
A Func ionat P wgtca.m Fm

The Faux Fowu.etc Ttc.ans jotcm

Fe,t-Jan de Vti..e6

Depatt.trnent of Phiioz o ph y

Unu.vvt6Lty o6 U tech,t

Logic Group

Preprint Series

No .19

Department of Philosophy

University of Utrecht
a -
c

A Functional Program For

The Fast Fourier Transform

Fer-Jan de Vries

March 1987

Department of Philosophy
University of Utrecht

Heidelberglaan 2
3508 TC Utrecht
The Netherlands

* the author is partially sponsored by the Dutch Ministry of Science and Education through
the project "Parallel Reduction Machine".

The Fast Fourier Transform

Contents

1. Introduction

2. Miranda

2.1. Types in Miranda

2.1.1. Example: the type of polynomials in Miranda

2.2. Short overview of list notations in Miranda

2.3. In Miranda there is no notion of program

3. The Fast Fourier Transform

3.1. Evaluation of a polynomial of degree 2k-1

3.2. Interpolation of a polynomial of degree 2k-1

3.3. The algorithm for multiplication of two polynomials

3.4. The Miranda script for multiplication of two polynomials

4. Observations on Miranda programming

4.1 How to pass on already calculated results

4.2 Is functional programming good for writing structured software?

4.3 Does functional programming allow for parallel evaluation?

5. Conclusion

6. Literature

Appendix 1

Appendix 2

2

The Fast Fourier Transform

1. Introduction

This paper is written 'as a-contribution to the Parallel Reduction Machine Project. Its

purpose is to present a functional program for a well-known application of the fundamental

algorithmic method. Fast Fourier Transform for multiplication of polynomials. This in

order to verify experimentally two claims by functional programmers [BvL]:

(i) functional programming is good for writing structured software; better so than the

so-called imperative von Neumann-languages.

(ii) functional programming allows for a` parallel evaluation of subexpressions-,
provided :a proper implementation.

With pleasure I acknowledge discussions with Henk Barendregt, Jan Bergstra, Karst

Koymans, Marc van Leeuwen, Gerard Renardel, Piet Rodenburg and Albert Visser.

2. Miranda

We take the functional programming" language Miranda (meaning: to be admired) as

our representative of a modern functional programming language for, several reasons:

(i) Miranda has a pleasantly working implementation (we used version 0.378);

(ii) it has a type treatment more or less similar to the language TALE proposed by

some workers on the Parallel Reduction Machine Project.

Information on Miranda can be found in the on-line Miranda System-manual, and in

articles by the creator of Miranda, D.A. Turner [T84, T85]. Roughly speaking one can say

that -like other modern functional programming languages- Miranda is based on the idea of

using recursion equations to define data types and functions between them =[T84]. The

compiler of Miranda is able to deduce -if not specifically declared- the-types of functions.

Reading a script in Miranda is mostly self-explaining. We give a short overview on

types and some notations. Text in Miranda will be' in bold face

3

The Fast Fourier Transform

2.1 Types in Miranda
Primitive types are num, bool and char. Furthermore there are generic types

indicated by *, **; *** ,-,etc.-From types one can construct other types: function types

T,1-4T 2, List types [Ti and :tuple =types.. (T1,)Tn) ' .,

The type system3of Miranda allows user defined types: type synonyms, algebraic types

and abstract data ypes.

(i) Type synonyms are simple: one gives new names for already constructed types.

Example: plane,. = (n=uun,num).

(ii) Algebraic types can be best explained by examples.

Example 1: tree::= Niltree 1 Node num tree tree. (Cf. [T85].) Niltree and Node
are ao-called type- constructors One: can think of tree- as a kind of free algebra generated

by numbers and the two constructors, however infinite words are allowed: the infinite

object bigtree = Node 1 bigtree bigtree is an element of tree.
Example 2- ord_pairs ::= Pair num- iuun.

Pair a b -=> Pair b.a, a>b.-

ord_pairs is constructed from numerals and the type constructor Pair which is subject to

an associated law. Pair switches the order of a and b whenever a is larger than b. In

contrast to the other example Turner would call this an unfree algebra.

(iii) Abstract data types are nothing but abstract signatures, that will be made concrete

somewhere further on, in the script via so-called implementation equations.

Example: abstype complex, numbers-

with add, subtract, multiply complex-numbers->complex_numbers

Now one can use the functions _add and subtract and multiply .in the script: And
somewhere else in the script one tells which concrete type represents the complex_
numbers: t ti _ .

complex_numbers =_ -(num, rum)

add (a,b) (c,d) = (a+c,b+d).

2.1.1E]Example: the -type off polynomials in
For a mathematician it is convenient wthink.of.polynomials-as sequences,of numbers.

E:g. ao+alx+...+a xD is represented by [ao,...,an]This; choice -instead of, [aN4,11
...,al.,ab]-. facilitates the definition of polynomial addition." Then, as in daily practice,,

she steps lightly over the fact that equality of polynomials differs from equality of
sequences:

One solution in Miranda for this approach is to, construct a concrete type [num] (num

is just the type of real numbers in Miranda) containing sequences of reals together with a

definition of equality for this type:

poly, :: [num]

::

4

The Fast Fourier Transform

pol_eq, :: poly,-> poly,-> bool

po1_egl- f g.,= rev, po,ll_egg_ reverse f reverse g .

where ,

rev_pol_eq,

rev pol_e,q, (a:f) [] _ a=0- & rev,_pol_eg1 f []

re-vpol_egl, [] (b:g)== h=0 &- rev_pol_eg1.[] g

rey_po1_eq_l _(a:f) (b:g) ..a=b & ,rev_poi_egl f g

(reverse just reverses the order in a list)

For this type polynomial addition can be defined as, follows:

add, :: polyl-+poly, -4poly,

-acid, f [] ==f, r

add, [] g = g,
add, (a:f) (b:g) = a+b:addl f g

Note. This definition means that Miranda will see no difference between a sequence. of.

numbers and a sequence of numbers that represents to polynomial. If the programmer
wants to insist on such a intensional difference, then there is a way out for him.

The notion of abstract data type in Miranda creates such a formal difference:

abstype poly2

with add2 :: poly-*poly2->p.oly2,
pol_eg2.:: poly2-*po(y2-*boo1

poly2 == [numl

eq2 fg = r.evypol_eg2 reverse f reverse g ,

where

rev_pol_eg2 [] [] = True

rev_pol_eg2 (a:f) [] = a=O & rev_pol_eg2 f p

rev_pol_eq2 [] (b:g) = b=0 & rev_pol_eg2 [] g

rev_pol_eg2 (a:f),(b:g)' a=b°,& rev_pol_eg2;f g

add2f[]=f,
add2 [] g = g,
.add2 (a:f) (b.:g) = a+b:add2 f g

2.2 Short ,.overview of list notations in Miranda
Basically, lists are written with square brackets and comma's: ; [0,3,2,4,4] or,_[].

5

=

pol_eg2

=

The Fast Fourier Transform

(i) # x is the length of the list x

(ii) x! n is the n-th element of list x (nasty detail: subscripting -starts at 1)

(iii) a:x is the list obtained by adding a as first list element to list x.

(iv) x++y is the result of concatenating lists x and y.

(v) x--y is the difference" of lists x and y ':'f is unclear to me how this is defined in

Miranda, the' on-line manual gives no information: the article [T84] is not in

accordance with the implementation 'used-. What actually happens is the
following: [1,2,3,1,2,3]--[3,2] = [1,1,293]

(vi) [1..10] is the list containing the numbers 1 through 10.

(vii) . [1,6..104] is the list containing the- arithmetic _ series 96, 101.

(viii) Infinite lists like [1..] and [1,5..] are allowed.

(ix) Set-notation is accepted: e.g. [n*m n<-[11,22..];} m<-[1..1001], where <-

is a typographical attempt at E.

(x) Also: [a I (a,b)<-(1,1),(b,a+b)..]; which denotes the list of Fibonacci
numbers.

(xi) Sets are treated as lists without duplications.

example {[a,b] a b [1[:], b=5}

2.3 In Miranda there is no notion of program
Working in Miranda is different from programming'-in an -old-fashioned von Neumann

language like Algol-68. The user of Miranda creates herself an environment of declarations

of types and definitions of functions, called the script: ` In- a typical- session (on-line in a

UNIX-setting) Miranda is called upon and the desired"script is compiled. Then the user

evaluates whatever expression she likes.

Example: take as script the Miranda fragment proposed in 2.1:1. When the script is
compilated one can proceed with

adds [1,2,3,4] [4,3,2,1] (1+2x+3x2+4x3)+(4+3x+2x2+x3)

and Miranda will evaluate this expression and answer

[5,5,5,5] i.e., (5+5x+5x2+5x3):

3. The Fast Fourier Transform..

Unthoughtful multiplication of two polynomials of degree n,will in°most cases lead to

a computation costing some O(n2) operations. Applicatian'of elementary complex number

theory and the method of the Fast Fourier Transform results in a divide-and-conquer
algorithm costing only O(n -log n) operations: We will give'a'short explanation (adopted

from Sedge*ick's [S83]) of this method.

6

it

I

1, 6, 11, ...,

i.e.,

The Fast Fourier Transform

Let us take in mind two polynomials f and g with complex coefficients. Let N-1 be

the degree of the product h of f and g

It is an well-known fact that one can, uniquely determine all N coefficients ofh, if one

knows the value of `h on N different inputs: We get'such a collection of output values of h

if we evaluate f and g and multiply the results for -ach of the`N inputs.

The crucial idea of the algorithm is that one°uses theN complex N-th roots of unity as

set of input values. '-On such privileged sets of inputs a fast divide-and-conquer algorithm

is available for the evaluation of polynomials. -If one employs the method of the Fast

Fourier Transform; then essentially' the `same algorithm can be used" for the inverse
problem, interpolation.

3.1. Evaluation of a polynomial of, degree 2k-1
Let f(x)=ao+alx+...+aN-ixN-1 be a polynomial of degree N-1 for N=2k. We

want to evaluate f on all N-th roots of unity: WO,N=1, wi,N, WN.1,N in the usual
cyclic order.

real-axis

Figure containing all 8-th roots-of unity

We want to divide f into two polynomials, one containing the even coefficients and the

other containing, the odd coefficients: we.define

feven(x)=a0+a 2x+...+aN_2x(N-1)/2

fodd(x)=a1+a3x+...+aN-ix(N-i)/2,

then

f (x)=f even(x2)+xfodd(x2)

Hence to evaluate f on all N-th roots it suffices to evaluate both feven and fodd

7

--

complex-axis

The Fast Fourier Transform

on only w -1, w , w , w , i.e., on all 2k- ; :th roots of unity, .O,N 2,N 4,N 1/2N-1,N

The recurrence stops, of course, when we reach, the roots. and -1, since then
evaluation is simply a. matter of addition of complex numbers, If C(N) is the cost (say

additions and multiplications) it takes to evaluate a polynomial of degree N-1 on all N-th,

roots, then clearly C(N)=2C(N)±2 t, that is C(N)-O_(N1ogN).

3.2. Interpolation of ati polynomial of degree 2k-1
Again,.. let f(x)=a®+alx+...+aN_IlxN'1 be a polynomial of degree N-1 for N=2k.

Let N=2k-1, and let for each, N-th root wi,N a complex _number_bi be given. .The

aim, of interpolation is, to .find a polynomial ff(x);=a0+a1x+...±aN_1xN- of degree N-1

such that f(wi,N)=bi for all 0<_i<_N-1.

To understand the following calculation note that:

(WO,N) 1

(Wm,N)N

(wm,N)-1 -_'-W-m,N

(wm,N)J = (w1,N)mJ = (WJ,N)m

Ii (Wi-m,N)J = ((Wi-m,N)N-1) / (wi-m,N-1) = 0, if i-m:#O.

The method of the Fast Fourier Transform proceeds as follows.

Let
g(x)=b0+b1x+...+bN-1x%-1

then g(w-m,N) = Ej bj(wm,N,)<-J

)(E f(wm,NWJ,NJ

Ei Ei ai(wj,N)i (wJ,N

Ei Ei ai(w-j,N)'

-m

= E a, E
.l

(w)i-m

= Ei ai Ej (wi-m,N) (provided i>m, the other case is similar)

= Nam

That is, the coefficients am of the sought polynomial f can be found by evaluating g at

the inverse of wm,N and dividing the result by N.

Since the cost of evaluating a polynomial on all Nth-roots is O(N log N), it follows that

interpolation is of. the, same order.

8

1

=

= 1

=
f(wj,N)(wm,N)-j

=

_

The Fast Fourier Transform

3.3 The algorithm for multiplication of two polynomials
The algorithm for the multiplication of two complex polynomials f andg proceeds

now as follows:

(i) calculate the smallest N of the' form 2k > 1+degree f, g,

(ii) evaluate f and g at the N-th roots of unity,

(iii) multiply the values found for each root,

(iv) interpolation on the resulting values.

The cost of this algorithm is clearly

O(N log N) = O((degree f + degree g)log(degree f + degree g))

(where N is the smallest 2k 1+degree ff.g)

3.4 The Miranda script for multiplication of two polynomials
We give the script that contains the definition of the function multiply, that multiplies

two complex polynomials. Multiply is built up from other functions, that will be
explained in the next paragraphs:

multiply f g = interpolate (mult (bieval (extend (degree (f,g)))))

3.4.1 The complex numbers and some useful functions in Miranda
complex == (num,num) the type complex, consists of pairs of real

numbers

i = (0,1)

ca,cs,cm :: complex->complex->complex

ca (a,b) (c,d) = (a+c,b+d)

cs (a,b) (c,d) = (a-c,b-d)

cm (a,b) (c,d) (a*c-b*d,b*c+a*d)

complex addition

complex subtraction

complex multiplication

root :: num->num->complex

root j n = f(g(j,n))
where

f z = (cos z,sin z)

g(j,n) = 2*pi*j/n

allroots :: num->poly

allroots n = [root j n I j<-[0..n-1]]

calculates the j-th n-th root of unity

allroots will contain all n-th roots of unity

select :: poly->num->poly Intended use: select([al,...,a2n],2n):=
[al,a3,...,a2n-1]

select (roots,n) [roots!(2*j-1)l j<-[1..n/2]]

>_

_

_

9

The Fast Fourier Transform

3.4.2 Polynomials and some useful functions Iin Miranda
poly [complex] poly(nomials) are sequences of complex

pa :: poly->poly->poly

pa ll[]=f
pa[] g=g
pa (a:f) (b:g) = (a $ca b):(f $pa g)

even :: poly->num->poly

even f n = [f!n I n<-[1,3..n]]

odd :: poly->num->poly

odd f n [f!n n<-[2,4..n}]

multarray poly->poly->poly

numbers

polynomial addition

takes all even coefficients of f when n is

length of polynomial f

takes all odd coefficients of f when n is

length of polynomial'f

multarray ([al,...,an][b1,...,b

[albl,...,anbn]

multarray ([],[]) _ []

multarray (a:f) (b:g) (a $cm b):(multarray (f,g))

Note that the behavior of multarray is undefined on arrays of different length.

3.4.3 Step 1 of the algorithm 3.3
From now on we will skip the type declarations

power :: num->num

power n = 1, n<=1

2*power(n/2)

power (n) = least 2k_n

input will be of the form 2k

degree (f,g) = (f,g,power(#f+#g-1)) If f and g are polynomials of respectively

degree n- 1 and m- 1, then #f=n and #g=m

and the degree of f.g equals n+m-2,
which equals 1 + degree f + degree g.

extend (f,g,n) _ (f $pa o n, g $pa o n, n, allroots n)
where

o n = [(0,0)1 i<-[1..n]] This function performs three parallel
tasks: if n>length f and n>length g, then it

extends both f and g with 0, such that the

length of the new polynomials is n, and it

makes a list containing all n-th roots.

10

==

=

::

=

=

The Fast Fourier Transform

Observe that if Miranda evaluates, the, expression extend(degree(f,g)), then it performs

step 1 of the algorithm descibed above in.3.3

3.4.4 Step 2: evaluation of TI ,and g.
We will need the following function mix in our description of evaluate.

mix(fev,fod,n,roots) _ [(fev!i) $ca ((roots!i) $cm (fodd!i)) li<-[l..n/2]1++

[(fev!i) $ca ((roots!(n/2+i)) -$cm (fodd!i)), li<-[1..,n/2]]

The intended use of mix is:

mix(fevemfodd,N, [wO,N,...,wN-1,Nl)

Ifeven(w0,N)+WONf6dd(w0,N2),...,feveli(WN-1,N2). WN 1,Nfodd(wN=1,N2)]

That is, it makes a list of all values of ff(x)=feven(X2)±xfd(x?) cf. 3. 1) when x runs

through all N-th roots. Note that x2 runs twice as fast as x, this explains the, second row of

the definition of mix.

evaluate (f,n,roots) = [(0,0)], n<=0

= f, n=1

= [(f!l)$ca(f!2), (f!1)$cs(f!2)], n=2

mix . (feven,fodd,n roots)'

where

feven = evaluate (even Af n, n/2, select(roots,n))

fodd ' - evaluate (odd. f`n, n/2, select(roots,n))

The intended use of evaluate is:

evaluate (f,N,[wO,N, :: [f(wO,N),...,f(wN-1,N)I

Evaluation of the function evaluate results in the recurrence described in 3.3.

bieval (f,g,n,roots) = (evaluate (f,n,roo'ts), evaluate (g,n,roots))

Evaluation of the function bieval performs step 2 of the algorithm in 3.3.

3.4.5 Step 3: multiplication of the values found for each root
mult (f,g,n,roots) = (multarray(f,g), n, roots)

No explanation necessary.... "s .

3.4.6 Step 4: interpolation on the resulting values
divide [] n = n

divide ((a,b):f) n = (a/n,b/n):(divide f n)

all elements of the list of complex
numbers are divided by n

11

=

=

The Fast Fourier Transform

div_and_rev (p,n) = p div_and_rev([aO,al,...,am],n):=

[aQ/n,am{n,

div_and_rev ((a,b):f,n) = (a/n,b/n):(reverse divide' f`n))-

Intended use is on the list of allroots, recall that [WO,N,W-1,N,... W-(N-1),N] =

WN-1,N,w1,N]. which explains for the strange reversing%f the order.

interpolate '(f,n,r 6ots)= div and_rev- (evaluate(f,n,roots),'-n)-

Intended use-:'

interpolate ((f,N [w0]q,.*.,WN=1 N]) [f(w0 N)/N, f(w` l,N)/N,...,f(w-(N_l),N)/N]

3.4.7 Finally the multiplication function
multiply `f- g interpolate (mult- (bieval (extend (degree (f,g)))))

Combine all previous steps: the definition follows the strategy of the algorithm

as outlined in =31-3.

Data Flow Diagram of Multiplication Algorithm

12

al/n]

IWO,N,

=

aliroots

allroots

aliroots

The Fast Fourier Transform

4. Obse rations on Miranda

41 How to pass on alread3 caflculated(results
The reader of the above program wondered maybe why the function multiply has

only two polynomials as input, while all the defining sub-functions map long tuples of

attributes in other long tuples. Look at evaluate, for instance. The reason becomes clear

when one considers the Data Flow Diagram of the previous page. For example, from the

input polynomials f and g the algorithm calculates a number n and from this n a list of all

n-th roots of Both are-needed as input in several following calculations of

the algorithm. So the function evaluate gets n and allroots as input, uses them in the
actual calculation, and passes them on together with the answer of the calculation, so that

the following functions do not need to recalculate n and allroots from scratch.

Note, however, that this parameter mechanism is not basically different from the
parameter mechanism in' a von Neumann programming language Pike Pascal.

4.2 Is functional programming good for writing structured
software?

We claim that functional programming =for instance in Miranda- is indeed good for

writing structured software. The above script may serve as an example. We can give

several reasons-

W the notational ease with which one can introduce types and the functions one needs

on those types: Writing such a script resembles - so it feels - very much the writing of a

mathematical text. One introduces the concepts in the natural order, i.e., following the flow

of the argument. Here: first complex numbers and related "functions are introduced, then

the complex polynomials and their allies.

(ii) the ease with which one can handle lists in combination with the simple way to

define functions recursively enables one to define things sometimes surprisingly short and

conspicuous. Turner gives several examples of this [T84]. (My favorite is the following

definition of the list of all primes:

primes = sieve [2..]

where

sieve (p:x) = p:sieve[n<-x I n rem p -=0])
Our program contains other examples. Compare for instance the definition of the

function evaluate with the Pascal procedure eval in [S83] (cf. appendix). Maybe this

comparison is a bit unfair: the Pascal procedure is cleverly written, such that no more
memory is used then strictly necessary, the recurrence steps do not consume their own

additional memory: everything is performed in one array. This feature is lost in our

13

The Fast Fourier Transform

Miranda program, we don't know how cheap. or expensive the script is rimglemented with

respect to memory. The naive idea is that one does not need to worry so much about
memory. Moreover, one can trust the implemented garbage collector, to, take care of the

wasted bits of memory,-
(iii) A programmer should strive for a readable script, i.e. a not too complicated script.

My personal experience with programming in Miranda is that the language does not seem

to allow for complicated scripts. The reason seems to be that in Miranda one can only

define types and functions with,, only a few and elementary expressions, so that one is

almost forced to define simple functions with a clearly described content, that easily can be,

tested on intended inputs.

Whether functional programming is better then programming in von Neumann style

programming languages, I can not say. There is a large -deal of personal taste involved in

such a matter. And the subject of the Fast Fourier Transform can turn out been a too simple

test. The important thing is, however, that one can write well-structured and easily

readable software in a functional programming language like Miranda.,

4.3 Does functional programming allow for parallel evaluation?
It seems to me that the right statement is that writing a functional program for a

particular algorithm forces one to get a idea of the flow of the data through the

algorithm. This can result in an explicit data flow chart of the algorithm, like the one on the

previous page. And one can easily see in the diagram which parts of the algorithm can be

processed in parallel.

However, just from writing Miranda scripts one cannot learn that functional program-

ming makes parallel evaluation possible. That is something which has to do with the

implementation of Miranda. We feel that it has to bean implementator of Miranda to judge

the possibility of parallel evaluation of Miranda scripts, and to compare the claimed. relative

ease of such a implementation with the difficulties one does, or does not encounter when

one tries to implement a von Neumann-style language such that parallel evaluation is

possible.

S. Conclusion
Returning to the two claims on quality investigated by functional programmers

mentioned in the introduction, we can say that:

(i) A functional programming language like Miranda is a good medium to develop

structured software in. The resulting scripts, or programs, seem to be shorter and more

conspicuous compared with similar programs in Pascal. On the other hand we have tested

14

The Fast Fourier Transform

only one algorithm.

(ii) Writing in a functional programming language like Miranda forces one to get a

clear mental picture of the flow of data through the algorithm, but the same should also

happen to, let us say, a good Pascal programmer. Analysis of this flow chart will reveal

which part of the algorithm can be processed in parallel.

15

The Fast Fourier Transform

6. Literature

[BvL] Barendregt, Henk, & Marc van Leeuwen, Functional programming and the
language TALE, preprint 412, Dept. of Math., Univerity of Utrecht, 1986,

[T84] Turner, D.A., Functional programs as executable specifications, Phil. Trans. R.

Soc. Lond. A 312, 363-388 (1984).

[T85] Turner, D.A., Miranda: A non-strictfunctional language with polymorphic types,

in: proceedings IFIP international conference on functional programming
languages and computer architecture, Nancy, September 1985, (Springer Lecture

Notes in Computer Science, 201)

[S83] Sedgewick, Robert, Algorithms, Addison-Wesley Publishing Company, Reading

Massachusetts etc, 1983.

16

The Fast Fourier Transform

Appendix 1

(procedure taken from Sedgewick's Algorithms.)

procedure eval(var p: poly; N, k: integer);
var i, j: integer;
begin
if N=1 then

begin
t:=p[k]; pl:=p[k+1];
p[k]:=t+pl; p[k+1]:=t-pl
end

else
begin
for is=O to N div 2 do

begin
j:=k+2*i;
t[i]:=p[j]; t[i+1+Ndiv 2]:=p[j+l]
end;

for is=O to N do p[k+i]:=t[i];
eval(p, N div 2, k);
eval(p, N div 2, k+1+N div 2);
j:=(outN+l) div (N+1);
for is = 0 to N div 2 do

begin
t:=w[i*j]*p[k+(N div 2)+l+i];
t[i]:=p[k+i]+t; t[i+(Ndiv 2)+1]:=p[k+i]-t
end;

for i:=O to N do p[k+i]:=t[i]
end

end;

17

The Fast Fourier Transform

Appendix 2
A Functional Program for the Fast Fourier Transform.

The italic fragment describes roughly_ the same as=fthe-PAS,CAL procedure of appendix 1.
complex == (num,num)

i=(0,1)
ca,cs,cm :: complex->complex->complex
ca (a,b) (c,d) _ (a+c,b+d)
cs (a,b) (c,d) = (a-c,b-d)
cm (a,b) (c,d) = (a*c-b*d,b*c+a*d)

root:: num->num->complex
root j n = f(g(j,n))

where
f z = (cos z,sin z)

g(j,n) = 2*pi*j/n

allroots:: num->poly
allroots n = [root j n 1 j<-[O..n-1]

poly == [complex]

pa:: poly->poly->poly
paf[]=f
pa [lg=g
pa (a:f) (b:g) = (a $ca b):(f Spa g)

multarray :: poly->poly->poly
multarray ([],[]) = []
multarray (a:f) (b:g) = (a $cm b):(multarray (f,g))

power:: num->num
power n = 1, n<=1

= 2*power(n/2)

degree (f,g) = (f,g,power(#f+#g-1))

extend (f,g,n) = (f $pa o n, g $pa o n, n, allroots n)
where
o n = [(O,O)(i<-[1..nll

even :: poly->num->poly
even f n = [f!n 1 n<-11,3..n}j

odd :: poly->num->poly
odd f n = [f!n I n<-[2,4..n]]

select :: poly->num->poly
select (roots,n) = [roots!(2*j-1)I j<-[]..n/2]]

mix(fev,fod,n,roots) = [(fev!i) $ca ((roots!i) $cm (fodd!i)) li<-[1..n/2]]++

18

The Fast Fourier Transform

[(fev!i) $ca ((roots!(n12+i)) $cm (fodd!i)) li<-[]..n/2JJ

evaluate (f,n,roots) = [(0,0)], n<=0
= f, n=1
= [(f!1)$ca'(f!2), (f!1)$cs(f!2)], n=2
= mix (feven"Jodd,n,oots)

where
(even evaluate (even f n, n/2, select(roots,n))
fodd = evaluate (odd f n, n/2, select(roots,n))

bieval (f,g,n,roots) = (evaluate (f,n,roots), evaluate (g,n,roots)-)

mult (f,g,n,roots) _ (multarray(f,g), n, roots)..,

divide [] n = n
divide ((a,b):f) n = (a/n,b/n):(divide f n)

div_and_rev ([],n) _ []
div and rev ((a,b):f,n) = (a/n,b/n):(reverse divide f n))

interpolate (f,n,roots)= div_and_rev (evaluate (f,n,roots),

multiply f g = interpolate (mult (bieval (extend- (degree (f,g)))))

1-9

=

n)

