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ABSTRACT

This paper contains the following results:

(i) a theorem of the form: if HA (Heyting's Arithmetic) proves some F0

substitution instance of an intuitionistically non valid proposi-

tional formula then HA proves a substitution instance of a simpler

intuitionistically non-valid formula - unless of course the original

formula was - in some appropriate sense - already as simple as

possible. The result is shown to be adequate.

a proof that De Jongh's Completeness Theorem for arithmetical

interpretations of Intuitionistic Propositional Logic is verifiable

in HA + con(HA).

(iii) a characterization of the closed fragment of the provability logic

of HA - this is a solution of Friedman's 35th problem for the case

of HA.

These results are instances of or corollaries to answers of a common kind

of question, which we call the evaluation problem for a certain set of

interpretations. A framework is developped to analyze this kind of question.
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0. Introduction

0.0 Introductory Remarks

We start with some examples:

(i) Consider a Z0-sentence A. As is well known: HAI- (-i and

HA F (, A-*A),*o (Av-rA)

Here 'HA' stands for Heyting's Arithmetic and 'o' for provability in HA. The

relation
_HA

on sentences of the language of HA defined by: C.HAD:f>HA}-
is called the relation of provably deductive equivalence in HA. All our

examples state provably deductive equivalences.

(ii) Consider an arbitrary sentence B of the language of HA. We have (by [41):

HA 1- ((in B->B)-*(Bv,B))i-*o(,-,BvrB)

(iii) Consider a F0-sentence 0 that is 'flexible' in the following sense:

HA

(One may show the existence of such an 0 by standard diagonal techniques,

see [6] or [111)

We have: HA F (Qv-T

(iv) HA I-

All these examples are of the form HA I. cp Here cp(p) and (p*(') are
propositional-formulas and IP Fcp* -*p.(1) ('IP' stands for Intuitionistic

Propositional Logic). In every example the substitutions are from a prescribed

class. In example (i) this is the class of Z -sentences, in (iii) flexible

Z -sentences, in ('iv) sentences of the form

In this paper we will provide generalizations of each of (i)-(iv).(2) These

generalizations are best viewed as answers to a certain kind of problem.

The problems: Let L be a language of propositional logic with a set of propo-

sitional variables P. P may be finite or infinite. Let G be a set of functions

from P to the of the language of HA. (E.g. in (i) the elements of G

are the functions from P to F-0-sentences; in (iv) G={g0} with g0(pi)= .. 1.

Define ( )g by:

- (.p)9: =g (cp) if cpE P

(1)g: =1 (T)g:=(0=0)

- ( )g commutes with n,V,->.

i+1
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Define: for all gEG )g

The problem is to characterize -G. We call this the evatuutiovi ptcobt em for G.

In the cases we study in this paper answers to evaluation problems take a

definite form.

The answers: Let U be a theory in L given by UFcp« for all gEG HA l-((p)9, and

let U be the Lindenbaum algebra of U. A moment's reflection shows that G can

be viewed as an equivalence relation on U. It turns out that in each case

studied the equivalence classes have minimal elements in U. (In each of the

examples (i)-(iv) (p* is a representative of the minimal element of the
-G

equivalence class of [(P]
U*

Here [cp] U is the U-equivalence class of .p). To
characterize -G it will be shown to be sufficient to specify the set of minimal

elements. The set of minimal elements in its turn is given by a suitable set X

of representatives in L.

Example: Let o0,st1,... be independent flexible Z -sentences, i.e. for each n
n

HA F VB0EZ1-sentences ... vBnEl1-sentences S 2 - Bi)- 1')
i=0

Our generalization of (iii) looks as follows:
G: ={G}, where G(pi):

Qi.

U: = IP

X: _ {T,13

This generalization can be viewed as a proof that De Jongh's Completeness

Theorem for Arithmetical Interpretations of Propositional Logic can be verified

in HA+con(HA). An immediate consequence of the generalization of (iv) is a

characterization of the closed fragment of the provability logic of HA. This

solves the analogue for the case of HA of Friedman's 35th problem.

0.1 How to read this paper

The paper is divides into a propositional part (part 1) and an arithmetical

part (part 2).

The minimal way of reading the paper is just to look at 1.0, 1.1, 2.0, 2.1,

2.2. The reader who is anxious to see arithmetic in action may very well start

reading these anyway. The minimal packet can be extended by any of 2.3 or 1.2,

2.4 or 1.3, 2.5.
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Most of the materials presupposed in the paper are contained in [21 and [5].
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1. Evaluation Heyting Algebras

1.0 Definitions and Elementary Facts

1.0.0 Definition

A Heyting Algebra is a structure <Hwhere <H,<,A,V,T,l>
is a lattice and -* satisfies: anb<,c«a,<<b-c.

1.0.1 Fact

Any Heyting Algebra is distributive and satisfies: for every - aEH,XC H, if uX

exists, then aAUX is the supremum of {aAXIxEXI

For information on Heyting Algebras, see [31, [8].

1.0.2 Definition

One can think of three equally convenient definitions of Evatu.ation Hat ,ng

AZgebta (EHA). We will use them interchangeably.

A) An EHA is a structure <H,,<,( )*,A,v,->,T,1>, where <H,<,A,v,-*,T,±>
is a Heyting Algebra and ( )* satisfies:
(i) a<b,a*<b*

(ii) a*.<a

(iii) a**=a*
(iv) T*=T

B) An EHA is a structure <H,H0,<, A,V,-*,T,±>, where <H,<,A,V,-*,T,±>
is a Heyting Algebra and HOc H, with: TEHO and for every aEH 4bEHOlb<aI

has a maximum.
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C) An EHA is a structure <H,-,E,A,v,-*,T,1> where <H,,,A,V,->,T,1> is a
Heyting Algebra and:
(i) - is an equivalence relation on H

(ii) each - equivalence class has a minimum element

(iii) a-.a' ,b-b'=OaAb-a'Ab'

(iv)

We show that A,B,C are 'equivalent' definitions.

a) "A structures are B structures".

Define H0: Clearly TEHO. We claim: a* is the maximum of JbEH0lb<aj.

a*.<,a and a**=a*, hence a*EjbEH01b,a}. Moreover for bEH0, with b,<a, we have

b=b*<a*.

b) "B structures are A structures".

Define a*: = the maximum of {bEH0lb<aj. It is trivial to check A(i)-(iv).

c) "A structures are C structures".

Define a-b:aa*=b*

Ad C (i) : clearly - is an equivalence relation.

Ad C (ii) : a* is the minimum of equivalence class [a] of a: a*-a and if a-b,

then a*=b*, hence a*.<,b.
Ad C (iii): We first show (aAb)*=(a*Ab*)*. a*nb*<anb, hence (a*nb*)*,(anb)*.

Further anb,a, hence (anb)*,<a*. Similarly (anb)*,b*. Hence

(anb)*Ea*nb*. So (anb)*=(anb)**,(a*nb*)*.

Assume a-a', b-b', we have:

(anb)*=(a*nb*)*=(a'*nb'*)*=(a'nb')*, hence aAb-.a'nb'.

Ad C. (iv) : Suppose a-.T, i.e. a*=T*; then T=T*=a*<a. Hence T=a.

d) "C structures are A structures".

Define a*: = the minimum of [a].

A(ii)-A(iv) are trivial.

6



Ad A (i): suppose a,<b then anb=a. a*,a, b*rb, hence a*Ab*,anb=a--a*. It follows

a*, a*Ab*, hence a*,<b* .

We leave it to the reader to check that the transitions in a and b are inverses

and similarly for c, d.

1.0.3 Fact

Let H be an EHA with ( )*, H09 - as above.

(i) Ho is closed under v

(ii) I I H
0

(iii) Define A0 on HO by (aAOb):=(anb)* and -*0 on HO by Then

H0'-<HO'y'n0'v,-*O,T,1 > is a Heyting Algebra. (Here <:=,<PHO, etc.)

Proof

(i) Suppose a,bEHO. a<avb,b.avb, hence a=a*,<(avb)*, b=b*,<(avb)*.
Conclude (avb),<(avb)*. Thus avb=(avb)*.

(ii) Trivial
(iii) Clearly HO is closed under 0. T,1 are in HO.

Suppose a,b,cEHO, we have:

c,a and c,<b a c,anb
c=c*, (anb)*=aA,b

an0b,,c anb,c
a

a=a*,(b-c)*=(b->0c)

1.0.4 Definition

An EHA H is called conjunctive if (aAb)*=a*Ab*, it is called dizjunctLve
if (avb)*=a*vb*. We call it 6u.22 if it is both conjunctive and disjunctive.

1.0.5 Fact

(i) An EHA H is conjunctive iff HO is closed under n

(ii) An EHA H is disjunctive iff a-a' ,b-b'=>avb-a'vb'

Proof

(i) Suppose H is conjunctive. We have for a,bE HO:

7
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(anb)*=a*Ab*=anb, so anbEHO. Conversely suppose HO is closed
under A. Consider c,d in H. We have cnd,c,CAd`d, hence (CAd)*`C*Ad*.

But c*Ad*EHO and C*Ad*,< cc,C*Ad*,d*,d. So C*Ad*,<cnd. Conclude

C*Ad*=(CAd)*.
(ii) Suppose H is disjunctive. If a-a' ,b-b', then a*=a'*,b*=b'*, so

(avb)*=a*vb*=a'*vb'*=(a'vb')*, or avb-a'vb'.

Conversely suppose: a-a' ,b-b'=avb-a'vb' . Surely a,a*,b-b* so
avb,,a*vb*. Hence (avb) *-a*vb* . On the other hand a<,avb, so

a*1(avb)*. Similarly b*,(avb)*, hence (a*vb*),(avb)*
13

1.0.6 Examples

is a non disjunctive EHA

(The elements of H0 are designated by Q )

is a non conjunctive EHA.

1.0.7 Remarks on the definition of EHA

(i) Perhaps the condition T*=T (or TEH0 or a-Tea=T) could be left out of
the definitions of EHA; see also 1.0.8. In any case all the structures

we will meet satisfy this condition.

(ii) All the important ERA's that are treated in the paper are full. There is

one example of an EHA that is not disjunctive in connection with the

closed fragment of the provability logic of Peano Arithmetic. Moreover

the solution to the evaluation problem for substitutions of rr0 sentences

is probably an EHA and is definitely not conjunctive.

1.0.8 Excursion: EHA's viewed categorically

1.0.3 iii suggests that EHA's perhaps could be viewed as subobjectz in some

appropriate category. This is indeed possible, if one drops the condition

(T)*=T. We briefly outline the relevant facts. (This section is in no way

essential for the rest of the paper.)

The objects of our category are Heyting Algebras. Define a morphism f between
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two Heyting Algebras H0, H1 as a pair <f *,f *>, which is an adjunction between

H0 and H1 considered as partial orders. (The suggestion to take adjunctions as

morphisms is due to Carst Koijmans.) To spell it out:

- f* is monotonic from H0 to H1

- f* is monotonic from H1 to H0

-

We have:

(i) This category has products but not in general exponents.

(ii) f* preserves arbitrary sups (if they exist); f* preserves arbitrary

infs (if they exist).

(iii) f is mono iff f* is injective.

(iv) Let H be any Heyting Algebra and let a be a cocto4ute operation on H,

i.e.

- a is monotonic

- a is idem potent, i.e. aoa=a

- a(x),<-x.

Define H0:=JxEHla.(x)=x} and H0:=<H0,<,PH0,...> and f0:=<embH H, a>,
f 0

then: H0> H .

(v) Let G-iH. Define a:=f*of*. Then a is a coclosure operation. Define H0 as

in (iv). f1:=<f*,f*rH0>.
We have: f

f1H0 f0

Moreover G and Ho are isomorphic in case f is mono; together with (iv)

'-this tells us that subobjects are given by coclosure operations.

(vi) Let G)
f
) H. This determines an EHA in the weak sense, which is con-

junctive if f* preserves n, disjunctive if f* preserves v.

Our main concern in the rest of this section is the problem how to show certain

EHA's to be disjunctive. However it is perhaps a good idea first to look at a

few more examples.

1.0.9 Conventions

a) Given a Heyting Algebra H, we write <H,( ) *> , <H , H 0>,<H,-> for an EHA
built on H.

b) Let L be a language for propositional logic, U a theory in L. Suppose X c L.

9



- =U will be the relation of provable equivalence in U
[(p]U will be the

U
equivalence class of cp in L.

X/U:=Y[(P]UI(p`X}

- U will be the Lindenbaum Algebra of U

One of our main interests will be in EHA's of the form <U,X/ U>.

c) IP is intuitionistic propositional logic. Its language LIP has propositional

variables p0, pl , ... and logical constants T,l,n,V,-5. -land -> are introduced
in the usual way.

d) IPn is like IP, only its language LIpn has just the propositional variables

p0,p1,...,pn-1.

1.0.10 Examples

I. Let H be a Heyting Algebra. Define:

a ] : = i xEH l x`a}
[b:= f
a][b:=a]u[b

We have:

i ) <H , a] [ b> is a conjunctive EHA.
ii) Suppose a, b. Suppose further there is a c incomparable to b, then

<H,a] [b> is not disjunctive.
iii) Suppose a/T. <H a] [T> is disjunctive iff T has the disjunction

property in H, i.e. (avb=T iff a=T or b=T) .

Proof

i) a][b is closed under A. TEa][b. Take:
._ x if b<x

(x)*
an x otherwise

ii) (cvb)*=cvb, c*vb*=(cna)vb=b

iii) "=>" Suppose <H , a ] [ T> is disjunctive and that (cvd) =T . Hence

c*vd*=T. Suppose we find (cvd)na=(cna)v(dna)=T.
So a=T. Quod non.

Suppose H has the disjunction property. If one of c,d is T clearly

(cvd)*=T=c*vd*. If c nor d is T, also cvd#T, hence:
(cvd)*=(cvd)Aa=(cna)v(dna)=c*vd*

13

10

=U

._



II. The following two ERA's play an inportant role in part 2

V:=<IP,-L][T>, and J:

We will have a closer look at V in 1.2. Clearly both D and J are full EHA's.

We turn to the problems connected with disjunctivity.

1.0.11 Definitions

i ) Let <H , H 0> be an EHA. Let H 1 c HO . H 1 is a bas-iz for <H , H 0>_ if for every
h0EH0 h0=V{h1EH 11h1.h0J.

ii) Let H be a Heyting Algebra. An element h of H h" the, dig junc ion pnopehty
if for every x,y in H: h,<xvy=h,x or

1.0.12 Theorem

Let < H,H0> be an EHA. Suppose H1 is a basis for <H,H0> such that every h1

in H1 has the disjunction property. Then <H,H0> is disjunctive.

Proof

Suppose h0EH0 and h0,<,xvy. For any h1EH1 with hl.h0 we have hl,<xvy
and hence h 1,<x or h 1 <y . Thus h 1,<x* or h l,y* . Conclude

h0=U{h1CH 11 h1<,h01<x*vy*. It follows that (xvy)*,<,x*vy*.
o

EHA's are often given as <U,X/U>. The rest of this section is devoted to

providing lemmas to apply 1.0.12 to such EHA's (or in some cases: to apply

the reasoning of the proof of 1.0.12).

As a start we need a few facts about Kripke models.

1.0.13 Kripke models

We present a Kripke model K as a triple <K,,<,, II->. Such a model need not have

a bottom. If there is a bottom k0 and this fact is relevant, we write:

K=<K,kO,,<, II->.

Let K'cK. K' non empty. Define K[K] :=<K' , If->. Where: <' :=<rK' and 11-'

is given by: for k'EK' k' II-' pi :pk' 11-pi .

v v
For kEK:k:=}k'EKik,<,k'} and K(k):=K[k]. Because IF and If-' will in this

v v
case coincide on k we write: K(k)=<k,E,IF->.

11



1.0.14 The relativized Henkin construction

We briefly review the relevant facts about the relativized Henkin construction.

Let X c LIP and let X be closed under subformulas. We say that a set is

X -,satutcu t ed if:
a) AcX
b) 0 is consistent in IP
c) cpEX and o F Ip cp=>(pEO

d) (cpvi,)EX and AFIP ((po)=*AFIpcp or AFIP

Define the Kripke model LX=<L,,<, II-> as follows:
- L:= {ocX I o in X-saturated]

A,<0':t-*A t'
:<*piEA

We have by a standard argument: for all cpEX : o II-cp cpEL .

1.0.15 Push Down Lemma

Let X c LIP and let X be closed under subformulas. Suppose A is X-saturated.

Let K be a Kripke model such that for every kE K klF o.. Construct a new model

M as follows:

Where mII-pi: epiEO.

Then: mlFA.

LX(A)

K

Proof: the proof is a simple induction on the elements of o . E.g. suppose
((. -x)EO. We have: oIF ( ->x) and: for all kEK k II-l-x. So in case miff
we are done. Suppose m IF a). It follows that oIF . But EX , so ED . Hence

xEo and by IH: mlFx.

13
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1.0.16 Definition

i) Let rcL . We say that r has the di junc t.Lon pnopvzty if :

r IP vx-.,rl-Ip` or
ii) Let cpE L . We say that cp has the disjunction property if: {(p3 has the

disjunction property.

1.0.17 Lemma

Let X be closed under subformulas. Suppose o is X-saturated. Then A has the

disjunction property.

Proof:

Suppose o V,pP ,AIJ IPx. Then there are Kripke models KO =<KO , k0 11- > ,

K1=<K1 ,k1 IF> such that k01Fo,k1 It-o,k0lf ,,k1 lyx. Construct a Kripke
model M as follows:

m

Where mil-pi : a pi E A.

By the push down lemma: mIPA, but Hence AVIPOx.
CI

1.0.18 Applications

i) Suppose cp does not contain disjunctions, then cp has the disjunction

property.

ii) 1 has the disjunction property.

Proof :

i) Let Sub((p) be the set of subformulas of co. Trivially cp is Sub(cp)-saturated.
ii) Under the negation sign one may substitute classical equivalents for each

other preserving IP-equivalence. So IPF-rV H x . Where x contains no

disjunctions. Apply (i).

13
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1.0.19 Disjunctive Normal forms for IP

Consider any formula gyp. Let Sub(cp) be the set of subformulas of cp. Let
L:=LSub(cp) ' Clearly L is finite. Let 05 ...,D n-1 be the minimal nodes of L- - -
such that Ai IFS (or: (pEOi) . Define: (pi : =fx1 ,EOi1 is atom or impl icationi
First we note that cpiFIPAi This is shown by a simple induction on the elements
of of . It follows that (iFlpvc= AiFlpv for all vELID. Hence (Di has the
disjunction property. We have: IP-cp t+w/(p.. For the "*-" direction note that

i=O
cpEAi and hence IPI-cpi --cp. For consider any Kripke model K and any node
kEK with klI-cp. Let o

i hence kII- Qi .

n-1

We call X/0 pi the disjunctive normal form for cp. There is a weak connection

between this disjunctive normal form and the classical one: if cp is built up

from atoms and negations of atoms using A and v only one gets a - not fully

efficient - version of the classical disjunctive normal form.

1.0.20 Theorem

Suppose XcLIp ,TEX , X is closed under taking subformulas, conjunction and
disjunction. Suppose further that X/Ip is finite. Then <IP,X/Ip> is a full

EHA.

Proof:

Take a*:=W{bEX/Ip1b,<aj. Clearly a*EX/Ip. Note T*=T. Hence <IP,X/IP>
is an EHA. X/IP is closed under A, hence <IP,X/Ip> is conjunctive.

n-1

Consider cpEX. Let Ocpi be the disjunctive normal form of cp. Each of the

`pi
is a conjunction of subformulas of gyp. Hence cpi E X . Let X1: Ik has the

disjunction propertyj. Clearly X1/IP is a basis for <IP,X/Ip> and every

element of X1/IP has the disjunction property.

1.0.21 Application

Let X0 be a finite set of formulas. Let X be the closure of X0UfT} under

taking subformulas, conjunction and disjunction. Then <IP,X/Ip> is a full EHA.

Proof:

By the normal form theorem X/IP is finite.

13
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1.0.22 Remark

Clearly 1.0.20 and 1.0.21 go through when we restrict ourselves to IPn.

1.0.23 Open Problem

For n>O: is <IPLIpn/IP> an EHA? (In case n=1 this reduces to the question,

whether there is an element of IP between the top and the rest of the Rieger

Nishimura Lattice.)

In sections 1.1, 1.2, 1.3 we introduce the main characters of this paper: the

EHA's NN, V and UP.

1.1 NN and NNn

1.1.0 Definitions

a) NNIL, i.e. No Nestings of Implications to the Left, is the smallest set

such that:

- T,1,p0,p1,... are in NNIL

- NNIL is closed under A,V

- if (pENNIL then (pi -(p) E NNIL

b) NNILn:=NNII.n LIPn

c) NN:=<IP,NNIL/IP>

d) NNn:=<IPnNNILn/Ipn
>

1.1.1 Theorem

NNn is a full EHA.

Proof:

Let (pi-->X)E
NNILm+1

and let v be the result of substituting T for pi in X.

Cl early IP I- (pi- X).*(p i ->v) . Moreover modul o a renaming of proposi ti oval
variables v is in NNILm. Using this observation plus the normal form theorem

one sees by an easy induction on n that NNILn/Ipn is finite. Apply 1.0.20.

Before turning to the problem of showing that NN is an EHA, we give two small

facts about NNn and NN.

15



1.1.2 Fact

For each n NNILn/IPn has a maximum element Sn below T.

Proof:

We present onE Sn:

a0:=1

61(PO):=pOv-ipO n+1

an+2(PO,...,pn+1):= WO(Pi- (Jn+1(pO,...,pi-1'pi+1,...,pn+1))

We leave the proof that the an are as desired as an excercise.

1.1.3 Fact

In NN/NNn : a--L=a =1

Proof:

We leave the proof as an excercise to the reader.

a

1.1.4 Discussion

We now turn to the problem of showing that NN is an EHA.

Consider cpELIP. We have to produce a cp*ENNIL such that IP I-cp*-*p and for all
xENNIL IPF-x-cp= IP 1-X-_cp* . Clearly for some n: cpEL1pn . An obvious conjecture
is that we can find cp* in LIpn and that we can take as cp* in fact a NNILn
representative of [cpl* in NNn. A moment's reflection shows that what we need to

realize this idea is the following interpolation theorem:

1.1.4.0 NNIL Interpolation Theorem

Suppose cpE L,XE NNIL and IPF-x- p. Then there is a X' in NNIL containing only

atoms occurring both in X and cp such that IP F- X -+X' and IP F-

This theorem is true, btt we were only able to prove it the fact that

there indeed is a cp* having the desired properties and containing only atoms

from cp. (The argument is as follows: suppose IPF-X-*p. Let v be an interpolant

provided by the ordinary interpolation theorem. Take X':=v*.)

Thus we state:

16



1.1.4.1 Open Problem

Give a direct proof of the NNIL Interpolation Theorem.(3)

We will prove the fact that NN is an EHA in a different way. We specify an

algorithm N, that produces from a given cp a sequence of formulas:
0 1 2 We show:

(i) This sequence terminates in an element of NNIL

(ii) IPy-cpi+1 -+(Pi

For all XE NNIL IPI-x->cpi=> IP}-x-+cpi+1

Clearly the element in which the sequence terminates is a (p* as desired. The

algorithm will be such that the atoms of cpi+1 are among those of Qi. Thus the

atoms of cp* will be among those of Q.

The algorithm N will play an essential role in part 2 of the paper.

Before we can even describe the algorithm we have to take a closer look at the

syntax and 'proof theory' of IP.

1.1.5 Definition

We define from LIPxLIP to LIP by:

For cp atomic cp<x> : _

((PAS)<x>:=

T if cP=x
cp otherwise

T if (CPA) =X
j cP<x> if Ax and <x>=T

I
<x> if X and cp <x>=T

cP<x>A <x> otherwise

(cpvc0 <y>:=
(cp<x>vc<X>) of erwi seh

(T if =X or <x>=T

(cp<x.> <X> if (cp, ) #x and cp<x>=T

l otherwise

1.1.6 Fact

a) IPFx->(gPHp<x>)

T if =x or cp<x>=T or y, <x>=T

17
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b) IP F (Xncp)& (Xn.cp<X>)

c) IP F (X-(P)F'(X-'(P<X>)

Proof: trivial

1.1.7 Definition

A formula co is 5 :able if for all Kripke models K=<K,,,If-> and for all k'EK,
for all K'cK such that k'EK' we have: k' If- (p k' 112(p, where K[K' ]=<K' ,,' , If-' >.

is stable}

1.1.8 Fact

NNIL cSTAB

Proof: induction on cp in NNIL. E.g. if cp=(pM ) : suppose k ' jl pm-> . Consider
k">,'k' with k" IE' pm, then k">,k' and k"II-pm Hence k" By IH

11

Later we will see that in fact NNIL/IP=STAB/IP; in other words that every

stable formula is provably equivalent to a NNIL formula.

1.1.9 Definition

Define from LIPxLIP to LIP by:

- M p:=cp if co is an atom
- commutes with A,V

- [k](X-P) :=((X

1.1.10 Comments on 1.1.9

i ) Note that by 1.1.6: IP F[ 4 ] (x p)) . The reason that we chose
the more complex form in our definition is that we want to simplify the

formula we started with.

Note that IP F [k Thus [ ] might be regarded as a kind of
strengthening of implication.

iii) From the 'proof-theoretical' point of view the raison d'etre of

lies in theorem 1.1.11.

1.1.11 Theorem

n
Let :_ !Y0 (v a :E STAB

18
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Then: IPi a-(W
i=0

Proof:
n

Suppose IP Y a -+( w [ V ] vi v [ ] x) .
i=0

There is a Kripke model K=<K,k,,, IF> such that klI-G and kiV[c ]vi for
i=O,...,n and Let K':=ik3vik' EKik' ll- and K':=K[K']=<K'
Clearly k+'6. We claim: for any e klV[4]E=*kilf'e.

Proof of the claim: by a simple induction on e . We treat the case of implica-

tion. Suppose E is an implication and k l l f [ V ] E . It follows that klV (- E. There

is a k'>k such that k'll- and k'IVc. From it is seen that every k"-..-k'

is in K'. Hence on k'11- and II-' coincide. Conclude k' IV'E and thus klV'c.
Claim

From the claim we have kIV'vi (i=O,...,n) and kll7'x. Consider k'>,'k and

suppose k' 11-'vi , then k' and k' IF-'pi
Conclude kIl-'(vi->pi). Ergo klF ,. We have kII-'c,, kIF'a,klV'x, so
So finally we see:

1.1.12 Example

Suppose a is stable and IP p->p) . Then IP l- a->( [-1-1 p ] pv [n-% p ] p)

p],p=(PA

=l(pn-1 )

13

p

Ergo IPI-a- (pv,p) . Note that (pv-,p) E NNIL.

We need one more definition.

1.1.13 Definition

A formula cp has an ou is disjunction if Q is of the form (bvx) or if cp is of
the form and has an outer disjunction or ;{ has an outer disjunction.
A dual definition can be given for 'outer conjunction'.

19
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1.1.14 Fact

If cp has an outer disjunction then there are
`pO,`p1

such that IP
and both

`p0
and

`pl
are shorter than cp and (cp0v(pl ) contains the same atoms and

implications as cp. A dual fact holds when cp has an outer conjunction.

Proof: by a simple induction following the definition of outer disjunction/

conjunction.

a

1.1.15 The algorithm N

Consider NN. We construct an algorithm to compute a cp* in a*n NNIL from (p in a.

This algorithm and the related algorithms T and Q are the key to the arithme-

tical part of the paper: the arithmetical constructions follow the algorithms

step by step.

Our specification of the algorithm is non deterministic; one can view it as

producing a finitely branching tree. We assign to each formula a certain

ordinal o(ff). o(ff) will strictly decrease when going down in the tree. It

follows that the tree is finite. The formulas in which the branches terminate

are suitable elements of a*n NNIL.

Our presentation plus termination proof of the algorithm can as well be seen

as a proof by induction on o(cp) of the existence of suitable cp*.

1.1.15.0 Definition

a) I is an subformula of QI
b) i((p):=

(Note that we count types not tokens. Also: i (c->x) = I I ( ->x) I . )

c ) o((p) :=w. i (Q) +z ((p)
( Here .2((p) is the length of (p.)

We present the algorithm by cases. At each step we check:

(i) cp*ENNIL

(ii) IPF cp*->Q

(iii) for all aENNIL if IPI-a->Q then IPF6-+(p*

case A co is atomic

Set cp* : = (p

20



case B cp= (SAX)

Set cp*:=(4,*Ax*). Clearly o(4)<o((p), o(x)<o((p). (i), (ii), (iii) for co* are
easily seen to follow from (i), (ii), ('-iii) for *,x*.

case C (p= ( vx)

Set cD*:=( *vx*) . Clearly o(4)<o(cp) , o(x)<o((p) . (i) and (ii) are evident.
For (iii) we reason as in 1.0.12, 1.0.2 0: Suppose aC NNIL and IP;- o-*(4 vx) .

P-1
Let W ai. be the disjunctive normal form of a. Clearly the ai are in NNIL.

i=O

IPbai-*(4vx), hence IPA-ai-*4 or IPf-ai -*x. Ergo by IH: *4* or IPF ai_*x*.
Conclude IPI ai - (l,*vx*). Thus: IPI a -),(4*vx*) .

case D (p=(4,x)

case Do x has an outer conjunction

By 1.1.14 there are x0,x1 such that IP}-x"(XOAX1) and for i=0,1: Z(xi)< 2(x)
and I(xi)c I(x). Clearly IPF (4, ->x)H( (4,-,XO)A (4,-x1)) and x)

for i=0,1. Set

case D1 has an outer disjunction

By 1.1.14 there are such that IPF4, *(4,0v4,1) and for i=0,1-
Clearly IPF(4->X)(((4, -* )A(41-*X)) and

o(4i_x)<o(4*x) for i=0,1. Set (4,-x)*:=((4O*x)*A(41->x)*)

case D2 x=(v->p)

We need a lemma about (.)<.> of 1.1.5.

1.1.15.1 Lemma

a) For every subformula T of a <n > there is a subformula T' of o such that

'c'< -n >

b) Consider a subformula T of 9<n> . Let T' be minimal in the subformula
ordering of a such that T=T'<n>. If T#T we have that T' has the same form

as T, i.e. if T=1.IAX, T'=u'AA' etc.

21



i (a<n>), i (a) and if a subformula of the form (n ->a) occurs in a, the
inequality is strict.
i ((nnc,<n>)-*T<f>) <,i ((n n cY)- T) and if a subformula of the form (n
occurs in a or -r, the inequality is strict.

e) i ( (nna<n>)->T<n>)<i (a-+(n IT) )

Proof: a,b are left to the reader, c is like d.

d) Let (nna<n>)-T<n>) , (nna)->T) . Define f: I (s') by:
-V if
Ti if &= Ti (and thus n is an implication)

f(e):=
an E' minimal in the subformula ordering of s' such that &=&'<n >,

,,otherwise

One easily shows that f is a function from I(s) to I(8V) and that f is

in//jective. Finally no formula of the form (TI is in the range of f.

e) i ((nAG<n>)->T<n>)=i ((TI Aa<n>)-+(n*T)<n>)
<i ( (fAa)->(n->T) )
=i.(a->(n-T) )

13

Returning to D2 we have: IP i ( -+(v-,,p) )F>( (v and

o ( ( v A p ) ) . Set cp*:=( ( V <v>)-*p<v>)*.

n
case D3 has no outer disjunction, so is of the form ix%ci, where the

_i =0
are implications or atoms.

case D3.0 Suppose one of the i is an implication and occurs more than once

in Q. Say this is i0.

We have IPF i oAfl->X)

+ - ( (c i 0Ack<di o>)->X<ki o>)

i (ck-*X) =i 0^k)-*X)

Ti ((cki 0>)->x<ki o>)

Moreover it is easy to see that - except in the trivial case that £(ci0)= 3
and c U = x = c i

0
- Z(ck-X)>Mci0 Ack<ci 0>)-X< c 0>) . Hence

0(k->x)>o((ci0Ak<c i0>)*x<ci0>) . Set cp*:=((ci0Ack<ki0>)-*x<kio>)*.

22
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case D3.1 One of the
i

, say i0, is an atom.

In case i0 =1 : (p* : =T

In case i0 =T : cp*:_(cp<T>)*

Suppose '`,i0 =ps. IPI-gp * (ps-*cp<ps> ) and o((p<ps>)<o((p) . Set (p*:=(ps_ (cp<ps>)*)

One easily checks (i),(ii) for cp*, as to (iii):

Suppose aE NNIL and IPI-a-*p, then IPF( (GAPS)-*cp<ps>) . (GAPS )ENNIL, hence

by IH: IPF ((anps) +((p<ps>)*) , so IPF (a-(ps-((P<ps>)*) ).

case D3.2 All the
i
are implications and each

i
occurs only in .p.

n
Say i=(p so (p_( i (pi-vi )-X) .

i=0

We proceed in the following way: we construct
`p0,.p1'`p2,(P3

with the following

properties:

- I P I-cp c - * (cp 1 A p 2)

i ((p1)<i ((p) , i ((p2) <i ((p)

- IP F`p3-*`p1

- For all GENNIL IP F (a -+`p1 )SIP F(a-*cp3 )

i(cp3)<i (`p1 )
_

`PO (`p3A`p2)

As is easily seen from these properties:

- IPFcp0-*p
- For all aENNIL IP'F (a-* p)=> IP F (a-*(p0)
- i(cp0)<i(Q), hence o(cp0)<o(cp)

Set cp*:=(coo )*.

For the construction of `p3 we need a lemma.

1.1.15.2 Lemma

n

Let Ti = /A T i )
i=0

a) Suppose IP F Tim s for i=0,.
n

.,n, then IP F (W [n ] li v[n ] )-*(n-,a) and
i=0

23

p

-

- : =

(a i



hence by 1.1.11: for all aESTAB and so for all aENNIL:

n

IP IP W [n] v[nl-fl
i=0

n

b) i(W [nlaiv[n]f)<i
i=0

Proof

a) We have: and secondly IPF-[Ti ] IPFn
and IPI- Ti_) s, hence

b) It is sufficient to show i ([n] )<i (n-*8) and for i=O,...,n

Consider for example [n] ai. An outer implication of [n]ai has the form

((YAn<Y>)->a<Y>).
We have:

i((Y^n<Y>)-b<Y>)<i(n->(Y-15)
5i (n - "")

The last inequality is because (Y->b) occurs in Xi and hence in n.

n
1 .1 .15.2 suggests that we should define (p1 as: c01 :=(IM ( vil(pi Ax) )'x) .
We construct cp2. Define: 0

k ( -Vi-( PiAX) ) if i<k
1i

(vi->

pi ) if i>k

(vi I( PiAX)) if i<k

2i Pi

vi-pi

k n k k= /(\
'

, ck :1

1

1 i 2

if i=k
if i>k

n k
= iKk0 2 i

Claim 1

k+1->x)A
2k->x))

Proof of claim 1: immediate from:

24
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IPI (((6-T) An)-E)"((((G-(TA&))AT1)-e)A((TATl)-e))

Claim 2

IP - AN

k=0

Proof of claim 2: immediate from claim 1.

n+1 -x) .Clearly (p1=
n

Put cp2: = /)(k1

Claim 3

k= O

i((p1)<i((p),i(cp2)<i((p)

Claim 1

Claim 2

Proof of claim 3: we treat the second inequality the first is similar. It is

clearly sufficient to show i ( 2x)i ((p) . Define f: I (( 2k-*x)- I ((p) as

follows:

cp if
e e is a subformula of vi,Pi or x

if and
k

is not-a subformula of vi,Pi or x and for no
k k

2<j 2Z= 2j

Clearly f is a function from I(x) to I ((p) . f is an injection. This
follows from the fact that each i occurs only once in Q. Finally wk is not

in the range of f (this could only be the case by the third clause, so

but
2k=pk,

so the second clause applies).

Claim 3
n

Put cp3:=( W M vi v[e]x ). By lemma 1.1.15.2 the required properties

follow.
i=0

END OF N

Evidently the propositional variables of cp* are among those of cp.

1.1.16 Example

((p-q)-r) *=((pvr)A(q-r)) *
=(pvr)*A(q,r)*
(pvr)A(q,r)

This is equivalent to ((pn(q--r) )vr)

25
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1.1.17 Remark

(p* as cons-tructed is classically equivalent to .p.

1.1.18 STAB and NNIL

Every .p in STAB is provably equivalent to some in NNIL. In other words

STAB/ IP=NNIL/IP. To show this it is evidently sufficient to prove that N

computes a cp* in a* from cp in a for <IP,STAB/Ip>. Thus if cp is stable N will
compute a cp* in NNIL which is pnova6.Py equiva,2evvt to T.

To see that N has this property we just have to run through cases A-D of

1.1.15 and check that they work also for STAB. A pleasant surprise is that

A, B, D are trivial. We consider case C. We have to reproduce the reasoning

of C for STAB. It is clearly sufficient to show:

1.1.18.0 Lemma
n-1

Let cpE STAB and let \XJ cpi be the disjunctive normal form of cp. Then the .pi are
i=0

also in STAB.

Proof:

Let K= < K,k IF > be a Kripke model such that kIF (pi . Let K'cK, kEK' . Let
K'=<K',k,`',IF'>:=K[K']. We show kll- p.

.

Let z
,...,An-1

be as in 1.0.18. As is easily seen from the minimality

condition: akco =*.k= s. Consider the model L :=<L.; A < IF > . - L (A4))
s

u Q
Construct a new model M =<M , m ,,< , I F > as follows:

m

Where m11- pi :apiEDi . By the Push Down Lemma: mlFcpi , hence mII-Q.

Let M' := [m}ULi UK' and let M'=<M' ,m,<, ' , IF>:=M[M' ] . Note that on the
elements of Li IF of Li and IF' of M' coincide and that on the elements of K'
IF' of K' and IF' of M' coincide. cp is stable, hence mIF'cp, thus for some j
mlF'coj. It follows that Ai IF'Qj so of IFcpj, ergo of IFoj. Conclude oj9; oi and

26
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thus i=j. So we find mll-'(pi and finally k11-'cpi.

1.1.19 Acknowledgement

The first to conjecture the connection between NNIL and STAB was Johan van

Benthem. He independently gave a proof. Van Benthem's proof is analogous to

the usual proof that predicate logical formulas preserved under submodels

are provably equivalent to universal formulas (but there are some extra

details!) Van Benthem's proof also works for modal propositional logic.

1.1.20 Open questions

a) Estimate INNILn/Ipnt

b) How fast - or how slow - is N?

c) Find standard representatives of the elements of NNIL/IP

1.2 <IP,{T,1}>

We take a closer look at D, i.e. <IP,{T,1J>. We have already seen that D is a

full EHA.

1.2.0 Fact

Consider D. For 4 E L
IP

I(P]IP*=T4-*IPI- cP

[ (P ] JP *=L IPb qP

Proof: immediate.

We show how to compute the unique element tko) of from cp.

Clearly the algorithm is just a decision procedure for derivability in IP. Of

course many such procedures are known. The point of this one is not its effi-

ciency but its use in part 2.

1.2.1 The algorithm T

T is just a variation of N. We only elaborate on points where something

different happens. We consider T,1 to be ordered by 1<T.

case A to is atomic
T if Q=T

t(.P)
1 otherwise
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case B Cp= (c, nx )

t((p) :=max

Case D

cases DO, D1, D2, D3.0 are as in the case of N.

n

case D3.1 are atoms or implications. One of the i, say i0

is an atom.

If i0 =1 set t((p) :=T

If =T set t((p):=t(cp<T>).

0

Suppose i0=ps, we have IP I-cp" (ps-)'cp<ps>)

1.2.1.0 Lemma

If pi does not occur in a, then IP t pi-+ csalP I- a.

Proof:

trivial

By a simple Kripke model argument or by the interpolation property for IP.

Set t((p) :=t((p<ps> )

n
1case D3.2 =ANO i; all the i are implications; each i occurs only once in cp.

Take cpO as in N. Clearly IP cp0. Set t(cp) :=t(cpO)

END OF T

1 .3 <UP,w+1 /U P>

1.3.0 Definitions

We formulate UP in the language LUP, which we consider as just a notationat

van.iant of LIP
.

28
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LIP is the smallest set such that:

- 0,1,2,...,w are in LUP

- LUP is closed under A,V,->

The identification with LIP is as follows:.

IP(0) :=1

IP(n+1):=pn

IP(w):=T

IP commutes with A,V,-

We use 'm', 'n' as ranging over 0,1,2,... and 'a', '5' as ranging over

0,1,2,...,w.

UP is the theory axiomatized by:

- Intuitionistic Propositional Logic

- (n--n+1) ( nCw )

We are interested in UP:=<UP,{O,1,.. ,w}/UP>

Set n((p):= the unique element of [N]UP*n[0,1,...,wj. (We will further on
prove the existence of n(cp). )

1.3.1 Kripke Models for UP

K=<K,,, II-> is a Kripke Model for UP if K is a non empty set, ; a weak partial
order on K and IF forcing relation satisfying:
- k IVO, k II-w

- k.k' and kll-m=>k'IFm

- m<n and kll-m=>k IF n

We have: UP I-cp-* for all Kripke Models K =<K,<,, IF> for UP, for all kEK, kIj-cp

Proof:

routine

Suppose UPl (p; let the atoms occuring in .p be among 0,1,...,m,w. Then

IP+{s->s+1 Is=1,...,m-1I v cp.
Let K0 =<KO ,.0 , l1-0> be an IP model with bottom node k0 such that k0ll-Os->s+1
(s=1,...,m-1) and k01b0p. Change KO to a Kripke model K=<KO,.,O,Ik-> for
UP by postulating for all kEKO: kIFa ::4->(a;m and k II-0 a) or a>m. As is
easily seen k011cp .

29
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1.3.2 Fact

a) UP I-a-+(cpvcl)4:*UP Fa->cp or UP E a-cl

b) Suppose m is bigger than all n occurring in .p, then: UP m->cpaUP I-cp

Proof:

a) by a trivial variation of the usual proof of the disjunction property for IP.

b) immediate

Suppose UPIrcp. Consider a Kripke Model K=<K,<,IF> for UP with mode k0EK
such that k0lVcp. Change K to K'=<K,,<,II-'> by postulating kII-'p:a((kII-p and
p<m) or p>,m) . As is easily seen K' is a model for UP and kOlV'm->(p.

1.3.3 Theorem

UP is a full EHA.

Proof:

a) TEw+1 /Up

b) By 1.3.2b the elements of w+1 implying a given cp are either 0,1,...,m for

some m or all of w+1. In the first case [cp]UP*=[m]UP in the second

[(P1UP*=[,J]UP=T.

c) W+1/
UP,

is closed under A, hence UP is conjunctive.

d) By 1.3.2a:

UP a->cp or UPFa-l

or UP

t-.[a]UP_<[,P1UP* or [a]UP<,[ ]Up*
`*[a]

UP
-<[`P]UP*V

4] UP*
a a.,

Hence UP is disjunctive.

1.3.4 Remark

UP0=<w+1 /Up,. ,AO IV ,-L> is isomorphic to the complete Heyting Algebra
<w+1 ,, A ,v,-*,T,±>, where
aA3:=min(a,R)
av(3:=max(a,13)

jw i f a.,

o otherwise

1.3.5 Theorem

n
Let n:=/x\ ( then

i=0

30
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n n
UP F a-(W [n] aiVIT1

i=0 i=O

Proof: a trivial variation of the proof of 1.1.11.

1.3.6 The Algorithm st

We specify an algorithm to compute n(cp) from cp. Q is just a variant of N and

T, so we only comment on points of divergence.

case A cp is atomic

Set n((p) :=cp

case B cp=

n(cp) :=min(nM,n(x) )

case C cp= (c, vx)

n(ip) ,n(x) )

cases D0, D1, D2, D3.0: as for N

n

case D3.1 =i the are-atoms or implications, one of the chi, say
i0'

is an atom, say a.

We have UP F cpt- (a->cp <a>)

Set n(cp):=
w if a,<n(cp<a>)

in(pa>) otherwi se

This is easily seen to be correct.

n
case D3.2 = obi , the are implications and each occurs only once in cp.

Let cp0 be as in N D3.2. One easily shows using 1.3.5 that for all a in w+1

UP h a->cpa UP }- a-cp0 . Set n((p) :=n((p0)

END OF Q

2. Solutions of Evaluation Problems in Heyting's Arithmetic

2.0 Introduction

The precise choice of LHA, the language of HA, is immaterial for this paper.

However it is most convenient at least to thin of LHA as having symbols for the

primitive recursive functions and bounded quantifiers 'Vx<t', '3x<t' (x is not

free in t). We will assume the theory if formalized in a Natural Deduction System.
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2.0.0 Convention

Suppose A(x0,...,xn_1) is a formula of LHA, where n-1 is the maximum of the

indices of the free variables occurring in A. in the context o6 HA will

stand for: ProvHA(Sub n(rA(v0,...,vn_1)',x0,...,xn_1)), where Subn is a Godel

substitution function. E.g. we have HAFSub1(rA(v0)'

2.0.1 Definition

a ) Let B and C be sentences of LHA . Define: B - HAC : a> HA I- BH C

-HA is the relation of pt ovabf y deductive equivalence

b) Let B,C be sentences of LHA'

2.0.2 Fact

(i) -HA
and P--'HA are equivalence relations.

(ii) B-HA B' ,C-
HA

C'=* BAC- HAB'AC'

Br.,HA B ' , CF-,j HAC'= BAC HA B'A C

(iii) 'HA HA

Proof: the only not fully trivial point is NA#-HA' Let R be a E, Rosser

sentence. We have R-HA1. Suppose RfHA1. It follows that HA 1- HA(R -> R)(--*o
Quod non.

2.0.3 Remark

It will be shown that: BP,'HAB', C:HAC' B VC-
HA

B' vC' (see 2.1.1.2).

A similar fact does not hold for -HA: let R be a 3-0 Rosser sentence and

We have:

For the moment fix a propositional language L, with set of propositional

variables P. Let G be some non empty set of functions from P to the sentences

of LHA'

2.0.4 Definition

a) Let g:P->the sentences of LHA. Define ( )g: L-> the sentences of LHA, by:
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-(pP)g :=g ((P) if "PEP
-(T)g:=(0=0),(1)g:=1

) g commutes with A v,-
b) Let U be a logic (in L) such that for all cpEL: UI-(pa for all gEG HAI-(cp)g.

Define G and aG on L/U by:
a-Gb : for some cpEa , Eb , for all gEG ((P) g^'HA g

aaGb : for some cpEa , Eb , for all gEG (gyp) 911.1
HA ( ) g

The definition is independent of the choice of e.g.:

cp,cp' E a U I- (P H (P'

for all gEG UI-(cp) 9*+(cp' ) g
for all gEG HAI-o((p)gc-+o((p' g

2.0.5 Fact

i)
G

are equivalence relations

ii) a- Ga' ,b.Gb'= anb- Ga'Ab'
a^'Ga ,br-, Gb'=* anb1G a' nb'

We call the problem to characterize G: the evaeua t ovl pt obZem 4on G (with
respect to HA). Our solution of this problem for certain concrete G takes the
following form: we specify a pair <U , X> , where U is a theory in L and X-CL
such that:
a) <U,X/U> is an EHA, with equivalence relation - say - -X.

b) UI-cpa for all gEG HA{-(cp)g

c) -G=-X
We claim that to prove a,b,c it is sufficient to show:

(i) <U,X/U> is an EHA
(ii) UI-(p=* for all gEG HA!-((p)g
(iii) For cp*E[cp]U*nX and gEG: ((2)g-HA(`p*)I
(iv) For X,vEX

Proof:

U(VX-*v=>there is a gEG such that HA}, o(X)g->o(v)g

(a)=(i)
- For (b) we show: (for all gEG

Suppose UV Q ,cp*E[cp]U*nX. Clearly Ubcp* or UI{;p*H T. By (iv) : there is a
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gEG such that HA If (cp*)g. By (iii) HA
Hence by Z-completeness HA V((P)g.

- For (c): note that (iii) tells us that a-Ga* and (iv) that a*#b*-*a*tGb*,
hence:
a-Gb a*

-G
b*

a*=b*
a-Xb

Before we present solutions to some concrete evaluation problems, we

interpolate a section with arithmetical preliminairies.

2.1 Translations and Derived Rules in HA

2.1.0 q-realizability

For every formula A of LHA we define a formula xqA of LHA as follows:

x q P:= P for P atomic
- xq(AAB):=((x)OgAA(x)1gB)

-

xq(A-*B) :=(vy(ygA-*3z({xly=znzgB))A(A-*B) )
xq(3yA(y)):=(x)1gA((x)0)

2.1.1.0 Fact

a) HA I-xqA-* A

b) For every Z0 formula A with free variables y0,...,yn_1 there is an e such

that
c) Let A be a E0-formula. Suppose A,BO,.... Bn_1,C have free variables among

y0,...,yN_1.
Let x0,...,xn_1 be free variables distinct from the yi. Then:

B01 "''Bn-1 FHA+AC-*There is an e such that x0gB0,... 'xn -lgBn-1 FHA+A
3z(Je

(xO,...Ixn-1,yO,...,yrq_1)=znzgC)

d) (a),(b),(c) are verifiable in HA

Proof:

a) induction on A

b) idem

c) induction on the proof of B0,...,Bn-1 FHA+AC using (b). For details see

[10] pp. 188-202.

d) All the proofs are simple inductions.
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2.1.1.1 Theorem

Let B,C,D be sentences of LHA, then:

HA1-(VAEZ0 -sentences (

-sentences (

Proof: (in HA)

Suppose for every Z0-sentence A Suppose further
that for z -sentence A

0
( A It follows that there is an e such

that (A0*eq(BvC)) and thus (AO*{e}1), (A0-*(({e3)0=0-*({e} qB)),
(A0*((Ie ({e} )1 qC)) . Hence we have a(A0-*{e}

r({e})0=0= and "(te})0 are Z-0-sentences
(remember convention 2.0.0), so by assumption:

Combining this with we find (A0-*D).
13

2.1.1.2. Corollary

B, HAB 1
,Csts

HAC' BvCP-1 HAB'vC

Proof: straightforward.

2.1.1.3 Application: Leivant's

Proof:

C hence BvC;z Conclude

13

2.1.1.4 Credit

The principle 2.1.1.1 is implicit in the proof of De Jongh's theorem on Formulas

of One Propositional Variable, see [4].

2.1.2 The Friedman Translation

Consider a formula B of LHA, we define LHA -LHA as follows:

(P)B:=PvB for P atomic

commutes with A,v,-,V,3.
(In case free variables of B would be bound in the process of translating, one

should rename bound variables so that the free variables of B remain free.)
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2.1.2.0 Fact

a) For AEE
1
O HA F (A)B H(AvB)

b) Let A be aE0-formula, then B0,...,Bn_1
FHA+A(C)D

c) HAFB,(A)
B

d) (a),(b),(c) can be verified in HA.

Proof: by simple inductions, see e.g. [13].

°

2.1.3 De Jongh's Translation, a variant

To simplify the presentation we assume that LHA contains symbols for the

primitive recursive functions and bounded quantifiers '`dx<t', '2x<t' - we make

it into a sywtacticat constraint that x does not occur free in t. To eliminate

these extra assumptions on LHA we only have to be a bit more careful in our

formulations.

2.1.3.0 Definition

We employ an ideosyncratic definition of E0.

EU is the smallest set such that:

- if P is an atom, PESO , (-I P) Ez0

- 7-1 is closed under A,v,3,2x<t,Vx<t
One easily shows in HA the equivalence of this definition with the usual one.

2.1.3.1 Definition

a) the comp.2extty c(A) of a formula A of LHA is defined as follows:

- c(P):=0 for P atomic

- c(BvC):=c(BvC):=max(c(B),c(C))

c (C ) if B is atomic
- c(B,C):=

max(c(B),c(C))+1 otherwise
- c(2x8):=c(8)
- c(2x<tB):=c(B)

- c(dx<tB):=c(B)

c(dyC) if B=(dyC)
- c(bxB):=

c(B)+1 otherwise
b ) B05...5Bn-1 Fm C : a there is HA-proof r1 that BO'" ' ' B n - 1 I HAC

and ri contains-only formulas of complexity < m.

c) BO5 ...5Bn-1°-mC is the HA-formalization of
BO'" ''Bn-1 F mC. mA.

We extend convention 2.0.0 to °-m.
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2.1.3.2 Fact

a) for AE:0 c(A)=O
b) for every n there is a formula Trn(x,y) of complexity n in LHA such that for

every formula A(v0,...,Vk_1) of complexity n

HA "YO'...'Yk-1 Trn(rA(vO,...,vk-1) ,<YO,....Yk-1')t->A(y0,...,Yk-1)
n-1

c ) HA }- (B0,... /zti Bi-*C) and hence HA F

d) for AE:0 HA A
O

e) the proofs of (a)-(d) can be formalized in HA, so for example we have:

HA I VAVx and: HAFVAEZ0

Proof (sketch)

(a),(b) are more or less routine.

(c) Suppose 'Proofm(p)' is a 00-formula that formalizes: p is a code of a

HA-proof involving only formulas of complexity < m. Suppose further that

'Ass(p)=b' stands for: b is a code of the conjunction of the assumptions

of p. 'Conc(p)=a' stands for: a is a code of the conclusion of p.

We assume we have a bijective coding of finite sequences, such that (x)y=0

in case y >,length(x). (In other words we treat finite sequences as

eventually 0 functions.)

Show by induction on p:

Vp Proof m(p)-* Vx(Trm(Ass(p),x)->Trm(Conc(p),x))

(d) Inspection of the usual proof of EO-completeness for HA shows that we only

need the non-induction axioms., which are in FF1-form and sentences of the

form vx<p (x=O v Elu<x x=Su) . These sentences can be proved by inductions
of complexity 2.

13

2.1.3.3 De Jongh's Translation (A variant)

Given formulas E,A of LHA, we define EpmA as follows: let k:=m+c(E)+2, then

- EpmP:=P for P atomic
- Epm( ) commutes with A,v,__E,3x<t,Vx<t
- Epm(B_C)

Epm(VxB) :=(vxEpmB AC
k

(E,VxB))

2.1.3.4 Theorem

a) for AEZ HA F A->E pmA

b) HA F EpmA-+o k(E->A)

37
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c) Suppose x does not occur free in E, when HA F (EpmA) [ t/x ]HE pm(A [ t/x ] )
d ) BO,...,Bn-1 FmC= EpmBO, ... ,EpmBn-11-HAEpmC

e) (a)-(d) can be formalized in HA

Proof:

a) induction on A, use 2.1.3.2 d

b) induction on A

c) induction on A; the crucial lemma is:

HAF

This is derived as follows:

HA

d) induction on the proof of B0,...'Bn-1 Fm C. We can arrange it so that no

variables of E are used in VI or 2E in these proofs.

Two examples:

( I ) B0, ... ,Bn-1 Fm VxA (x )-B 0,.... , Bn-1 FmA(t )

We have:

EpmB0,..., EpmBn_1 FHAEpmVxA(x)

FHAVxEpmA(x)

FHA(EpmA(x))[t/x]
FHAEpmA(t)

(II) BO'. . . ,Bn-1 ,C 1 m D -BO, ... ,B n-1 mC-D

We have:

EpmB0,..., EpmB n_1 EpmC FHA EpmD, hence:

EpmBO,..., EpmBn-1 FHAEpmC->EpmD (*)

Moreover: EpmBO ,..., EpmBn-1 FHA k(E-'BO) k(E->B n-1)

From BO,...5Bn_1,CFmD, it follows: E-*B0,...,E_*Bn-1Fm+c(E)+2E_*(C-*D),

hence EpmB0 ,..., EpmB n-1 F
HA m+c(E)+2 (E->(C->D) ) (**)

Combining (*) and (**) we are done.

(..1.3.5 Definition

a) Define [E]mA as follows: let k:=m+c(E)+2
- [E]mP:=P for P atomic
- )-commutes with A,v,3,3x<t,Vx<t

k
(E-+(B-*C) ) if B i s not atomic

- [E]m(B-*C) :_
-Bv[E]mC if B is atomic

- [E]m(VxB)
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b) Define [E]A as follows:

- [E]P:=P for P atomic
- [E](.) commutes with A,V,3,3x<t,VX<t

E->(B-+C) if B is not atomic
- [E] (B->C) -iBv[E]C if B is atomic

[E](VxB) :=(E->bxB)

2.1.3.6 Fact

a) [E]mA is 37 0

b) HAS EpmA-[E]mA,

HAI[E]mA+[E]A,
HA F[E]A-.>(E-+A)

c) For HAFEpmA+*[E]mA

HAF[E]mAH[E]A

HAF[E]A*+A

d) (a)-(c) can be formalized in HA.

Proof: routine

2.1.3.7 Theorem

n

Let E:= /'X\ (Bi-),Ci), then:
i=0

n n

HAFvAEZ1 -sentences [E]Bi v[E]D)))
i=0 i=0

Proof (in HA):

Assume A is a :0-sentence and (A-+(E-+D)) . Clearly for some x x (A-+(E-+D)) .
It follows that E x(A,E- D np ( ) ) . Ergo: (A-*(/X\Epx(Bi-*Ci),EpxD)) .

i=0

Now rEpx(Bi->Ci is Surely
n

x+c(E)+2 (E-*(Bi->Ci )) , thus: (A->(i)O (EpxBi -+EpxCi )+EpxD)).
n

The 'EpxB and 'EpxD' occur on positive places, so (A+(/ ([E]xBi->EpxCi)->

[E]O)). i=0

n

By taking the Friedman Translation based on F:= W [E]xBi, using the fact that

[E]xBi and [E]xD are 7-0, we find:
i=0
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n

((AvF)-((ni\ (([E]xBivF)_(EpxCi)F))_([E]xDvF)))
i=O

Clearly (([E]xBivF)-F) and (F_(EpxCF), hence: (A->([E]xDvF)).
n

Conclude: (A- (W [E]Biv[E]D)) .
i=O

2.1.3.8 Corollary

n

Let E : = , ( \ ( B i- C i ) , suppose for i = O , . . . , n HA F Ci-D, then:
i=O n

(E-D)--jHA W [E]Biv[E]D.
i=O

Proof: by the reasoning of 1.1.15.2 a.

2.1.3.9 Remarks

a) 2.1.3.7 is implicit in the proof of De Jongh's theorem on Formulas of One

Propositional Variable (see [4]).

b) The reader may amuse himself by proving the following strengthening of

2.1.3.7 (derived from a suggestion of Rick Statman):

HAFVAETT2 ((AA/x'A
i=O i=0

n

where E= iX bx ( B i -*C
i=0

c) Open question: can 2.1.3.7 be strengthened to A that are E0-substitution

instances of formulas of NNIL?

2.1.3.10 Consequences

All kinds of traditional theorem follow from 2.1.3.7. For example:

a) for all AEZ0 (closure under Markov's Rule)

b) for all AEZ0 HA I-

c) for x not free in B: HA (-i B->C) (Closure under the
Independence of Premis Rule)

Proof:

a) [-iA]Av[-iA]1)
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b)

-7 A,-7A) vA)

c) HA B-).2xC)-a13( [-t B]2xCv[-rB]B)

->0(3x[- B]Cv(-i B-B) )
-3.0( 3X (-i B-C) v-i-7 B )

a03x (-i B-*C )

2.2 The Evaluation Problem for IE

Let IF-- be 7 -

0z -sentences} . We show that <IP,NNIL> solves the

evaluation problem for IE.

(i) Yes, <IP,NNIL/IP> is a (full) EHA.

(ii) It is routine to show that if IP l-cp then for all g in IZ HA I- (cp)g.

(iii) We show that for gEIE (cp)g-HA(cp*)g, where cp* is the formula computed
from cp by N. To do this we prove the stronger by induction
on o((p) following the stages of N.

For the moment let's fix a g in Iz and simply write cp for (cp)g in the
context of HA.

case A cp is atomic

trivial.

case B

By IH
HA

case C cp=(( vx)

By IH HA`k*,xNHAx*, hence (VX HAS'

Cases DO, D1 are like B; D2, D3.0 are reductions to an IP equivalent and

thus are simple.

n
case D3.1 = IX\ ,. , the are atoms or implications, one of the i, say

i=O

i0, is an atom.

41
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If 1iO=T or i0=1 this is easy. Suppose 1i0=ps. We have:

HA FyAEz0-sentences (P<ps>))
HoAAPs)_*(P<Ps>)

IHo((AAps)->((P<ps>)*)

Note that in the middle equivalence we use that in the context of HA(AAps)

stands for a E0-sentence.

n
case D3.2 1=1

Obi,
the 1i are implications, each occurs only once in cp.

m

j ) and suppose IP I- T j-> for j=0, ... ,m. An immediate conse-Let n:= /X\ ( Q .
j=0 m

quence of 2.1.3.8 is: (r-_* HA W [n]aiv[n]X.
j=0

From this and from the construction cpo we have:, Hence by IH
HA(`P0)

We postpone point (iv) till after Excursion 2.2.0 on the Evaluation Problem

for IE with respect to HA*.

2.2.0 Excursion: The Evaluation Problem for Iz with respect to HA*

In [13] we introduced the theory HA*. HA*=HA-+CP*. Here CP* is the scheme

(A-*o* A). 'o*A' stands for HA*A in the context of HA or HA*. We show in [13]

that CP* is interderivable (over HA) with SLP*, i.e. the scheme: _*A)-*A).

In [12], part 6, we draw a consequence of Solovay's method in the proof of the

completeness theorem for arithmetical interpretations of modal logic. This

consequence will be needed for the problem at hand. Because [12] is - perhaps -

not easily accessible we reproduce the result and the argument here.

A monotonic tail model is a structure

for the language of Modal Propositional

Logic (i.e. the language with propositional

variables po,p1,... and logical constants

1,T,0,A,V,-31). The structure has the form
<w, <, I I- > where:
- < is on irreflexive partial order

- if m#0 0<m

Finite KripkeN\ Model

N+1
1

w-tail
N+2 II- constant
N+3 i

1
on atoms

. 0

42
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- if n/0,n<m then n>m

- for some
for every n,m,if n>N and n>m>O then n-<m

- for every n=: N and every i : n IF pit-#NlFpi

Such an N will be called: tail element.
- if mIFpi and n>m then nllpi
- mlFcp-* : + for all n>m nIF p=*,nIF

- mlF cp : for all n>m n IF cp.

One may show (Tail Lemma)

011 cp a for some M., for all, n>M n IFw

O lV p a for some M, for all n>M n1 p

Consider a tail model K=<w,<,il->. Define a primitive recursive h as follows:

- h(O):=O

n if for some n>h(k) Proof
HA*

(k, rlxhxAn-'
- h(k+1):=

h(k) otherwise

Clearly: HAI-"his weakly monotonic in <"

Define:

', [3xhx=i I i l}-cpj if there are only finitely many i such that i IFcp
[(p]:_

0=0 if for all i i IFcp

The Tail Lemma inplies that always one of these cases applies. Define <cp> by:

<pi>:=[pi]

<-> commutes with A , V ,-
<cp>

2.2.0.0 Theorem

HA* 1-<cp>H IQ ]

Proof: induction on cp.

- atoms and v are more or less trivial

- cp=(cAX) . We treat the case that ii liF j and {j l j lFx are both finite
HA*F<( A X><-)-<c >n<X>

I f w ' 1 3 x h x = i I i IFVAW xhx=j I j IFx}
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HW{3xhx=iA3xhx=j 1 ill- l,j I lxJ

l k.ll-V Ax,}

*
The "+-" side of is trivial. For the "+." side, note that if i j and jai
HA* I--1(9xhx=in3xhx=j) and that if e.g. i<j , we have j 11-lnx by
monotonicity.

- ip=(l-x) . By IH it is sufficient to show: HA* F x] )- [l-x]
The ",-" side is more or less trivial.

In case for all i i IF (l-x) it is easy, so suppose that only for finitely
i ilF (1 - x). Let jo,...,js be the maximal elements such that iklb (l-x)
Note that jkll-l,jklb x . Reccson in HA*:

Suppose [ l]-+[x ] and o* [lax] . We have o* (3xhx j,,) . Assume

ProofHA*(p,''3xhx jkand h(p)=y. In case y<jk,h(p+1)=jk and so
hence [x] . From h(p+1)=< and [ x] we have 3xhx>jk. (for: jkJFfx) . In

case y jk h(p)I"jk, hence 3xhx jk. Conclude jkIk=0,...,s3, so
by the monotonicity of h 3x/Af hxAj k l k=0 ,... ,sj
From this: W{3xhx=i I i 11- (l-x). i.e. [l->x] . By the SLP* we may conclude

[-)-xl without assuming o*[l-.,x]

In case for all i ili-l this is easy, so assume only for finitely many i
i II . Let 10,...,11 be all the elements such that 1kIFol,1k11Ll . Note that
for i with ilbLol there is an 1k with i<lk.
By the IH it is sufficient to show HA* [ol]
Reason in HA* -

"-)." Suppose o* [ We have o*(3xhxzAl k) by the definition of [l] and the
fact that 1kIV Suppose Proof HA*(p,r3xhxA ' ) and h(p)=y. In case y<l k

we have h ( p + 1 ) = 1 k . In case yzAl k we have 3xhxi k . Conclude

rx\{2xhx-Al k I k=0 ,...,tj. Hence by the monotonicity of h: 3x/A{hx lklk=O,...,tJ
So I i IFol3
"+." Suppose 3xhx=i for an i o 1. By the definition of h and the fact that

13*(3xhxAi) (How else could h move up to i?) Then from Bxhx=i :
o*(3xhx=i).
Combining: o*(3xhx>i), oro*}zl{3xhx=jl Hence o*[l].

0

We are now in the position to solve the Evaluation Problem for I: with respect

to HA*. The solution is <IP,L>, this means that ( )* on <IP,L/IP> is just
the identity.
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i) <IP,L/IP> is a full EHA. This is, of course, trivial.
ii) If IP I-(P then for all gEIE HA*I- (cp)9. This is routine.
iii) Clearly: cp*E[cp]IP iff IPFcp"(p*'. So trivially: (p^-HA*p*.

iv) Suppose IP If cpt-+ e.g. IP There is a finite Kripke model for
IP K0 =<K0,<,IF> with bottom node k0 such that k01Fcp,k0IV . Without

loss of generality we may assume:
- K0={1,2,3,...,N3, where m<n=>n<m.
- if mAN

Now we hang a tail N+1,N+2,...,0 under K-0; to obtain a tail model K. We

postulate: (n=0 or n>,N)=*(nlFpiaNII- pi ).

We find N+1IVc and for It follows that
there is a d such that for every n n IF k)

Hence HA* 1- <

t-+0=0

Ergo HA* F Let g0(pi) :=[pi 1. Clearly g0EIE and
<T>=(T)90. It follows that if then

quod non (see [13]).
END OF 2.2.0

We return to the Evaluation 'Problem for IE with respect to HA. We still had to

check point (iv).

(iv) Let. x v E NNIL and suppose IP V x

In [13] we introduced the class A by: A is the smallest class such that:

- PEA if P is an atom

- A is closed under A,v,V,3
- A.EE0,BEA ( A->B ) EA

In [13] we show: for AEA HA F Aa HA* F A and HA F (Theorem 5.4 of
[13]). Clearly if gEIE and TENNIL then (T)gEA.

By 2.2.0 there is a g0 in IE such that HA* Ff * 90 , so clearly
HAW By the above remarks:

(Inspecting the argument of 2.2.0, giving x the role of co, we see that

for all n nlFx in the tail model. Ergo HA* 1- <x>, i.e. HA* F (x)g0, hence

HA Iw(x)g0.)

2.2.1 Corollary

Suppose gEIE, the propositional variables of cp are p0,...,pk-1IP Vcp, then
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HA (The 6k are introduced in 1.1.2.) For example
we have in case the propositional variables of cp are p0,p1 and g(p0)=A,g(p1)=B:

HA (A-->(Bv B))v(B,(Av-iA))).

Proof: obvious

11

2.2.2 Remark

Using a uniformization argument as in [7] or in [12], part 0, 2.2.11 we can

show: there is a g0 in IF such that for all x,v in NNIL:

IP[f (x,--v)=* HAW

2.3 De Jongh on formulas of one propositional variable revisited

Let sentences of LHAl

We want to recast the theorem of De Jongh on formulas of one- propositional

variable (see [4]) for sentences in the form of the solution of the evaluation

problem for I1.

We show: <IP1 ,).19poq-rp0 p01pgv,p0,, pOv,pO,,T p0v( p0-p0),TI> solves
the evaluation problem for 11.

(i) As we have seen J=<IP1,[T,pOv(,-7p0-'p0)]IP1][T> is a full EHA.
(ii) It is routine to show that: IP1 ]-cps for all gEI1 HA

(iii) Let co be an element of the Rieger Nishimura Lattice (RNL) and let be

the representative in the RNL of [cp]*Ipj. It is clearly sufficient to

show for any gin 11: ((p)g-HA(cp)g. The proof is essentially De Jongh's.

We only give a sketch. Fix g. We write in the context of HA 'Q' for '((p)g'.

We show cp;z-' HAcp. In case (p=T, this is easy. The further proof is by
reducing the 'height' of cp in the RNL. The forms of the relevant elements
of the RNL are ( v x) or (v--> p)v x)

case 1 cp= (( vx )

This is treated as case C of 2.2.

case 2 Q=((v->p)-+(ctvx) )

46
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Note that 2.1.3.7 implies (using the property of the RNL that

Reduction of the rhs to an element of the RNL shows that this element is

below cp.

(iv) For g(p0)=A, A a z0-sentence, we have by 2.2(i i i) : HA f- (pO)g
So we cannot choose in general a 1-sentence for our counterexample.

Perhaps a Boolean combination of E0-sentences will work.

We carry out the following plan. Start with x in the RNL equal to T or

below or equal to -rpOv(-,p0->p0). Substitute (p0v-p1) for p0. Rework a

bit in IP to find x'. Apply the algorithm N to x'. Rework the result a

bit in IP to find x". If the x" so found are pairwise inequivalent in IP,

our result follows by 2.2(iv).

x
x

1 1

PO
pOv-ip1 p0v-ip1

'p0 -tp0All P
1 p0Ap1

-i-P0 p1-p0

pOv-tp0
p0v-1 p1v(-I p0Av p1) p0v-,p1v(-p0^p1)

11 p0v'p0 (p1-1,pO)v(,pOAT-1 p 1) (p1+p0)v(-1p0^p1)

"p0-+p0 -1(POv1p1)+(p0v.,p1 ) p0v,(P0^p1)

.llp0v(,
p

0+p 0 ) (p 1+.,ip0) 1)-'(p0v'p 1
(p1+p0)v'1(p0Ap1)

T T T

We leave it to the reader to check the pairwise in equivalence of the x".

13

2.4 A sharp version of De Jongh's Completeness Theorem for arithmetical

interpretations of IP

Implicit in the work of 2.2 there is a proof of De Jongh's Completeness Theorem

for arithmetical interpretations of IP. Inspection of the proof shows that it

can be formalized in _ L In this section we show that De Jongh's

Completeness Theorem can be proved in HA +-c 1.
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There is a primitive recursive sequence of Z -sentences QO,a15221... such that

for any n: n-1
HA- VB0EZ -sentences ...VBn-1 EZ -sentences At, P

i=O

The Qi are examples of Kripke's Flexible Sentences. For a proof of their exis-

tence, see e.g. [6] or [11], 3.6. It is easy to check that the argument can be

formalized in HA.

Let G be given by G(pi):=Qi. 'cp' in the context of HA will mean in this section:

We show that <IP,1T,1}> solves the evaluation problem for £G}. Clearly this

means nothing but:

IP Vcp=*. 1, which implies:
I P Vcp => H A+ -t o I cp , or:

De Jongh's Completeness result can be verified in HA+con(HA).

(i)- As we have seen <IP,1][T> is a full EHA.

(ii) Trivially: IPI-cp=HAl-cp.
(iii) We show: (p-HAt(cp). Note that in case t((p)=T this is trivial, so we

restrict ourselves to the case that t((p)=1.

As in 2.2 we would like to show t(cp), but that won't work, because

e.g. for the case that T= pO
(Note that 0)H01).)

To get around the difficulty we prove the following. Let the proposi-

tional variables of cp be pi0,...,Pik-1 and suppose IPI,LQ, then:

HA I- VAEZ 1-sentences B O 1 B
k - 1

k-1
E1 sentences ((AA A\ (2i +B

j=0 J

Clearly from this it follows that:
k-1

HA-',=- cp-> 3BO,...,Bk_1EZ0-sentences (iX (Q. B

i=0 J

Hence by the flexibility of the
0i

:

J

HA F ergo cp_HA1.

The proof is by induction on o((p) following T.
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case A co is atomic

In case cp=1 this is trivial. In case (p=p , set B
S 0

case B

Clearly IPV or IP ¥x. Suppose e.g. Let ps0,...,psl-1 be the

propositional variables of ;PiO ... Pik-1 those of cp.

Reason in HA

Suppose A is a E0-sentence and (A--).cp), it follows that (Ahence

(by IH) there are 7- 1-sentences Coil ...,C1-1 such that:

1-1
((AA J (sz HC.)) Take:

j=0 sj

Cj if si=ii for some j'
B =

sz. otherwiseij

Then:
k-1

((AA /KA (2i HBj))
j=0 j

case C cp =( v x )

We have IP V ,IP1 x. Let ps0 ,...,p s1-1 be the propositional variables of

`a'pt l - . Ipt those of x ; pi ,' ,pi
0 m-1 0 k-1

those of cp.

Reason in HA:

Suppose A is a E0-sentence and (A-( v x)). There is an e such that
(A-> je}.j,), ((AA (f ej)0=0) ((A n -*x) . Clearly by our
conventions ' ( ( { e j ) 0=0 and ' (([ e j) 0#0 )' are E0-sentences , hence

there are z -sentences CO,...,Cl_1 and Do,...,Dm_1 such that:

1-1

((AA()ej)0=0n /XX (Qs
J =0 j

and

" C.)) -1)

m-1

i.(r (Qt
j=0 j

Take for j=O,...,k-1:

"Dj)) ->1)
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C., if sj,=ij for some j'

Q otherwise
1.

if t,=i for some j'41
J J

otherwise

Bj :=(((Iej)O=0 n Ej)v((£ejOAO A Fj)

k-1
Claim: ((AA/M (Qi +

j=O J

Reason in :
k-1

Assume AA /X\ (szi -+B
j ). From A we have je}.1,, hence (Sjej)0=0 or

j=0 j
(J e}) Suppose ({ej )0=0. It follows that hence

k-1 1-1
AA/ thus AA/X\ (st C.). Ergo 1. Similarly we can derive

j=0 j j=0 sj j
1 from )0#0. By vE: 1.

case D

cases DO, D1, D2, D3.0 all employ IP equivalences; say IP
where o(cp') <o(cp) . Suppose the propositional variables of cp' are

Ps 0,...,ps 1-1,

those of cp pi 0,...,pi

k-1

. Here the sj are among the ij,.

Reausovt in HA:

Suppose A is a Z0-sentence and (A-*p) , then o(A->cp') . Hence there
are E

s

1-sentences CO,...,C1_1 such that:

.1-1
((AA/X1 (S2

j=0
s

j
Take:

(C., if sj,=ij for some j'
B.

J l otherwise1
k-1

Then: ((AAIXC (ci - B

j=0 J
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m

case D3.1 = /xN r, the
r=0

say 4r , is an atom.
0

r are atoms or implications. One of the fir,

By the assumption that IPVcp:4 i L._In case 4 =T the case reduces to
r0 r0

cp<T > and we can reason as in DO. Suppose 4. =pq, and that all ther
0

propositional variables of_ cp<pq> are p
s0

,...,ps
1-1

, those of cp:

Reu-sovi Ln HA:

Suppose A is a -Z0sentence and (A->cp) then (( Anstq )- (p< p>) .
By- IH there are z 1-sentences CO,...,C11 1 such that:

1-1
(((AA.q.)n./X" (Sts C.))
j=0

i

Note that q is not among the sj. Take:

(.0=0) if q=i j
BCj,_ if sjl=ij for some j'

'otherwise-

J

n

1 0case D3.2 the i are all implications, each 4i occurs only once

in gyp.

We have: HA F vA E E0-sentences (A->Q)H (A-*p0) . Proceed as in DO.

(iv) Clearly T- HA.L.

2.5 The closed fragment of the provability logic of HA

Let C be the smallest subset of the language of modal propositional logic such

that:

- JEC ,TEC

- C is closed under

Define the interpretation ( )" of C 'in LHA as follows:

(1)a:=1,(T)a:=(0=0)

- ( )a commutes with A,v, -I
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(,(P)a:=,
HA

(,,)

We adopt the convention to drop ( )a in the context of HA. Thus we write

'HA Fcp' for HA F ((p)a

The problem of the closed fragment for HA is roughly to characterize those cp

in C such that HA Fcp. This involves at least to give an algorithm to decide

whether HA Fcp or not. (The problem of the closed fragment for Peano Arithmetic

is Friedman's 35th problem. This was independently solved by van Benthem,

Boolos, Bernardi & Montagna about 1975. Note that Friedman,'s formulation in

terms of consistency rather then provability makes no difference in the

classical case, but is 'weaker' in the constructivistic case).

The crucial lemma for solving the problem of the closed fragment of the

provability logic of HA is the solution to an Evaluation Problem.

Define: 01:=1
n+1 I:

Let H: w+1-> the sentences of LHA, be given by:

We claim: the solution of the evaluation problem for {H} is <UP,w+1>.

In the context of HA we\will drop the ( )H.

(i) As we have seen <UP,w+1/UP> is a full EHA.

(ii) Clearly UPI-cp =HA F cp

(iii) We want to show (P-HA n((p) , to do this we prove cp ;__HAn(cp)

The proof is by induction on o(cp) following algorithm 2. The proof is

merely a variation on the proof in 2.2, so we only indicate the differ-

ences.

Cases A, B, C, DO, D1, D2. D3.Q; D3.2 are all like the corresponding

cases in 2.2.

n

case D3.1 =/x'\ i, where the i are either implications or atoms; one
i=0

of the ki, say i , is an atom, say a.
0

Remember: UP F pi-+ (a-+ (p<a>), and
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n(o)=
w if a,n(cp<a>)

n (cp<a>) otherwise

If n((p)=w we are done, so assume n(cp<a>)< a. Say n(cp<a>)=m. By IH: cp<a>;z HAM.

The following facts about 'HA are easily verified:

2.5.0 Lemma

Let B be a Z0-sentence and let C,D be arbitrary arithmetical sentences:

a) C)-- HA C

b)
HA

C

c) CHAD-(B-C)-- HA' B->D

It follows using (a) and (c):

(a-(p<a>) ,:'HA(am)

FHA m

(iv) Trivially atHA 3.

Now we are in the position to solve the problem of the closed fragment for HA.

Define ( )b: C-+L
UP

as follows:

- (1)b:=0,(T)b:= w

- ( ) b commutes with A , V ,->

We have for cp in C:
a ) HA F- ( p -, (cp) b

b) HAFcppn((cp)b)=w

Proof :

a) By induction on cp. E.g. 'if cp= By IH HA I- H (k)b, hence
HA

n(Mb
Moreover in the context of HA: n((()b)=1+n((()b)

b) By the 'unformal ization' of HA I- cp"1+n(((p)b) we have:
HA HAf n((cp)b)

4* n((w)b)=w

13
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2.4.1 Excursion: the closed fragment of the provability logic of PA

The solution of Friedman's 35th problem can be cast in precisely the same form

as our solution of the problem. of the closed fragment for HA.

Let UPc:=UP+Classical Logic. <UPC,w+1/UPC> is a conjunctive EHA.

Let nc(cp) stand for the unique element of [Cpl* A W+1. We have (because UPC

extends UP): n(cp),<nc((p), but e.g. n(Iv,I)=1 and nc(Ivil)=w.

Define the following functions:

K:w+1 -, the sentences of LHA; by

)':C -, the sentences of LHA, by:

(1)c:=1,(T)c:=(0=0)
- ( )`G commutes with n , v ,--

)d:C-+LUP, by:

- 0-)d.=0,(T)d:=w

- ( )d commutes with A , V ,-
(0 cp)d:=1+nc((p)d)

Now write: c I for PA, 'cp' for ((p) K if cp is in LUp, 'cp' for ((p)c if cp is in
C, in the context o6 PA.

We find for (p in C:

a) PA Fp - (.p) d

b) PA F- o4* nc((cp)d)=w

2.4.2 Excursion: the provability logic of the closed fragment of HA*

Let UP*:=UP+J((m+1-*m )-*m) ImEw}

Define m: LUp,w+1 , by:

- m(a):=a

- m((P A )

m(cp :=max(m(Q),m(c ))

-w if m(cp).

MM otherwise
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We find: UP* F cpHm(cp)

Because UP* extends UP, we have: n(cp) - m((p) , but e.g. n( ,--iI )= C, m(-71)=w.

Clearly UP* is isomorphic to the complete Heyting Algebra <W+1

of 1.3.4.

Define the following functions:

L:w+1 - the sentences of LHA, by L(a):=aHA* 1

)e :C -+ the sentences of LHA, by:

- (,..)e:=1,(T)e:=(0=0)
( )e commutes with A ,v,-,,.
(ocp)e :=oHA*(,P)e

( by:

-

for o=A,V,->
- (13 (p)6:=1+(q)6

We write 'o* for o
HA*

in the context o j HA*, and 'cp' for (co) L if cp is in LUP
and 'cp' for (P) e if (P is in C.

We find for .p in C:
a) HA* (pH (cp)

b) HA*

2.4.2.0 An alternative proof of (iii)

Let cp* be the result of applying N to cp in LUP.

Suppose the non-w atoms of cp are among 0,1,...,m.

We have:
m-1

UPFa -(Pa I (-(/X\ (i-"i+1)A'a)->cp
i=0

M-1
IPF(iX\ (i-*i+1)Aa)-(P*

i=0

a UP F a -,cp*
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It follows that n((p)=n(cp*). Moreover for x is NNIL one easily shows:

n(x)=m(x'). Hence: n(cp)=m((p*) .

Note further that HA F (a0(1.f+0*a1) and hence for cpELUP : HA F (cp)HH((p)L. Ergo

(under the convention that 'cp' of LUP means ((p)H in the context of HA):
HA

H a*cp*

a*m((p*)

On W)

a

2.4.3 Excursion: Intuitionistic Lob's Logic

Let IL be like Lob's logic, only with intuitionistic instead of classical logic.

The provability logic of HA turns out to be quite different from IL.

In [51 K.A. Kirov proves a Kripke Model Completeness Theorem for IL: a Kripke

Model for IL is a structure K =<KR, IF > , where:

- K is a non empty set

- < is a weak partial order

- R satisfy the following interpolation property: k1<k2Rk3<k4=*. k1Rk4

IF is a forcing relation on K, satisfying:
- k1 < k2 and kl lFpi =*,k21Fpi

- for all k2 k1Rk2=* k2IFpp

- k1 Vk: a for all k2 , k1 k21Fcp k2 IF

- the clauses for 1,T,A,v are as usual

We have:

IL Fop a for all Kripke Models K with R transitive and upwards wellfounded, for

all k in K klFp

Using the Completeness Theorem, one shows: for no a IL F -rl 1 H oa L. One may

also prove:

IL F a k+11) for some 1 <k IL

All this shows that the closed fragment of IL is far removed from that of the

provability logic of HA.
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NOTES

1) As we will see this. is misleading in example (iv).

2) The generalization of (ii) is due to De Jongh.

3) In the meantime this problem has been solved by Gerard Renardel.
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