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1 Introduction

Interpretations are much used in metamathematics. The first application that comes to

mind is their use in reductive Hilbert-style programs. Think of the kind of program

proposed by Simpson, Feferman or Nelson (see Simpson[1988], Feferman[1988],

Nelson[1986]). Here they serve to compare the strength of theories, or better to prove

conservation results within a properly weak theory. An advantage of using

interpretations is that even if their use should -perhaps- be classified as a proof-

theoretical method, it is often possible to employ a model-theoretical heuristics. An

example is given in section 7.2 where a conservation result due to Paris & Wilkie,

which is proven by a model-theoretical argument, is formalized in a weak theory. For

more discussion of and perspective on the use of interpretability in reductive

programs the reader is referred to Feferman[1988].

A second application is the use of an interpretation of Elementary Syntax e.g in

proving Gödel's Second Incompleteness Theorem: here the interpretation is essential

both for the significance of the result and for the heuristics of the argument.

The notion of relative interpretability was made explicit in Tarski, Mostowski,

Robinson [1953]; it was systematically studied in the twin pioneering papers

Feferman[1960] and Orey[1961]. Lattices of interpretability types were considered in

much detail e.g in Montague[1958], Mycielski[1962, 1977], Svejdar[1978],

Lindström[1979], Pudlák[1983a]. The interest in these lattices is clearly motivated by

the view that interpretability is an adequate means for comparison of strength of

theories. Characterizations of relative interpretability for various kinds of theories

were obtained by Hájek applying the Orey Compactness Theorem (for essentially

reflexive theories) and by Friedman and Pudlák independently (for finitely

axiomatized sequential theories; see respectively Smorynski[1985b] and

Pudlák[1985]; a presentation of part of Friedman's result is given in sections 7.2, 7.3).

Both Solovay and Lindström proved that relative interpretability over essentially
reflexive theories like PA or ZFC is complete Π2 (see Lindström[1979], Solovay[?]).

To be more specific for example the set of Σ1-sentences S such that ZFC interprets
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ZFC+S is complete Π2. This awesome complexity has suggested to some that the

usual notion allows too many interpretations. I'm not quite convinced: nobody said we

have to use all of them. Another response is to study restrictions of the usual notion:

there is still room for a lot of experimentation here.

Modal logics for interpretability were first studied by Hájek and then by Svejdar (see

Hájek [1981], Svejdar[1983]). They studied logics with modal operators for

provability and interpretability and with witness comparison relations. In Svejdar's

system a number of important arguments can be formulated. Moreover Svejdar

provides a number of different interpretations of his system. What one seeks in a

Svejdar-type approach (which is analogous to Smorynski's approach in his

"Ubiquitous Fixed Point Calculation") is a system that is as weak as possible, but still

codifies the relevant class of arguments, the point being unification and simplication

of a number of specific arguments from the literature. There is no need for the system

to be complete w.r.t. any set of interpretations.

The approach in this paper is somewhat different: the focus of interest is to find logics

that are sound and complete for interpretations in a given theory (or class of theories).

If we know that a logic is sound and complete for interpretations in a given theory and

a modal formula φ is consistent with the logic, then we know that we can find an

interpretation of φ that is consistent with the given theory. Typically this interpretation

is explicitly given by the proof of the Completeness Theorem.

Solovay's Completeness Theorem for provability logic is remarkably general: we have

the same logic, viz. Löb's Logic L, for all theories T with the following properties: (i)
they have a Σ1-pro- vability predicate, (ii) they extend IΔ0+EXP, and (iii) they do not

prove their own n-iterated inconsistency (i.e. $T
n€) for any n. (If a theory T satisfies

(i) and (ii), but not (iii) let n* be the least n such that T%$T
n€, then the provability

logic of T is L+ $n*€. Suppose T has an R1
+-provability predicate, extends IΔ0+Ω1

and has property (iii), then we know that L is sound for interpretations in T, but we do

not know in general whether L is complete for interpretations in T. Specifically it is an
open question what the provability logic of IΔ0+Ω1 is.) From one point of view the

generality of Solovay's theorem is a disadvantage: one cannot expect information from

it connected with specific properties of the theory considered. In this respect

interpretability fares better: it turns out, for example, that properties like finiteness and

essential reflexivity induce essentially different interpretability principles.
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We study two kinds of questions. Let some property Ξ of theories be given: (i) which

interpretability principles are valid in all theories satisfying Ξ?; and (ii) does Ξ
determine the interpretability principles valid for interpretations in any given theory T

satisfying Ξ? In this paper the following specific instances of questions (i) and (ii) are

considered: (a) which interpretability principles are valid in all R1
+-axiomatized

theories extending IΔ0+Ω1?; (b) what is the interpretability logic of a given verifiably

essentially reflexive theory U?; (c) what is the interpretability logic of a given finitely
axiomatized sequential theory U extending IΔ0+Ω1? For questions (a), (b)

conjectures are formulated. An answer is available for (c) in case U extends
IΔ0+SUPEXP.

2 Contents

Section 5 contains the necessary preliminaries. In section 6 the systems of

interpretability logic IL, ILW, ILP and ILM are introduced. We take a brief look at

their consequences and discuss their Kripke semantics and arithmetical significance.

In section 7 the form of Friedman's characterization of interpretability for finitely

axiomatized sequential theories that is needed to prove our arithmetical completeness

result is derived. It turns out that it is convenient to prove this result from a technical

lemma (7.2). This lemma is the formalized version of a result of Paris & Wilkie
which provides a connection between IΔ0+Ω1 and IΔ0+EXP. I think this lemma is of

some independent interest. Finally in section 8 it is shown that ILP is a complete

axiomatization of the interpretability logic of finitely axiomatized sequential theories
extending IΔ0+SUPEXP

3 Acknowledgements

The research on which this paper reports is part of a project together with Dick de

Jongh, Craig Smorynski and Frank Veltman. Discussions with them were very

important for me. Correspon- dence with George Kreisel and with Franco Montagna
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4 Prerequisites

We presuppose some knowledge of Smorynski[1985a], Paris & Wilkie[1987],

Pudlák[1985, 1986].

5 Conventions, Notions & Elementary Facts.
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5.1 Languages

In this paper we consider only relational languages, i.e. languages without function

symbols and constants. So for example in the case of arithmetic, instead of + we have

a ternary relation symbol, etc. . Of course this is a severe and unjustifiable restriction.

I am convinced that the restriction can be dropped almost everywhere. My only

excuse is that at some places -especially where tableaux provability is involved- the

use of a language with function symbols asks for some extra work: work I have not

yet done.

After this is said officially we will of course often pretend that we are working in a

language with function symbols. Here one has to be careful: for example at a certain
point we are working in IΔ0+Ω1 and we consider a function assigning to n the

Gödelnumber of ∃y y=n, where n is the numeral in the sense of Paris and

Wilkie[1987] corresponding to n. For the functional language it is easy to see that
this function is total (in IΔ0+Ω1). Inspection of the translation procedure into the

corresponding relational language shows that the fomulas become only polynomially

longer, so the function is also total for the relational language.

In our languages there are only finitely many relation symbols including identity.

5.2 Special Classes of Formulas

We refer the reader to the discussion of special classes of formulas in Paris &

Wilkie[1987].

Δ0-formulas are formulas where all quantifiers are bounded by terms in 0, S, + and .

(or rather the translations of such formulas in the relational language), where the

variable of quantification does not occur in the bounding term. If the theory we are
working in proves that some function f with Δ0-graph is total, we may want to

consider Δ0(f)-formulas, where the bounding terms also involve f. In Gaifman &

Dimitracopoulos[1982] it is shown that if f is reasonable -roughly: if it doesn't jump
up an down wildly- then IΔ0+"f is total" implies IΔ0(f). For our purposes it is

sufficient to know that ω1 and exp are reasonable; here: exp(x):=2x.

5.3 Theories and Provability
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We consider only theories with identity for which a fixed formulas of their language

are specified giving us a set of natural numbers, 0, successor, addition and
multiplication. We assume in most cases that IΔ0+Ω1 is provable for these natural

numbers. Variables x,y,z,u,v,... will be taken to range over the designated numbers. As

variables for general objects of the theory we will use a,b,... . Syntactical notions will

always be formalized in the designated natural numbers.

We consider a theory T as given by a formula αT(x) having just x free plus the

relevant information on what the set of natural numbers of the theory is. αT gives the

set of codes of the (non-predicate-logical) axioms of the theory. Different α different

theories; same α same theory. Unless explicitely stated otherwise we will always

assume that α is an R1
+-formula.

Let ProofT(x,y) be the R1
+-formula representing the relation: x is the Gödelnumber of

a T-proof of the formula with Gödelnumber y. ProofT will be built in some standard

way from αT. The precise choice of the system on which ProofT is based is

immaterial: any Hilbert style system or Natural Deduction system or Genzen style

sequent system will do. If we want to stress that we are looking at the Proof-relation
based on a certain specific formula β we write: Proofβ.

We assume for convenience that: IΔ0+Ω1¸̧̧̧∀x∃!y ProofT(x,y) . Let ProvT(y) :=

∃xProofT(x,y).

We write par abus de langage 'ProofT(u, φ(x1,...,xn) )' for: ProofT(u,««««φ(x Œ ŒŒŒ1,...,xxxxŒŒŒŒn)»»»» ),

here:

i) all free variables of φ are among those shown.

ii) ««««φ(xxxxŒŒŒŒ1,...,xxxxŒŒŒŒn)»»»»  is the "Gödelterm" for φ(x1,...,xn) as defined in Smoryn®ski

[1985], p43. Here we use instead of the usual numerals the efficient numerals of
Paris & Wilkie[1987], so that: IΔ0+Ω1%∀x1,...,xn∃y ««««φ(xxxxŒŒŒŒ1,...,xxxxŒŒŒŒn)»»»»  =y.

ˇ̌̌̌Tφ(x1,...,xn) will stand for: ProvT(««««φ(xxxxŒŒŒŒ1,...,xxxxŒŒŒŒn)»»»» ).

Occurrences of terms inside ˇ̌̌̌T should be treated with some care. Is ˇ̌̌̌T(φ[t/x])

intended or (ˇ̌̌̌Tφ(x))[t/x]? We will always use the first, i.e. the small scope reading.

In cases where: U proves that t is total and U%t=x→$Vt=x, the scope distinction may

be ignored within U w.r.t. ˇ̌̌̌V. We have: U¸̧̧̧ (ˇ̌̌̌Vφ(x))[t/x] ↔ ˇ̌̌̌V(φ[t/x]).
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We will also need normalized or cut-free provability: here we could choose Herbrand

provability (as used in Pudlák[1985]) or cut-free provability in a sequent system or

tableaux provability. We use tableaux provability as in Paris & Wilkie[1987]: we
write TproofT(x,y) for: Tabincon- proof(U,x), where U is T plus the negation of the

formula coded by y. TproofT(x,y) is given by an R1
+-formula. TprovT(y) is

∃xTproof(x,y). Tcon(T) is ∀xÛTproof(x,«€»). ΔTφ(x1,...,xn) will stand for:

TprovT(«φ(xŒ 1,...,xŒ n)» ). Of course our remarks about scope of terms carry over

to Δ.

ÚÚÚÚT will stand for: ÛÛÛÛˇ̌̌̌TÛÛÛÛ , and ÒÒÒÒT for: ÛÛÛÛΔΔΔΔTÛÛÛÛ.

Let the axiom set of T be given by α(x) then ˇ̌̌̌T—y stands for provability in the theory

whose axiom set is given by (α(x)∧x<y). $T,x will stand for restricted provability in

the sense of Paris & Wilkie[1987].

For convenience we write $Ω for provability in IΔ0+Ω1 and $EXP for provability in

IΔ0+EXP.

5.4 Special Properties of Theories

A theory T, with designated natural numbers satisfying IΔ0+Ω1, is sequential if in it

one can form sequences of any of its objects i.e. there is a relation (s)x=a such that T

proves:
(i) ∀s,x,a,b ( ((s)x=a∧(s)x=b) → a=b ),

(ii) ∀s∃x∀y ( ∃b (s)y=b ↔ y<x )

(iii) ∃s∀x,aÛ(s)x=a,

(iv) ∀s,a,x( ∀y<x∃b (s)y=b →
∃s'∀b∀y≤x ( (s')y=b ↔ ((y<x∧(s)y=b)∨(y=x∧a=b)) ) )

Our notion of sequentiality is only seemingly more restrictive than those in the

literature: for any theory that is sequential e.g. in the sense of Pudlák[1983] one can
define set of natural numbers satisfying IΔ0+Ω1 and a relation  (s)x=a making the

theory sequential in our sense. The notion of sequentiality is due to Pudlák. We will

describe several important properties of sequential theories later.

A theory is finitely axiomatized if its axiom set is given by a disjunction of formulas

of the form x=n, where n codes a formula.
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A theory T is essentially reflexive if for all fomulas φ(x,...) of its language and for all

natural numbers n: T%∀x,...( $—n φ(x,...) → φ(x,...) ). T is verifiably essentially

reflexive if T is essentially reflexive and T proves the formalization of "T is essentially

reflexive".

5.5 Interpretability

Interpretations are in this paper: one dimensional global relative interpretations

without parameters. Consider two languages L and L'. An interpretation M of L'  in L

is given by (i) a function F from the relation symbols of L' to formulas of the

language of L and (ii) a formula δ(a) of L having just a free. The image of a relation

symbol has precisely a1,...,an free, where n is the arity of the relation symbol. The

image of = need not be a1=a2. The function F is canonically extended in the following

way: (R(b1,...,bn))M:=φ(b1,...,bn), where φ=F(R). (To make substitution of the b's

possible we rename bound variables in φ if necessary. In fact it would be neater to set

apart bound variables for the F(R) and for δ that do not occur in the original L'.) (.)M

commutes with the propositional connectives. (∀bψ)M:=∀b(δ(b)→ψM). We can

easily extend (.)M again to map proofs π (from assumptions) in L' to proofs πM from

the translated assumptions in L in the obvious way (for free variables b one adds δ(b)

as a hypothesis). As is easily seen for a given interpretation M the lengths of the

translated objects are given by a fixed polynomial in the lengths of the originals. The

graphs of ψM (considered as a function in ψ and M) and of πM (considered as a

function in π and M) can be arithmetized by R1
+-formulas in such a way that the

recursive clauses are verifiable in IΔ0+Ω1. Because of the bound on the lengths of the

values IΔ0+Ω1 proves that these functions are total.

Consider theories T (with language L) and T' (with language L'  ). What could it mean

to say that T' is interpretable in T via M? I think the obvious interpretation is this: for

every axiom ψ of T' there is a proof in T of ψM. (I assume in this discussion that we

are dealing with sentences, in the case of formulas one should consider: (δ[ψ]→ ψM),

where δ[ψ] is the conjunction of δ(b)'s, for all free variables b of ψ.) Given the

definition the next step is to show: if T' is interpretable in T via M and if T' proves χ,

say by π, then there is a proof π* in T of ψM. Roughly π* is πM with proofs of the

translated T'-axioms plugged in at the relevant places. Now here is the problem: the
verification of the existence of π* requires (prima facie) IΣ1, so in weak theories we

don't have this step available. On the other hand what is the point of interpretability if

we don't have the π*?
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Let us say that:

T' is a-interpretable via M in T if for every axiom ψ of T'

                there is a proof in T of ψM.

T' is t-interpretable via M in T if for every theorem χ of T'

                there is a proof in T of χM.

The proof π* as described above could be said to simulate π.
T' is s-interpretable via M in T if for every proof π of T' there is a simulating

proof π* in T.

Clearly (in IΔ0+Ω1) s-interpretability implies t-interpretability which in turn implies a-

interpretabi- lity. My choice to solve the problem mentioned above is simply to take t-

interpretability as my notion of interpretability. One could argue that from the

philosophical point of view s-interpretability would be the best choice. However t-

interpretability is somewhat easier to define  and somewhat easier to work with.

Moreover I am not aware of any point where the difference between the notions

becomes important.

Note that our problem vanishes if T' is finitely axiomatized: it is easy to see that in this
case IΔ0+Ω1 proves that a-interpretability implies t-interpretability. A further idea is to

impose a bound on the proofs of the translated axioms of T':

T' is e-interpretable via M in T if there is a polynomial p such that for every

axiom ψ of T' there is a proof in T of ψM that is shorter than p of the length of ψ.

Again it is not difficult to see that  IΔ0+Ω1 proves that e-interpretability implies t-

interpretability. Moreover by applying a well known result we find: if IΔ0+Ω1 proves

that T' is a-interpretable in T via M, then IΔ0+Ω1 proves that T' is e-interpretable in T

via M and hence that T' is t-interpretable in T via M. So if we verify in IΔ0+Ω1 that M

is an interpretation of T' in T we need only worry about the axioms.

We write:

M:U◊V, for the arithmetization of: V is t-interpretable in U via M.

We can arrange it so that M occurs in the arithmetization as a number, so it is possible

to quantify over M in the theory. Define:

U◊V :⇔ ∃M M: U◊V

M:φ◊Uψ :⇔ M:(U+φ)◊(U+ψ)

φ◊Uψ :⇔ (U+φ)◊(U+ψ)

U≡V :⇔ U◊V ∧ V◊U

φ≡Uψ :⇔ (U+φ)≡(U+ψ)
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Finally let me mention an important fact (which is just a variation of the similar fact

stated for Herbrand consistency, see e.g. Pudlák[1985]):

5.5.1 Fact:  for T R1
+-axiomatized: ΙΔ0+Ω1% (ΙΔ0+Ω1+ÒT™)◊T.

Proof: The proof will be given in detail in Marianne Kalsbeek's Masters Thesis. It

involves carefully constructing the systematic tableaux τ for T on a suitable cut I and

then producing a path that is provably infinite on a cut J shortening I. $

5.6 Cuts

Consider a theory T with designated natural numbers satisfying ΙΔ0+Ω1. A T-cut is a

definable set I of natural numbers such that T proves that: 0∈I, ((x<y∧y∈I)→x∈I), "I

is closed under S,+,.,ω1". This definition of cut is a bit stronger that usual, but

because any cut in the weaker sense can be shortened to a cut in our sense the

difference in definition does no harm. For an introduction to Solovay's method of

shortening cuts the reader is refered to Paris & Wilkie[1987]. We collect a few facts

to be used later.

5.6.1 Fact: Let I be a T-cut, then ΙΔ0+Ω1%∀x$Tx∈I.

This fact is due indepently to Pudlák (see Pudlák[1985]) and Paris & Wilkie (see

Paris & Wilkie[1987]). It depends crucially on the use of efficient numerals and is

proved by carefully constructing the proof of x∈I from x and from the proof in T that

I is a cut. A slightly sharpend version (due to Paris and Wilkie) is:

5.6.2 Fact: Let I be a T-cut, then for some n ΙΔ0+Ω1%∀x$T,nx∈I.

Let exp(x):=2x. Define: itexp(x,0):=x, itexp(x,Sy):=exp(itexp(x,y)), and
supexp(y):=itexp(1,y). One can find a Δ0-formula representing the graph of itexp,

such that the recursive clauses for itexp are verifiable in ΙΔ0+Ω1. We have:

5.6.3. Fact:
ΙΔ0+Ω1%%%%∀y( (exp(y) exists) → 
∃ ΙΔ0+Ω1-cut I such that $Ω(∀x∈I itexp(x,y) exists) ).

Proof: This is an immediate consequence of the proof of lemma 2.2 of Pudlák[1986].

$
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5.6.4 Consequence:
ΙΔ0+Ω1%%%%∀x,y( (exp(y) exists) → $Ω(itexp(x,y) exists) ).

Proof: By 5.6.2 and 5.6.3. $

5.6.5 Consequence: For T R1
+-axiomatized: ΙΔ0+Ω1%$Tφ→$ΩΔTφ.

Proof: If a proof x is converted in a tableaux proof, the result is of order itexp(x,|x|),

where |x| is the length of x in the sense of the number of symbols (as in Paris &

Wilkie[1987]). So |x|≈log(x). This estimate can be extracted from the one concerning

cut-elimination on p876 of Schwichtenberg[1977], using the close connection

between cut-free and tableaux proofs. We have:
ΙΔ0+Ω1%$Tφ→∃x$ΩProofT(x,φ) and ΙΔ0+Ω1%∀x$Ω(itexp(x,|x|) exists). So our

result follows by induction inside $Ω using itexp(x,|x|) as a bound. $

An important property of sequential theories is the presence of partial truthpredicates

(see Pudlák[1986]). As a consequence of this a finitely axiomatized sequential theory

T proves its own tableaux consistency on a T-cut I, i.e.:

5.6.6 Fact:  T%ÒT
I™

It follows that T◊(ΙΔ0+Ω1+ÒT™) and hence by 5.5.1: T≡(ΙΔ0+Ω1+ÒT™).

At this point is is perhaps good to mention a possible source of confusion. ΙΔ0+EXP

is infinitely axiomatized but finitely axiomatizable. In this paper we will use the results
stated for finitely axiomatized sequential theories freely for ΙΔ0+EXP. The simplest

way to justify this is simply to stipulate that by  ΙΔ0+EXP we will understand the

theory given by some fixed finite axiomatization. Another way is to check the results
directly for ΙΔ0+EXP under its obvious axiomatization: this is possible because in

ΙΔ0+EXP the usual truthpredicates for Σn-formulas are available and because of the

agreeable form of the Δ0-induction scheme. A third way is to prove in  ΙΔ0+EXP the

equivalence of tableaux provability in its finitely axiomatized form and tableaux

provability in its infinitely axiomatized form. For simplicity I will opt for the first way
out. Of course similar remarks hold for extensions of  ΙΔ0+EXP with finitely many

axioms and for ΙΔ0+SUPEXP.

5.7 Some Facts about ΙΔ0+Ω1 and ΙΔ0+EXP
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5.7.1 Fact: For ψ∈Π2: ΙΔ0+EXP%∀x(ΔΩψ(x)→ψ(x)).

Proof: This is the contraposition of Lemma 8.10 of Paris & Wilkie[1987] with a

parameter added. The extra parameter doesn't require any significant changes in Paris

& Wilkie's proof. $

5.7.2 Fact: For every ψ(x,y)∈Δ0, having only x,y free, there is an ΙΔ0+Ω1-cut I

such that: ΙΔ0+Ω1%∀x∈Ι∃yψ(x,y) ⇔ ΙΔ0+EXP%∀x∃yψ(x,y).

Proof:"⇐" This is an entirely trivial variation of corollary 8.8 of Paris &

Wilkie[1987]: the extra existential quantifier rides along for free. "⇒" Suppose I is

an ΙΔ0+Ω1-cut and  ΙΔ0+Ω1% ∀x∈Ι∃yψ(x,y). It follows that for some m:

ΙΔ0+EXP%$Ω ,m∀x∈I∃yψ(x,y). On the other hand for some k:

ΙΔ0+EXP%∀x$Ω,kx∈I, so it follows that for some n: ΙΔ0+EXP%∀x$Ω,n∃yψ(x,y).

By the estimate in Paris & Wilkie[1987], p293, we can prove cut-elimination for
restricted provability in ΙΔ0+EXP, so ΙΔ0+EXP%∀xΔΩ∃yψ(x,y). By 5.7.1 we may

conclude that: ΙΔ0+EXP%∀x∃yψ(x,y). $

5.7.3 Consequence: for S,S' in Σ1:

ΙΔ0+EXP%S→S' ⇒ ΙΔ0+Ω1%$ΩS→$ΩS'.

Proof: Suppose ΙΔ0+EXP%S→S', then for some ΙΔ0+Ω1-cut I ΙΔ0+Ω1%SI→S', so

ΙΔ0+Ω1%$ΩSI→$ΩS'. On the other hand: ΙΔ0+Ω1%$ΩS→$ΩSI. $

5.8 Π1-cut-conservativity

Define: T%cφ :⇔ there is a T-cut I such that T%φI.

We say that U is Π1-cut-conservative over V if for all Π1-sentences P:

                           V%cP ⇒ U%cP.

We show that for sequential U: U interprets V ⇒ U is Π1-cut-conservative over V.

The proof will be verifiable in IΔ0+Ω1.

Proof: (The proof is really just a proof of lemma 3.3 of Pudlák[1985]) Suppose U

interprets V. We will use outline for variables ranging over the domain assigned to V
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in the translation, for translated constants and predicates of V. Suppose I is a V-cut, P
a Π1-sentence and V%PI. Reason in U:

The idea is to try to map the numbers of U into the 'translated numbers' of V. A

small complication is that translated identity need only be an equivalence relation.

So the 'function' we define will be multivalued.

Define for x∈ω: 
F(x,y) :↔ there is a sequence σ of elements of ω such that (σ)0=0, for

u<x (σ)u+1=S((σ)u),

(σ)x=y.

Let I0 be the set of x's such that: ∃y∈ω  (F(x,y) ∧ ∀z∈ω (F(x,z)→y=z). As is

easily seen I0  contains 0 and is closed under successor. Clearly F behaves like a

function w.r.t. = on I0, so we will write f(x)=y instead of F(x,y) for x∈I0.

Define I1:={x∈I0|∀y∈I0 (y+x∈I0 ∧ f(y)+f(x)=f(y+x))}. It is easily seen that I1

contains 0 and is closed under sucessor and addition. I2:={x∈I1|∀y∈I1 (y.x∈I1

∧ f(y).f(x)=f(y.x))}. Again it is easily seen that I2 contains 0 and is closed under

successor, addition and multiplication. Clearly on I2 f commutes with 0,S, + and .

.
Let I3:={x∈I2|∀y≤x y∈I2 ∧ ∀y≤f(x) ∃z≤x f(z)=y}. I3 contains 0 and is closed

under succes- sor. Finally let I* be the result of shortening I3 to a cut that is

closed under S, +, . and ω1. Let I* be the image of I* under f. Both I* and I *

are initial segments of their respective natural numbers, which are isomorphic

w.r.t. 0, S, +, and . . Note that I* need not be definable in V: for V it is an

"external cut". We find for Δ0-formulas φ(x1,...,xn):

∀x1,...,xn∈I* φ(x1,...,xn) ↔ φ(f(x1),...,f(xn)),

and thus for Π1-sentences ψ: ψI* ↔ ψI*.

By assumption we had PI where I is a translated V-cut. Let J:=I˚I* and let J:=f-

1(J). We find that J is an U-cut isomorphic to J and thus PJ. $

Suppose V is also sequential and suppose U is Π1-cut-conservative over V. We show

that in this case V is locally interpretable in U.

Proof: Consider a finite subtheory V0 of V. We have for some V-cut I:

V%TconI(V0). So for some U-cut J U%TconJ(V0). Ergo U interprets V0. $
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5.8.1 Application: We show for finite sequential U and V:
IΔ0+Ω1%  U◊V ↔ ∃ IΔ0+Ω1-cut I $Ω(Tcon(U)→TconI(V)).

Proof: Reason in IΔ0+Ω1:

First suppose U◊V. Clearly (IΔ0+Ω1+Tcon(U))◊U and hence

(IΔ0+Ω1+Tcon(U))◊V.  There is a V-cut J such that $VTconJ(V), so by Π1-

cut-conservativity there is an IΔ0+Ω1+ Tcon(U)-cut J* such that

$Ω(Tcon(U)→TconJ*(V)). Define: x∈I :↔ (x∈J*∨ÛTcon(U)). As is easily

seen I is an IΔ0+Ω1-cut and $Ω(Tcon(U)→TconI(V)).

Suppose ∃ IΔ0+Ω1-cut I $Ω(Tcon(U)→TconI(V)). We have:

U◊(IΔ0+Ω1+Tcon(U))◊ (IΔ0+Ω1+Tcon(V))◊V. $

5.8.2 Consequence: let T be a finitely axiomatized and sequential. Let U:=T+φ,

V=T+€, we find: IΔ0+Ω1% $Tφ ↔ $ΩΔTφ.

5.8.3 Application: Let U be finitely axiomatized and sequential and
 let P be a Π1-sentence. We have: U◊P ⇔ IΔ0+EXP+Tcon(U)%P.

Proof: As is easy to see: U◊P ⇔ for some IΔ0+ Ω1-cut I:  

IΔ0+ Ω1+Tcon(U)%PI. Apply 5.7.2. $

6 Principles

The language of IL is the language of modal propositional logic with one extra binary

operator◊. An interpretation of this language in a theory T with a designated set of
natural numbers satisfying IΔ0+Ω1 is a function (.)* that maps the atoms of the

modal language on arbitrary sentences of the language of T, commutes with the
propositional connectives (including €) and satisfies: ($φ)*=$Tφ* and

(φ◊ψ)*=φ*◊Tψ*. Here $T and ◊T are the arithmetizations in the designated set

of natural numbers of respectively provability in T and interpretability over T.

6.1 IL, the basic logic

The theory IL is useful as a basic theory from the modal standpoint. From the point

of view of arithmetical interpretations it is too weak: as we will see the principle W,
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which is not derivable in IL, is valid for interpretations in all reasonable theories. The

theory IL is given as Propositional Logic plus:

L1 %φ ⇒ %$φ
L2 % $(φ→ψ) → ($φ→$ψ)
L3 % $φ → $$φ
L4 % $($φ→φ)→$φ
J1 % $(φ→ψ) → φ◊ψ
J2 % (φ◊ψ∧ψ◊χ) → φ◊χ
J3 % (φ◊χ∧ψ◊χ) → (φ∨ψ)◊χ
J4 % φ◊ψ → (Úφ→Úψ)
J5 % Úφ◊φ

Note that the principle L3 is doubly superfluous: it follows both from L1, L2, L4 (by

a well known argument) and from L1, L2, J4, J5 (by a trivial argument).

6.1.1 Reasoning in IL

It is pleasant to get some feeling for reasoning in IL. This section aims to provide

some examples.

K1 ¸̧̧̧ φ„„„„(φ∨ÚÚÚÚφ)

Proof: immediate by J1, J5, J3. ˇ̌̌̌

Let Fφ := (φ∨ÚÚÚÚφ), Gφ := (φ∧ˇ̌̌̌ÛÛÛÛφ), then:

K2 ¸̧̧̧ Fφ ↔ FFφ
¸̧̧̧ Fφ ↔ FGφ
¸̧̧̧ Gφ ↔ GGφ
¸̧̧̧ Gφ ↔ GFφ

Immediate consequences are:

K3 ¸̧̧̧ φ◊◊◊◊(φ∧ˇ̌̌̌ÛÛÛÛφ)
K4 ¸̧̧̧ φ„„„„(φ∧ˇ̌̌̌ÛÛÛÛφ)

Note that: K3 is an alternative for axiom J5.

K5 %%%% φ◊◊◊◊€€€€  → $$$$ÛÛÛÛφ
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Proof: by J4. $$$$

Feferman's Principle is the following:

F % Úφ → Û(φ◊Úφ)

A Kripke Model argument shows that F is not derivable in IL. However the following

weakening is derivable:

K6 % Úφ◊Û(φ◊Úφ)

Proof: It is sufficient to show: IL% (Úφ∧$ÛÚφ) → Û(φ◊Úφ). We have:

% (Úφ∧$ÛÚφ∧(φ◊Úφ) ) → (Úφ∧$$Ûφ∧(φ◊Úφ) )
→ (Úφ∧φ◊€)
→ (Úφ∧$Ûφ)
→ € $

In IL one can already derive the existence of unique and explicit fixed points for

modalized formulas. For a (model-theoretical) proof the reader is referred to de Jongh

& Veltman[?], this volume.

6.2 The logic ILW

ILW is IL plus the principle W:

W % φ◊ψ → φ◊(ψ∧$Ûφ)

It may amuse the reader to show that ILW can be more efficiently axiomatized using

only L1, L2, J1, J2, J3, J4, W.

W characterizes the set of IL-frames such that RoSx is upwards wellfounded for all x

in their do- main (see de Jongh & Veltman[?], this volume). I conjecture that ILW is

complete for this set of structures. One can show that completeness w.r.t this set of

frames implies completeness w.r.t a more restricted class of frames, namely those in

which there are no infinite R,S-chains, where the index of S may vary. ILW is valid for
interpretations in theories T with designated natural numbers satisfying IΔ0+Ω1,

whose axiom sets can be represented by a R1
+-formula. I conjecture that:

ILW%φ ⇔ for all T with designated natural numbers

                            satisfying IΔ0+Ω1, with R1
+ axiom sets,

                            for all interpretations (.)* into T: T%φ*
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6.2.1 Consequences of W

A first consequence of W is Feferman's Principle F:

F % Úφ → Û(φ◊Úφ)

This is immediate by substituting Úφ for ψ. A second consequence is the

Contraposition Principle:

KW1 % φ◊Ú™  → ™◊Ûφ

Proof: % φ◊Ú™  → φ◊(Ú™∧$Ûφ)
                     → φ◊ÚÛφ
                     → φ◊Ûφ

Ergo by J1 and J3 we have KW1. $ 

Both F and KW1 characterize the same class of IL structures as W. However I do not

know whether W is derivable either in ILF or in IL(KW1).

Given the arithmetical validity of ILW we have the following consequence: Paris &
Wilkie show that EXP◊ΩÚΩ™, ergo by KW1: ™◊ΩÛEXP, i.o.w.:

(IΔ0+Ω1)◊ (IΔ0+Ω1+ÛEXP).

Autobiographical note: this proof of the interpretability of IΔ0+Ω1+ÛEXP in IΔ0+Ω1 could

have been a nice example of how the logic allows one to discover new interpretations. Alas, things

did not go like that. First I sketched a proof in IΔ0+EXP of the tableaux consistency of

IΔ0+Ω1+ÛEXP adapting a method from Paris & Wilkie[1987]. This gives us

(IΔ0+Ω1)◊(IΔ0+Ω1+ÛEXP). Then I constructed an interpretation of IΔ0+Ω1+ÛEXP in

IΔ0+Ω1+con(IΔ0+Ω1) using the Henkin construction described in 7.2.2.1. This again gives us

(IΔ0+Ω1)◊(IΔ0+Ω1+ ÛEXP). Then I started to wonder about the connection of this fact and

(IΔ0+EXP)◊(IΔ0+Ω1+con (IΔ0+Ω1)). This led me to prove the arithmetical validity of KW1

directly. Then I showed that KW1 is valid in all IL-structures with RoSx upwards wellfounded. And

finally I gave the simple modal proof of KW1.
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6.2.2Arithmetical validity of ILW

We verify that ILW is valid for arithmetical interpretations in theories T with
designated natural numbers satisfying IΔ0+Ω1, whose axiom sets can be represented

by a R1
+-formula.

The axioms L1-4 are verified in Paris & Wilkie[1987]. J1, J2, J3 and J4 are trivial,

given the fact that we opted for t-interpretability. We turn to J5: the Interpretation

Existence Lemma. Before we proceed let me answer an obvious question: J5 follows

from the stronger principle Òφ◊φ, which is assumed in this paper, so why bother to

prove it? The answer is (i) to fix a number of concepts that we will use later on in the

paper, and (ii) because the assumptions on provability in the proof are so weak that the

argument also works for alternative notions like Feferman provability. The present

construction is essentially Henkin's, refined by Feferman (see Feferman[1960]), with

some twists due to Pudlák and Friedman.

6.2.2.1 The Henkin Construction

Let U be any theory with designated natural numbers satisfying IΔ0+Ω1+conV, where

V is a theory whose language L is given by a Δ0(ω1)-formula. We assume that V%φ
⇒ U% $Vφ. Define an extension of L, L+ as follows: L+ is the smallest extension

such that if φ is in L+ then there are constants c[∃xφ] and c[∀xφ] in L+. L+ is again
Δ0(Ω1). We choose an efficient coding of 0,1-sequences, where 0 is the empty

sequence. Sequences are written: 0110, etc. . |x| is the length of the sequence coded

by x. Ì is the 'initial sequence' ordering. Define:
u∈T[x] :⇔ u is a T+-sentence; (x)u=0 or (u =NEG(v) and (x)v=1) or ( there is a w of

the form ∃zφ(z) such that (x)w=0 and u codes φ(c[∃zφ]) ) or ( there is a w

of the form ∀zφ(z) such that (x)w=1 and u codes Ûφ(c[∀zφ]) ).

Note that u∈T[x] is Δ0(ω1). Moreover: U% xÌy →T[x]÷T[y] and U%T[0]=Ø.

Define further:  x∈TREE :⇔ Con(V+T[x]). Clearly U%  (xÌy ∧ y∈TREE)

→ x∈TREE.  Moreover: U%0∈TREE. We show that U%  x∈TREE → ( x0∈TREE

∨ x1∈TREE ). Reason in U:

Suppose x∈TREE, i.e. Con(V+T[x]). Let u:=|x|+1. In case u does not code an

L+-sentence we have: T[x0]=T[x1]=T[x], so we are done. We treat the case that

u codes a sentence of the form ∃zφ(z), the other cases are analogous or easier. So
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suppose u codes ∃zφ(z). Then T[x0] = T[x]+{ ∃zφ(z), φ(c[∃zφ(z)]) } (note that
the existence of φ(c[∃zφ(z)]) requires Ω1) and T[x1] = T[x]+{Û∃zφ(z)}. The

constant c[∃zφ(z)] does not occur in V+T[x] (because we used the natural

Gödelnumbering), hence it is easy to convert a proof of falsity in V+

T[x]+{∃zφ(z), φ(c[∃zφ(z)])} in a proof of falsity in V+T[x]+ {∃zφ(z)}. Thus if

both V+T[x0] and V+T[x1] were inconsistent, we could convert the proofs of

inconsistency in a proof of inconsistency of V+T[x] in the usual way. (All these
conversions are available in IΔ0+Ω1.) $

Define PATH:={x∈TREE|"there is no y in TREE to the left of x"}. As is easily seen:

U%   x∈PATH → ( x0∈PATH ∨ x1∈PATH ) and U%0∈PATH. Also  U%

(x∈PATH ∧ y∈PATH) → ( xÌy ∨ yÌx ∨ x=y ).

Let X:={x| for some y in PATH x=|y|}. By the above U proves that 0 is in X and that

0 is closed under successor. By Solovay's methods we can shorten X to a U-cut I. For

purposes of presentation we will define our interpretation for L with just one unary

relation symbol R. The general case is, of course precisely the same. Define:

x∈L0 :⇔  x∈I and x is a code of an L-sentence.

x∈L1 :⇔  x∈I and x is a code of an L+-sentence.

x∈F1(y) :⇔  x,y∈I and y is a code of a variable,

                        x is a code of an L+-formula with at 

most the variable coded by y free.

x∈D :⇔  x∈L1 and x codes a sentence of the form ∃uφ(u) or ∀uφ(u).

K(x) :⇔  x∈I and there is an y∈PATH with |y|≤x and x∈T[y].

RK(x) :⇔  x is in D, x codes ψ and Κ(«R(c[ψ]»).

We have:
(i) U%∀x∈L0 ProvV(x) → K(x).

Reason in U:

Suppose x∈L0 and ProvV(x). Since x is in I there is a y in PATH with |y|=x. Say

x codes ψ. V+T[y] is consistent, and either ψ or Ûψ is in T[y]. Clearly

Ûψ cannot be in T[y], so ψ is. $

(ii) K 'commutes' provably in U with the logical constants on L1.
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We first show: (a) U%∀x∈L1 K(x)∨K(NEG(x)) and (b) U%∀x∈L1

Û(K(x)∧K(NEG(x))). Reason in U:

a) Consider x in L1. x is in I so there is an y in PATH with |y|=x. In case (y)x=0 we

have x∈T[y], hence K(x). In case (y)x=1 we have NEG(x)∈T[y], hence

K(NEG(x)).

b) Suppose K(x) and K(NEG(x)). There are y and y' in PATH with x in T[y] and

NEG(x) in T[y']. We have y=y' or yÌy' or y'Ìy. Let z be the Ì-maximum of y,

y'. Clearly both x and NEG(x) are in T[z]. But T[z] is consistent. Contradiction.

$

We treat the cases of negation, conjunction and universal quantification: we show

(c) U%∀x∈L1 K(NEG(x))↔ÛK(x)

(d) U%∀x,y∈L1 K(CONJ(x,y))↔(K(x)∧K(y))

(e) U%∀y∈I VAR(y) → ∀x∈F1(y) ( K(UQ(y,x)) ↔ ∀z∈D K(SUB(z,y,x)) )

(Here if z codes ψ, x codes φ(u) and y codes u: SUB(z,y,x)=«φ(c[ψ])».

Note that  by Ω1 both UQ(y,x) and SUB(z,y,x) are in L1.)

(c) is immediate from (a) and (b). For (d) and (e) reason in U:

d) Consider x, y in L1 and suppose K(x) and K(y). Let z:=CONJ(x,y). As is easily

seen z is in I and hence in L1. There is a w in PATH with |w|=z. Either z or

NEG(z) are in T[w]. As is easily seen x and y are in T[w], so by the consistency

of T[w] z must be in T[w], so K[z]. In case e.g. ÛK(x) we have K(NEG(x)) and

reasoning as before we find K(NEG(CONJ(x,y))), so ÛK(CONJ(x,y)).

e) Consider y∈I with VAR(y) and x∈F1(y). First suppose K(UQ(y,x)). Clearly

UQ(y,x) is in L1. Consider z in D. As is easily seen SUB(z,y,x) is in L1. Let v be

the maximum of UQ(y,x) and SUB(z,y,x). There is a w in PATH with |w|=v. We

have UQ(y,x) in T[w] and either SUB(z,y,x) or NEG(SUB(z,y,x)). By the

consistency of T[w] we must have SUB(z,y,x) in T[w] and hence K(SUB(z,y,x)).

Suppose for the converse that ÛK(UQ(y,x)). Let v:=UQ(y,x) and let w be in
PATH with |w|=v. Reasoning as before we find that (v)w=1 and thus that

NEG(SUB(v,y,x))∈T[v]. Clearly v is in D and we have ÛK(SUB(v,y,x)). $

We write φK for the interpretation in the language of U of sentences φ of L using D

and the translation of the relation symbols described above. As is easily seen: U% φK

↔ K(φ). So we have by (i): U% $Vφ → φK. Conclude: V%φ ⇒ U%φK.
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NOTE:
I) Clearly the above reasoning can be verified in any theory T extending IΔ0+Ω1

such that T%$Vφ→$U$Vφ.

II) We didn't make any assumption on the complexity of the formula defining the

axiom set of V. So we can use the result for Feferman style predicates.
III) If provability in V is representable by a Σ1-predicate then by a result of Wilkie

IΔ0+Ω1+ con(V) is interpretable on a cut in Q+con(V). So in this case we can

reduce our assumption that  IΔ0+Ω1+con(V) is contained in U to the

assumption that Q+conV is contained in U. In fact we may assume that U

contains Q and proves con(V) on a cut (simply take as the natural numbers of U

the elements of this cut).

6.2.2.2 The principle W

Let U and V be theories axiomatized by R1
+-formulas extending IΔ0+Ω1. Suppose V

is interpretable in U. We show that V+$U€ is interpretable in U. This result is called

the principle W for 'Weak' because it is the strongest principle that we know to hold

for all 'reasonable' arithmetics. The argument below is designed to be verifiable in
IΔ0+Ω1.

The argument uses a trick that is due to Feferman. Let M be the interpretation of V in

U. M is given by a finite amount of information and the associated translation of
formulas is R1

+-definable in IΔ0+Ω1. Define: ProvV*(x) :⇔ ProvV(x)∧ProvU(xM).

Trivially V* is extensionally equal to V. So Id: (V*+$U€)◊(V+$U€).  Also:

$V*($V*€→$U€). Clearly the principles of IL can be verified for $V* and ◊V*

(using the fact that ProvV*(x) can be written as an R1
+-formula preceded by

existential quantifiers). By K3: V*◊(V*+ $V*€) and hence V*◊(V*+ $U€).

Con- clude: U◊V◊V*◊(V*+ $U€)◊(V+ $U€). $

6.3 The Logic ILP

ILP is IL+P, where P is the Persistence Principle:

P % φ◊ψ → $(φ◊ψ)

ILP is arithmetically valid for interpretations in finitely axiomatized theories with
designated natural numbers satisfying IΔ0+Ω1. The verification of the arithmetical

validity of P is trivial. We will show that ILP is complete for interpretations in finitely

axiomatized sequential theories with designated natural numbers satisfying
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IΔ0+SUPEXP that do not prove their iterated inconsistency for any finite number of

iterations. These include ACA0 and GB.

ILP is also arithmetically sound and complete for a different interpretation, namely

when we interpret $ as provability in PA and φ◊ψ as: for some primitive recursive
term tx with just x free PA% °x ProofPA+ψ(x,«€») → Proof PA+φ(tx,«€»). This strong

notion of relative consistency is studied in Christian Bennet's Thesis (Bennet[1986a]).

More on the alternative interpretation in section 8.3.

P characterizes IL structures with the following property: yRzSxu ⇒ yRu. De Jongh

& Veltman show the completeness of ILP w.r.t. (finite) IL structures satisfying this

property (see de Jongh & Veltman[?], this volume).

We show that ILP extends ILW:

% φ◊ψ  → $(φ◊ψ)
→ $(Úφ→Úψ)
→ $($Ûψ→$Ûφ)
→ $((ψ∧$Ûψ)→(ψ∧$Ûφ))
→ (ψ∧$Ûψ)◊(ψ∧$Ûφ)
→ ψ◊(ψ∧$Ûφ)

The desired result is immediate. $

6.4 The logic ILM

ILM is IL plus Montagna's Principle M:

M % φ◊ψ → (φ∧$χ)◊(ψ∧$χ)

Fact: Montagna's Principle is arithmetically valid in verifiably essentially reflexive Δ1-

axiomatized theories with designated natural numbers satisfying IΔ0+Ω1.

Before we prove this fact first a few useful observations:

Observation 1: Suppose U has designated natural numbers satisfying IΔ0+Ω1. Let

Q* be (Q+the axioms for linear ordering for the usual ordering on the natural

numbers) extended to the language of U. Suppose U proves the Uniform Reflection

Principle for Q*. Then U proves full Induction.
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Proof of observation 1: Consider any formula φ(x) of the language of U. Let

X:={x|( (φ(0)∧ ∀y(φ(y)→φ(Sy))) → φ(x) )}. We shorten X to a Q*-cut I and find:

U%∀x$Q*x∈I. Ergo by URP for Q*: U%∀x x∈I. $

Observation 2: Let U be sequential, satisfying full Induction. Then U is essentially

reflexive.

Proof of observation 2: This is just by the usual argument for the essential

reflexiveness of PA, using the existence of partial truth-predicates in sequential

theories. $

Proof of claim: Let T be an essentially reflexive Δ1-axiomatized theory with

designated natural numbers satisfying IΔ0+Ω1. We prove the slightly stronger

principle: for S a Σ1-sentence:

∧Σ T% φ◊ψ → (φ∧S)◊(ψ∧S)

By observation 1 T satsfies full induction. So the Orey-Hájek theorem is verifiable:
T% χ◊Tρ ↔∀x$T(χ^ÚT—xρ). Reason in T:

Let S be a Σ1-sentence. Suppose χ◊Tρ so ∀x$T(χ^ÚT—xρ). Let q be so big

that for all x>q $T(S→$T—x(S↔™)). It follows that:

$T(S→(ÚT—xρ↔ÚT—x(ρ∧S))), ergo: ∀x$T((χ∧S)→ ÚT—x(ρ∧S)) and thus

(χ∧S)◊T(ρ∧S). $

If T is sequential the following proof can be used: Reason in T:

Let S be a Σ1-sentence. Suppose  M:χ◊ρ. The natural numbers of T+χ are on a T+χ-cut

isomorphic to the natural numbers of the interpretation on a suitable 'external' cut. T+χ

satisfies full induction, so this means that the natural numbers of T+χ are isomorphic to the

natural numbers of the interpretation on a suitable 'external' cut, say I*. We have

$T(χ→(S→(SI*)M)), hence by upwards persistence of Σ1-sentences: $T(χ→(S→SM)). $

Question: Is some strengthened version of ∧Σ equivalent to essential reflexiveness?

I conjecture that ILM is complete for arithmetical interpretations in verifiably
essentially reflexive Δ1-axiomatized theories with designated natural numbers

satisfying IΔ0+Ω1.

M characterizes IL-frames with the following property: ySxzRu ⇒ yRu. De Jongh &

Veltman show that ILM is complete w.r.t. (finite) IL-models satisfying this property.
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6.4.1Consequences of M

We leave the simple verification that W is derivable in ILM to the reader. Two

important consequences of M are:

KM1 % φ◊Úψ → $(φ→Úψ)
KM2 % φ◊ψ → ($(ψ→Úχ)→$(φ→Úχ))

Clearly these principles show us what is 'visible' of the Π1-conservativety of essentially

reflexive theories over theories interpreted in them. First we prove KM1:

Proof: % φ◊Úψ → (φ∧$Ûψ)◊(Úψ∧$Ûψ)
→ (φ∧$Ûψ)◊€
→ $Û(φ∧$Ûψ)
→ $(φ^Úψ) $

Next we show derive KM2 from KM1:

Proof: % φ◊ψ → ($(ψ^Úχ) → (ψ◊Úχ)
→ (φ◊Úχ)
→$(φ^Úχ)) $

Both KM1 and KM2 characterize IL-frames satisfying ySxzRu ⇒ yRu. But it is

unknown whether any of them implies M over IL.

7 IΔ0+Ω1, IΔ0+EXP & Friedman's Characterization

7.1 Tableaux provability in IΔ0+EXP

Consider any R1
+-axiomatized theory T. Transforming an ordinary T-proof into a T-

tableaux-proof is a superexponential process. To be precise it is of order:

itexp(|x|,ρ(x)), where x is our original proof and where ρ(x) is the cut rank of x, i.e.
the supremum of the lengths of the cut formulas in x. So in general IΔ0+EXP will not

prove: $Tφ → ΔTφ. On the other hand using the above estimate as a bound one can

show for sentences φ and ψ:
IΔ0+EXP % ΔT(φ→ψ) → ( ΔTφ → ΔTψ ).

The point is of course that the cut-rank involved is standard and thus the rate of growth

is just multi-exponential. It would be very pleasant if we had this fact also for formulas
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(under our convention for free varables within the scope of Δ). It seems to me that the

more general fact should hold, but I do not really know it. Another familiar principle

is:
IΔ0+EXP % ΔTφ → ΔTΔTφ .

In fact I conjecture that this principle is already verifiable in IΔ0+Ω1. (To prove this

one would have to inspect how much cuts are involved in Paris & Wilkie's procedure
to produce a proof of a R1

+-formula φ given φ.)

The above observations imply that we have the usual provability logic for ΔT with T

extending IΔ0+EXP. One can verify Solovay's completeness proof in IΔ0+EXP, so it

follows that Löb's Logic L is precisely the logic of such ΔT. (The fact that we talk

about tableaux proofs does not matter at all.)

So surprisingly $EXP and ΔEXP satisfy the same provability principles without being

provably the same over IΔ0+EXP. The next section's result will imply that one extra

principle characterizes the logic of $EXP and ΔEXP together.

9.2 Formalizing a result of Paris & Wilkie

We want to formalize 5.7.2: i.e.: for every ψ(x,y)∈Δ0 with only x,y free, there is an

ΙΔ0+Ω1-cut I such that: ΙΔ0+Ω1%∀x∈Ι∃yψ(x,y) ⇔ ΙΔ0+EXP%∀x∃yψ(x,y). An

obvious first guess at the correct formulation of the formalization is e.g.: for every
ψ(x,y)∈Δ0 with only x,y free:

IΔ0+EXP% $EXP∀x∃y ψ(x,y) ↔ ∃ IΔ0+Ω1-cut I$Ω∀x∈I ∃y ψ(x,y).

But this cannot be right. Taking ψ:=€ we would get: IΔ0+EXP%

Û$Ω€ → Û$EXP€, con- tradicting theorem 8.19 of Paris & Wilkie[1987].

(A somewhat simplified proof of this theorem is as follows: suppose IΔ0+EXP%

Û$Ω€ → Û$EXP€, then by 5.7.2 for some ΙΔ0+Ω1-cut I: ΙΔ0+Ω1%

Û$Ω€ → Û$ I
EXP€. Let J be an IΔ0+EXP-cut such that IΔ0+EXP%  ∀x∈J

supexp(x) exists. IΔ0+EXP% ÛΔΩ€ by 5.7.1 so by cut-elimination: IΔ0+EXP%

Û$JΩ€. Because ΙΔ0+Ω1 is verifiable on J we find by composing cuts that for some

IΔ0+EXP-cut J*: IΔ0+EXP% Û$J*
EXP€. This contradicts Pudlák's sharpening of

the second incompleteness theorem (see Pudlák[1985]) (or alternatively: it contradicts

Feferman's Principle F (see section 6.2.1)).)

The correct form for the formalization turns out to be this: for every ψ(x,y)∈Δ0 with

only x,y free:
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IΔ0+EXP% ΔEXP∀x∃y ψ(x,y) ↔ ∃ IΔ0+Ω1-cut I$∀x∈I ∃y ψ(x,y).

Proof: For the "→"-direction I briefly sketch how this can be shown by transforming

proofs and then give a more elaborate simulation of the model-theoretical argument of
Paris & Wilkie. Reason in IΔ0+EXP:

Let z be an EXP-tableaux-proof of «∀x∃y ψ(x,y)». The tableaux will move once

from «Û∀x∃y ψ(x,y)» to «Û∃y ψ(c,y)» to obtain a contradiction from this last
formula plus the axioms of IΔ0+EXP. The only principles used in the rest of the

proof that are not Π1 or negated Σ1 are the axioms for S, +, . and EXP. So the

only "growing constants" introduced are due to these axioms and their maximal

rate of growth is due to EXP. Our tableaux system is assumed to be relational, so

in every step the growth is only caused by one application of EXP. So the biggest

constant in the proof will be something like: exp(exp(...c)...), where the exp is
iterated |z| times. Using an estimate of Pudlák we can find for any u an IΔ0+Ω1-

cut Iu≤exp(u) such that $(∀v∈Iu exp(v)∈Iu-1). Choose I:=I|z|.

Now we transform z into an IΔ0+Ω1-proof z* of «∀x∈I ∃y ψ(x,y)» as follows.

We may start from the axioms of IΔ0+Ω1 plus «c∈Ι» and «Û∃y ψ(c,y)». We

follow z, but add on proofs for any constant e introduced that e≤exp(exp(...c)...)
say for u≤|z| iterations of exp, plus proofs that: exp(exp(...c)...)∈I|z|-u.

Application of EXP to e can then be replaced by a use of the fact that e is in I|z|-u.

We turn to the alternative argument: by contraposition it is sufficient to show that for
χ in Δ0 with only x,y free:

IΔ0+EXP%  ∀ IΔ0+Ω1-cuts IÚΩ∃x∈I ∀y χ(x,y) → ÒEXP∃x∀y χ(x,y),

hence by 5.7.1 it is sufficient to show that: for some IΔ0+Ω1-cut J:

IΔ0+Ω1%  ∀ IΔ0+Ω1-cuts IÚΩ∃x∈I ∀y χ(x,y) → ÒJ
EXP∃x∀y χ(x,y).

The above in its turn is immediate by Π1-cut-conservativity from:

(∀ IΔ0+Ω1-cuts IÚΩ∃x∈I ∀y χ(x,y))◊ΩÒEXP∃x∀y χ(x,y),

Because ÒEXP∃x∀y χ(x,y)„(EXP∧∃x∀y χ(x,y)) (see section 5.6) this last

statement follows from:
(∀ IΔ0+Ω1-cuts IÚΩ∃x∈I ∀y χ(x,y))◊Ω(EXP∧∃x∀y χ(x,y)).

Reason in  IΔ0+Ω1:

Suppose that for every IΔ0+Ω1-cut I: ÚΩ∃x∈I ∀y χ(x,y). By 5.6.4 we can find

a (standard) IΔ0+Ω1-cut J such that ∀u∈J ∃ IΔ0+Ω1-cut I $Ω(∀v∈I itexp(v,u)

exists). It follows that: ∀u∈J ÚΩ∃x (itexp(x,u) exists ∧ ∀y χ(x,y)). Let c be a

new constant and let V:=IΔ0+Ω1+∀y χ(c,y)+{itexp(c,u) exists | u∈J}. As is
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easily seen V is consistent. Let I, K, D, f be as in 6.2.2.1 and let c*:=«∃x x=c».

Define:

x∈D* :⇔ x∈D ∧ ∃y∈I x≤KitexpK(c*,f(y)).

Let K* be the interpretation based on I, K and D*. As is easily seen D* is closed

under expK and thus under expK*. Moreover (∀y χ(c,y))K*, and thus (∃x∀y
χ(x,y))K*. The (standard) instances ρ of Δ0-induction have Π1 form, moreover we

have ρK, so: ρK*.

"←" Let ℑ be an IΔ0+EXP-cut such that IΔ0+EXP%∀u∈J∀v itexp(v,u) exists. We

first show: IΔ0+EXP%∀I∈ℑ( $Ωℑ"I is a cut" → ( ∃z∈ℑ $Ω,z∀x∈I ∃y ψ(x,y)

→ ∀x ∃y ψ(x,y) ) ). Reason in IΔ0+EXP:

Suppose I∈ℑ, $Ωℑ"I is a cut", z∈ℑ and $Ω,z∀x∈I ∃y ψ(x,y). Inspecting the

argument for 5.6.2 we find that for some u∈ℑ and for all v $Ω,uv∈I. It follows

that for some w∈ℑ: ∀x$Ω,w∃y ψ(x,y). Using the estimate on cut-elimination in

Paris and Wilkie[1978], p293 we may conclude: ∀xΔΩ∃y ψ(x,y). By 5.7.1:

∀x∃y ψ(x,y).

To prove our theorem reason again in  IΔ0+EXP:

Suppose that for some IΔ0+Ω1-cut I $Ω∀x∈I ∃y ψ(x,y). By the sharp version

of R1
+- completeness we find that for some standard m and for some u and z:

$EXP,mProofΩ(u,"I is a cut") and $EXP,m$Ω,z∀x∈I ∃y ψ(x,y). By 5.7.1 for

some standard k: $EXP,kI∈ℑ, $EXP,ku∈ℑ, $EXP,kz∈ℑ. By our auxiliary result

for some standard n:
$EXP,n∀I∈ℑ( $Ωℑ"I is a cut" → ( ∃z∈ℑ $Ω,z∀x∈I ∃y ψ(x,y) → ∀x ∃y

ψ(x,y) ) ).
Conclude that for some standard p: $EXP,p∀x ∃y ψ(x,y). By applying cut

elimination we find: ΔEXP∀x ∃y ψ(x,y). $

A variant of our theorem can be easily obtained as follows: by 5.7.3 we find: for every
ψ(x,y)∈Δ0 with only x,y free:

IΔ0+Ω1% $ΩΔEXP∀x∃y ψ(x,y) ↔ $Ω∃ IΔ0+Ω1-cut I$Ω∀x∈I ∃y ψ(x,y).

Combining this with 5.8.2 we get:
IΔ0+Ω1% $EXP∀x∃y ψ(x,y) ↔ $Ω∃ IΔ0+Ω1-cut I$Ω∀x∈I ∃y ψ(x,y).

7.3 Some Consequences

1 (∀ IΔ0+Ω1-cut IÚΩ∃x∈I ∀y χ(x,y))≡Ω(EXP∧ ∃x∀y χ(x,y)).
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2 ÚΩ™≡ΩEXP.

3 For S in Σ1 we have: IΔ0+EXP% ΔEXPS ↔ $ΩS.

4 For S in Σ1 we have: IΔ0+Ω1% $EXPS ↔ $Ω$ΩS.

5 For S and S' in Σ1 we have:

                  IΔ0+Ω1% $EXP(S → S') → $Ω($ΩS → $ΩS').

Proof: IΔ0+ Ω1% $EXP(S → S') → $Ω(∃ IΔ0+Ω1-cut I $Ω(SI → S')

→ $Ω(∃ IΔ0+Ω1-cut I ($ΩSI → $ΩS')

→ $Ω($ΩS → $ΩS') $

6 For ψ in Π2 we have: IΔ0+Ω1% $Ω$Ωψ → $EXPψ.

7 IΔ0+SUPEXP proves Π2-reflection for IΔ0+EXP. Let φ(x,y) be Δ0, having only

x,y free:

Proof: IΔ0+SUPEXP% $EXP∀x∃y φ(x,y) → ΔEXP∀x∃y φ(x,y)

→ ∃ IΔ0+Ω1-cut I$Ω∀x∈I ∃y φ(x,y))
→ ∀x$Ω∃y φ(x,y)

→ ∀xΔΩ∃y φ(x,y)

→ ∀x∃y φ(x,y) $

Combining 5.8.2 and 7.3.3 we get the desired missing principle for the combined
provability logic of $EXP and  ΔEXP:

8 IΔ0+EXP% $EXPψ ↔ ΔEXPΔEXPψ

It is immediately clear that this last principle together with the complete set of
principles for ΔEXP fully describes the mixed logic. Note that we have this variation of

Löb's Principle:

9 IΔ0+Ω1% $EXP($EXPψ → ΔEXPψ) → $EXPΔEXPψ.

This principle "says" in some sense that IΔ0+EXP does not prove cut-elimination.
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7.4 Friedman's Characterization

Let  U and V be finitely axiomatized sequential theories. Combining 5.8.1 with 7.2 we

find:
IΔ0+EXP%  U◊V ↔ ΔEXP(Tcon(U)→Tcon(V)).

A variant is:
IΔ0+Ω1% $ΩU◊V ↔ $EXP(Tcon(U)→Tcon(V)).

Note that for interpretability over IΔ0+EXP this implies:

IΔ0+EXP% φ◊EXPψ ↔ ΔEXP(ÒEXPφ→ ÒEXPψ).

Combining this with the fact that we know the complete provability logic of ΔEXP we

get a Kripke model characterization of the interpretability logic of IΔ0+EXP. It is

unknown what modal theory corresponds precisely with this Kripke semantics.

8 Arithmetical Completeness for Interpretations

        in Finitely Axiomatized, Sequential
        Theories extending IΔ0+SUPEXP

In this section we prove: ILP is complete for arithmetical interpretations in any finitely

axiomatized sequential theory with designated natural numbers that satisfy
IΔ0+SUPEXP (plus a minimal extra condition). It is convenient to use a slightly

different Kripke semantics in the proof of the arithmetical completeness theorem.

Because this semantics is strongly suggested by Friedman's characterization of

interpretability, I propose to call it Friedman Semantics.

8.1 Friedman semantics

A Friedman structure is a tuple <K,b,P,Q>, where:

i) K is a non-empty set.

ii) b∈K and for every x∈K bWQx

iii) R is a binary relation on K.

iv) Q is a transitive, irreflexive, upwards wellfounded, binary relation

v) P÷Q

vi) xQyPz ⇒ xPz

Note that (v) and (vi) imply that P is transitive. Let R:=QoP, i.e. xRy ⇔ for some z

xQzPy.
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A relation ∞ between K and L is a forcing relation if it satisfies the usual clauses, with

R as the accessibility relation for the $, plus:

x∞φ◊ψ ⇔ ∀u (xQu ⇒ (∃y (uPy∧y∞φ) ⇒ ∃z (uPz∧z∞ψ)))

If F is a Friedman structure and ∞ is a forcing relation on F, then <F,∞> is a

Friedman model. It is easy to check that ILP is valid in any Friedman model.

Consider an IL-model W=<K,R,S,∞> and a Friedman model G'. β is a bisimulation

between W and G' if:

i) β is a relation between K and K'.

ii) bβb'.

iii) Let x,y,... range over K, let x',y',... range over K':

        we have for any x,x' with xβx':

∀y(xRy⇒∃u',y'(yβy'∧x'Q'u'P'y'∧∀z'(u'P'z'⇒∃z(zβz'∧ySxz)))).

iv) We have for any x,x' with xβx':

∀u',y'(x'Q'u'P'y'⇒∃y(yβy'∧xRy∧∀z(ySxz⇒∃z'(zβz'∧u'P'z')))).

v) xβx' ⇒ (x∞p ⇔ x'∞'p), for all atoms p.

Note that for every x∈K there is an x'∈K' with xβx', but that possibly there are u'∈K'

such that for no u∈K uβu'. We do have: for all x'∈{b'}˙range R' there is an x∈K

such that xβx'.

We have: xβx' ⇒ for all φ x∞φ ⇔ x'∞'φ. The proof is by a trivial induction on φ.

To prove completeness for ILP w.r.t finite Friedman models it is clearly sufficient to
show that every finite IL-model W satisfying: xRyRzSxu ⇒ zSyu, can be bisimulated

by a finite Friedman model G'.

Construction: Let W be a finite IL-model for ILP. We construct  a bisimulating

Friedman model G':
K':= {<x1,...,xn>| n≥1, x1=b, x2i-1Rx2i (for 1≤i and 2i≤n) and

            x2iS[x2i-1]x2i+1 for 1≤i and 2i<n}

b'=<b>
<x1,...,xn> Q' <y1,...,ym> :⇔  m>n; for all i≤n xi=yi

<x1,...,xn> P' <y1,...,ym> :⇔ <x1,...,xn> Q' <y1,...,ym> and m is odd

<x1,...,xn>∞p :⇔ xn∞p
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It is easy to see that the model constructed is a finite Friedman model. Note that Q' is

a tree and that G' is really a Carlson model, i.e. there is a set X'÷K' such that x'R'y' ⇔
x'Q'y' and y'∈X'. We always take  X':={<y1,...,ym>| m is odd}, so that b'∈X'. The

nodes  x' of X' also satisfy the additional property: if x'P'y' then x'R'y'. This property

will be needed in our arithmetical completeness proof for reasons to be explained

later.

Define: xβx' :⇔ x'= <x1,...,x2m-1> and x2m-1=x. We show that β is a bisimulation

between W and G'.

x

y z

<...x>

R

S
x <...x,y...z>

<...x,y>

<...x,y,y>

Q'

P' P'

<...x> x

y z

R

S
x

P' P'

<...x...u>

<...x...u...v,y> <...x...u...v,z>

Q'

The conventions for interpreting these pictures are as follows: the black arrows and open nodes are

'given', 'univer- sal'; the grey arrows and grey nodes are 'produced', 'existential'. If a 'given' arrow

(node) in the left (right) half of the picture corresponds to a 'produced' arrow (node) in the left (right)

half of the picture, then the 'produced' arrow (node) is produced, given the corresponding 'given' arrow

(node). Corresponding nodes bisimulate under the given bisimula- tion β.

Let's first discuss the upmost picture. Here it is to be shown that indeed ySxz. We

have: either <...x,y...z>=<...x,y,z> or <...x,y...z>=<...x,y,u,v...z>. In the first case we
have trivially ySxz. In the second case one easily shows uRz. So we have: ySxuRz,

hence ySxz. Secondly we look at the second picture. We only have to show that for

the unique w with <...x...u...v,y>= <...x...w,v,y> we have: vSwz. It is possible that x=w:

this case is easy. So suppose x≠w. As is easily seen: xRw, so  xRwRvSwySxz, and

thus xRwRySxz. Hence ySwz and thus vSwz. $

8.2 A Solovay-style Completeness Proof
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Let U be a finite sequential extension of IΔ0+SUPEXP. We only need to assume that

U in fact extends IΔ0+SUPEXP (as an infinitely axiomatized theory), we do not need

to stipulate that IΔ0+EXP% ΔSUPEXPψ → ΔUψ. This because we will only need

actual theorems of IΔ0+SUP- EXP. We will need however the following lemma:

Lemma: For sentences ψ∈Π2: IΔ0+EXP% ΔEXPψ → ΔUψ.

Proof: We have: IΔ0+EXP% ΔEXPψ→ΔUΔEXPψ and

IΔ0+EXP% ΔU(ΔEXPψ→ψ). Hence: IΔ0+EXP% ΔEXPψ → ΔUψ.$

(Note that even a stronger version of the lemma is provable with $EXP instead of

ΔEXP.)

We assume that for no k U%$k
U€. (If U%$k

U€ for some k, let k* be the smallest

such k. The corresponding logic will then be ILP+$k*€, as is seen by an easy

adaptation of the argument below.)

Arithmetical Completeness Theorem : ILP%φ ⇔ for all * U%φ*.

Proof: the proof is a refinement of an earlier proof by Smorynski and the author for
the case that U=GB or U=ACA0. Its basic idea is close to that behind the

completeness proof for PRLZF due to Carlson (see Smorynski[1985], p205-214).

The "⇒" side is clear. For the "⇐" part suppose ILP‹φ. Let G0 be a finite Friedman

countermodel to φ with Q0 upwards wellfounded. We may assume that K0 is

{1,...,N}, that 1 is the bottom element  and 1fi0φ,  and that our model satisfies:

(i) Q is a tree,

(ii) P is given "Carlson-style" by a set X: so xPy ⇔ xQy and y∈X; 1∈X.

(iii) if x∈X and xPy, then xRy.

From the arithmetical point of view the nodes in X correspond with the 'point of view'
of U. P considered as an accessibility relation corresponds to ΔU, Q similarly

corresponds to ΔEXP. Property (iii) corresponds to the fact that U proves cut-

elimination and thus proves the equivalence of ΔU and $U.

G is the result of hanging a new node 0 under G0. Formally: K:=K0˙{0}, xQy :⇔
(x=0 and y≠0) or xQ0y, X:=X0˙{0}, xPy :⇔ xQy and x∈X,
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x∞p :⇔ x≠0 and x∞0p. Clearly 1fiφ.

Define by the recursion theorem:

h(0):=0,
h(x+1):=y if h(x)Py and TproofU(x,L≠y) or

            if h(x)Qy and TproofEXP(x,L≠y),

h(x+1):=h(x) otherwise,

L:= the unique x such that ∃y∀z>y h(z)=x.

The definition of h can be given in such a way that 'h(x)=y'is a Δ0(exp)-formula and

its elemen- tary properties are verifiable in IΔ0+EXP (in fact we can do much better,

but that is not relevant here). We have e.g. IΔ0+EXP%  x<y→h(x)WQh(y) and

IΔ0+EXP%  "L exists".

Note that: IΔ0+EXP% L=x ↔ ∃y h(y)=x ∧ ∀u,v((h(u)=x∧v>u)→h(v)=x), so L=x is

in fact the conjunction of a Σ1- and a Π1-formula.

Define for atoms p: p*:=æ{L=i|i∞p}.

Lemma: U%L∈X.

Proof of lemma: Reason in U:

Suppose L=i∉X. By the definition of h: ΔEXPL≠i. By Π2-reflection: L≠i.

Contradiction, so L≠i. $

We show by induction on ψ for 1≤i≤N:
i∞ψ ⇒ IΔ0+EXP%L=i→ψ*,
ifiψ ⇒ IΔ0+EXP%L=i→Ûψ*.

The cases of the atoms and the propositional connectives are trivial. The case of $

follows immediately from the case of ◊. Assume the IH for χ. We show for i≠0:
for all j with iPj j∞χ ⇒ IΔ0+EXP%L=i→ΔUχ*,
for some j iPj and jfiχ ⇒ IΔ0+EXP%L=i→ÛΔUχ*.

First suppose that i≠0 and for all j with iPj j∞χ. Reason in IΔ0+EXP:

Suppose L=i. By the definition of h we have ΔEXPL≠i or ΔUL≠i. In both cases

ΔUL≠i. For some x h(x)=i, so ΔU∃x h(x)=i and thus by an easy argument:
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ΔUiQL. By the lemma: ΔUiPL. Conclude ΔUæ{L=j|iPj}. By the Induction

Hypothesis: ΔUχ*.

Assume that i≠0 and for some j iPj and jfiχ. Reason in IΔ0+EXP:

Suppose L=i and ΔUχ*. By the Induction Hypothesis: ΔU(L=j→Ûχ*). Hence

ΔUL≠j. Suppose TproofU(z,L≠j). Because L=i clearly for every y h(y)Pj, hence

h(z+1)=j. Contra- diction. Conclude ÛΔUχ*.

Suppose ψ=χ◊ρ. First we assume i≠0 and i∞ψ. By the above: for every j with iQj:
IΔ0+EXP%L=j→(ÒUχ*→ÒUρ*). Moreover if i∈X by the special property (iii) of

our model: IΔ0+EXP%L=i→(ÒUχ*→ÒUρ*). Reason in IΔ0+EXP:

Suppose L=i. For some x h(x)=i, so ΔEXP∃x h(x)=i. Conclude:

ΔEXPæ{L=j|iWQj}. In case i∈X, we have immediately by the above:

ΔEXP(ÒUχ*→ÒUρ*), i.e. χ*◊Uρ*. If i∉X, it follows that ΔEXPL≠i, and thus

ΔEXPæ{L=j|iQj}. So again: ΔEXP(ÒUχ*→ÒUρ*), i.e. χ*◊Uρ*.

Secondly assume i≠0 and ifiψ. So for some j with iQj  for some k with jPk: k∞χ,
and for all k' with jPk': k'fiρ. Ergo IΔ0+EXP%L=j→ÒUχ* and

IΔ0+EXP%L=j→ΔUÛρ*. Reason in IΔ0+EXP:

Suppose L=i and ΔEXP(ÒUχ*→ÒUρ*). We have:

ΔEXP(L=j→Û(ÒUχ*→ÒUρ*)), so ΔEXPL≠j. Suppose TproofEXP(z,L≠j). From

L=i, we have: for all y h(y)Qj, so h(z+1)=j. Contradiction.  Conclude:
ÛΔEXP(ÒUχ*→ÒUρ*).

Finally: suppose U%φ*. By the above we find: U%L≠1. So by the definition of h and

the fact that 1∈X: U%L≠0. Thus  U%æ{L=i|1<i≤N}. Clearly for some k and for all

i with 1<i≤N: i∞$k€. So: U%$k
U€. Quod non. $

8.3 Another Interpretation

Christian Bennet studies in his thesis (see Bennet[1986a]) the following notion of

strong relative consistency over Peano Arithmetic: for A,B sentences of the language

of Peano:

φ◊SRCψ :⇔ there is a primitive recursive term t such that 

PA%∀x(ProofPA+ψ(x,€)→ProofPA+φ(tx,€))
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(Actually Bennet defines his notion for arbitrary theories which are verifiably in PA

RE extensions of PA; we scaled his notion down to fit our framework.)

Let PRA be Primitive Recursive Arithmetic, a theory which is for our purposes equal
to IΣ1. By a remark of Kreisel we have: φ◊SRCψ ⇔
PRA%ÚPAφ→ÚPAψ. Formalizing this in PA we get:

PA% φ◊SRCψ  ↔ $PRA(ÚPAφ→ÚPAψ)

Comparing this characterization with Friedman's characterization of ◊U, for finitely

axiomatized sequential U, it is easy to adapt the above proof to show completeness of
ILP for arithmetical interpretations where $ is interpreted as $PA and ◊ is

interpreted as ◊SRC.
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