfying Z? In this paper the following specific instances of questions (i) and (i) are
considered: (a) which interpretability principles are vdid in al R;*-axiomatized
theories extending 1A+, 7, (b) what is the interpretability logic of a given verifiably
essentialy reflexive theory U?; (C) what is the interpretability logic of a given finitely
axiomatized sequential theory U extending 1Ay+€Q,? For questions (a), (b)

conjectures are formulated. An answer is avalable for (c¢) in case U extends
[Ag+SUPEXP.

2 Contents

Section 5 contains the necessary preliminaries. In section 6 the systems of
interpretability logic IL, ILW, ILP and ILM are introduced. We take a brief ook &
their consequences and discuss their Kripke semantics and arithmetical significance.
In section 7 the form of Friedman's characterization of interpretability for finitely
axiomatized sequential theories that is needed to prove our arithmetical completeness
result isderived. It turnsout that it is convenient to prove this result from a technical
lemma (7.2). This lemma is the formalized version of a result of Paris & Wilkie
which provides a connection between |A;+Q; and IAG+EXP. | think this lemmais of
some independent interest. Finally in section 8 it is shown that ILP is a complete

axiomatization of the interpretability logic of finitely axiomatized sequential theories
extending 1A;+SUPEXP

3  Acknowledgements

The research on which this paper reports is part of a project together with Dick de
Jongh, Craig Smorynski and Frank Vetman. Discussions with them were very
important for me. Correspon- dence with George Kreisel and with Franco Montagna
has been invariably stimulating.

4  Prerequisites

We presuppose some knowledge of Smorynski[1985a], Paris & Wilkig[1987],
Pudlék[1985, 1986].

5 Conventions, Notions & Elementary Facts.
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5.1 Languages

In this paper we consider only relationa languages, i.e. languages without function
symbols and constants. So for example in the case of arithmetic, instead of + we have
aternary relation symbol, etc. . Of coursethisis a severe and unjustifiable restriction.
| am convinced that the restriction can be dropped amost everywhere. My only
excuse is that a some places -especialy where tableaux provability is involved- the
use of a language with function symbols asks for some extra work: work | have not
yet done.

After thisis said officially we will of course often pretend that we are working in a

language with function symbols. Here one has to be careful: for example at a certain
point we are working in [Ay+€2; and we consider a function assigning to n the

Godelnumber of Jy y=n, where n is the numerd in the sense of Paris and

Wilkie[1987] corresponding to n. For the functional language it is easy to see that
this function is total (in 1Ay+€24). Inspection of the trandation procedure into the

corresponding relational language shows that the fomulas become only polynomially
longer, so the function is aso total for the relational language.

In our languages there are only finitely many relation symbolsincluding identity.
5.2 Special Classes of Formulas

We refer the reader to the discussion of special classes of formulas in Paris &
Wilkieg[1987].

Ag-formulas are formulas where all quantifiers are bounded by termsin O, S, + and .

(or rather the trandations of such formulas in the relational language), where the

variable of quantification does not occur in the bounding term. If the theory we are
working in proves that some function f with Ay-graph is tota, we may want to

consider Ag(f)-formulas, where the bounding terms also involve f. In Gaifman &
Dimitracopoulog1982] it isshown that if f is reasonable -roughly: if it doesn't jump
up an down wildly- then 1Ay+"f is total" implies 1Ay(f). For our purposes it is
sufficient to know that m, and exp are reasonable; here: exp(x):=2X.

5.3 Theories and Provability
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We consider only theories with identity for which a fixed formulas of their language
are specified giving us a set of natura numbers, O, successor, addition and
multiplication. We assume in most cases that |Ay+£2, is provable for these natural
numbers. Variablesx,y,z,u,v,... will be taken to range over the designated numbers. As
variablesfor genera objects of the theory we will use ab,... . Syntactical notions will
always be formalized in the designated natural numbers.

We consider a theory T as given by a formula o1(X) having just x free plus the
relevant information on what the set of natural numbers of the theory is. ot gives the
set of codes of the (non-predicate-logical) axioms of the theory. Different o different
theories; same o same theory. Unless explicitely stated otherwise we will dways
assumethat o is an Ry *-formula.

Let Proof(x,y) be the R;*-formula representing the relation: x is the Godelnumber of
aT-proof of the formulawith Godelnumber y. Proof+ will be built in some standard
way from o. The precise choice of the system on which Proofy is based is
immaterial: any Hilbert style system or Natura Deduction system or Genzen style

sequent system will do. If we want to stress that we are looking at the Proof-relation
based on a certain specific formula 3 we write: Proof.

We assume for convenience that: 1Ag+QHVx3ly Prooft(x,y) . Let Provy(y) =
IxProoft(X,y).

We write par abus de langage 'Proof(U, ¢(Xy,....X,) ) for: Proofr(u,"o(X 1, ..., X)),
here:

i) al freevariablesof ¢ are among those shown.

i) fo(X;,...X,)" is the "Godelterm” for ¢(Xy,....x,) as defined in SmoryN®ski

[1985], p43. Here we use instead of the usual numerals the efficient numerals of
Paris & Wilkie[1987], so that: 1Ag+ Q- VXq,e X3y (X 1, ., X)) =y.

O 10(Xy,....X,) Will stand for: Provp("o(X | ,-..,%p)").

Occurrences of terms inside O+ should be trested with some care. Is O(¢[t/X])
intended or (O1¢(x))[t/x]? We will ways use the first, i.e. the small scope reading.
In cases where: U provesthat tistotal and Ur t=x—0,,t=X, the scope distinction may
be ignored within U w.r.t. Oy,. We have: UF (O,0(X))[t/X] <> Oy (0[t/X]).
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We will also need normalized or cut-free provability: here we could choose Herbrand
provability (as used in Pudlak[1985]) or cut-free provability in a sequent system or

tableaux provability. We use tableaux provability as in Paris & Wilkig[1987]: we
write Tproof(x,y) for: Tabincon- proof(U,x), where U is T plus the negation of the

formula coded by y. Tprooft(x,y) is given by an R;*-formula. Tprovy(y) is
IxTproof(x,y). Tcon(T) is Vx—Tproof(x,L"). ATd(Xq,...X) Will stand for:
Tprovy(<o(XE 4,... XCE )»). Of course our remarks about scope of terms carry over
to A.

Ot will standfor: =O7— ,and V1 for: —A7-.

L et the axiom set of T be given by o(x) then O 1Ty stands for provability in the theory
whose axiom set is given by (o(x)Ax<y). O, will stand for restricted provability in
the sense of Paris & Wilkie[1987].

For convenience we write O, for provability in [Ay+£€2; and Oy p for provability in
[Ag+EXP.

54 Special Properties of Theories

A theory T, with designated natural numbers satisfying 1AG+€24, is sequential if in it
one can form sequences of any of itsobjectsi.e. there is a relation (s),=a such that T
proves.

() Vsxab(((9x=an(9)=b) - a=b),

(i)  VsIxVy (3b (s)y=b <> y<x)

(i) 3Jsvx,a—(9)y=a,

(iv) Vsax(Vy<x3db(s)=b—

3sVbVy<x ( (s)y=b <> ((y<xa(s)y=b)v(y=xra=b)) ) )

Our notion of sequentidity is only seemingly more restrictive than those in the
literature: for any theory that is sequential e.g. in the sense of Pudlak[1983] one can
define set of natural numbers satisfying 1Ao+€24 and a relation (s),=a making the
theory sequential in our sense. The notion of sequentiality is due to Pudldk. We will
describe severa important properties of sequential theories later.

A theory isfinitely axiomatized if its axiom set is given by a digunction of formulas
of the form x=n, where n codes aformula.
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A theory T isessentially reflexiveif for dl fomulas ¢(x,...) of its language and for dl
natura numbers n: THVX,...( Ofn ¢(X,...) = 0(X,...) ). T is verifiably essentially
reflexiveif T isessentially reflexiveand T provesthe formalization of "T is essentialy
reflexive’.

55 I nter pretability

Interpretations are in this paper: one dimensiona global relative interpretations
without parameters. Consider two languagesL and L'. Aninterpretation M of L' in L
is given by (i) a function F from the relation symbols of L' to formulas of the
language of L and (ii) aformula 6(a) of L having just a free. The image of a relation
symbol has precisely a,...,a, free, where n is the arity of the relation symbol. The
image of = need not be a;=a,. The function F is canonically extended in the following
way: (R(by,...,.0))M:=¢(by,...,b,), where 0=F(R). (To make substitution of the b's
possible we rename bound variablesin ¢ if necessary. In fact it would be neater to set
apart bound variables for the F(R) and for & that do not occur in the origina L'.) (.)M
commutes with the propositional connectives. (Vby)M:=Vb(5(b)—yM). We can
easily extend (.)M again to map proofs wt (from assumptions) in L' to proofs t™ from
the trandated assumptionsin L in the obvious way (for free variables b one adds 6(b)
as a hypothesis). As is easily seen for a given interpretation M the lengths of the
trandated objects are given by afixed polynomid in the lengths of the originals. The
graphs of yM (considered as a function in y and M) and of ©™ (considered as a
function in © and M) can be arithmetized by R;*-formulas in such a way that the
recursive clauses are verifiable in |Ag+€2,. Because of the bound on the lengths of the
values | Aj+Q2; proves that these functions are total.

Consider theories T (with language L) and T' (with language L' ). What could it mean
to say that T' isinterpretablein T viaM? | think the obvious interpretation is this: for
every axiom y of T' thereisaproof in T of yM. (I assume in this discussion that we
are dealing with sentences, in the case of formulas one should consider: (8[y]— yM),
where d[y] is the conjunction of §(b)'s, for dl free variables b of y.) Given the
definition the next step isto show: if T' isinterpretable in T viaM and if T' proves ¥,
say by r, then thereisaproof n* in T of yM. Roughly ©t* is M with proofs of the
trandated T'-axioms plugged in at the relevant places. Now here is the problem: the
verification of the existence of ©* requires (prima facie) 1Z4, so in weak theories we
don't have this step available. On the other hand what is the point of interpretability if
we don't have the t*?
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Let us say that:
T'isa-interpretableviaM in T if for every axiomy of T'
thereisaproof in T of yM,
T'ist-interpretable viaM in T if for every theorem y of T'
thereisaproof in T of M.
The proof n* as described above could be said to simulate 7.
T'is siinterpretable viaM in T if for every proof © of T' there is a smulating
proof t* in T,

Clearly (in [Ag+€2;) s-interpretability implies t-interpretability which in turnimplies a-
interpretabi- lity. My choice to solve the problem mentioned aboveis smply to take t-
interpretability as my notion of interpretability. One could argue that from the
philosophical point of view s-interpretability would be the best choice. However t-
interpretability is somewhat easier to define and somewhat easier to work with.
Moreover | am not aware of any point where the difference between the notions
becomes important.

Note that our problem vanishesif T' isfinitely axiomatized: it is easy to seethat in this
case | Ag+€2; provesthat a-interpretability implies t-interpretability. A further ideaisto
impose a bound on the proofs of the trandated axioms of T":

T' is e-interpretable viaM in T if there is a polynomial p such that for every
axiom y of T' thereisaproof in T of yM that is shorter than p of the length of .
Again it is not difficult to see that 1Ay+Q, proves that e-interpretability implies t-
interpretability. Moreover by applying awell known result we find: if 1Ag+£2; proves
that T' isarinterpretablein T viaM, then |Aj+€2; proves that T' is e-interpretable in T
viaM and hence that T" ist-interpretable in T viaM. So if we verify in [A+Q; that M

isan interpretation of T'in T we need only worry about the axioms.

We write:
M:UP>V, for the arithmetization of: V ist-interpretablein U via M.
We can arrange it so that M occurs in the arithmetization as a number, so it is possible
to quantify over M in the theory. Define:
uev o IMM:UBV
M:0P> yy 1= M:(U+9)> (U+y)
0>y e (U+0)B (U+y)
U=V =< UB>VaAVEU
=gy = (U+g)=(U+y)
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Finally let me mention an important fact (which is just a variation of the smilar fact
stated for Herbrand consistency, see e.g. Pudl&k[1985]):

551  Fact: for T R;™-axiomatized: IAG+Q - (IAG+Q+V 1 T)B>T.

Proof: The proof will be given in detail in Marianne Kalsbeek's Masters Thesis. It
involves carefully constructing the systematic tableaux t for T on a suitable cut | and

then producing a path that is provably infinite on a cut J shortening I. O

5.6 Cuts

Consider atheory T with designated natural numbers satisfying IA;+Q4. A T-cut is a
definable set | of natural numbers such that T provesthat: O, ((x<yayel)—xel), "I
is closed under S+,.,m,". This definition of cut is a bit stronger that usual, but
because any cut in the weaker sense can be shortened to a cut in our sense the
difference in definition does no harm. For an introduction to Solovay's method of
shortening cuts the reader isrefered to Paris & Wilkie[1987]. We collect a few facts
to be used later.

5.6.1 Fact: Let| beaT-cut, then IAp+Q,+ VXOxel.

This fact is due indepently to Pudlak (see Pudlak[1985]) and Paris & Wilkie (see
Paris & Wilkie[1987]). It depends crucidly on the use of efficient numerals and is
proved by carefully constructing the proof of xe | from x and from the proof in T that

I isacut. A dightly sharpend version (due to Parisand Wilkie) is:

56.2  Fact: Letl beaT-cut, then for somen IAG+Q; = VX0 Xel.

Let exp(x):=2X. Define: itexp(x,0):=x, itexp(x,Sy):=exp(itexp(x,y)), and
supexp(y):=itexp(1,y). One can find a Ag-formula representing the graph of itexp,
such that the recursive clauses for itexp are verifiable in IAG+€2,. We have:

5.6.3. Fact:
[A+QFVy( (exp(y) exists) —
3 IAG+Q4-cut | such that O, (Vxe | itexp(x,y) exists) ).

Proof: Thisisan immediate consequence of the proof of lemma 2.2 of Pudl&k[1986].
O
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5.6.4  Consequence:
[AG+Q VXY ( (exp(y) exists) — Og(itexp(x,y) exists) ).

Proof: By 5.6.2 and 5.6.3. O

5.6.5 Consequence: For T Ry*-axiomatized: IAG+Q—010—>0O0ATh.

Proof: If aproof x isconverted in a tableaux proof, the result is of order itexp(x,|x|),
where [X| is the length of x in the sense of the number of symbols (as in Paris &
Wilkig[1987]). So |x|=log(x). This estimate can be extracted from the one concerning
cut-elimination on p876 of Schwichtenberg[1977], using the close connection

between cut-free and tableaux proofs. We have:
[AG+Q DO 10—3IXO g Proof(X,0) and 1A+Q4H VxO g (itexp(x,|x|) exists). So our
result follows by induction inside O, using itexp(x,|x|) as abound. O

An important property of sequential theories is the presence of partial truthpredicates
(see Pudl@k[1986]). As a consequence of thisa finitely axiomatized sequentia theory
T provesits own tableaux consistency onaT-cut |, i.e.:

566 Fact: THV{IT
[t followsthat TP (IAg+€Q4+V 1+ T) and hence by 5.5.1: T=(IA+Q+V 1T).

At thispoint isis perhaps good to mention a possible source of confusion. IAG+EXP
isinfinitely axiomatized but finitely axiomatizable. In this paper we will use the results
stated for finitely axiomatized sequential theories freely for IAG+EXP. The simplest
way to justify thisis simply to stipulate that by IAG+EXP we will understand the
theory given by some fixed finite axiomatization. Another way is to check the results
directly for IAG+EXP under its obvious axiomatization: this is possible because in
IAG+EXP the usua truthpredicates for X,-formulas are available and because of the
agreeable form of the Ag-induction scheme. A third way is to prove in IA+EXP the
equivalence of tableaux provability in its finitely axiomatized form and tableaux

provability initsinfinitely axiomatized form. For smplicity | will opt for the first way
out. Of course smilar remarks hold for extensions of 1Ay+EXP with finitely many

axioms and for 1Aq+SUPEXP.

5.7 Some Facts about [1Ay+Q4 and IAG+EXP
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571  Fact: For yeIl,: IAGHEXPH VX(Aqw(X)—w(X)).

Proof: Thisis the contraposition of Lemma 8.10 of Paris & Wilkie[1987] with a
parameter added. The extra parameter doesn't require any significant changes in Paris
& Wilkie's proof. O

5.7.2  Fact: For every y(X,y)e Ay, having only X,y free, there is an 1Ay+Q4-cut |
such that: 1A+ Vxe I3yy(X,y) & IAGHEXPH VX3Ayy(X,y).

Proof:"<" This is an entirely trivid variation of corollay 8.8 of Paris &
Wilkie[1987]: the extra existentid quantifier rides along for free. "=" Suppose | is
an IA+Q-cut and  IAp+Q—  Vxeldywy(x,y). It follows that for some m:
IAGtEXP-0¢g ,Vxeldyy(xy). On the other hand for some ki
IAG+EXPHVxOg, i Xel, soit follows that for some n: [AG+EXPH VX0 g n3yw(X,y).
By the estimate in Paris & Wilkig[1987], p293, we can prove cut-eimination for
restricted provability in IAG+tEXP, so IAG+EXPH VXAq3yw(X,y). By 5.7.1 we may
conclude that: TAGHEXPH Vx3ywy(X,y). 0

573 Conseguence: for SS'in X:
IAGHEXPH S-S = [Aj+QFO(S—0,S.

Proof: Suppose 1Ay+EXPH S—S, then for some IAG+Q4-cut | IAG+Q,+ S —S, so
[A;+Q -0 ,Sl—>0,S. On the other hand: 1Ap+Q,-0,S—0,S!. O

5.8 IT;-cut-conser vativity

Define: TS ¢ thereisa T-cut | such that TH¢l.

We say that U isT1;-cut-conservative over V if for al I1;-sentences P
VHCP = UHCp,

We show that for sequential U: U interprets V = U is I1;-cut-conservative over V.
The proof will be verifiablein 1A;+€;.

Proof: (The proof is redly just a proof of lemma 3.3 of Pudlék[1985]) Suppose U
interprets V. We will use outline for variables ranging over the domain assigned to V
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in the trandation, for trandated constants and predicates of V. Supposel is a V-cut, P
all;-sentence and VP!, Reason in U:

Theideaistotry to map the numbers of U into the ‘trandated numbers of V. A
small complication isthat trandated identity need only be an equivaence relation.
So the 'function’ we define will be multivalued.

Define for xe m:

F(x,y) <> thereis a sequence ¢ of elements of @ such that (c),=0, for
u<x (0)y+1=S(()w),
(O)x=Y.

Let 1o bethe set of x's such that: dye @ (F(x,y) A Vze @ (F(X,2)—>Yy=2). Asis
easily seen |y contains 0 and is closed under successor. Clearly F behaves like a
function w.r.t. = on |, so we will write f(x)=y instead of F(x,y) for x|,

Define I :={xe lg|Vye | (y+xe lg A f(y)H (X)=f(y+x))}. It is easily seen that |
contains 0 and is closed under sucessor and addition. 1,:={xe |4|Vyel; (y.xel;
A f(y).f(x)=f(y.x))}. Againitiseasly seen that |, contains O and is closed under
successor, addition and multiplication. Clearly on |, f commuteswith 0,S, + and .

Let 13:={xe I,|Vy<x ye |, A Vy=f(x) dz=x f(z)=y}. |5 contains O and is closed
under succes- sor. Finally let 1* be the result of shortening |5 to a cut thet is
closedunder S, +,. and m,. Let [* be the image of 1* under f. Both I* and [ *
are initid segments of their respective natura numbers, which are isomorphic
w.rt. 0, S +, and . . Note that [* need not be definable in V: for V it is an
"external cut". We find for Ag-formulas ¢(Xy,...,Xp):

VX1, Xp€ I 0(Xq,-Xp) <> O(F(Xp),-..,F(X)),
and thus for T1;-sentences y: y!* <> yl”.

By assumption we had P! where | isatrandated V-cut. Let 2=IN[* and let J.=f-
1(J). Wefind that Jis an U-cut isomorphic to Jand thus P). O

Suppose V is also sequential and suppose U isT1;-cut-conservative over V. We show
that in thiscase V islocally interpretablein U.

Proof: Consider a finite subtheory V, of V. We have for some V-cut I:
VTconl (V). So for some U-cut J U Tcond(V). Ergo U interprets V. O

Interpretability Logic
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5.8.1 Application: We show for finite sequential U and V:
|Ag+ Qi UV 5 T 1A5+Q -cut | Og(Teon(U)—Tconl (V)).

Proof: Reason in |Ag+€2;:

First suppose UPV. Clealy (IAg+Q+Tcon(U))®>>U and hence
(1Ag+Q,+Tcon(U))> V. ThereisaV-cut J such that Oy, Tcond(V), so by I1;-
cut-conservativity there is an [Ag+Qq+ Tcon(U)-cut J* such tha
O (Tcon(U)—Tcond* (V). Define: xel <> (xe Fv—Tcon(U)). As is easly
seen | isan 1Ap+Q4-cut and O (Tcon(U)—Tconl (V)).

Suppose 3 1A;+Q4-cut | O (Tcon(U)—Tcon!(V)). We have:
U (IAg+Q+Tcon(U)) > (1Ag+€2+Tecon(V))=> V. O

5.8.2 Consequence: let T be a finitely axiomatized and sequential. Let U:=T+¢,
V=T+1, wefind: IAj+Q+ O7¢ <> OoATO.

5.8.3 Application: Let U befinitely axiomatized and sequential and
let P be aIl;-sentence. We have: UP P < |Ap+EXP+Tcon(U)H P.

Proof: Asiseasy to see: U P < for some |Ag+ Qq-cut |:
|Ag+ Qq+Tcon(U)- Pl Apply 5.7.2. O

6 Principles

The language of IL isthe language of modal propositional logic with one extra binary

operator B> . An interpretation of this language in a theory T with a designated set of
natural numbers satisfying 1AG+€2, is a function (.)* that maps the atoms of the

modal language on arbitrary sentences of the language of T, commutes with the
propositional  connectives (including 1) and satisfies (O¢)*=01¢* and
(0> y)*=¢* > ty*. Here O and B> 1 are the arithmetizations in the designated set

of natural numbers of respectively provability in T and interpretability over T.
6.1 IL,thebasiclogic

Thetheory IL is useful as a basic theory from the moda standpoint. From the point
of view of arithmetical interpretations it is too weak: as we will see the principle W,
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which isnot derivableinIL, is valid for interpretations in all reasonable theories. The
theory IL isgiven as Propositional Logic plus:

L1 I—q) = I—Elq)

L2 = O(0—vy) — (Oo—0vy)

L3 o Elq) - IZ]EIq)

L4 = 0(0¢0—>¢)—>00¢

Ji E O00-y) - By

J2 = (OB yay>x) — o> %

33 = (OB xAy>x) — (9vy)P
J4 E oy — (Co>Oy)

J5 F OO ¢

Note that the principle L3 is doubly superfluous: it follows both from L1, L2, L4 (by
awedl known argument) and from L1, L2, J4, J5 (by atrivia argument).

6.1.1 Reasoningin IL

It is pleasant to get some feeling for reasoning in IL. This section aims to provide
some examples.

K1 F6=(0vO0d)

Proof: immediate by J1, J5, J3. O

Let Fo == (dv< 0), G = (dAO— ), then:
K2 F Fd < FF

FFo < FGo

G < GGo

F Go < GFo

Immediate consequences are;
K3 k¢ (pA0-0)
K4 F 0= (0AO-0)

Note that: K3 isan alternative for axiom Jb.

K5 F o1 > 0O-¢
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Proof: by J4. O

Feferman's Principle isthe following:
F H <Co— — (05 0)

A Kripke Model argument shows that F is not derivablein IL. However the following

weakening is derivable:
K6 = o> = (0P < ¢)

Proof: Itissufficient to show: ILE (OoAO =< 0) — — (0P < ¢). We have:
= (COAO =S 00 G 0)) = (COADO=OAO < 0) )
— (Oon0P> 1)
— (CoA0—¢)
— 1 O

In IL one can dready derive the existence of unique and explicit fixed points for
modalized formulas. For a (model-theoretical) proof the reader is referred to de Jongh
& Vetman[7], thisvolume.

6.2 Thelogic LW

ILW isIL plusthe principle W:
W F 0Py — 0> (yAO—0)

It may amuse the reader to show that ILW can be more efficiently axiomatized using
onlyL1,L2 31,72 33 M, W.

W characterizes the set of IL-frames such that RoSy is upwards wellfounded for al x
intheir do- main (see de Jongh & Vetman[?], this volume). | conjecture that ILW is
complete for this set of structures. One can show that completeness w.r.t this set of
frames implies completeness w.r.t a more restricted class of frames, namely those in

which there are no infinite R,S-chains, where the index of Smay vary. ILW is vaid for
interpretations in theories T with designated natural numbers satisfying 1AG+€;,

whose axiom sets can be represented by a R;*-formula. | conjecture that:
ILWH ¢ < for al T with designated natural numbers
satisfying 1Ag+€24, with Ry * axiom sets,
for al interpretations (.)* into T: T ¢*
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6.21  Consequences of W

A first consequence of W is Feferman's Principle F:
F E -~ (0= 0)

This is immediate by substituting <¢¢ for y. A second consequence is the

Contraposition Principle:
KW1 + ¢B>OT — T =0

Proof: + ¢B>OT — B> (O TAO-¢)
— o> S =0
- o> -0

Ergo by J1 and J3 we have KW1. O

Both F and KW 1 characterize the same class of IL structures as W. However | do not
know whether W is derivable either in ILF or in IL(KW1).

Given the arithmetical vaidity of ILW we have the following consequence: Paris &
Wilkie show that EXP> 0T, ego by KWL TBo-EXP, i.ow.:
(|AO+Ql)|> (|A0+Ql+ﬁ EXP)

Autobiographical note: this proof of the interpretability of IAG+Qq+—EXP in 1Ag+€4 could
have been a nice example of how the logic allows one to discover new interpretations. Alas, things
did not go like that. First | sketched a proof in IAG+EXP of the tableaux consistency of
IAg+Q+—EXP adapting a method from Paris & Wilkig[1987]. This gives us
(1Ag+Q21)> (IAg+Q1+—EXP). Then | congtructed an interpretation of [AG+Q+—EXP in
[Ag+Q2q+con(lAg+Q4) using the Henkin construction described in 7.2.2.1. This again gives us
(1Ag+Q1)> (IAg+Qq+ —EXP). Then | started to wonder about the connection of this fact and
(IAQ+EXP)> (IAg+€q+con (1Ag+Q4)). This led me to prove the arithmetical validity of KW1
directly. Then | showed that KW1 is vaid in al IL-structures with RoSy upwards wellfounded. And

finally | gave the smple modal proof of KW1.
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6.2.2Arithmetical validity of ILW

We verify that ILW is vdid for arithmetical interpretations in theories T with
designated natural numbers satisfying 1Ay+€2;, whose axiom sets can be represented

by aR;*-formula.

The axioms L1-4 are verified in Paris & Wilkig[1987]. J1, J2, J3 and J4 are trivid,
given the fact that we opted for t-interpretability. We turn to J5: the Interpretation
Existence Lemma. Before we proceed let me answer an obvious question: J5 follows
from the stronger principle V ¢ ¢, which is assumed in this paper, so why bother to
proveit? The answer is(i) to fix a number of concepts that we will use later on in the
paper, and (ii) because the assumptions on provability in the proof are so weak that the
argument also works for dternative notions like Feferman provability. The present
construction is essentially Henkin's, refined by Feferman (see Feferman[1960]), with
some twists due to Pudlak and Friedman.

6.2.2.1 The Henkin Construction

Let U be any theory with designated natural numbers satisfying |Ay+€4+conV, where
V isa theory whose language L is given by a Ay(w,)-formula. We assume that V¢
= Ur 0Oy¢. Define an extension of L, L* as follows: LT is the smallest extension
such that if ¢ isin L™ then there are constants c[dx¢] and c[Vx¢] in L. LY is again
Ay(£2;). We choose an efficient coding of 0,1-sequences, where O is the empty
sequence. Sequences are written: 0110, etc. . |x| is the length of the sequence coded
by x. < isthe'initial sequence' ordering. Define:
ue T[X] :< uisaT*-sentence; (x),=0 or (u=NEG(V) and (x),=1) or ( thereisaw of
the form 3z¢(z) such that (x),,=0 and u codes ¢(c[Iz¢]) ) or ( thereisaw
of the form Vz¢(z) such that (x),,=1 and u codes —¢(c[Vz¢]) ).

Note that ue T[X] is Ay(®,). Moreover: U x<y —T[x] < T[y] and U+ T[0]=@.

Define further: xeTREE :< Con(V+T[x]). Clearly U (x<y AyeTREE)
— Xe TREE. Moreover: U 0e TREE. We show that U+ xe TREE — ( xOe TREE
v x1e TREE). Reason in U:

Suppose xe TREE, i.e. Con(V+T[x]). Let u:=[x|+1. In case u does not code an
L *-sentence we have: T[x0]=T[x1]=T[x], so we are done. We treat the case that
u codes a sentence of the form 3z¢(z), the other cases are analogous or easier. So
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suppose u codes 3zd(z). Then T[xO] = T[x]H Fzd(2), ¢(c[Fzd(2)]) } (note that
the existence of ¢(c[3zd(z)]) requires ;) and T[x1] = T[x]+{ —~3zd(2)}. The
constant c[Jzd(z)] does not occur in V+T[x] (because we used the natural
Godelnumbering), hence it is easy to convert a proof of falsity in V+
T[X]+{3zd(2), 0(c[Fzd(2)])} in aproof of fasity in V+T[x]+ {Izd(2)}. Thus if
both V+T[x0] and V+T[x1] were inconsistent, we could convert the proofs of

inconsistency in aproof of inconsistency of V+T[x] in the usual way. (All these
conversions are available in |Ag+€2,.) O

Define PATH:={xe TREE["thereisnoy in TREE to the |eft of x"}. Asiseasily seen:
U xePATH — (x0ePATH v x1e PATH ) and U-0ePATH. Also U+
(xe PATH Aye PATH) — (x<y v y<XvV X=y).

Let X:={x| for somey in PATH x=Jy[}. By the above U provesthat Oisin X and that
0 isclosed under successor. By Solovay's methods we can shorten X to aU-cut . For
purposes of presentation we will define our interpretation for L with just one unary
relation symbol R. The genera caseis, of course precisely the same. Define:
xelL0 & xel and x isacode of an L-sentence.
xelL!l & xelandxisacodeof an L*-sentence.
xe Fl(y) :& x,yel andy isacode of avariable,
x isacode of an L*-formulawith at
most the variable coded by y free.
xeD < xeL1and x codes a sentence of the form Jud(u) or Yud(u).
K(x) ‘& Xel and thereisan ye PATH with |y|<x and xe T[y].
RK(X) := xisinD, x codesy and K('R(c[wy]").

We have:
(i) Uk VxeLO Provy(x) = K(x).

Reason in U:

Suppose xe L9 and Provy(x). Sincex isin | thereisay in PATH with |y|=x. Say
x codes y. V+T[y] is consstent, and either yor —wy is in T[y]. Clearly
—y cannot bein T[y], soy is. O

(i) K 'commutes provably in U with the logical constantson L1.
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We firg show: (@ UrVxell K(X)VK(NEG(x)) and (b) UrVxell
= (K(X)AK(NEG(x))). Reason in U:

a) Consider xinLl xisinl sothereisany in PATH with |y|=x. In case (y),=0 we
have xeT[y], hence K(x). In case (y)y=1 we have NEG(x)e T[y], hence
K(NEG(x)).

b) Suppose K(x) and K(NEG(x)). There arey and y' in PATH with x in T[y] and
NEG(X) in T[y']. Wehavey=y' or y<y' or y'<y. Let z be the <-maximum of v,
y'. Clearly both x and NEG(x) arein T[z]. But T[Zz] is consistent. Contradiction.

O

We treat the cases of negation, conjunction and universal quantification: we show
() UrVxelLlK(NEG(x))<>—K(x)
(d) UrVx,ye Ll K(CONJ(x,y))<>(K(X)AK(Y))
(e) U Vyel VAR(Y) — Vxe FYy) ( K(UQ(y,X)) <> Vze D K(SUB(z,y,X)) )
(Here if z codes v, x codes ¢(u) and y codes u: SUB(zy,x)="o(c[y])".
Notethat by Q; both UQ(y,x) and SUB(z,y,x) areinL1)

(c) isimmediate from (a) and (b). For (d) and (e) reason in U:

d) Consider x,yinL1and suppose K(x) and K(y). Let Zz=CONJ(x,y). As is easily
seen zisin | and hence in L1. There is aw in PATH with |w|=z. Either z or
NEG(z) arein T[w]. Asiseasily seen x and y are in T[w], so by the consistency
of T[w] zmust bein T[w], so K[Z]. In case e.g. ~K(x) we have K(NEG(x)) and
reasoning as before we find K(NEG(CONJ(x,y))), so = K(CONJ(x,y)).

€) Consider yel with VAR(y) and xe F1(y). First suppose K(UQ(y,x)). Clearly
UQ(y,x) isin L. Consider zin D. Asiseasily seen SUB(z,y,x) isin L1. Let v be
the maximum of UQ(y,x) and SUB(z,y,x). Thereisaw in PATH with |w|=v. We
have UQ(y,x) in T[w] and either SUB(zy,x) or NEG(SUB(zy,x)). By the
consistency of T[w] we must have SUB(z,y,x) in T[w] and hence K(SUB(z,y,X)).
Suppose for the converse that —K(UQ(y,x)). Let vi=UQ(y,x) and let w be in
PATH with |w|=v. Reasoning as before we find that (v),,=1 and thus that
NEG(SUB(v,y,X))e T[v]. Clearly v isin D and we have —K(SUB(v,y,X)). O

We write ¢K for the interpretation in the language of U of sentences ¢ of L using D
and the tranglation of the relation symbols described above. Asis easily seen: U K
< K(¢). Sowe have by (i): U~ 0Oy — oK. Conclude: V¢ = Uk ¢K,
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NOTE:
[) Clearly the aove reasoning can be verified in any theory T extending [Ay+€24

such that THO vo—O UD\/(I).
1)  We didn't make any assumption on the complexity of the formula defining the

axiom set of V. So we can use the result for Feferman style predicates.
[11) If provability in V is representable by a X;-predicate then by aresult of Wilkie

|Ag+€2,+ con(V) isinterpretable on a cut in Q+con(V). So in this case we can
reduce our assumption that 1Ay+Q +con(V) is contained in U to the
assumption that Q+conV is contained in U. In fact we may assume that U
contains Q and proves con(V) on acut (smply take as the natural numbers of U
the elements of this cut).

6.22.2 TheprincipleW

Let U and V be theories axiomatized by R;*-formulas extending 1Ay+Q,. Suppose V
isinterpretable in U. We show that V+0O, L isinterpretable in U. Thisresult is caled
the principle W for 'Weak' because it is the strongest principle that we know to hold

for al 'reasonable’ arithmetics. The argument below is designed to be verifigble in
[A)+Q;.

The argument uses atrick that is due to Feferman. Let M be the interpretation of V in
U. M is given by a finite amount of information and the associated trandation of
formulas is R;*-definable in 1A)+Q,. Define: Provy«(x) 1< Provy,(x)AProv(xM).
Trividly V* is extensionaly equal to V. So Id: (V*+0OyL)> (V+Oyl). Also
Oy« (Oy+L—0OyL). Clearly the principles of IL can be verified for Oy« and By«
(using the fact that Provy«(x) can be written as an R;*-formula preceded by
exigential quantifiers). By K3: V*I> (V*+ Oy L) and hence V*I> (V*+ OyL).
Con- clude: U VB> V* B> (V*+ Oy L) (V+ Oy L). O

6.3 TheLogiclLP

ILPisIL+P, where P isthe Persistence Principle:
P F oy 00>y

ILP is arithmetically vaid for interpretations in finitely axiomatized theories with
designated natural numbers satisfying 1Ag+€2,. The verification of the arithmetical

validity of Pistrivial. We will show that ILPiscomplete for interpretations in finitely
axiomatized sequential theories with designated natural numbers satisfying
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[A;+SUPEXP that do not prove their iterated inconsistency for any finite number of
iterations. These include ACA and GB.

ILP is aso arithmetically sound and complete for a different interpretation, namely
when we interpret O as provability in PA and ¢ y as: for some primitive recursve
term tx with just x free PAF- VX Proofpp (X, L) = Proof pa(tx,"L"). This strong

notion of relative consistency is studied in Christian Bennet's Thesis (Bennet[19864]).
More on the aternative interpretation in section 8.3.

P characterizes IL structures with the following property: yRzS,u = yRu. De Jongh

& Vdtman show the completeness of ILP w.r.t. (finite) IL structures satisfying this
property (see de Jongh & Veltman[7?], thisvolume).

We show that ILP extends ILW:
= OBy - 0P y)
— O(C0—->3OV)
— 0(0-y—0-¢)
— O((yAO = y)—=>(yAO—0))
= (yAO=y)P> (yaO—0)
— Y& (yAO =)

The desired result isimmediate. O
6.4 ThelogicILM

ILM isIL plus Montagnas Principle M:
M 0By = (0AO)® (yADY)

Fact: Montagnas Principleis arithmetically valid in verifiably essentially reflexive A;-
axiomatized theories with designated natural numbers satisfying [Ag+Q;.

Before we prove thisfact first afew useful observations:

Observation 1: Suppose U has designated natural numbers satisfying 1Aq+€2;. Let

Q* be (Q+the axioms for linear ordering for the usua ordering on the natural
numbers) extended to the language of U. Suppose U proves the Uniform Reflection
Principle for Q*. Then U proves full Induction.
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Proof of observation 1: Consider any formula ¢(x) of the language of U. Le&t
X:={X|( (6(0)A Yy (d(Y)—d(SY))) — ¢(X) )}. We shorten X to a Q*-cut | and find:
Uk VXxOqgsxel. Ergo by URP for Q*: U= Vx xel. O

Observation 2: Let U be sequentia, satisfying full Induction. Then U is essentialy
reflexive.

Proof of observation 2: This is just by the usua argument for the essentia
reflexiveness of PA, using the existence of partia truth-predicates in sequentia
theories. O

Proof of claim: Let T be an essentialy reflexive Aj-axiomatized theory with
designated natural numbers satisfying 1Ay+Q,. We prove the dightly stronger
principle: for S aX,-sentence:

AL T OBy (AP (YAS)

By observation 1 T satsfies full induction. So the Orey-Hajek theorem is verifigble:
T %P 1p ©VxO1(x— < 1ixp). ReasoninT:
Let SheaX;-sentence. Suppose P 1p so VxOt(yx— < 1ixp). Let g be so big
tha for dl x>q Op(S—>O7MIXST)). It follows that:
O1(S=>(O1MxpeO1MX(pAY))), ergo: VxO((xAS)— O1Mx(pAS)) and thus
XASP 7(PAS). O

If T issequential the following proof can be used: Reasonin T:
Let S be a X-sentence. Suppose M:y P> p. The natural numbers of T+y are on a T+y-cut
isomorphic to the natural numbers of the interpretation on a suitable 'externa’ cut. T+y
satisfies full induction, so this means that the natural numbers of T+y are isomorphic to the

natural numbers of the interpretation on a suitable 'external' cut, say 1*. We have
DT(x—>(S—>(S|*)M)), hence by upwards persistence of X -sentences: DT(X—>(S—>SM)). O

Question: Is some strengthened version of AZ equivalent to essential reflexiveness?

| conjecture that ILM is complete for arithmetica interpretations in verifiably
essentially reflexive Aq-axiomatized theories with designated natural numbers

satisfying [Ag+€2,.
M characterizes |L-frames with the following property: yS,zRu = yRu. De Jongh &
Veltman show that ILM is complete w.r.t. (finite) IL-models satisfying this property.
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6.4.1Consequences of M

We leave the smple verification that W is derivable in ILM to the reader. Two

important consequences of M are:
KM1 F 0Oy - O0—-0y)
KM2 = 0Py —= (O(y—=>0x0)—=00—->0))

Clearly these principles show uswhat is'visible' of the IT;-conservativety of essentially
reflexive theories over theories interpreted in them. First we prove KM 1:

Proof: + 0Oy — (AO-y)B> (OyaO—-y)
= @A0=yP> L
— O=(0A0~y)
= 00—=>0y) O

Next we show derive KM2 from KM 1:

Proof: K 6Py — @W-=>0x — WOy
= (=)
—0(0-><Cy)) O

Both KM1 and KM2 characterize |IL-frames satisfying yS,zZRu = yRu. But it is
unknown whether any of them impliesM over IL.

7 1Ax+Qq, IAp+EXP & Friedman's Characterization

7.1 Tableaux provability in IA+EXP

Consider any R;*-axiomatized theory T. Transforming an ordinary T-proof into a T-

tableaux-proof is a superexponentia process. To be precise it is of order:
itexp(|x],p(x)), where x is our origina proof and where p(x) is the cut rank of X, i.e.
the supremum of the lengths of the cut formulasin x. So in general 1A +EXP will not

prove: O1d — Atd. On the other hand using the above estimate as a bound one can
show for sentences ¢ and y:

IAGtEXP = AT(0—W) = (ATO — ATy).
The point is of course that the cut-rank involved is standard and thus the rate of growth
isjust multi-exponential. It would be very pleasant if we had thisfact aso for formulas
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(under our convention for free varables within the scope of A). It seems to me that the
more generd fact should hold, but | do not really know it. Another familiar principle

IS.
IAGEXP - A1 — ATATO .

In fact | conjecture that this principle is aready verifiable in [Ay+€4. (To prove this

onewould have to inspect how much cuts are involved in Paris & Wilkie's procedure
to produce a proof of aR;*-formulad given ¢.)

The above observations imply that we have the usual provability logic for Ay with T
extending 1A,+EXP. One can verify Solovay's completeness proof in IAy+EXP, so it

follows that LOb's Logic L is precisaly the logic of such At. (The fact that we tak
about tableaux proofs does not matter at all.)

So surprisingly Opxp and Apxp satisfy the same provability principles without being
provably the same over |Ay+EXP. The next section's result will imply that one extra
principle characterizes the logic of Oy p and Agx p together.

9.2 Formalizing aresult of Paris & Wilkie

We want to formalize 5.7.2: i.e.: for every y(x,y)e Ag with only X,y free, there is an
[Ag+Qq-cut | such that: 1Ay+Q - VxeIdyy(Xy) < IAGHEXPH Vx3ywy(x,y). An
obvious first guess a the correct formulation of the formalization is eg.: for every
y(X,y)e Ag with only X,y free:

[Ag+EXPH OpypVx3Ay y(X,y) <> 3 1A+Q-cut [0 Vxe | Iy y(X,y).
But this cannot be right. Taking wy:=L we would get: [Ay+EXPH
—Ogl — —~Ogxpl, con- tradicting theorem 8.19 of Paris & Wilkie[1987].

(A somewhat simplified proof of this theorem is as follows: suppose |Ay+EXPH
—Ogl — —-Ogxpl, then by 572 for some IAy+Qq-cut @ IAG+QH
—Ogl — —~Olgypl. Let J be an IA;+EXP-cut such that IA;+EXPH VxeJ
supexp(x) exists. IAG+EXP— —Aq-L by 5.7.1 so by cut-eimination: |1Ay+EXPH
—0J5 1. Because IA+Q; is verifiable on Jwe find by composing cuts that for some
IAG+EXP-cut J*: IAG+EXP- -0 yp L. This contradicts Pudidk's sharpening of
the second incompl eteness theorem (see Pudl&k[1985]) (or dternatively: it contradicts
Feferman's Principle F (see section 6.2.1)).)

The correct form for the formalization turns out to be this: for every y(X,y)e Ag with
only x,y free:
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IAGHEXPH ApxpVX3y w(X,y) <> 3 1A+Q -cut [OVXe | Ty y(X,y).

Proof: For the"—"-direction | briefly sketch how this can be shown by transforming

proofs and then give amore elaborate smulation of the model-theoretical argument of
Paris & Wilkie. Reason in IA,+EXP:

Let z be an EXP-tableaux-proof of "Vx3y w(x,y)'. The tableaux will move once
from "= Vx3y y(xy)' to —3y wy(cy) to obtain a contradiction from this last
formula plus the axioms of 1Ay+EXP. The only principles used in the rest of the
proof that are not I, or negated X, are the axioms for S, +, . and EXP. So the

only "growing constants' introduced are due to these axioms and their maximal
rate of growth is due to EXP. Our tableaux system is assumed to be relationd, so
in every step the growth isonly caused by one application of EXP. So the biggest

constant in the proof will be something like: exp(exp(...c)...), where the exp is
iterated |z| times. Using an estimate of Pudldk we can find for any u an [Ay+€Q;-

cut I <exp(u) such that O(Vve I exp(v)e I -1). Choose I:=I Iz

Now we transform z into an 1A,+€2,-proof z* of 'Vxel 3y y(xy)' as follows.
We may start from the axioms of 1A,+Q, plus ‘cel' and =3y y(cy). We
follow z, but add on proofs for any constant e introduced that e<exp(exp(...C)...)
say for u<|z| iterations of exp, plus proofs that: exp(exp(...c)..)€l|z]-u.
Application of EXP to e can then be replaced by a use of the fact that eisin liz}-u-

We turn to the alternative argument: by contraposition it is sufficient to show that for
x 1N Ag with only X,y free:

IAGHEXPH YV 1A +Q-cuts 1O oIxe | Vy x(XY) = V expadxVy x(X.y),
hence by 5.7.1 it is sufficient to show that: for some 1Ay +Q,-cut J.

Ag+Q -V [A)+Q,-cuts 1O oTxe | VY x(X,y) = V IexpdX VY x(X,y).
Theabovein itsturn isimmediate by IT,-cut-conservativity from:

(V 1Ax+Q-cuts [ O gIxe | VY x(X,Y)P oV expaX VY x(X.y),
Because VpxpadxVy x(Xy) =(EXPAIxVy x(X)y)) (see section 5.6) this last

statement follows from:
(V 1Ap+Q-cuts | & gIxe | VY % (X,Y)) B o(EXPAIXVY x(X,Y)).

Reasonin 1A,+Q;:
Suppose that for every 1Ay+Q-cut I: S oaxel Vy x(X,y). By 5.6.4 we can find
a (standard) 1Ay+€,-cut J such that Yue J 3 1A+ -cut | On(Vvel itexp(v,u)
exists). It follows that: Vue J < 3x (itexp(x,u) exists A Vy y(X,y)). Let c be a
new constant and let V:=1A,+Q,+Vy x(cy)+{itexp(c,u) exists | ue J}. As is
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easily seen V is consistent. Let |, K, D, f be asin 6.2.2.1 and let ¢*:="39x x=c.
Define:

xe D* 1= xe D A Jye | x<KitexpK(c* f(y)).
Let K* betheinterpretation based on |, K and D*. Asiseasily seen D* is closed

under expK and thus under expK*. Moreover (Vy x(cy))X*, and thus (IxVy
x(x,y))K*. The (standard) instances p of A-induction have IT; form, moreover we

have pK, so: pK*.

"«" Let 3 be an IAy+EXP-cut such that IA;+EXPH Yue Vv itexp(v,u) exists. We
first show: IAJ+EXP-VIe3( 0o3"l is a cut" — (Jze3 Oq Vxel 3y w(xy)
— Vx 3y y(x,y) ) ). Reason in IAj+EXP:

Suppose €3, 03"l isacut', ze3 and Oq  Vxel 3y w(x.y). Inspecting the
argument for 5.6.2 we find that for some ue S and for dl v Og vel. It follows
that for somewe 3: VxOg ,, 3y w(x,y). Using the estimate on cut-elimination in
Paris and Wilkie[1978], p293 we may conclude: VxAqpdy w(x,y). By 5.7.1:

Vx3y y(x.y).

To prove our theorem reason again in 1Ay+EXP:

Suppose that for some 1A;+Q-cut | OnVxel Iy y(X,y). By the sharp verson
of R;*- completeness we find that for some standard m and for some u and z
OexpmProofg(u,"l is a cut”) and OgxpmOg ,VXel Jy w(xy). By 5.7.1 for
some standard k: Opxpyle S, OpxpueS, Opxpze 3. By our auxiliary result

for some standard n:
OexpnVie3( 003"l is a cut" — (Jze3 Og Vel 3y w(xy) — Vx Jy

v(xy))).
Conclude that for some standard p: OexppVx Jy w(Xy). By applying cut

elimination we find: AgxpVx 3y w(X,y). O

A variant of our theorem can be easily obtained as follows: by 5.7.3 we find: for every
y(X,y)e Ag with only x,y free:

A+ F OApxpVXAy Y(X,y) <> Oq3 1A+Q -cut IDoVXe | Iy yw(X,y).

Combining thiswith 5.8.2 we get:

|Ag+QF OpxpVX3Ay y(Xy) <> O [1A+Q-cut 1D VXe | Ty y(X,y).

7.3 Some Consequences

1

(V 1A)+Q;-cut IO oIxe | Vy x(X,Y))=a(EXPA IXVY %x(X,y)).
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3  For SinZ; we have: IAG+EXPH ApxpS <> OnS.
4  For SinX; wehave: IAj+Q - OpypS <> Op0nS.

5 ForSand S inZX; wehave:
1Ag+Q = Oexp(S = S) = O(0oS — 0,S).

Proof:  1Ag+ Q- Opxp(S— S) = Og(3 1A,+Q;-cut | Og(S' — S)
— O3 1A5+2-cut | (DQSI — 0pS)
— Og(0gS— 0,S) =

6 ForwyinIl,wehave: 1Ap+QF- OgOay — Opypy.

7 1A+SUPEXP proves I1,-reflection for IA+EXP. Let ¢(X,y) be Aq, having only

X,y free:

Proof:  [A)+SUPEXPH Oy pVx3y 0(X,y) = ApxpVX3y 6(X,y)
— J1A+Q-cut 10 Vxe | Ty d(X,y))
— VXxOgnAy d(X,y)
— VXApdy ¢(X,y)
— Vx3ay o(x,y) O

Combining 5.8.2 and 7.3.3 we get the desired missing principle for the combined
provability logic of Opypand Apxp:

8  IAG+EXPH Oexpy <> ApxpApxpy

It is immediately clear that this last principle together with the complete set of
principles for Agxp fully describes the mixed logic. Note that we have this variation of

Lob's Principle:

9 1Ag+ Dexp(DexpY — ApxpY) — HEXPAEXPY-

Thisprinciple "says" in some sense that |A,+EXP does not prove cut-elimination.
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7.4 Friedman's Characterization

Let U andV befinitely axiomatized sequential theories. Combining 5.8.1 with 7.2 we
find:
|AGHEXPH UV > Apxp(Tcon(U)—Tcon(V)).

A vaiantis:
[Ag+QF OUPV < Oy p(Tcon(U)—Tcon(V)).

Note that for interpretability over |A+EXP thisimplies:

|AGHEXPH 0P Expy <> Apxp(V Exp0— V EXPY)-
Combining thiswith the fact that we know the complete provability logic of Agpxp we
get a Kripke model characterization of the interpretability logic of [A+EXP. It is

unknown what modal theory corresponds precisely with this Kripke semantics.

8 Arithmetical Completeness for Interpretations
in Finitely Axiomatized, Sequential
Theories extending | Ag+SUPEXP

In this section we prove: ILP is complete for arithmetical interpretationsin any finitely
axiomatized sequential theory with designated natura numbers that satisfy
[Ag+SUPEXP (plus a minimal extra condition). It is convenient to use a dightly
different Kripke semantics in the proof of the arithmetical completeness theorem.
Because this semantics is strongly suggested by Friedman's characterization of
interpretability, | proposeto call it Friedman Semantics.

8.1 Friedman semantics

A Friedman structureisatuple <K ,b,P,Q>, where:

i) Kisanon-empty set.

i) beK and for every xe K bWQx

iil) Risabinary relation on K.

iv) Qisatrandtive, irreflexive, upwards wellfounded, binary relation
v) P<Q

vi) xQyPz = xPz

Note that (v) and (vi) imply that P is trangitive. Let R:=QoP, i.e. XRy < for some z
xQzPy.
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A relation I between K and L isaforcing relation if it satisfiesthe usual clauses, with
R asthe accessihility relation for the O, plus:
XI=oP> v < Vu (XQu = (Fy (UPyAy-0) = Tz (UPzZAZIF-V)))

If Fis a Friedman structure and I+ is a forcing relation on F, then <F> is a
Friedman model. It is easy to check that ILPisvalid in any Friedman model.

Consider an IL-modd W=<K,R,S;-> and a Friedman modd G'. B3 is a bismulation
between W and G' if:
i) Pisareationbetween K and K'.
i) bPb'.
i) Letxy,...rangeover K, let x'y',... range over K"
we have for any x,x' with xpx':
Vy(xRy=3u'y'(YBY' AXQUPY'AVZ(UPZ=32(zBZ'ryS,2)))).
iv)  Wehavefor any x,x' with xpx":
YuLy' (XQuPYy'=3y(yBY' AXRyAVz(yS,z=37(zBz' AuP2)))).
V)  XPX'= (xip < X'='p), for al atoms p.

Note that for every xe K thereisan x'e K' with xBx’, but that possibly there are u'e K'
such that for no ue K upu'. We do have: for dl x'e{b}Urange R' there is an xeK
such that xx'.

We have: xBx' = for dl ¢ xI-¢ < X'I="d. The proof isby atrivia induction on ¢.

To prove completeness for ILP w.r.t finite Friedman models it is clearly sufficient to
show that every finite IL-model W satisfying: XRyRzS,u = zS,u, can be bismulated

by afinite Friedman modd G'.

Construction: Let W be a finite IL-model for ILP. We construct a bismulating
Friedman model G':

K":= {<Xq,...X>| N21, X1=b, X5;_1RX5; (for 1<i and 2i<n) and

X1 S[X5i.1]1X0i41 fOr 1<i and 2i<n}

b'=<b>

Ky Xp™ Q' <Y1, Y™ & m>n; for al i<n x;=y;

KipeeeX® P <Y1 Y 1 <XgpeeX™> Q' <Yq,....Y > @nd mis odd

XKy X P 1S Xp-P
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It iseasy to see that the model constructed isafinite Friedman model. Note that Q' is
atreeand that G'isredlly aCarlson modd, i.e. thereisaset X'<K' such that XRY' <
x'QYy' and y'e X'. We dways take X"={<yj,...y>| m is odd}, so that b'e X'. The
nodes x' of X' also satisfy the additiona property: if X'Py' then X'R'y". This property
will be needed in our arithmetical completeness proof for reasons to be explained
later.

Define: XBX' & X'= <X1,....Xom.1> and Xop.1=X. We show that B is a bismulation
between W and G'.

y S X Z <.XY.Y> <.XYy..Z>
O—»0 0]
P P
R <..X,y>
X Q <.X>

The conventions for interpreting these pictures are as follows:. the black arrows and open nodes are
‘given’, 'univer- sa'; the grey arrows and grey nodes are 'produced, 'existential’. If a 'given' arrow
(node) in the left (right) half of the picture corresponds to a 'produced’ arrow (node) in the left (right)
half of the picture, then the ‘produced’ arrow (node) is produced, given the corresponding 'given' arrow

(node). Corresponding nodes bisimulate under the given bisimula- tion 3.

Let's first discuss the upmost picture. Here it is to be shown that indeed yS,z. We

have ether <..Xx)y..z>=<..X)y,Z> or <..XYy..Z>=<..X,y,uV..z>. In the first case we
have trividly yS,z. In the second case one easily shows uRz. So we have: yS uRz,
hence yS,z. Secondly we look &t the second picture. We only have to show that for

this case is easy. So suppose x#w. Asis easly seen: XRw, so  XRWRVS,ySz, and
thus xRwWRyS, z. HenceyS,,z and thusvS,z. O

8.2 A Solovay-style Completeness Proof
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Let U be afinite sequential extension of 1A,+SUPEXP. We only need to assume that
U in fact extends 1Ay+SUPEXP (as an infinitely axiomatized theory), we do not need
to stipulate that [AG+EXPH AgypexpW — Ayw. This because we will only need
actual theorems of 1A)+SUP- EXP. We will need however the following lemma:

Lemma: For sentences ye I1,: IAG+EXPH= Apxpy — Agy.

Proof: We have: IAj+EXPH Apxpy—AyAexpy and
[Ag+EXPH Ay(Apxpy—V). Hence: IAG+EXPH Apxpy — Ayy. O

(Note that even a stronger version of the lemma is provable with Ogyp instead of

Aexp.)

We assume that for no k U0k L. (If U0k, L for some k, let k* be the smallest

such k. The corresponding logic will then be ILP+OK* L, as is seen by an easy
adaptation of the argument below.)

Arithmetical Completeness Theorem : ILP-¢ < for all * U-¢*.

Proof: the proof isarefinement of an earlier proof by Smorynski and the author for
the case that U=GB or U=ACA,. Its basic idea is close to that behind the

compl eteness proof for PRL7g due to Carlson (see Smorynski[1985], p205-214).

The"=" sideisclear. For the "<" part suppose ILP~¢. Let G, be a finite Friedman
countermodel to ¢ with Q, upwards wellfounded. We may assume that K is
{1,...,.N}, that 1 is the bottom element and 1 40, and that our model setisfies:

() Qisatree,

(i)  Pisgiven"Carlson-style" by aset X: so XxPy < xQy and ye X; 1€ X.

(i) if xe X and xPy, then xRy.

From the arithmetical point of view the nodesin X correspond with the 'point of view'
of U. P consdered as an accessibility relation corresponds to Ay, Q similarly

corresponds to Agxp. Property (iii) corresponds to the fact that U proves cut-
elimination and thus proves the equivalence of Ay and Oy.

G istheresult of hanging a new node O under G,. Formally: K:=KyU {0}, xQy &
(x=0 and y=0) or xQuy, X:=XoU{0}, XPy :< xQy and xe X,
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XI=p i< x20 and xi—-gp. Clearly 11 ¢.

Define by the recursion theorem:
h(0):=0,
h(x+1):=y if h(x)Py and Tproof,(x,L=y) or
if h(x)Qy and Tproof gx p(x,L=Y),
h(x+1):=h(x) otherwise,
L:= the unique x such that 3yVz>y h(z)=x.

The definition of h can be given in such a way that 'h(x)=y'is a Aj(exp)-formula and
its elemen- tary properties are verifigble in [A+EXP (in fact we can do much better,
but that is not relevant here). We have e.g. IAG+EXPH x<y—h(x)WQh(y) and
[Ag+EXPH "L exists'.

Note that: IA+EXPH L=x <> 3y h(y)=x A Vu,v((h(u)=xAv>u)—h(v)=x), so L=x is
in fact the conjunction of aX;- and aIl;-formula

Define for atoms p: p*:=W {L=i|il-p}.
Lemma: U+ LeX.

Pr oof of lemma: Reasonin U:

Suppose L=i¢ X. By the definition of h: AgxplL#i. By Il,-reflection: L=i.
Contradiction, so L#i. O

We show by induction on y for 1<i<N:
iy = IA)+EXPH L=i—>y*,
iy = [AG+EXPH L=i——y*.

The cases of the atoms and the propositional connectives are trivial. The case of O
followsimmediately from the case of > . Assume the IH for . We show for i0:
foral j withiPj ji-y = IAG+EXPHL=i—Ay)*,
for somej iPj and j i x = IAG+EXPHL=i—>—Ayy*.
First suppose that i0 and for all j with iFj ji—y. Reason in 1Ay+EXP:
Suppose L=i. By the definition of h we have AgxpL#i or AyL=i. In both cases
AyL#i. For some x h(x)=i, so Ayax h(x)=i and thus by an easy argument:
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AyiQL. By the lemma AyiPL. Conclude AyW{L=j|iFj}. By the Induction
Hypothesis: Ayy*.

Assume that i0 and for some | iPj and j I %. Reason in [A+EXP:
Suppose L=i and Ayy*. By the Induction Hypothesis: Ay(L=j——y*). Hence
AyL#j. Suppose Tproof(z,L#). Because L=i clearly for every y h(y)Pj, hence
h(z+1)=]. Contra- diction. Conclude —Ayy*.

Suppose y=x > p. First we assume iz0 and il-y. By the above: for every j with iQ:
[Ag+EXPHL=j—(V yx* =V yp*). Moreover if ie X by the specid property (iii) of
our model: 1A +EXPHL=i—(V yy* -V yp*). Reason in I1A+EXP:
Suppose L=i. For some x h(xX)=i, s0 Agxpdx h(x)=i. Conclude:
ApxpW{L5jliWQj}. In case ieX, we have immediaely by the above
Apxp(Y ux*—V up*), i.e x* B yp*. If igX, it follows that Agxpl#i, and thus
ApxpW{L=][iQj}. So again: Apxp(V ux*—V up*), i.e. x* > yp*.

Secondly assume iz0 and i & y. So for some j with iQj for some k with jPk: ki,
and for dl k' with jPk: Kk't*p. Ergo IAG+EXPHLI->Vyx* and
[Ag+EXPHL=]—>Ay—p*. Reason in I1A+EXP:
Suppose L=i and Apxp(V ux*—=V up*). We have:
Apxp(L=j—=—= (V ux* =V up*)), S0 Apxpl#j. Suppose Tproofgxp(z,L#j). From
L=i, we have for dl y h(y)Qj, so h(z+1)=]. Contradiction.  Conclude:
~Apxp(V ux* =V up*).

Finally: suppose Ut ¢*. By the above we find: U+ L1. So by the definition of h and
the fact that 1 X: U L#0. Thus U+ W {L=i|1<i<N}. Clearly for somek and for dl
i with 1<i<N: ir-0OKL. So: U-DOKk L. Quod non. O

8.3 Another Interpretation
Christian Bennet studies in his thesis (see Bennet[1986a]) the following notion of
strong relative consistency over Peano Arithmetic: for A,B sentences of the language

of Peano:

o> SRCy 1< thereisaprimitive recursive term t such that
PAH VX(PI’OOpr.HV(X,L)%PI’OOpr_HD(tX,L))
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(Actually Bennet defines his notion for arbitrary theories which are verifiably in PA
RE extensions of PA; we scaled his notion down to fit our framework.)

Let PRA be Primitive Recursive Arithmetic, a theory which is for our purposes equal
to 1, By a remak of Kresd we hae ¢>SRCy o

PRAF< pad—<C pay. Formalizing thisin PA we get:
PAF 6B SRCy > OppaA(Cpad—Cpay)

Comparing this characterization with Friedman's characterization of &, for finitely

axiomatized sequentia U, it is easy to adapt the above proof to show completeness of
ILP for arithmetical interpretations where O is interpreted as Opp and B s

interpreted as &> SRC,
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