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ABSTRACT

This paper contains the following results:

(i)  a theorem of the form: if HA (Heyting's Arithmetic) proves some Z?
substitution instance of an intuitionistically non valid proposi-
tional formula then HA proves a substitution instance of a simpler
intuitionistically non-valid formula - unless of course the original
formula was - in some appropriate sense - already as simple as
possible. The result is shown to be adequate.

(ii) a proof that De Jongh's Completeness Theorem for arithmetical
interpretations of Intuitionistic Propositional Logic is verifiable
in HA + con(HA).

(ii1) a characterization of the closed fragment of the provuoility logic
of HA - this is a solution of Friedman's 35th problem for the case
of HA.

These results are instances of or corollaries to answers of a common kind
of quéstion, which we call the evaluation problem for a certain set of
interpretations. A framework is developped to analyze this kind of question.



0. Introduction

0.0 Introductory Remarks

We start with some examples:
(i) Consider a Z?-sentence A. As is well known: HAl o(i+A)ecA, and
HA F ol +A-A)=a(Av1A)

Here 'HA' stands for Heyting's Arithmetic and 'o' for provability in HA. The
relation ~yp ON sentences of the language of HA defined by: C~HAD:9HAP-(DC90D),
is called the relation of provably deductive equivalence in HA. All our
examples state provably deductive equivalences.

(ii) Consider an arbitrary sentence B of the language of HA. We have (by [4]):
HA F o( (=1 B-B)-(Bv~B) )»a(+=BvaB)

(ii1) Consider a Z?-sentence Q that is 'flexible' in the following sense:
HA FVAEZ?-sentences (o((QeA)->L)-»oL)
(One may show the existence of such an @ by standard diagonal techniques,
see [6] or [11])
We have: HAF o(Qvi)eol

(iv) HAFo((ool-ol)-hol-ol))eoool

A11 these examples are of the form HA}-u(p(E)ecup*(E). Here w(B) and ©*(p) are
propositional- formulas and IP }o@*-o. 1) ('IP' stands for Intuitionistic
Propositional Logic). In every example the substitutions are from a prescribed
class. In example (i) this is the class of Z?-sentences, in (iii) flexible
Z?—sentences, in (iv) sentences of the form oo...ol .

In this paper we will provide generalizations of each of (1)-(iv).(2) These
generalizations are best viewed as answers to a certain kind of problem.

The problems: Let L be a language of propositional logic with a set of propo-
sitional variables P. P may be finite or infinite. Let G be a set of functions
from P to the <a.tences of the language of HA. (E.g. in (i) the elements of G
are the functions from P to Z?-sentences; in (iv) G={gok with 90(p1)=3;;;9l‘

1+1
Define ( )° by:
- (9)9: =g(p) if oeP
- (1% =L (1)%:=(0=0)
-

)g commutes with A,v,-.



Define: O~gbie for all geG HAr-u(m)9++n(¢)9
The problem is to characterize ~. We call this the evaluation problem for G.

In the cases we study in this paper answers to evaluation problems take a
definite form.

The answers: Let U be a theory in L given by Ukge for all geG HA F (9)9, and
let U be the Lindenbaum algebra of U. A moment's reflection shows that ~, can
be viewed as an equivalence relation on U. It turns out that in each case
studied the equivalence classes have minimal elements in U. (In each of the
examples (i)-(iv) @* is a representative of the minimal element of the ~3
equivalence class of [w]U. Here [m]U is the U-equivalence class of ). To
characterize ~8 it will be shown to be sufficient to specify the set of minimal
elements. The set of minimal elements in its turn is given by a suitable set X

of representatives in L.

Example: Let QgsQqsee- be independent flexible z?-sentences, i.e. for each n
(

HAP—VBOGZQ—sentences . anEZ?-sentences (orm 91e>81)+cnij

20

—

Our generalization of (iii) looks as follows:
G: ={G}, where G(pi): =0..

U: = IP

X: =§T,13

This generalization can be viewed as a proof that De Jongh's Completeness
Theorem for Arithmetical Interpretations of Propositional Logic can be verified
in HA+con(HA). An immediate consequence of the generalization of (iv) is a
characterization of the closed fragment of the provability logic of HA. This
solves the analogue for the case of HA of Friedman's 35th problem.

0.1 How to read this paper

The paper is divides into a propositional part (part 1) and an arithmetical
part (part 2).

The minimal way of reading the paper is just to look at 1.0, 1.1, 2.0, 2.1,
2.2. The reader who is anxious to see arithmetic in action may very well start
reading these anyway. The minimal packet can be extended by any of 2.3 or 1.2,
24 or 1.3, 2.5
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Most of the materials presupposed in the paper are contained in [2] and [5].
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1s Evaluation Heyting Algebras

1.0 Definitions and Elementary Facts

1.0.0 Definition

A Heyting Algebra is a structure <H,g,A,v,»,T,L>, where <H,<,A,v,T,L1>
is a lattice and » satisfies: aabgceagb-c.

1.0.1 Fact

Any Heyting Algebra is distributive and satisfies: for every a€H,XgH, if uX
exists, then aaUX is the supremum of {aax|xe€X}

For information on Heyting Algebras, see [3], [8].

1.0.2 Definition

One can think of three equally convenient definitions of Evaluation Heyling
Algebra (EHA). We will use them interchangeably.

A) An EHA is a structure <H,<,( )*,A,v,»,T,1>, where <H,g,A,v,»,T,L>
is a Heyting Algebra and ( )* satisfies:
(i) agb=a*gb*
(ii) a*<ga
{111} a**=g*
(iv) T*=T

B) An EHA is a structure <H,i10,s, AsV,=,T,1>, where <H,g,A,v,»,T,1>
is a Heyting Algebra and Hocki, with: TEHO and for every aeH {bEHolbga}

has a maximum.



C) An EHA is a structure <H,~,<,A,Vv,=,T,L1> where <H,g<,A,v,»,T,L> is a

Heyting Algebra and:

(i) ~ is an equivalence relation on H

(i1) each ~ equivalence class has a minimum element
(iii) a~a',b~b'saab~a'ab’
(iv) a~T=a=T

We show that A,B,C are 'equivalent' definitions.

a) "A structures are B structures".

Define Hy: ={beHIb*=b}. Clearly TeH;. We claim: a* is the maximum of {beHyIbsa}.
a*<a and a**=a*, hence a*e{bEHOIbsa}. Moreover for beH;, with bga, we have
b=b*<a*.

b) "B structures are A structures".

Define a*: = the maximum of {beHjlbga}. It is trivial to check A(i)-(iv).

c) "A structures are C structures".

Define a~b:ea*=b*

Ad
Ad

Ad

Ad

d)

¢ (i)
C (i)

C (iii):

c (iv) :

: clearly ~ is an equivalence relation.
: a* is the minimum of equivalence class [a] of a: a*a and if a~b,

then a*=b*, hence a*gb.

We first show (aab)*=(a*ab*)*. a*ab*gaab, hence (a*ab*)*g(aab)*.
Further aabga, hence (aab)*ga*. Similarly (aab)*gb*. Hence
(aab)*ga*ab*. So (aab)*=(aab)**g(a*ab*)*.

Assume a~a', b~b', we have:
(anb)*=(a*ab*)*=(a'*Ab'*)*=(a'ab')*, hence anb~a'ab'.

Suppose a~T, i.e. a*=T*; then T=T*=a*ga. Hence T=a.

"C structures are A structures".

Define a*: = the minimum of [a].

A(ii)-A(iv) are trivial.



Ad A (i): suppose agb then aab=a. a*~a, b*-b, hence a*ab*~aab=a~a*. It follows
a*ga*ab*, herice a*gb*.

We Teave it to the reader to check that the transitions in a and b are inverses
and similarly for c, d.

a

{.0.3 Faet
Let H be an EHA with ( )*, Hgs ~ as above.
(1) Ho is closed under v
(i1) LeH,
(i11) Define ag on Hy by (amob):=(aAb)* and >y on HO by (a»ob):=(aab)*. Then

Hoi=<Hns<sAqsVs2nsT,L> 1S a Heyting Algebra. (Here g:=<tH,, etc.)

0 0 0 0 0

Proof
(i)  Suppose a,beH,. agavb,bgavb, hence a=a*g(avb)*, b=b*g(avb)*.

Conclude (avb)g(avb)*. Thus avb=(avb)*.
(i1) Trivial
(ii1) Clearly Hg is closed under AgsVs=g T,L are in Hg-

Suppose a,b,cEHO, we have:

cga and cgb & cgaab

e c=c*s(aAb)*=aAOb
aAObsc & anbgc
& agb-c
IS a=a*$(b»c)*=(be0c)
m}

1.0.4 Definition

An EHA H 1is called conjunctive if (aab)*=a*ab*, it is called disjunctive
if (avb)*=a*vb*. We call it 4ull if it is both conjunctive and disjunctive.

1.0.5 Fact

(i) An EHA H is conjunctive iff HO is closed under a
(ii) An EHA H is disjunctive iff a~a',b~b'savb~a'vb'

Proof

(i)  Suppose H is conjunctive. We have for a,bEHO:



(aab)*=a*aAb*=aab, so a'AbEHO. Conversely suppose HO is closed
under A. Consider c,d in H. We have cadgc,cadgd, hence (cad)*gc*ad*.
But c*Ad*EHO and c*ad*gc*gc,c*ad*gd*gd. So c*Ad*gCAd. Conclude
c*ad*=(cad)*.

(ii) Suppose H is disjunctive. If a~a',b~b', then a*=a'*,b*=b'*, so
(avb)*=a*vb*=a'*vb'*=(a'vb')*, or avb~a'vb'.

Conversely suppose: a~a',b~b'=avb~a'vb'. Surely a~a*,b~b* so
avb~a*vb*. Hence (avb)*<a*vb*. On the other hand axgavb, so
a*g(avb)*. Similarly b*g(avb)*, hence (a*vb*)g(avb)*
1.0.6 Examples
is a non disjunctive EHA

(The elements of Hq are designated by (@ )

is a non conjunctive EHA.

1.0.7 Remarks on the definition of EHA

(i)  Perhaps the condition T*=T (or T€HO or a~T=a=T) could be left out of
the definitions of EHA; see also 1.0.8. In any case all the structures
we will meet satisfy this condition.

(i1) ATl the important EHA's that are treated in the paper are full. There is
one example of an EHA that is not disjunctive in connection with the
closed fragment of the provability logic of Peano Arithmetic. Moreover
the solution to the evaluation problem for substitutions of n? sentences

is probably an EHA and is definitely not conjunctive.

1.0.8 Excursion: EHA's viewed categorically

1.0.3 iii suggests that EHA's perhaps could be viewed as subobjects in some
appropriate category. This is indeed possible, if one drops the condition
(T)*=T. We briefly outline the relevant facts. (This section is in no way
essential for the rest of the paper.)

The objects of our category are Heyting Algebras. Define a morphism f between



two Heyting Algebras HO’ H1 as a pair <f,,f*>, which is an adjunction between
HO and H1 considered as partial orders. (The suggestion to take adjunctions as
morphisms is due to Carst Koijmans.) To spell it out:
- fx 1s monotonic from HO to H1
- f* is monotonic from H1 to H0
- fe(X)syexsf*(y)
We have:
(i) This category has products but not in general exponents.
(ii) f, preserves arbitrary sups (if they exist); f* preserves arbitrary
infs (if they exist).
(ii1) f is mono iff f, is injective.
(iv) Let H be any Heyting Algebra and let a be a coclosure operation on H,
i.e.

- o is monotonic

o is idem potent, i.e. aeco=a
- alx)gx.

Define HO:={XEqu(x)=x} and H0:5<H0,<FHO,...> and'ﬁf=<embH

fo
then: HO>-—+H.

&>,
OH

(v) Let G-ﬁH. Define a:=f*°f*. Then a is a coclosure operation. Define HD as
in (iv). frie<fy e F¥PHy>.
We have: f
G —H .

f1\“HO/ fo

Moreover G and HD are isomorphic in case f is mono; together with (iv)
“this tells us that subobjects are given by coclosure operations.

(vi) Let Gt H. This determines an EHA in the weak sense, which is con-
Junctive if f, preserves a, disjunctive if f* preserves v.

Our main concern in the rest of this section is the problem how to show certain
EHA's to be disjunctive. However it is perhaps a good idea first to look at a
few more examples.

1.0.9 Conventions

a) Given a Heyting Algebra H, we write <H,( )*>,<H,}1O>,<H,a«> for an EHA
built on H.

b) Let L be a Tanguage for propositional logic, U a theory in L. Suppose XglL.



= will be the relation of provable equivalence in U

{w]U will be the = equivalence class of ¢ in L.
X/U:={[e] jloex}
U will be the Lindenbaum Algebra of U

One of our main interests will be in EHA's of the form <U,X/U>.

IP is intuitionistic propositional logic. Its language LIP has propositional
variables PgsPqs--- and logical constants T,L,A,v,». 7and » are introduced
in the usual way.

IP" is 1ike IP, only its language LIP“ has just the propositional variables

PooPy>ee-oPpoge

1.0.10 Examples

L.

Let H be a Heyting Algebra. Define:
al:= {xeHlxsa}

[b:= {x€H]|xxzb}

allb:=aJulb

We have:

i) <H,allb> is a conjunctive EHA.

ii) Suppose agb. Suppose further there is a ¢ incomparable to b, then
<H,all[b> is not disjunctive.

ii1i) Suppose a#T. <H,al[T> is disjunctive iff T has the disjunction
property in H, i.e. (avb=T iff a=T or b=T).

Proof

i) allb is closed under A. T€allb. Take:

(x)*:=§

x if bgx

aax otherwise

ii) (cvb)*=cvb, c*vb*=(caa)vb=b

iii) "=" Suppose <H,al[T> is disjunctive and that (cvd)=T. Hence
c*vd*=T. Suppose c#T, d#T, we find (cvd)aa=(caa)v(daa)=T.
So a=T. Quod non.
"«" Suppose H has the disjunction property. If one of c,d is T clearly
(cvd)*=T=c*vd*. If c nor d is T, also cvd#T, hence:
(cvd)*=(cvd)aa=(caa)v(daa)=c*vd*

10



II. The following two EHA's play an inportant role in part 2
D:=<IP,1][T>, and J:=<l£1,E11p0v1ﬂp0*D0]IP1][T>

We will have a closer look at D in 1.2. Clearly both D and J are full EHA's.
We turn to the problems connected with disjunctivity.

1.0.11 Definitions

i) Let <H,Hy> be an EHA. Let H,c=Hj. Hy is a basis for <H,Hy> if for every
ii) Let H be a Heyting Algebra. An element h of H has the disjunction property
if for every x,y in H: hgxvy=hgx or hgy.

1.0.12 Theorem

Let <f{J10> be an EHA. Suppose H1 is a basis for <H,}10> such that every h1
in H1 has the disjunction property. Then <H,}10> is disjunctive.

Proof

Suppose hOEH0 and hOsXVy. For any h1€H1 with h1sh0 we have h1sxvy
and hence h1sx or h1sy. Thus h1sx* or h1sy*. Conclude
h0=U{h1€H1lh1sh0§$x*vy*. It follows that (xvy)*gx*vy*,

EHA's are often given as <U,X/U>. The rest of this section is devoted to
providing lemmas to apply 1.0.12 to such EHA's (or in some cases: to apply
the reasoning of the proof of 1.0.12).

As a start we need a few facts about Kripke models.

1.0.13 Kripke models

We present a Kripke model K as a triple <K,g,Ik>. Such a model need not have
a bottom. If there is a bottom kO and this fact is relevant, we write:
E;<K,k0,s,lk>.

Let K'eK. K' non empty. Define K[K'l:=<K',g',IF>. Where: g':=<FK' and |V
is given by: for k'eK' k'|F' o u:k'lk-pi.
Vv

v )
For keK:k:={ik'eKlkgkd and K(k):

=K[k]. Because IF and [F' will in this
<k,g, |

F>.

. v .
case coincide on k we write: .E(k)

11



1.0.14 The relativized Henkin construction

We briefly review the relevant facts about the relativized Henkin construction.
Let Xg;LIP and let X be closed under subformulas. We say that a set A is
X-saturnated if:

a) AcX

b) A is consistent in IP

c) @eX andA}-IPq):apeA

d) (eve¢)eX and Abpp (ove)=Abp0 or Abppd

Define the Kripke model Ly=<L,g,IF> as follows:
- L:=fAacX1A in X-saturated}

- AgA' ieAcA’

- Albp;iep;€A

We have by a standard argument: for all @€X: All@ e @EA.

1.0.15 Push Down Lemma

Let Xg;LIP and let X be closed under subformulas. Suppose A is X-saturated.
Let K be a Kripke model such that for every k€K klFA. Construct a new model
M as follows:

Ly (a)
K
A NN A NS
\%kfor all kek

m
Where mlkpiz ©pi€A.
Then: mlkFA.
Proof: the proof is a simple induction on the elements of A . E.g. suppose
(b>x)EA. We have: AlF (¢ »x) and: for all keK kl-d>x. So in case mlK¢

we are done. Suppose mlF¢. It follows that AlF¢. But ¢€X, so ¢E€A. Hence
XxZA and by IH: milFx.

7



1.0.16 Definition

i) Let FcL. We say that ' has the disjunction propenty if:

ii) Let pelL. We say that ¢ has the disjunction property if: {©} has the
disjunction property.

1.0.17 Lemma

Let X be closed under subformulas. Suppose A is X-saturated. Then A has the
disjunction property.

Proof:

Suppose Al-;LIPq,,A[,‘ IpX- Then there are Kripke models £0=<K0,ko,s, k>,

E1=<K1,k1,s,lk> such that kOIFA,k1|kA,k0lH¢,k1IVx. Construct a Kripke

model M as follows:

Ly(a) Ko v Ky
AlFA kgl & Ik A

k0W¢ kUVx

Where mll—p1.:<=»p1.€A.
By the push down lemma: miFA, but miif¢,mifFx. Hence AK ;pbvx.

1.0.18 Applications

i) Suppose ¢ does not contain disjunctions, then ¢ has the disjunction
property.’
ii) 1¢ has the disjunction property.

Proof:

i) Let Sub(w) be the set of subformulas of ¢. Trivially ¢ is Sub(y)-saturated.

ii) Under the negation sign one may substitute classical equivalents for each
other preserving IP-equivalence. So IPFa¢ & x . Where x contains no
disjunctions. Apply (1i).

13



1.0.19 Disjunctive Normal forms for IP

Consider any formula . Let Sub(p) be the set of subformulas of . Let
Lf:fESub(cp)’ Clearly L is finite. Let Aj,...,A  , be the minimal nodes of L
such that At (or: @€A.) . Define: P —AA{¢GEA ¢ is atom or implication§
First we note thatnpiPIPAi. This is shown by a s1mp1e induction on the elements
of A;. It follows that wikIPV¢9A.FIpv for all véLIP. Hence 0, has the
disjunction property. We have: IPFq>e>w%w For the "«" direction note that
©EA and hence IPkcpi»cp. For "-": consider any Kripke model K and any node
keK with klko. Let A:={¢€Sub(p)lklF¢}. Clearly A is Sub(p)-saturated,
hence for some i A;eA and hence k|F @ .

n-1
We call \&6<p1 the disjunctive normal form for ¢. There is a weak connection
between this disjunctive normal form and the classical one: if @ is built up
from atoms and negations of atoms using A and v only one gets a - not fully
efficient - version of the classical disjunctive normal form.

1.0.20 Theorem

Suppose XELIP »T€X, X 1is closed under taking subformulas, conjunction and
disjunction. Suppose further that X/1p is finite. Then <IP,X/1p> 1is a full
EHA.

Proof:

Take a*:=W{beX/[plbga}. Clearly a*€X/yp. Note T*=T. Hence <IP,X/ 5>
is an EHA. X/IP is closed under A, hence <}j1,X/’IP> is conjunctive.

n=1
Consider @eX. Let ?ﬁb @; be the disjunctive normal form of . Each of the

wiis a conjunction of subformulas of ¢. Hence wiEX . Let X1:={¢€XI¢ has the

disjunction property}. Clearly X1/IP is a basis for <}ji,X/’IP> and every
element of X1/IP has the disjunction property.

1.0.21 Application

Let X, be a finite set of formulas. Let X be the closure of XOU{ T} under
taking subformulas, conjunction and disjunction. Then <£B,X/IP> is a full EHA.

Proof:

By the normal form theorem X/IP is finite.

14



1.0.22 Remark

Clearly 1.0.20 and 1.0.21 go through when we restrict ourselves to Ip".

1.0.23 Open Problem

For n>0: is <Ej1’LIP”/IP> an EHA? (In case n=1 this reduces to the question,
whether there is an element of IP between the top and the rest of the Rieger
Nishimura Lattice.)

In sections 1.1, 1.2, 1.3 we introduce the main characters of this paper: the
EHA's NN, D and UP.

1.1 NN and NN"
1.1.0 Definitions

a) NNIL, i.e. No Nestings of Implications to the Left, is the smallest set
such that:
- T,L,po,p1,... are in NNIL
- NNIL is closed under a,v

- if @€NNIL then (pi-aw) € NNIL
Hos ;
b) NNIL .—NNILﬂLIPn

c) NN:=§£E,NNIL/IP>

d) NN":=<IP"NNIL"/ (o0 >

1.1.1 Theorem

NN is a full EHA.

Proof:

Let (pi-ex)ENNIL”'+1

Clearly IPF (p{»x)ea(pi»v). Moreover modulo a renaming of propositional
variables v is in NNIL™. Using this observation plus the normal form theorem

and let v be the result of substituting T for P in x.
one sees by an easy induction on n that NNIL"/IPn is finite. Apply 1.0.20.

Before turning to the problem of showing that NN is an EHA, we give two small
facts about NN" and NN.

15



1.1.2 Fact

For each n NNIL"/IPn has a maximum element Sn below T.

Proof:

We present anSn:
GO:=L
01(90)3=pov"p0 el

on+2(p0,... ,pn+1)?=}’VO(D1--’CH+1(P0,---,P1-_1 sP1+1,-.-,pn+1))

We leave the proof that the o, are as desired as an excercise.

]
1.1.3 Fact
In NN/NN": amlsa=1
Proof:
We Teave the proof as an excercise to the reader.
=]

1.1.4 Discussion

We now turn to the problem of showing that NN is an EHA.

Consider o€l We have to produce a @*&NNIL such that IPFoe*-¢p and for all

g
x€ NNIL IPFx->@= IPFx->@*. Clearly for some n: @GLIPn. An obvious conjecture
is that we can find ¢* in Lipn and that we can take as ¢* in fact a NNILM

representative of [¢@]* in NNN. A moment's reflection shows that what we need to

realize this idea is the following interpolation theorem:

1.1.4.0 NNIL Interpolation Theorem

Suppose @€L,x€ NNIL and IPF x—»¢. Then there is a x' in NNIL containing only
atoms occurring both in x and ¢ such that IPFyx-x' and IPFx'-0p.

This theorem is true, bu* we were only able to prove it from the fact that
there indeed is a ¢* having the desired properties and containing only atoms
from ¢. (The argument is as follows: suppose IPF y-¢. Let v be an interpolant

provided by the ordinary interpolation theorem. Take yx':=v*.)

Thus we state:

16



1.1.4.1 Open Problem

(3)

Give a direct proof of the NNIL Interpolation Theorem.

We will prove the fact that NN is an EHA in a different way. We specify an

algorithm N, that produces from a given ¢ a sequence of formulas:
w=:w0,w1,w2,... . We show:

(i)  This sequence terminates in an element of NNIL

(i) IPkw1+1»w1

(111) For all x€NNIL IPFx-@ = IPFx-0

Clearly the element in which the sequence terminates is a ¢* as desired. The
i+1

i+1

algorithm will be such that the atoms of ¢ are among those of wi. Thus the

atoms of ¢©* will be among those of .
The algorithm N will play an essential role in part 2 of the paper.

Before we can even describe the algorithm we have to take a closer look at the
syntax and 'proof theory' of IP. ‘

1.1.5 Definition

We define (-)<-> from LIPxLIP to LIP by:

. T if =%
For ¢ atomic @o<x>:= .

@ otherwise
T if (pad)=x
e<x> if (oa¢)#x and ¢ <x>=T
p<x> if (pa¢)#x and @<x>=T
w<yx>Ap<y> otherwise

Covlaysza] U T (oupl=g o o=l o¢ ayb=T

)
|

(p<y>vdé<x>) otherwise
jT if (@=4¢)=x or ¢<x>=T
(Pp=d)<x>:= 4 b<x> if (@=¢)#x and ©<x>=T

L (p<x>->b<x>) otherwise

1.1.6 Fact

a) IPFx~=(pep<x>)

17



b) IP F (xA@)e(x rv<x>)
c) IP F(x=@)e(x»0<x>)

Proof: trivial

1.1.7 Definition

A formula ¢ is stabfe if for all Kripke models K=<K,g,IF> and for all k'eK,
for all K'eK such that k'€K' we have: k' lFo@=k'IFo, where K[K']=<K',g',IF'>.

STAB:={p€L |yl is stable}

1.1.8 Fact

NNIL =STAB

Proof: induction on ¢ in NNIL. E.g. if w=(pm»q,): suppose k'lkpm-+¢ . Consider
k">'k' with k“lk'pm, then k">k' and kK"IFp,. Hence k"IF¢. By IH k"[F'¢.
Later we will see that in fact NNIL/IP=STAB/IP; in other words that every
stable formula is provably equivalent to a NNIL formula.

1.1.9 Definition

Define [-1(+) from LipXLip to Lpp by:
[blp:=¢@ if @ is an atom
[¢1(+) commutes with a,v

[¢]1(x=0) 1= ((X Ab<x>)>p<Xx>)

1.1.10 Comments on 1.1.9

i) Note that by 1.1.6: IPF[¢](x-»p)e(d=(x—>p)). The reason that we chose
the more complex form in our definition is that we want to simplify the
formula we started with.

ii) Note that IPF [¢ ]Jo=(d-@). Thus [-1(-) might be regarded as a kind of
strengthening of implication.

iii) From the 'proof-theoretical' point of view the raison d'étre of [-1(:)
lies in theorem 1.1.11.

1.1.11 Theorem

n
Let ¢:=],N_\ (\)_i—>p]-) »0:=(¢p->x) ,0:€STAB

0

18



n
Then: IPFo-w0= IPF o-( }”0 [‘Hvivwlx)
'l:

Proof:
) n
Suppose IPHo »( W [¢1v.vI¢Ix).
1=0
There is a Kripke model K=<K,k,s,[F> such that kiko and kIF#[¢]v, for 7
i=0,...,n and kIF[eIx. Let K':={kivik' eKik' IF¢§ and K':=K[K']=<K',g',IF' >,
Clearly kiF'c. We claim: for any e KIF[¢] e=kIF 'e.

Proof of the claim: by a simple induction on e. We treat the case of implica-
tion. Suppose ¢ is an implication and ki¥[¢]e. It follows that ki ¢->¢. There
is a k'>k such that k'|F¢ and k'lte. From k'|F¢ it is seen that every k'">k'
is in K'. Hence on k'|F and [F' coincide. Conclude k'|K¥'e and thus kli'e.

o Claim
From the claim we have kil'v, (i=0,...,n) and kiit'x. Consider k'z'k and
suppose k'IF'v., then k'#k and thus k'IF'¢. Hence k'IF'(v;=p;) and so k'IF'p;.
Conclude kit '(v,=p;). Ergo kik'¢. We have kIk'¢, kiF'o,kit'x, S0 klF'o=>(¢=x) .
So finally we see: IPHo-(¢-x).

1.1.12 Example
Suppose o is stable and IPF o= (3vp-p). Then IPFo-([~vplapviaplp).

[11plap=(pa(73p)<p>)-L
=3{pATL) .

(aaplp = p
Ergo IPFo- (pvap). Note that (pvap)e NNIL.
We need one more definition.

1.1.13 Definition

A formula ¢ has an outer disjunction if @ is of the form (dvy) or if ¢ is of
the form (¢ax) and ¢ has an outer disjunction or x has an outer disjunction.
A dual definition can be given for 'outer conjunction',
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1.1.14 Fact

If ¢ has an outer disjunction then there are @;,p, such that IPI—@eﬂchvw1)
and both @y and ¢, are shorter than ¢ and hpovm1) contains the same atoms and
implications as . A dual fact holds when ¢ has an outer conjunction.

Proof: by a simple induction following the definition of outer disjunction/
conjunction.

1.1.15 The algorithm N

Consider NN. We construct an algorithm to compute a ¢* in a*nNNIL from ¢ in a.
This algorithm and the related algorithms T and @ are the key to the arithme-
tical part of the paper: the arithmetical constructions follow the algorithms
step by step.

Qur specification of the algorithm is non deterministic; one can view it as
producing a finitely branching tree. We assign to each formula ¢ a certain
ordinal o(¢). o(¢) will strictly decrease when going down in the tree. It
follows that the tree is finite. The formulas in which the branches terminate
are suitable elements of a*N NNIL.

Qur presentation plus termination proof of the algorithm can as well be seen
as a proof by induction on o(w) of the existence of suitable ¢*. '

1.1.15.0 Definition

a) I(@):={(v->x) 1 (b»>x) 1is an subformula of o}
b) i(w):= max {1I(¢->x)11(¢->x)EI(w)}
(Note that we count types not tokens. Also: i(¢-x)=[I(¢>%x)1.)
c) ole):=w.i(e@)+L(v)
( Here £(p) is the length of o.)
We present the algorithm by cases. At each step we check:
(i)  @*eNNIL
(1) IPF o*>0
(i1i) for all o€NNIL if IPko-¢ then [PFo-o@*

case A @ is atomic

Set @*:=¢p
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case B = (4 Ax)

Set p*:=(p*ax*). Clearly o(¢)<o(w), o(x)<o(w). (i), (ii), (iii) for ©* are
easily seen to follow from (i), (ii), (iii) for ¢*,x*.

case C = (¢ vy)
Set p*:=(¢*vx*). Clearly o(¢)<o(9), o(x)<o(w). (i) and (ii) are evident.

For {(iii) we reason as in 1.0.12, 1.0.20: Suppose oENNIL and IPro-(¢vyx).

p-1
Let W o; be the disjunctive normal form of o. Clearly the o, are in NNIL.
i=0

IPf'o1.->(¢ vx ), hence IPI-01—>¢ or IPl-ci»x. Ergo by IH: IP I-O_i—Nb* or IPF 01-->X*-
Conclude IPF 01—>(¢*vx*). Thus: IPFo »(¢*vx*).

case D @=(¢=x)

case Do x has an outer conjunction

By 1.1.14 there are Xgo X1 such that Ikae%onx1) and for i=0,1: K(xi)<£(x)
and I(x;)eI(x). Clearly IPF(¢-x)e((4->xg)a(b-x,)) and 0(¢>x;)<0(¢-x)
for i=0,1. Set (¢-x)*:=((¢-xp)*ald-xq)*)

case D1 ¢ has an outer disjunction

By 1.1.14 there are bgs by such that Iquna(¢Ov¢1) and for i=0,1:
£(¢3)<(e),1(¢;)l(¢) . Clearly IPH(¢-x)e((bg=>x)A (b >x)) and

o( ¢ =>x)<o(p=>x) for i=0,1. Set (¢=x)*:=((by>x)*aleg=x)*)

case D2 x=(v-p)

We need a lemma about (-:)<-> of 1.1.5.

1.1.15.1 Lemma

a) For every subformula T of o<n> there is a subformula t' of o such that
T=1'<n>

b) Consider a subformula T of o<n>. Let t' be mindmal in the subformula
ordering of o such that t=t'<n>. If T#T we have that t' has the same form

as t, i.e. if T=uaX, t'=u'AA' etc.
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¢) i(s<n>)gi(o) and if a subformula of the form (n-A) occurs in o, the
inequality is strict.

d) i((nas<n>)=t<n>)gi((hao)>1) and if a subformula of the form (n-21),
occurs in o or t, the inequality is strict.

e) i((nao<n>)=s1<n>)<i(o=>(n-1))

Proof: a,b are left to the reader, c is like d.

d) Let 8:=((nAo<n>)>1<n>), %' :=((nAc)>1). Define f:I(8)->I(%") by:
8! 1? =9
n if e=n (and thus n is an implication)
fe):= an ¢' minimal in the subformula ordering of $' such that e=g¢'<n>,

Lotherwise

One easily shows that f is a function from I(%) to I(%®') and that f is
injective. Finally no formula of the form (n-X) 1is in the range of f.
e) i((nao<n>)=1<n>)=i((nAao<n>)->(n->1)<n>)
<i((nao)>(n-1))
=i(o>(n-1))

Returning to D2 we have: IPI—(¢—>(xf—> p) Je( (vAp<v>)->p<v>) and
o((vAag<vu>)=p<v>)<o(p=(v=p)). Set e*:=((VAp<vu>)=p<v>)*,
n
case D3 ¢ has no outer disjunction, so ¢ is of the form h0<pi, where the ¢
i=0
are implications or atoms.

case D3.0 Suppose one of the ¢y is an implication and occurs more than once
in ¢. Say this is ¢10.

We have IPF (¢=x)e( (4 A¢)=>x)

LAY 4 Absthy Foue ity >)

0 0

i(¢*x)=1((¢1OA¢)*x)

=1 (g abety >)x<dy >)

Moreover it is easy to see that - except in the trivial case that £(¢10)= 3

and ¢=x=¢10 - L(p->x)>L( (¢ 0A¢<430>)»x<¢10>). Hence

.i

olp=rxl=ol (s Ad<ty >)ox<y >). Set w¥:={{4;

0 A¢<¢1.O>)—>X<¢1.O>)*_

0
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case D3.1 One of the ¢1, say ¢10, is an atom.

In case ¢10 =1 : @*:=T
h1case<h0 =T 3 p*:1={p<Ts)*

Suppose 4)1-0 =p,- IPlpe (ps-aq)<ps> ) and o(m<ps>)<o(@) . Set Lp*:z(ps_)(w<ps>)*)
One easily checks (i),(ii) for ¢*, as to (iii):

Suppose o€ NNIL and IPFo-@, then IPP((GApS)-»m<pS>J . (cr/\ps JENNIL, hence
by IH: IPF((oap,)>(@<p,>)*), so IPF(a-(ps>(0<p >)*)).

case D3.2 A1l the ¢i are implications and each ¢1 occurs only in .

Say ¢;=(p;»v.), so co=(;§b (pi—>v1)*x)-

We proceed in the following way: we construct ©g 591 509 93 with the following
properties:

IP l'(Dﬁ(LD,lA(DZ)

i(o))si(@),i(0,)<i(0)

-IPFw3+w1

For all o€NNIL IPF (o >0, )=1P l-(c—»(p3)

i(0g)<i(o,) '

- ¢ =(03n0,)

As is easily seen from these properties:
-IPFwoﬁw

- For all oeNNIL IPF (o-0)=IPF (G-»(DO)
- i(ey)<ie), hence o(gy)<o(ew)

Set w*:=(w0)*.

For the construction of ©3 We need a lemma.

1.1.15.2 Lemma

n
Let n =./X\ ()x_i—rr_i)
i=0 "
a) Suppose IPF1.>% for i=0,...,n, then IPF(w [n]A,v[n]s)>(n>s) and
=0
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hence by 1.1.11: for all oc€STAB and so for all c€eNNIL:

n
IPFoos(n-%)e IP ko =( WO [n] )\1-\/[1'\]%)
1=
n

b) i(w [nIx;vinl®)<i(n-9)
=0

Proof

a) We have: IPF[n]l9%s(n->%) and secondly IPF[n] Ai»(n-»xi), IPFn-( A{»rj)
and IPF -9, hence IPF[n]A;>(n-%).

b) It is sufficient to show i([n]9%)<i(n-%) and for i=0,...,n
i(InlA)<i(n>9).

Consider for example [n]X.. An outer implication of [n]A, has the form
((yAan<y>)-68<y>).
We have:
i((yan<y>)=6<y>)<i(n->(y-48))
gi(n->9)

The last inequality is because (y-6) occurs in Ai and hence in n.

1.1.15.2 suggests that we should define @, as: @, :=( M (v;»(p.ax))>%).

We construct ¢,. Define: i=0
LK (v;=(pax)) if i<k
b L vses) if ik

(\)1.—>( pi/\)()) if i<k

K

¢21-:= o if i=k
Vi20y if i>k
k ook k.
Gy o= N Py s sl = M s
1 i=0 11272 i=0 21
Claim 1

k+1

1Pk (4“0 (0, o)A (8,50))

Proof of claim 1: immediate from:
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IPF(((o=t)an)=e)e((((o>(tae))an)se)a((tan)-e))

a Claim 1
Claim 2
n
Proo((e, ™ s a m (4,%x))
k=0
Proof of claim 2: immediate from claim 1.
a Claim 2

n
n+1—>><). Put @,: = ﬂ\(¢2kﬁx)

Clearly ©4= (¢1 X

Claim 3

i(o)si(o),i(p,)<i(o)

Proof of claim 3: we treat the second inequality the first is similar. It is

clearly sufficient to show i ¢2k->x)<i(np). Define f: I(¢2K»x)»l((p) as
follows:

o 1 e=(4, %)
._ Ve if ¢is a subformula of v.,p. or ¥
fle) := ‘ K e
by if e=¢2j and csz is not-a subformula of vi,oi or X and for no

kK
L dpp= by

Clearly f is a function from I(¢§-»x) to I(w). f is an injection. This
follows from the fact that each ¢, occurs only once in ©®. Finally wk is no?
in the range of f (this could only be the case by the third clause, so a=‘b§k,
© but ¢)§k=pk, so the second clause applies).

" a Claim 3
Put w3:=(yv [¢] viv[¢]x ). By lemma 1.1.15.2 the required properties
follow. =0

END OF N

Evidently the propositional variables of ¢* are among those of .

1.1.16 Example

((p=q)->r)*=((pvr)a(g-r))*
=(pvr)*a(g-r)*
=(pvr)a(g-r)

This is equivalent to ((pa(g-r))vr)
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1.1.17 Remark

@* as constructed is classically equivalent to o.

1.1.18 STAB and NNIL

Every ¢ in STAB is provably equivalent to some ¢ in NNIL. In other words
STAB/IP=NNIL/IP. To show this it is evidently sufficient to prove that N
computes a ©* in a* from ¢ in a for <IP,STAB/{p>. Thus if @ is stable N will
compute a @* in NNIL which is provably equivalent to o.

To see that N has this property we just have to run through cases A-D of
1.1.15 and check that they work also for STAB. A pleasant surprise is that
A, B, D are trivial. We consider case C. We have to reproduce the reasoning
of C for STAB. It is clearly sufficient to show:

1.1.18.0 Lemma
n-1

Let @€ STAB and let VU‘wi be the disjunctive normal form of ¢. Then the @, are
i=0

also in STAB.

Proof:

Let K=<K,k,g,IF> be a Kripke model such that kIP(pi. Let K'eX, keK'. Let
K'=<K',k,<',IF'>:=K[K"']. We show ki'o, .

Let Ap,...,4, 4 be as in 1.0.18. As is easily seen from the minimality
condition: A cA=~k=s. Consider the model Lj:=<L.,A.,<,IF >::=£Sub(w)(Ai)’
Construct a new model M =<M,m,g,|F> as follows:

A :
A lFo. ' V' kiro.
\\11\ 1

~

m
Where mlkpj x»piEAi. By the Push Down Lemma: mlk@i, hence mlFo.

Let M':={m{UL.UK' and Tet M'=<M',m,<"',IF>:=M[M"']. Note that on the
elements of L, |k of L. and [F' of M' coincide and that on the elements of K'
IF" of K' and |F' of M' coincide. ¢ is stable, hence m|F'p, thus for some j
mik ;. It follows that AslF ®; SO Ailkwﬁ, ergo AilkAj. Conclude Afzcﬁ and
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thus i=j. So we find mlk'wi and finally klk'wi.

1.1.19 Acknowledgement

The first to conjecture the connection between NNIL and STAB was Johan van
Benthem. He independently gave a proof. Van Benthem's proof is analogous to
the usual proof that predicate logical formulas preserved under submodels
are provably equivalent to universal formulas (but there are some extra
details!) Van Benthem's proof also works for modal propositional logic.

1.1.20 Open questions

a) Estimate lNNILn/IPnl
b) How fast - or how slow - is N?
c) Find standard representatives of the elements of NNIL/IP

1.2 <IP,{T,.}>

We take a closer look at D, i.e. <IP,{T,L}>. We have already seen that D is a
full EHA.

1.2.0 Fact

Consider D. For @ELIP:
[w]IP*=T@IPF ®
[cp]lp*=J.<=IPwa

Proof: immediate.

We show how to compute the unique element t(¢) of [@]*IPD{T,L} from o.
Clearly the algorithm is just a decision procedure for derivability in IP. Of
course many such procedures are known. The point of this one is not its effi-
ciency but its use in part 2.

1.2.1 The algorithm T

T is just a variation of N. We only elaborate on points where something
different happens. We consider T,L to be ordered by L<T.
case A @ is atomic

T if ©=T
t(y):=
L otherwise

27



case B @=(¢Ax)

t(@) :=min (t(¢),t(x))
case C o=(¢vx)
t(o):=max (t(¢),t(x))
Case D

cases DO, D1, D2, D3.0 are as in the case of N.
n

case D3.1 ¢=/K\¢1, the ¢i are atoms or implications. One of the b5, say ¢1O,
- i=0

is an atom.
If ¢, =14 set tleg):=T
10

If ¢1O=T set t(p):=t(p<T>)
Suppose ¢10=p5’ we have IPFoe (p.~>o<p,>)

1.2.1.0 Lemma

If P; does not occur in o, then IP kpi»<7@IP+-0.

Proof:

<" trivial
"=" By a simple Kripke model argument or by the interpolation property for IP.

a
Set t(w):=t(p<p >)
n
case D3.2 ¢= A\¢1; all the ¢1 are implications; each ¢1 occurs only once in o.
i=0
Take ©y as in N. Clearly IP}%paIPF(po. Set t(w):=t(w0)
END OF T

1.3 <UP,w+1/;p>

1.3.0 Definitions
We formulate UP in the language LUP’ which we consider as just a notational

varant of LIP'
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LIP is the smallest set such that:
-0,1,2,...,0 are 1in LUP

- ;UP is closed under A,v,»

The identification with L is as follows:.

fP(0):=L

1P

IP commutes with A,v,~»

We use 'm', 'n' as ranging over 0,1,2,... and 'a', 'B' as ranging over

Dal 3240 e slds

UP is the theory axiomatized by:

- Intuitionistic Propositional Logic
- (n-n+1) (n€w)

We are interested in UP:=<UP,{0,1 ,...,w}/UP>

Set n(p):= the unique element of [] *ﬂ{l0,1 ser.sw} . (We will further on
prove the existence of n().) '

1.3.1 Kripke Models for UP

K=<K,g,IF> 1is a Kripke Model for UP if K is a non empty set, < a weak partial
order on K and |k forcing relation satisfying: -
- kI#0, kilw

- kgk' and klFm=k'lFm

- mgn and kiFm=k|Fn .

We have: UP L@« for all Kripke Models K=<K,g,[F> for UP, for all keK, klro

Proof:

"«" routine

""" Suppose UP ¥ @ ; Tet the atoms occuring in ¢ be among 0,1,...,m,w. Then
IP+{s»s+1 Is=1,....m-1} Fo.
Let Ky=<Kg,g(»Ikg> be an IP model with bottom node k, such that kjlkgs-s+1
(s=1,...,m-1) and KgltFgeo. Change K4 to a Kripke model K =<Ky,<q, k> for
UP by postulating for all kEKO: KlFoa:e(agm and klko «) or a>m. As is
easily seen kOchp.
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1.3.2 Fact

a) UPFa-(wvey)esUP Fa-¢ or UPFa=¢
b) Suppose m is bigger than all n occurring in ¢, then: UPFm-peUPlo

Proof:
a) by a trivial variation of the usual proof of the disjunction property for IP.
b) "<" immediate
“=" Suppose UP K. Consider a Kripke Model K=<K,g,|F> for UP with mode kOEK
such that kOIVqL Change K to K'=<K,g,l'> by postulating kiF'p:e((kiFp and
p<m) or pzm). As is easily seen K' is a model for UP and kO|V'm»qx

m]
1.3.3 Theorem
UP is a full EHA.
Proof:
a) T€“+1@P
b) By 1.3.2b the elements of w+!1 implying a given ¢ are either 0,1,...,m for
some m or all of w+l. In the first case [w]UP*=[m]UP, in the second
*_T. —
[(p]up "[U)]UP—T.
c) w+1/UP,is closed under A, hence UP is conjunctive.
d) By 1.3.2a:
UP Fa=(pove)eUPF a»¢ or UPFa-¢ .
%[a]ups[wlup or [a]UPs[¢]UP
*
ololypslolp* or Lalpsledp
*, *
ﬁ[alups[mlup V[‘“UP
sagmax(n(e),n(¢))
Hence UP is disjunctive.
a

1.3.4 Remark

UPO=<m+1/bp,s,AO,\/;eo,T,i> is isomorphic to the complete Heyting Algebra
<w+1,<,A,v,>,1,1>, where

aaB:=min(a,B)

avB:=max (a,B)

w if agB
“*B::{B otherwise

1.3.5 Theorem

n
Let n:=M (o,>»7.), then
-i=0 1 1
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X

n
W (057, )» N=UP Fa=(W [n]ovinla)

UP F a-( /
0 i=0

i

it

Proof: a trivial variation of the proof of 1.1.11.

1.3.6 The Algorithm @

We specify an algorithm to compute n(v) from @. @ is just a variant of N and
T, so we only comment on points of divergence.

case A ¢ is atomic

Set n(p) :=@

case B o= (¢ax)

n(@) :=min(n(¢) ,n(x))

case C o= (¢vyx)

n(e) :=max(n(¢) ,n(x))

cases DO, D1, D2, D3.0: as for N

n
case D3.1 ¢={Tb¢i’ the ¢i are-atoms or implications, one of the bis SAY ¢

is an atom, say a.

ig?’
We have UP F o6 (a> @ <a>)

w if agn(w<a>)

Set n((p) o= ‘!\n((p<o(>) otherwise

This is easily seen to be correct.

n
case D3.2 ¢=gyb¢1, the ¢1 are implications and each ¢4 occurs only once in .
1=

Let @ be as in N D3.2. One easily shows using 1.3.5 that for all « in w+1
UP F a—»@e UP k- a-> g - Set n(o) :=n(ch)

END OF @
2. Solutions of Evaluation Problems in Heyting's Arithmetic

2.0 Introduction

The precise choice of LHA’ the language of HA, is immaterial for this paper.

However it is most convenient at least to think of L,, as having symbols for the

HA
primitive recursive functions and bounded quantifiers 'vx<t', 'Ix<t' (x is not

free in t). We will assume the theory if formalized in a Natural Deduction System.
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2.0.0 Convention

Suppose A(XO""’xn-1) is a formula of LHA’ where n-1 is the maximum of the
indices of the free variables occurring in A. 'DA' in the context o4 HA will

) i . . .
stand for: ProvHA(Subn( A(VO""’Vn-1) ,xo,...,xn_1}), whfre Sub, is a Godel
substitution function. E.g. we have HAF Sub, ("A(vy)™ ,m)="A(m)"

2.0.1 Definition

a) Let B and C be sentences of L Define: B~«HAC:e$HAPﬂnBeuC

HA®

~ua is the relation of provably deductive equivalence

b) Let B,C be sentences of LHA'

B= C:@HAFVAEZ?-sentmums (o(A-B)eo(A-C))

HA

2.0.2 Fact
(i) ~yy and ~,; are equivalence relations.
(1) B~ypB' 5C~pp C'=BAC~, B'AC

B=,,, B' ,C™ CU»BACNHAB'AC'

HA
HA
(1i1) THAZ “HA

HA

0

Proof: the only not fully trivial point is = Let R be a 21 Rosser

F~p e
HA” HA
sentence. We have RNHAL' Suppose RQHAL' It follows that HAI-DHA(R-eR)e+nHA(RaJJ.

Quod non.

2.0.3 Remark

It will be shown that: B~ ,B', C=,,C'=BvC~,,B'vC' (see 2.1.1.2).

HA HA HA

A similar fact does not hold for ~un let R be a Z? Rosser sentence and

S:=oR<oaR. We have: RNHAL,S~HAL,RVS~ ol.

HA

For the moment fix a propositional language L, with set of propositional
variables P. Let G be some non empty set of functions from P to the sentences

of LHA'

2.0.4 Definition

a) Let g:P- the sentences of LHA' Define ( )g: L- the sentences of LHA’ by:

32



-(@)9:=q(@) if oeP
(T} =1 0=0) s (1) F:=1
-(+)9 commutes with a,v,-
b) Let U be a logic (in L) such that for all wel: Ukoe for all geG HAF(¢)S.
Define % and Ny on L/U by:
a~cb: = for some €a,y€b, for all ge6 (w)QNHA(¢)g

b: & for some @€a,¢eb, for all geG (w)gNHA(¢)g

am
The definition is independent of the choice of v,¢, e.9.:
p0'ca=lUlye @

~for all geG Uk (o) % (0')?

~for all geG HAFa(v)9ea(p')d

2.0.5 Fact

i) ~g»~g are equivalence relations
—i-i) a"'Gal ,bNGb"-"aAb"’Ga'Abl
azGa',bNGb'=aAb~Ga'Ab'

We call the problem to characterize ~;: the evaluation probLem fon G (with
respect to HA). Our solution of this problem for certain concrete G takes the
following form: we specify a pair <U,X>, where U is a theory in L and XcL
such that:
a) <E[,X/U> is an EHA, with equivalence relation - say - ~y e
b) Urpe for all geG HAF(op)9
¢~y |
We claim that to prove a,b,c it is sufficient to show:
(i) <U,X/,> is an EHA
(ii) Uro= for all g€G HAK (@)Y
(i11) For @*€lw]*nX and geC: (o)~ (0*)°
(iv) For x,v€EX

U¥ x> v= there is a geG such that HAH a(x)9-alv)®

Proof:

- (a)=(1)
- For (b) we show: (for all ge€G HAF (@) 9)=UFo

Suppose UV@,@*E[@]U*HX. Clearly UKo* or UK o*e T. By (iv): there is a
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geeG sud1thatHAlfu(w*)geD(g=g), so HA K a(o*)9. By (iii) HA K o(yw)9
Hence by z-completeness HA K(p)9.

- For (c): note that (iii) tells us that a~Ga* and (iv) that a*#b*:a*%ieb*,
hence:
amgb @ a*~;b*

o a*=h*

< a~Xb

Before we present solutions to some concrete evaluation problems, we
interpolate a section with arithmetical preliminairies.

2.1 Translations and Derived Rules in HA

2.1.0 g-realizability

For every formula A of L,, we define a formula xgA of LHA as follows:

HA
- xgqP:=P for P atomic
xq(AaB) :=((x),qAr(x),qB)

- xq(AvB) :=(((x)=0-(x),qA)A((x);#0-(x)qB))
- xq(AaB) (Vy(qu»az {x} y~zazqB))A(A-B))

- xq(3yA(y)):=(x)qA((x)q)

- xq(VyA(y)):=vy(3z{x}y=zazqA(y))

2.1.1.0 Fact

a) HAF xgA-A

b) For every Z? formula A with free variables yo,...,yn_1 there 1is an e such
thatHAFA»BZ({gg(yO,...,yN_1)zzAqu)

c) Let A be a 21-formu1a. Suppose A,BO,...,Bn_1,C have free variables among
Ygse-ro¥yoq- Let Xgs...5x, 4 be free variables distinct from the y,. Then:
BO""’Bn-1 FHA+AC=»There is an e such that XOqBO""’Xn-1an—1 FHA+A

. 32({2&(X0,...,Xn_1,yo,...,yN_1)EZAZQC)

d) (a),(b),(c) are verifiable in HA

Proof:

induction on A

o

)

) idem

c) induction on the proof of BO,...,B
[10] pp. 188-202.

d) A1l the proofs are simple inductions.

n-1 FupasaC using (b). For details see
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2.1.1.1 Theorem

Let B,C,D be sentences of LHA’ then:
HAF(VAEZ?—saﬂEnces ((a(A-B)va(A-C))-»a(A-D)))

»(VAEZ?—smﬂmnces (a(A-(BvC))-»a(A-D))

Proof: (in HA)

Suppose for every Z?-sentence A ((a(A-B)vo(A-C))-a(A-D)). Suppose further
that for Z?-sentence Ag u(Acre(BvC) ). It follows that there is an e such
that D(Aoeeq(BvC)) and thus a(Ag~>{e} ), D(AO*((ie})0=Q-*(ie}H qB))
a(Ap>(({e} ) #0~ {e} 19C)) . Hence we have a(Ag-{e}+),a((Ajn({e}) =0)-8),
o (A ({e} )#0 -C). {e} )0—0 and r({e} ) #d‘ are 21-sentences
(remember convent1on 2.0.0), so by assumption: n( {e})(J—O )-D),

AOA iel) #0 -»D). Combining this with D(AD»{eJ we find u(AOeD).

2.1.1.2 Corollary
BzHAB',CNHAC'=»BvC~ B'vC'.

Proof: straightforward.

HA

2.1.1.3 Application: Leivant's Principle

BvC~ BaoB)v(CaaC)

HA(

Proof:

BzHA(BAuB),CzHA(CADC), hence BVC%HA(BADB)v(CAuC). Conclude
BvC~HA(BADB)v(CADC).

2.1.1.4 Credit

The principle 2.1.1.1 is implicit in the proof of De Jongh's theorem on Formulas
of One Propositional Variable, see [4].

2.1.2 The Friedman Translation

Consider a formula B of LHA’ we define (-)B: L

- (P)B:=PVB for P atomic

- (-) commutes with A,v,»,V,3.

HA” LHA as follows:

(In case free variables of B would be bound in the process of translating, one
should rename bound variables so that the free variables of B remain free.)
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2.1.2.0 Fact

a) For Aez? HAF (M)B e (avB)

)
0
b) Let A be a zy-formula, then By,....B,_, Fa »
)
)

HAFB*(A)B
(a),(b),(c) can be verified in HA.

c
d

Proof: by simple inductions, see e.g. [13].

2.1.3 De Jongh's Translation, a variant

C=(B

D
o)

To simplify the presentation we assume that LHA contains symbols for the

D
veees (B )" FppalC

)D

primitive recursive functions and bounded quantifiers '¥x<t', '3x<t' - we make

it into a syntactical constraint that x does not occur free in t. To eliminate

these extra assumptions on LHA we only have to be a bit more careful in our

formulations.

2.1.3.0 Definition

We employ an ideosyncratic definition of Z?.
Z? is the smallest set such that:
- if P is an atom, P€Z?,(1P)€Z?

- Z?is closed under A,v,3,3x<t,v¥x<t

One easily shows in HA the equivalence of this definition with the usual one.

2.1.3.1 Definition

a) the complexity c(A) of a formula A of'LHA is defined as follows:

- ¢(P):=0 for P atomic
- ¢(BAC):=c(BvC):=max(c(B),c(C))
c(C) 1if B is atomic

- c(B*C):={

max (c(B),c(C))+1 otherwise
- ¢(3xB):=c(B)

- c(3x<tB):=c(B)

- c¢(v¥x<tB):=c(B)

‘c(vyC) if B=(vyC)
- c(VxB):={

c(B)+1 otherwise
b) Bys..+sB_qF,C:e there is HA.proof T that B

O,o-.

sB G

n-1"HA

and T contains-only formulas of complexity < m.

c) BO,...,Bn_1u—mC is the HA-formalization of B
We extend convention 2.0.0 to o=
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2.1.3.2 Fact

a)
b)

c)
d)
e)

for AEZ? c(A)=0
for every n there is a formula Trn(x,y) of complexity n in LHA such that for
every formula A(VO""’Vk-1) of complexity gn

T gl
HAEYYgseeesYy g Trn( A(VO""’Vk-1) ,<y0,...,yk_1>)e»A(y0,...,yk_1)

n-1
HA F (BO,O...,Bn_1u-mC)—>Vx(1_/>_<\OB1.—>C) and hence HAF (umA»A)
forAEZ1 HAFA»DZA -

the proofs of (a)-(d) can be formalized in HA, so for example we have:
HAFVAVX a(a A-A), and: HAFVAET| a(Asa,A).

Proof (sketch)

(a)
(c)

2.1

,(b) are more or less routine.

Suppose 'Proofm(p) is a A?-formu]a that formalizes: p is a code of a
HA-proof involving only formulas of complexity g m. Suppose further that
'Ass(p)=b"' stands for: b is a code of the conjunction of the assumptions

of p. 'Conc(p)=a' stands for: a is a code of the conclusion of p.

We assume we have a bijective coding of finite sequences, such that (x)y=0
in case y > length(x). (In other words we treat finite sequences as
eventually 0 functions.)

Show by induction on p:

vp ProoFm(p)-»Vx(Trm(Ass(p),x)-»Trm(Conc(p),x))

Inspection of the usual proof of Z?-comp]eteness for HA shows that we only
need the non-induction axioms, which are in H?-form and sentences of the
form vx<p (x=0 v 3u<x x=Su). These sentences can be proved by inductions

of complexity 2. -

.3.3 De Jongh's Translation (A variant)

Given formulas E,A of LHA’ we define EpmA as follows: let k:=m+c(E)+2, then

EpmP:=P for P atomic

Epm(+) commutes with A,v,3,3x<t,Vx<t
Epm(B»C):=((EmeaEme)Amk(Ea(BaC)))
Epm(VxB):=(VXEme/\nk(EaVXB))

2.1.3.4 Theorem

a)
b)

for AEZ? HAF A-EpmA

HAFEpmA»nk(E»A)
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c) Suppose x does not occur free in E, when HAF(EpmA)[t/x]eEpm(A[t/x])
d) BO,”.,Bn_1FmC=>EmeO,...,Emen_1kHAEme
e) (a)-(d) can be formalized in HA

Proof:

a) induction on A, use 2.1.3.2 d
b) induction on A
c) induction on A; the crucial Temma is:
HAE (2 B) [t/x]eo (BIt/x])
This is derived as follows:
HAF(DkB)[t/x]HEX(t=XA DkB)
ﬁEX(Dk(t=X)ADkB)
wo, (BLt/x])
d) induction on the proof of BO,...,Bn_1FmC. We can arrange it so that no
variables of E are used invI or 3E in these proofs.
Two examp1es

(1) BpysenesBy_q ko YXA(X)=Bgsenns B EA(L)
We have:
EpmBg,..., Emen—1 FHAEpmVxA(x)
FHAVprmA(x)
Fup (EpmA(x)) [t/x]
FHAEpmA(t)
(I1) BpsrnvsB,_qsChyD=BgseursB ok CoD

We have:

EmeO""’ Emen-1’Eme FHA EpmD, hence:

EpmBg,..., Emen_1FHAEmeeEme £®)

Moreover: EpmB,,..., E?mBn-1FHA a, (E=By) »...,o, (E~B

n-1’C}7nD’ it follows: E*BO""’E*Bn—1Fm+c(E)+2
- *ok

hence EpmBy »..., EpmB 4k 28, gy, p(E2(CD)) (%)

Combining (*) and (**) we are done.

n-1)

From By,...,B E-(C-D),

7.1.3.5 Definition

a) Define [EImA as follows: Tet k:=m+c(E)+2
- [E]ImP:=P for P atomic
- [Elm(-+) commutes with A,v,3,3x<t,vx<t

nk(Ee(B»C)) if B is not atomic
- [EIlm(B-C):= '
1aBv[EImC if B is atomic

- [E]m(VXB):=uk(E+VXB)
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b) Define [E]A as follows:
- [E]P:=P for P atomic
- [E1(-) commutes with A,v,3,3x<t,¥x<t
E-(B-C) if B is not atomic
- [E](B*C):={1BV[E]c1f B is atomic
- [EI(VxB):=(E-VxB)

2.1.,3.6 Fact

a) [EImA is Z?

b) HAFEpmA-[EImA,
HAF[EImA-[EIA,
HAF[EJA-(E-A)

c) For AEZ?: HAFEpmAe[EImA

HAF[EImAe[E]A
HAFLE]AeA

d) (a)-(c) can be formalized in HA.
Proof: routine

2.1.3.7 Theorem

n
Let E:=M (B.-»C.), then:
/ i
i=0
0 n n
HAFVA€Z1-Gentences (m(A»(m\(Bieci)eD))eu(A»(VJ [E]Biv [EID)))
i=0 i=0

Proof (in HA):

Assume A is a Z?-sentence and o(A-(E-D)). Clearly for some x GX(A—>(E+D)) .

It follows that oEpx(A-(E-D)). Ergo: a(A-(j Epx(B.-C.)-EpxD)).
{=0

I J . 'y -1
Now pr(Bieci) is (prBi»prCiAux+c(F)+2(E»(Bieci))). Surely
n

DDXHiE)+2(E+(Bi»C1)), thus: D(A»(ﬁil(prBieprci)*EPXDH-
n

The rprB%’ and "EpxD' occur on positive places, so o(A-( i ([E]xBieprCj)e
e

[E1xD)). !

n
By taking the Friedman Translation based on F:=§V [E]xBi, using the fact that

[E1x8. and [E]XD are z?, o8 Sl =0
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(([E1xBvF)~(EpxC;)))=(TEIXDVF)))

n
a( (AvF)->((m

=0

Clearly a(( E]xBivF)»F) and u(F»(prCi)F), hence: a(A-([EI1xDvF)).
N .

Conclude: o(A-(W [E]B.v[EID)).
i=0

2.1.3.8 Corollary

n
Let E:=/\ (Biaci), suppose for i=0,...,n HA}-C{»D, then:
i=0
n

(E-D)my» Y%[E]Biv[E]D.
1=

Proof: by the reasoning of 1.1.15.2 a.

2.1.3.9 Remarks

a) 2.1.3.7 is implicit in the proof of De Jongh's theorem on Formulas of One
Propositional Variable (see [4]).

b) The reader may amuse himself by proving the following strengthening of
2.1.3.7 (derived from a suggestion of Rick Statman):

n n
HAFVAEHg a( (Aa /A VX(Bi»Ci))»D)»D(A»(y/SX[E]Biv[E]D))

i=0 i=0

n
where E= A vx(B.-C.).
i=0
c) Open question: can 2.1.3.7 be strengthened to A that are Z?-substitution
instances of formulas of NNIL?

2.1.3.10 Consequences

A1l kinds of traditional theorem follow from 2.1.3.7. For example:

a) for all AEZ? HA Fo11A-o0A (closure under Markov's Rule)

b) for all AEZ? HAF o (171 A—A)-a(AvaA)
c) for x not free in B: HAFa(aB-3xC)-»c3x (1 B-C) (Closure under the

Independence of Premis Rule)

Proof:

a) HAFa(=77A)-a([71AJAv[1A]lL)

-—)DA
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b) HAka(qv A=A)-»a([~71Al1Av[=21AlA)

ﬁm(011Aﬁ1A)vA)
-»a(AviA)

c) HAFa(2B-3xC)-a([+B]3xCv[1B]IB)

-»a(3x[tB]Cv(1B-B))
-»a(3x(1B-C)v11B)
-»03x(1B-C)

2.2 The Evaluation Problem for IZ

Let IZ be Sglg:PIP—»Z? -sentences § . We show that <IP,NNIL> solves the

evaluation problem for IZ.

(1)
(i1)
(iii)

Yes, §£E,NNIL/IP> is a (full) EHA.

It is routine to show that if IPF ¢ then for all g in IZ HAI-(w)g.

We show that for ge€Ix 09)9~HA(cp*)9, where ¢* is the formula computed
from @ by N. To do this we prove the stronger (@)ngA(m*)g by induction
on o(p) following the stages of N,

For the moment let's fix a g in IZ and simply write ¢ for (©)9 in the
context of HA.

case A o is atomic

trivial.

case B w=(¢ax)

By H1¢zHA¢*,x%HAx*, hence ¢AXNHA¢*Ax*.
case C @=(¢vx)

By H+¢NHA¢*,XNHAX*, hence ¢vx~HA¢*vx*.

Cases DO, D1 are Tike B; D2, D3.0 are reductions to an IP equivalent and
thus are simple.

n
case D3.1 ¢= n&qﬁ, the qﬁ are atoms or implications, one of the ys SaY
i=0

¢10, is an atom.
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If ¢1O=T or ¢1O=l this is easy. Suppose ¢1D=p5' We have:

HAFVAEZ?-%mtames (D(Aem)en(Ae(p§+m<ps>))
oa((Aap )ro<p >)
Ha((Aap )-(e<p>)*)
ea(A=(p »(0<p >)*))
oa(A-e*))
Note that in the middle equivalence we use that in the context of HA(AADS)
stands for a Z?-sentence.
n
case D3.2 ¢=AA(L1, the ¢1 are implications, each ¢1 occurs only once in o.
i=0
m

Let n:= 24 (6.-*fj) and suppose IP}-Tj*K for j=0,...,m. An immediate conse-

§=0 n

quence of 2.1.3.8 is: (n-A)=,, w [nlo,vinlr.
j=0

From this and from the construction of @y we have: U TNE Hence by IH‘DNHAQﬁﬁ*'

We postpone point (iv) till after Excursion 2.2.0 on the Evaluation Problem
for IZ with respect to HA*.

2.2.0 Excursion: The Evaluation Problem for IZ with respect to HA*

In [13] we introduced the theory HA*. HA*=HA+CP*. Here CP* 1is the scheme
(A»o*A). 'o*A' stands for DHA*A in the context of HA or HA*. We show in [13]
that CP* is interderivable (over HA) with SLP*, i.e. the scheme: ((o*A-A)-A).

In [12], part 6, we draw a consequence of Solovay's method in the proof of the
completeness theorem for arithmetical interpretations of modal logic. This
consequence will be needed for the problem at hand. Because [12] is - perhaps -
not easily accessible we reproduce the result and the argument here.

A monotonic tail model is a structure o .
for the language of Modal Tropositional N : ; } &;2;%5 Kripke

Logic (i.e. the language with propositional N+1 l Z .
variables PgsPqo--- and logical constants N2 i ﬂ:ti;lstant
1,T,o0,A,v,>). The structure has the form N+3 | 7 on atoms
<w,<,|F> where: .

- < is on irreflexive partial order '

- if m#0 O<m 0
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- if n#0,n<m then n>m

- for some N#0:
- for every n,m,if nxN and n>m>0 then n<m
- for every n=<tN and every i: nlkpiﬁNIFpi
Such an N will be called: tail element.

- if mlkpi and n>m then nlkpi

- mike=>¢ 1o for all n>m nlke=nlk¢

-miFoyw :  for all n>m nlko.

One may show (Tail Lemma)
Olk @« for some M, for all n>M nlte
Olkoe for some M, for all n>M nlfoe

Consider a tail model K=<w,<,|F>. Define a primitive recursive h as follows:
- h(0):=0
n if for some n>h(k) ProofHA*(k,raxhxﬁgf)

h(k) otherwise

- h(k+1):= {

Clearly: HAF"his weakly monotonic in <"

Define:
?xﬁiaxhxzjj ilk@} if there are only finitely many i such that ilko
[o]:=

0=0 if for all i ilFo

The Tail Lemma inplies that always one of these cases applies. Define <@> by:
- <p1>:=[p1]
<T>:=(0=0),<i>:=1

- <+*> commutes with A,v,-

T <OE>:i=Op,, <9>

2.2.0.0 Theorem

HA* F<@>e [ @]

Proof: induction on «o.

- atoms and v are more or less trivial
- @=(dax). We treat the case that 1ilil-¢i and {j1jlFxt are both finite
HA*E< ) A X>o<¢>A<Y> :

Whwfaxhx=1111r6 § awizxhx=31 5 1kx}
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ew{axhx=ia3xhx=jlilF¢,jlFxd

&Wiaxhx=klkIFoax}

The "«" side of “:" is trivial. For the "«" side, note that if i%j and j#i
HA* F1(3xhx=ia3xhx=J) and that if e.g. i<j, we have jlFéax by
monotonicity.
- @=(b>x). By IH it is sufficient to show: HA* } ([¢1-[x])e[d-x]
The "«" side is more or less trivial.
"' In case for all i ik (¢->x) it is easy, so suppose that only for finitely
i ilk (¢>%). Let jg,...,J, be the maximal elements such that j I¥ (b>x) .
Note that jklk¢,jklv X . Reason Lin HA*:
Suppose [¢]-[x] and o*[¢-x]. We have cz*(axhxaég_k
ProofHA*(p,rExhx#gi“) and h(p)=y. In case y<;;'_k,h(p+1)=i_k and so [¢],
hence [x]. From h(p+1)=;’k and [ x] we have Elxhx>g’_k (for: jlex). In

) . Assume

case y&j, h(p)ﬁik, hence Ixhx4j, . Conc]ude/A{axhx{iklk=0,...,s},so
by the monotonicity of h axlnfhx#%ik||<=0,...,sf
From this: W{3xhx=ililF (b->x)}, i.e. [¥>X]. By the SLP* we may conclude
[b->x] without assuming o*[¢->X].
= q):gq)
In case for all i ilF¢ this is easy, so assume only for finitely many i
ilkd. Let ]0""’]t be all the elements such that ]klku¢,1le4J. Note that
for i with i{Fod¢ there is an ]k with i<1k.
By the IH it is sufficient to show HA*Fao*[¢] o [o¢]
Reason An HA* s
"»" Suppose o*[¢]. We have u*(a>d1x£lk) by the definition of [¢] and the
fact that_lk|V<b. Suppose ProofHA*(p,"axhx¢tk‘ ) and h(p)=y. In case y<lk
we have h(p+1)=1, . In case y#«1, we have 3xhx#1, . Conclude
h&{axhx{lk|l<=0,...,t§. Hence by the monotonicity of h: Ixmihx#1, 1k=0,...,t}
So W43axhx=1l1 |k oy}
"«" Suppose 3Ixhx=1 for an ilFo¢. By the definition of h and the fact that
i#0: o*(3xhxAi) (How else could h move up to i?) Then from 3Ixhx=1:
o*(3xhx=1).
Combining: o*(3xhx>i), or a*W{axhx=jl j>i§. Hence o*[¢].
a
We are now in the position to solve the Evaluation Problem for IX with respect
to HA*. The solution is <IP,L>, this means that ( )* on <Iji’L’/IP> is just
the identity.
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i) <IP,L/;p> is a full EHA. This is, of course, trivial.

ii) If IPFo then for all geIx HA* (9)9. This is routine.

i11) C]earlyztp*e[np];% iff IPFoeoo*. So trivially: (ONHA*Q*'

iv) Suppose IP Fyeq, e.g. IP Fe-¢. There is a finite Kripke model for
IP _50 =<KO,‘<,IF:> with bottom node k0 such that kOIFw,kOIth Without
loss of generality we may assume:

- KO={1,2,3,“.,N},vmere m<n = n<m.

- if mAN mikg.

Now we hang a tail N+1,N+2,...,0 under K,; to obtain a tail model K. We
postulate: (n=0 or nyN)=(n|kp,eNitp.).

We find N+1|Fog, N+11F a¢ and for n<N+1,n#0: nlkod¢. It follows that

there is a d such that for every n nH—(Dwﬁn(w-amdL.

Hence HA* k <(n@e»u¢)»DdL>e[(Dw»D¢)andl]

| ©0=0

Ergo HA* F (o*<@>ea*<(>)-o*dl, Let gOU%):=[p1].C1ear1y gp€Iz and

<t>=(1)90 . It follows that if HA*Fo*(0)%0 e a* (¢)%0 then HA* +a*dL,

quod non (see [13]).

END OF 2.2.0

We return to the Evaluation Problem for IZ with respect to HA. We still had to
check point (iv).
(iv) Let x,v € NNIL and suppose IP Kxe V.

In [13] we introduced the class A by: A is the smallest class such that:
- PEA if P is an atom '
- A is closed under A,v,V,3

- Aez?,B€A=:(AﬁB)eA
In [13] we show: for A€A HAFAeHA*FA and HA toAec*A (Theorem 5.4 of
[13]). Clearly if ge€Ixr and <eNNIL then (z)9¢A.

By 2.2.0 there is a e in IS such that HA* H o* (x)goe>u*0)) . So clearly

HAH o* (x) 30 ea*(v) 90, By the above remarks: HAWa(x)30ea(v)90.

90

(Inspecting the argument of 2.2.0, giving x the role of ¢, we see that
for all n nlkx in the tail model. Ergo HA* F<x>, i.e. HA*}-(X)QO, hence
HA F (x)90.)

2.2.1 Corollary

Suppose g€Ix, the propositional variables of ¢ are po,...,pk_1,IP ¥, then

45



HA}-m(w)gen(ck(pO,...,pk_1))g. (The 9, are introduced in 1.1.2.) For examp1e
we have in case the propositional variables of ¢ are PgsPy and g(p0)=A,g(p1)=B;
HA F a() %a( (A=(BvaB)) v (B=( AvaA))).

Proof: obvious

2.2.2 Remark

Using a uniformization argument as in [7] or in [12], part 0, 2.2.11 we can
show: there is a 90 in IZ such that for all x,v in NNIL:
IP I (xeov) =HAK 1 (x) P60 (v)90.

2.3 De Jongh on formulas of one propositional variable revisited

1 et s Bis, oo
Let I .—{glg.1p0§ sentences of LHAK
We want to recast the theorem of De Jongh on formulas of one propositional

variable (see [4]) for sentences in the form of the solution of the evaluation

- problem for 11.

We show: <IP1,{L,po,1p0,11po,pOV1pD,11pOV1p0,11pOep0,11p0v(1wpO»pO),T}> solvés
the evaluation problem for 1!,

(i)  As we have seen J=§lg1,[rwpov(TxpO»pO)]IP1][T> is a full EHA.

(i1) It is routine to show that: IP' = for all gEI1 HA}-(@)g.

(ii1) Let ¢ be an element of the Rieger Nishimura Lattice (RNL) and let @ be
the representative in the RNL of [w]*IP1. It is clearly sufficient to
show for any g in I1: (w)g~HA($)g. The pro9f is essentially De Jongh's.
We only give a sketch. Fix g. We write in the context of HA 'o©' for '(¢)9'.

We show mzﬁ”\5. In case =T, this is easy. The further proof is by
reducing the 'height' of ¢ in the RNL. The forms of the relevant elements
of the RNL are (¢ vyx) or (v=p)=(¢vyx).

case 1 @=(¢ vx)

This is treated as case C of 2.2.

case 2 o=((v-=p)=(¢vyx))
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(iv)

Note that 2.1.3.7 implies (using the property of the RNL that
1P b (evx)) :
(voro)=(ovx )™y, ((vop)2d)v((v=p)ax) v((vop)-v)

Reduction of the rhs to an element of the RNL shows that this element is
below .

For g(p0)=A,A a Z?-sentence, we Gave by 2.2(ii1): HAI—U(11p0)g++D(pO)g.
So we cannot choose in general a 21-Sentence for our counterexample.
Perhaps a Boolean combination of 21-sentences will work.

We carry out the following plan. Start with x in the RNL equal to T or
below or equal to 11p0v(11p0»p0). Substitute (pova1) for py. Rework a
bit in IP to find x'. Apply the algorithm N to x'. Rework the result a
bit in IP to find x". If the x" so found are pairwise inequivalent in IP,
our result follows by 2.2(iv).

X X | X

L L | L

Po Pg¥ P Pg¥Py

Py - TPGATIP, TPAPy

1Py P=>TPg P4=Pg

PV P | PovIPqv(apgAtIpy) pOVﬂp1v(«pOAp1)
11pgVIPg (py=11pg)v(apgrripy) (py=pg)v(1pgary)
11P~Py 11(pgvapy)=(pgvapy) povi(pgrpy)
1pgvlipgpg) | (Pomipg)var(pgvapy)-(pgvap )| (pyopg)vi(pgapy)
T T T

We Teave it to the reader to check the pairwise in equivalence of the y".

[m}

2.4 A sharp version of De Jongh's Completeness Theorem for arithmetical

interpretations of IP

Implicit in the work of 2.2 there is a proof of De Jongh's Completeness Theorem
for arithmetical interpretations of IP. Inspection of the proof shows that it
can be formalized in HA+vx1o*Ll. In this section we show that De Jongh's
Completeness Theorem can be proved in HA +71o 1.
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. e . 0
There is a primitive recursive sequence of 21-sentences 90,91,92,... such that

for any n: n-1
HA L VBOEZ?-sentences ...an_1EZ?—sentences ﬁ:(hﬁ(ﬂiﬁBi)»L)»ul).
' i=0

The Q; are examples of Kripke's Flexible Sentences. For a proof of their exis-

tence, see e.g. [6] or [11], 3.6. It is easy to check that the argument can be
formalized in HA.

Let G be given by G(pi):zﬂi. '©' in the context of HA will mean in this section:
()¢,

We show that <IP,{T,L}> solves the evaluation problem for {G}. Clearly this
means nothing but:

IPfo=>HAFopeol, which implies:

IP o= HA +3olb-op, or:

De Jongh's Completeness result can be verified in HA+con(HA).

(i) As we have seen <IP,L][T> 1is a full EHA.

(i1) Trivially: IPF@=HAF o.

(iii1) We show: wvaAt(cp). Note that in case t(¢)=T this is trivial, so we
restrict ourselves to the case that t(y)=L.

As in 2.2 we would Tike to show qﬁvHAt(w), but that won't work, because
e.g. for the case that ¢= Po HAI%D(QOepO)eu(Qg»L).
(Note that HAI-D(QOepO),HA}-(a(qﬂo)eaul).)

To get around the difficulty we prove the following. Let the proposi-
tional variables of ¢ be P ,...,pjk 1 and suppose IPlf@, then:
HAF VAEZ ?-sentences o(A-)-3 B0 seeesB k-1€

k-1
Z?-sentences a( (AA M (9. &B.))>1)
AP Pt
j=0 3
Clearly from this it follows that: k-1
HA:'dw—>EBO,...,Bk_1€z?-sentences a( /x (QieB.)-al)
j=0 '3 J

Hence by the flexibility of the Qi-:

J
HAFop->ol, ergo @“HAL'

The proof is by induction on o(p) following T.
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case A @ is atomic
In case ¢=1 this is trivial. In case ®=p,> set BO:=.L.
case B o=(¢Ay)

Clearly IPK¢ or IP ¥ x. Suppose e.g. IPlK¢. Let pSO,...,pS] be the

propositional variables of ¢;p those of .

ig? Pk
Reason 4n HA
Suppose A is a Z?-sentence and a(A-y), it follows that a(A-¢), hence
(by IH) there are z?—sentences Cgs---sCq_q such that:

1-1
a((AA A (Q _aCj))—nL). Take:

j=0 53
L, i =i, f !
- {CJ if §J 13 or some j
J Q. otherwise
T
J
Then:
k-1
D((A/\ M (Q'I "’BJ)) _)-L)-
j=0 ]

case C o=(dvx)

be the propositional variables of

We have IPK ¢,IPH x. Let pSO,...,pS

b3py senesPy those of x; Pi seessPy those of .
0 m-1 0 k-1
Reason 4n HA:
Suppose A 1is a Z?-sentence and a(A-(¢vx)). There is an e such that
a(A-iell}), n((A/\({e})0=g)-+¢), u((A,\({eS)Oég)—ax). Clearly by our
conventions 7([e})0=9)’ and T({e})o#gj‘ are z?-sentences, hence
there are Z?-sentences S ERRETI and 0gs-+-sD_y such that:

-1

a((An(fe})y=0a 78 (2 :—»Cj)>—u)

j=0 ~j

and -1

a( (Aa(fe}) g#0n i (2, *’DJ-)>->U
=0 7

Take for j=0,...,k-1:
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if s.,=i, for some j'
J J

otherwise

D., if t.,=1. for some j'
jJ' N )

otherwise

k-1

Claim: a((AA M (Qi _.QBJ.)) ->1).
j=0 'J

Reason An o:
k-1

Assume AA /A (Qi -B.). From A we have ie}ll, hence ({el)0=g_or

=0 J

({e})#0. Suppose ({ef)y=0. It follows that Bjean, hence
1

k=1
An KN (Q_i
=0 3 3=

1 from ({e})oﬁg, By VvE: L.

=1

.ééEj), thus AAAA(QS

J

case D @=(¢ »x)

cases DO, D1, D2, D3.0 all

G d e
- J)

Ergo L. Similarly we can derive

employ IP equivalences; say IPFops o',

where 0(p') <0(p). Suppose the propositional variables of ¢' are

Pe seeesP

=1 0

Reason An HA:

, those of o Pi seee

Py

k-1

. Here the sj are among the ij..

Suppose A is a Z?-sentence and o(A-»¢), then o(A-@'). Hence there

0
are 21-sentences CO""’C1-1

1-1

a((An /6 (9 »C))~1).
j=0 7j

Take:

5

191 otherwise

I k=1
Then: a( (AA X (Qi.
j=0 'J

, if sj.:ij
Bj:=

HBJ-))—)’J.)

for some j'

such that:



m
case D3.1 <L=AA<Lr, the ¢r are atoms or implications. One of the ¢r’
r=0

say ¢r , 1S an atom.
0

By the assumption that IPlfw:¢r #L1. In case ¢r =T the case reduces to
' 0 0

©<T> and we can reason as in DO. Suppose ¢r =pq, and that all the
0
propositional variables of <p<pq> are p

P.

i

5 & steis P » those of o:
30 51-1

0 N 1k-1.

Reason 4n HA:

Suppose A is a Z?-sentence and o(A-o), then o(( AAQq)—)Lp< pq>) .
By IH there are Z?-sentences CO,...,C]_1 such that:

1-1
a( ((AAQ_) A M (QS ¢->CJ.))—>.L).

=0 7j
Note that q is not among the Sj' Take:
(0=0) if g=i;
=40 TF 5,1, T j!
BJ CJ if sJ ;1J or some J
Qi otherwise
J
n
case D3.2 ¢=/A ¢1, the ¢1 are all implications, each ¢1 occurs only once
i=0
in @. )

We have: HAl—vAEZ?-sentences D(A—»cp)aD(A»wO) . Proceed as in DO.
(iv) C1ear]y'T+HAL.

2.5 The closed fragment of the provability logic of HA

Let C be the smallest subset of the language of modal propositional logic such
that:

= LeC,TeC

- C is closed under A,v,»,O

Define the interpretation ( )a of C in L p as follows:

H

- (1)%:=1,(1)%:=(0=0)

- ()® commutes with AsV 4=
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- (09)*:=a,, (0)°
We adopt the convention to drop ( )2 in the context of HA. Thus we write
'"HA @' for HAF ().

The problem of the closed fragment for HA is roughly to characterize those @
in C such that HAF¢ . This involves at Teast to give an algorithm to decide
whether HAF @ or not. (The problem of the closed fragment for Peano Arithmetic
is Friedman's 35th problem. This was independently solved by van Benthem,
Boolos, Bernardi & Montagna about 1975. Note that Friedman's formulation in
terms of consistency rather then provability makes no difference in the
classical case, but is 'weaker' in the constructivistic case).

The crucial Temma for solving the problem of the closed fragment of the
provability logic of HA is the solution to an Evaluation Problem.

Define: DOL:=L
Dn+1 . n

a¥L:=T

& e=(a%1)9,

Let H: w+1- the sentences of L., be given by: H(a)::aHA

We claim: the solution of the evaluation problem for {H} is <UP,w+1>.
In the context of HA we will drop the ( )H.

(i) As we have seen <gg,w+1/up> is a full EHA.

(i1) Clearly UPFo=HAFo@

(iii) We want to show quHAn(m), to do this we prove o zHAn(@).
The proof is by induction on o(¢) following algorithm Q. The proof is
merely a variation on the proof in 2.2, so we only indicate the differ-
ences.
Cases A, B, C, DO, D1, D2. D3.0 D3.2 are all T1ike the corresponding
cases in 2.2.

n

case D3.1 ¢=/\ ¢1, where the ¢1 are either implications or atoms; one
i=0

of the ¢., say ¢, » is an atom, say a.

0

Remember: UPFoyo (a=»@<a>), and
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w if agn(e<a>)
n(co)='{
n(p<a>) otherwise

If n(p)=w we are done, so assume n(p<a>)< a. vSay n(p<a>)=m. By IH:<p<a>%HAm.
The following facts about My are easily verified:

2.5.0 Lemma

Let B be a Z?-sentence and let C,D be arbitrary arithmetical sentences:

a) (DC»C)NHAC

b) (CAuC)zHAC

c) C~ D=(B»C)NHA(B»D)

HA
It follows using (a) and (c):
(a=p<a>) %HA(u»m)

Fpam

(iv) Trivially a#8 =>a74HAB.

Now we are in the position to solve the problem of the closed fragment for HA.
N b

Define ( ) : C-»LUP

b b

- (L)7:=0,(T) = w

= { )b commutes with A,v,-

- (29)®:=14n((0)?)

We have for ¢ in C:

a) HAF@o (0)P

b) HAFoen((9)°)=u

as follows:

Proof:

a) By induction on @. E.g. if @=ab: By IH HAF be(¢)®, hence
HAF a¢ o a(4)P

& an((¢)

Moreover in the context of HA: nn((¢)b)=1+n((¢)b)

b)

b) By the 'unformalization' of HA}-u<p»1+n((m)b) we have:
HA @@ HA F n( ()2
an((0)?)=w
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2.4.1 Excursion: the closed fragment of the provability logic of PA

The solution of Friedman's 35th problem can be cast in precisely the same form
as our solution of the problem of the closed fragment for HA.

Let UPC:=UP+C1assica1 Logic. <QEF,m+1/UPC> is a conjunctive EHA.

Let nc(w) stand for the unique element of [p]* Aw+1. We have (because up®
extends UP): n(qﬂ.snc(w), but e.g. n(lval)=1 and nc(lvql)=w.

Define the following functions:
) R ) O
K:w+1 - the sentences of LHA’ by K(a): Sppl.

—~

)C:C - the sentences of LHA’ by:

- (1)%:=L,(T):=(0=0)
( )¢ commutes with AsV >
(29) 1= () ©

d, )
() .C—»LUP, by:

(1)%:=0,(1)%:=0
()9 commutes with A,v,-
(09)4:=14n%( () 9)

Now write: ‘@' for Ty s 'o' for (@)K

C, 4n the context of PA.

if ® is in Ly, ‘o' for (9)€ if © is in

We find for ¢ in C:
a) PAl-toH(tD)d
b) PAFpe nc((w)d)=w

2.4.2 Excursion: the provability Togic of the closed fragment of HA*

Let UP*:=UP+{((m+1-m )»m) | m€Ew}
Define m: LUPew+1 s Dy:

- m(a) :=a
- m(eag) i=min(m(e),m(¢))
- m(w v¢) :=max(m(e),m(¢))

cw if m(e) s m(e)
m( (@-¢)) :=

m(¢) otherwise
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We find: UP*F @em(o)
Because UP* extends UP, we have: n(g@)gm(e), but e.g. n(dal)={, m(x711)=w.

Clearly UP* is isomorphic to the complete Heyting Algebra <w+1,aA,v,-,T,1>
of 1.3.4.

Define the following functions:
. N &
L:w+1 - the sentences of LHA’ by L(a): e

( )Q:C - the sentences of LHA’ by :

- (1)%:=1,(T)%:=(0=0)

- ()% commutes with A,v,-.
e

()8:c > wet, by :

(1)8:=0,(1)8:=0

(0 06)8:=m((0)80(4)8)  For o=a,v,-

(@) b:=14(0) 8

We Write 'o*' for Ok in the context o4 HA*, and '¢' for ((p)L if @ is in LUP

e

and '¢' for ()~ if ¢ is in C.

We find for ¢ in C:
a) HA* F oo (@) 8

b) HA* ke () b=u

2.4.2.0 An alternative proof of (iii)

Let ©* be the result of applying N to ¢ in Lyp-
Suppose the non-w atoms of ¢ are among 0,1,...,m.
We have: m-1

UPFa-@e IPF(/M (i-1i+1)ax) >0
i=0
m-1

e IPF(MA (i2i+1)Aa)>@*
i=0

& UP Fa-o*
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It follows that n(y)=n(@*). Moreover for x is NNIL one easily shows:
n(x)=m(x'). Hence: n(@)=m(p*).

P HA k(@) Pl

p means (cp)H in the context of HA):

Note further that HA}-(DG1J+G*G1J and hence for €L
(under the convention that '¢' of L

. Ergo

U
HAFoop eop*

o O*@*

o a*m(@*)

~an(y)

2.4.3 Excursion: Intuitionistic Lob's Logic

Let IL be 1ike L&b's logic, only with intuitionistic instead of classical Togic.
The provability logic of HA turns out to be quite different from IL.

In [5] K.A. Kirov proves a Kripke Model Completeness Theorem for IL: a Kripke
Model for IL is a structure K =<K,g,R,IF >, where:
- K is a non empty set
- < is a weak partial order
- R,g satisfy the following interpolation property: I<1sk2Rk3sk4f» k1Rk4
- | is a forcing relation on K, satisfying:
- k,| skz and k1||-p1-=>k2||-p1-
- k1|l'l:1cp:=> for all k2 k1Rk2=>k2H-cD
- k1H-q>—>¢:=» for all k2;k1 kzll-q)=>k2 Fd¢
- the clauses for L,T,A,v are as usual
We have:
ILFyp e for all Kripke Models K with R transitive and upwards wellfounded, for

all k in K klFo

Using the Completeness Theorem, one shows: for no « ILFomalen®Ll. One may
also prove:

ILF (op->o k+1

1) = for some 1<k IL I-(p—»(l:lkH.L-»D].L)

A1l this shows that the closed fragment of IL is far removed from that of the
provability logic of HA.
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NOTES

1) As we will see this is misleading in example (iv).
2) The generalization of (ji) is due to De Jongh.
3) In the meantime this problem has been solved by Gerard Renardel.
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