PROCESS ALGEBRA SEMANTICS FOR QUEUES

by
Jan A. Bergstra
Department of Philosophy
University of Utrecht
Heidelberglaan 2
3584 CS Utrecht
The Netherlands

Jerzy Tiuryn
University of Warsaw
Institute of Mathematics

Logic Group Department of Philosophy

Prcprint Series

No18

University of Utrecht



PROCESS ALGEBRA SEMANTICS FOR QUEUES

by

Jan A. Bergstra
Centre of Mathematics
and Computer Science
Amsterdam

Jerzy Tiuryn
University of Warsaw
Institute of Mathematics

ABSTRACT

An unbounded queue over a finite set of data values is a process Q in A®
defined by an infinite system of guarded equations. The aim of this paper is
to show that no finite system of guarded equations is capable of defining Q.

This is a revised version of: Process algebra semantics for queues, Mathematical
Centre Research Report 1IW241, Amsterdam 1983.

* present affiliation & correspondence address:
Department of Philosophy

University of Utrecht

Heidelberglaan 2

3584 CS Utrecht

The Netherlands



INTRODUCTION

An unbounded queue, (or buffer working in FIFO mode) is a device able to

sequentially receive data values from a domain D, to store them and to deliver them in
the order in which they were received,

In order to describe the behaviour of queue Q it is assumed that D is finite,
moreover the input actions and output actions together form an alphabet of actions for

Q. These actions exclude one another in time. In particular, for each d € D there are
these actions:

d:inputd
d:outputd

Sets D and A are definedby D = {d | € D}, A =D UD Then Q can be semantically
defined by the following infinite system of guarded equations.

7 (8) = d. 1 (d)
deD

T(sxd)=d. m(s)+ Zer(exs =d),
deD

where SeD *, deD and = denotes the concatenation of strings. 3D = denotes the
empty string.

In the above system of equations 7 (s), for S€Dx, can be thought as a process
in A= whose behaviour is that of a queue which initially contains a sequence s of

data values. Assuming that Q is initially empty its behaviour is given by 11(&) = Q.

Working in the two sorted system, containing both A°® and D* as sorts as well as the
auxiliary operator 1T, the above equations provide a finite equational specification of Q

The aim of this paper is to show that no finite system of guarded equations in the
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standard model A% = (A*, ¥, ||, |L) of Process Algebra is capable of defining Q.

This result is proved in Section 2. It turns out, however, that Q can be defined by a finite
system of guarded equations in the signature containing the so-called_renaming
operators, cf. [1].

1. PROCESS ALGEBRA

Let A be a finite set of atomic actions. Processes are configurations of actions of

A. Composition tools for processes are:

+ alternative composition
sequential composition
I parallel composition (merge)

I left merge.

The axioms of PA below, taken from [1] describe the operators; a varies over A

X+¥Y=Y+X (A1)
X+ (Y+Z) = (X+Y) + Z (A2)
X+ X=X (A3)
(X+Y).Z=XZ+YZ (A4)
(XY).Z=X(Y.2D) (AS)
XY = X|LY + Y[LX (c™Mn
al X =ax (CM2)
(@X)LY = alX|ly) (CM3)
(X+YOILZ = X|LZ + Y|L.Z (CM4)

Because A is finite PA is finite too. As an equational specification it has an initial

algebra, called A ,. As original references for processes and term models we mention



[7] and [6].
For each n one may identify processes which coincide until depth n , thus

obtaining a congruence =, on A, Ay = A, /=, is a model of PA as well.

The structures A (N€w) have a projective limit A which contains A, as a proper

substructure. ( A" was introduced in [4] and is in fact an algebraic reconstruction of the

topological process semantics in [2,3].) A serves us as a standard model for
processes.

For processes X € A , one defines projections (X), as follows
(@), = 2

(aX); =2

(@X)n+1 =2 Xy

(X+Y)y = X0y + (YD

The congruence =, can be formally defined by X =, Y « (X), = (Y),
An element of A" is just a sequence

(P yP,Pgyul
with P, € Ap, (i.e. (P, = Py andforalln: (P, ) = Py, The operations +50 a‘;wd I
are defined componentwise.

An equation Y = T(X,..,X} ) over A is guarded if every occurence of XyinTis
preceded in T by some atomic action.

A system of guarded fixed point equations X; = T;(Xy,..,X, ) 1=1,.k
always has a unique solution X,...,X, in AT

P is called recursively definable if there exists a (finite) system of guarded fixed
point equations with solutions X ,...,X, such that X, = p.

Recursive definitions are the most appropriate specification method in process
algebra.



2 QUEUE CANNOT BE RECURSIVELY DEFINED IN A™(+,||,1L)

In this section we are going to prove the above statement. We assume that D
has two different input actions a and b. Thus A = {a,b,2,b}. A queue over a
one-element set of input actions is just a "bag” and it is definable in A®°(+ - ,||,|L) by the
following recursive equation X = a(X||a). (see [4]).

This section is organized as follows. We start with preliminary definitions in
section 2.1, and prove some auxiliary results in section 2.2.

In section 2.3 the problem in first reduced to the same problem without

|| and |L. Then the latter question is settled in the negative.

2.1 Preliminaries

2.1.1  Definition. Let p € A®. By the set of states of p we mean the least set ST(p)
satisfying the following conditions

(1) p € ST(p)
(@)fcg+reST(p),thenge ST(p),wherec € A, q,r € A,

2.1.2  Definition.The set of all semistates of p, SST(p), is the least set satisfying
these conditions

(38) ST(p) > SST(p)
(4)If g+ r e SST(p), then g € SST(p) where q,r € A,

2.1.3 Definition.We say that a process h is a factor of a process p if for some g €

A%, hg=p

In the context of this proof, however, a factor will be any process which is a
factor of a semistate of Q. Let F(Q) denote the set of all factors.
A trivial factor is a factorin F(Q) N A. All other factors will be called nontrivial.

The states of Q are just all processes 1(s) with S ranging over D™ Examples



of semistates of Q which are not states are: d1(s), dm(d*s), dym(s) + dom(dy*s),

where d, d 13 d2 € D,and s € D*. Examples of factors which are not semistates of Q

are:a, b, a+ bt(b), b(arm(ab) + br(bb) + b).
The following inclusions are obvious: ST(Q) € SST(Q) < F(Q).
The second inclusion does not hold in general. However, in the case of Q, forevery p €

SST(Q) and for every g € A, p.q = p, which yields the required inclusion.

214 Llet 0 € A*, P, g € A% We are going to define the relation 0: p - g which
intuitively means that 0 is a path in p which leads to g.

fo e A™ is the empty word, then ¢: p - q iff there exists r € A such that
p=q+r.

Letc € A, then C: p - qiff p = c(g*r)+r, forsomer,,r, € AT

Finally, oc: p - qiffforsomer €e A o: p-r,andc: 1 - q.

The following fact is easy to prove by induction on the length of 0.

2.1.5 Fact.
(i) Forevery 0 € A™ and for every p,q € AT if0: p - q, then g € SST(p).

(i) Moreover, for every g € SST(p) there exists 0 € A such that o p-q

In the case of Q we can deduce more.

21.6 Fact.
(i) Forevery g € SST(Q) there exists a unique 0 € {a,b}” such that 0: Q - a.

(ii) For every g € ST(Q) and forevery 0 € AY 0:Q- q iff m(o) = q.
The proof of this fact is easy and we leave it for the reader.

2.1.7 Now we are going to define the notion of a trace of a process p € A,
A finite word 0 € A™ is a trace if there exist c € Aand T € A~ such that

o=tcand T:p - C. Aninfinite word V € AY is a trace of p if there exists a



sequence of initial fragments of V, 0 <0, <. <0 < ..
and a sequence of semistates of p, 4, Ao, s Apys -

such that foreveryn € w, 0, : P~ q, and Q.1 € SST(qp).

Let tr(p) denote the set containing all finite and infinite traces of p.
A process is called perpetual iff it contains no finite traces. Clearly every

semistate of Q is a perpetual process. The following fact is obvious.
2.1.8 Fact. Leto € tr(p) N A™ Then for every g € A%, 0: pg-~ q.

Another general property of A= which we will use later has a straightforward proof as
well.

2.1.9 Fact. Forallgqr,pe A andc e A,ifqg+r=cp,theng=r.

2.1.10 We introduce two functions O.1' AY = {a,b)” U {a,b}¥

They are uniquely determined by the following properties

IfV e {(a,b)? thenO(V) =0
ItV e {a,b}¥ then I(V) =0

lfc e {ab}and V e AY, then I(cV) = cI(V), and O(cV) = O(V).
If c € {a,b) and Ve AY, then I(cV) = I(V), and O(CV) = cO(V).

Intuitively 1(V) (respectively O(V)) is the sequence of all input (output) actions
of V in the order in which they occur in V.

Call V € AY input periodic if there exists 0 € {a,b}” suchthat (V) = ¢%.
Otherwise V will be called input nonperiodic.

V e AY is said to have infinitely many output actions if O(V) € {a,p}¥

The last result of this subsection is the following lemma.



2.1.11 Lemma. Let pp,p| € SST(Q) be such that tr(pn) N tr(p ) contains an

input nonperiodic trace with infinitely many output actions. Then for some

o efab),0:Q-pgand 0:Q-p;.
Proof. Let 0y Q- Po and 0 ¢: Q- py forsome 00,01 € {a,b}*.

Assume that 0 = 0. Let V € tr(pp) N tr(p ) be a trace with infinitely many output
actions. We are going to show that V is input periodic.

Since 0;: Q - pj, it follows that 6; < O(V) for i = O, 1. Therefore either
0g <04 0roy < 0n We may assume without loss of generality that 0g <0y Let
T € {a,b}" be such that 0y =0pT
Let V be a sequence which results from V by removing from it the first
|0 output actions. Since V € tr(pp), it follows that V5 € tr(Q).
Let V', be a sequence which results from V by removing from it the first 101 l

output actions. Again we have V, € tr(Q). Moreover we have the following

relationships

(1) lV) = 1(V4) = I(V),

(2) O(V) = 0 O(V(y),

(3) O(V) = 0T OV ).

Since V, is a trace of Q with infinitely many output actions, it follows that O(V ) =
1(V,).The same holds for V ;. Hence by (1), 0(Vy) = O(V ) and by (2), (3) we obtain

0(Vq) = T O(V). Thus I(Vq) = O(V(y) = T¥. This, together with (1) proves the

lemma.



2.2 Auxiliary results
Let us start with the following result.

2.2.1 Lemma.Let h be a nontrivial factor. Then
(i) h has an input-nonperiodic trace with infinitely many output actions.

(i) there is a unique p € SST(Q) such that h is a factor of p.

Proof. We prove (i) first. Let h be a nontrivial factor and let ¢ € A® be such that

ng € SST(Q). If his perpetual, then hq = h and h is a semistate of Q. Then h obviously
satisfies (i).

Suppose now that h is not perpetual and let 0 be a finite trace of h.
By Fact 2.1.8, 0: hg - g. Therefore, by Fact 2.1.5 g€ SST(Q). Let T,p € {a,b}* be such
that T Q - g, and p: Q - hq (cf. Fact 2.1.6).

Since hq is a semistate of Q it can be uniquely presented in the following form
(*) hq = ZCECC'DC’

where C C {a,b,a,b}, and p. € A™ forevery Cc € C.
Consider these two cases
(1) There exists ¢ € Csuch that non pc: Q- Q.
(2) Forallc e C,pc: Q- Q.
Notice that (2) may happen only if C is a one element set.
Suppose (1) holds. We construct a V € AY such that
(3) V e tr(m(pc)) is input-nonperiodic
(4) for every initial segment @ of V, non pcc: Q- q.

(5) V has infinitely many output actions.

To see that such V exists take p' € {a,0}” such that 1(p') = m(pc). If p' is not an
initial subword of T, then we may take as V any trace of Q which is input-nonperiodic

and which has infinitely many output actions. If, however, p’ is an initial subword of T,
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then it follows from (1) that p' = T. Then it is enough to take as V eW, where

e € {a,b} is such that p'e is not an initial subword of T, and W € tr(Q) is any
input-nonperiodic trace with infinitely many output actions.

Let V be a trace satisfying (3)-(5). By (*) and (3), cV € tr(hqg), and by (4) we
obtain that cV must be a trace of h.

Suppose now that (2) holds. As we noticed this may happen only if C is a one

element set, say C = {c}. Since hqg = Cp. and since h is nontrivial, there exist

hy, ho € A% suchthath = ch; +ho,

Therefore, ch]q o hzq = CPc.

By fact 2.1.9, ch g = h,q, and we obtain ch 1d = CP¢.

The latter equality can be simplifiedto hq = Pe-

Since hq is a state of Q, it follows that in the decomposition (*) for h 1 the set C has at
least two elements. Thus the argument of case (1) is applicable to h 1, and we may

conclude that h contains an input-nonperiodic trace with infinitely many output

actions. Therefore h contains such a trace as well. This completes the proof of (i).

Now we prove (ii). Let py,p € SST(Q) be such that for some gy g € A™,

(6) h.g;=p;fori=0,1.

By (i) h has an input-nonperiodic trace with inifitely many out actions. Therefore, by (6),

tr(pg) N trip, ) contains such a trace and by Lemma 2.1.11 for some 0 € {a,b}*,
(7)o:q~- p]»,fori =0,1.
fpg =Py, then by (7) this is only possible if for some ¢ € A and 10 € {0,1}, Pip has a

trace starting with C and in p, _; all traces start with a symbol different from c. Since
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NGip = Pjp, N must have a trace as well. Obtained contradiction proves (i), and the

proof of Lemma 2.2.1 is completed.

2.2.2 Lemma

(i) if hy+hyeF(Q)then hy,hy € F(Q)

(ii) if hy.ho € F(Q)then hy € F(Q), moreoverif h is not perpetual then
ho € F(Q) as well

@iy  hyllhy &F(Q)

(iv) hy [L hy € F(Q) provided h is nota sum of atoms.

Proof. (i) Suppose (h;+h5).r=q, g € SST(Q), thenh.r + ho.r = qthus
h,.r, ho.r € SST(Q) whence by definition h, ho, € F(Q).
(i) Suppose (h{.h,).r =g, € SST(Q), then h (h,.r) = gso hy € F(Q). If 0 is afinite
trace of hy then by 2.1.8 0 h1(h2.r) - Nor,andalso 0: - ho
So ho.r € ST(Q) by fact 2.1.5 and by definition h, € F(Q).
(ii)) Suppose h | || h, € F(Q). Let g € A be such that ( hy Il hp).g € SST(Q),
hy Il hy cannotbe a,b,a, or b so hy || h, is a nontrivial factor. In view of Lemma 2.2.1
Ny |l ho has an input nonperiodic infinite trace V with infinitely many output actions.
V must have both infinitely many a's and D's. Let V; and V-, be traces of h; resp. ho
such that V can be obtained by merging V; and V.,

Choose 0 € {a,bfE suchthat 0: Q - ( ny | h2).q. Then for every sequence U
obtained by merging vV, and Vo oU € tr(Q). We will manufacture a contradiction from

this situation. First of all we notice that either V | or V5 contains no output actions,
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otherwise V| must contain an action 2 and V-, an action D or conversely. Let us
assume that V] =0 QU], V2 = OZQUZ then 00]02_aU] and oo,ozpul are both
traces of Q (because V ; is infinite U, is infinite and both are ¢ followed by a merge of
V', and V). Now this is impossible because after 0G| 0, at most one output is
possible. So suppose that V| contains infinitely many a's and D's and V-, contains

only a's and b's; 0V is atrace of Q, inserting the first action, say a, from V, in oV, at
some position after 0 must also produce a trace of Q. However choose p and W such
that V, = pbW then 6pabW cannot be a trace of Q because the output action in Vo

that corresponds to the displayed input b has now become incorrect. Thus we have
obtained a contradiction thereby proving (iii) of the Lemma.

(iv) the case for || is similar to the previous one.

2.3 Proof of the main result

Let us now consider a recursive definition of Q: X; = Tj(X | ,...,Xn) i=1,.n

with solutionsx] Xn andxl = Q.

Without loss of generality we may assume that the system has the following
properties:

(x1) Al X, are infinite (otherwise they can be eliminated by substitution).
(x2)  All X, are "used" (i.e. no proper sybsystem defines X| = Q as well).

(x3) None of the T, has a subterm of the form (t2+t2).t3. (Such subterms are

eliminated using the equation A4).

(xd4)  None ofthe T, has a subterm t;t, with t,(X,,...,X,, ) perpetual (in such

cases U, can just be omitted and the X ; ,..., X, still constitute a unique

solution).

(ax5) In subterms of the form t L t5, Uy is not a sum of atoms. (Otherwise use CM4



13

and CM3).
We can now start the actual proof of the main result of this paper with the following
lemma.

2.3.1 Lemma. If Q can be recursively definedin A (+,||,IL) then it can be

recursively defined in A (+,).
Proof. We assume that the system

Xl = T](Xl,,Xn) i= ],...,n
satisfies the requirements (c1)-(5) above and defines Q. Let K be the collection of all
subterms of the Tl-(X | »'-»Xn). We can define a distance d(', ) between elements of K

d is not symmetric, however:
(Q) d(t,t) =0
(ii) if t' is an immediate subterm of t then d(t,t") = 1

iy d(ty,ty) =min{d(t,,th+d(t to) [t e K}

Now it follows that for each t € K, d(X | 1) is defined. With induction on d(X ] L) one
shows using Lemma 2.2.2 that

(*) for each t(X,, . ,X) €K, t(x1 ,..,,xn) isin F(Q).

Moreover by 2.1.1 we conclude that || and || do not occur in any of the t € K This-

proves the lemma.

2.3.2 Lemma. If Q has a recursive definition in A" (+,") then ST(Q) is generated (in

AT (+,)) by finitely many states 1(0 {),..,T(0y) € ST(Q).

Proof. According to [7] it is in general the case that the solutions X] Xn

of a system of recursive equations generate all states of X | X—n and in particular of
X

Solet X; = Ti(Xy,.,Xn), 1 = 1,..,n, be a recursive definition in A (+,") again
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satisfying (1)-(x5) above, with solution X;,...,.X and X; = Q. Then for each g € 5T(Q)

there is a term t(X],...,Xn) in (A,+,.) such that t(X, ,...,_Xn) = Q.

Let ¢: F(Q) - SST(Q) be the mapping which assigns to each h € F(Q) the
unique (in view of Lemma 2.2.1 (ii) g € SST(Q) such that forsomep € A hp = q

It follows from (*) in the proof of Lemma 2.3.1 that forevery i = 1,..n, X, € F(Q).

Claim. For every term t(X,, ., X)in (A, +, ), if t (X;,...Xp) € SST(Q) then t

Using this claim one finds that every g € ST(Q) is generated by the semistates

Now, by the special definition of Q and since D has two elements, each semistate ¢(X1)
can be written as Cliﬂ(o]‘) + (221TT(021) + c31ﬂ(031),

for appropriate CJ1 € A and of e {a,b}.

It follows that the subset{ﬂ(oji) | 1¢i¢n, 1<j<3)
of ST(Q) generates all of ST(Q), thus proving the lemma.

Proof (of the Claim). Let L = L(X, ,.H,Xn) be the following inductively defined collection

of terms:

(i) Xyel, fori=1,.n

(i) ctel,force A tel

iy  Xjtel,iftel

(v) ty+tpeliftytyel

(V) cCelL,forceA

Now each term t over +, A X, ,...,Xn is equivalent in PA to aterm in L, and therefore it

suffices to prove the claim for every term in L. We prove the claim by induction on the
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structure of te L.

Let us observe that ¢(p) = p for every p € SST(Q).
We consider all cases generated by the inductive clauses (i),...,(v).

(i) is immediate

(i) ifct (Xy,..X,) € SST(Q) then t(Xy,.. X, € SST(Q). So ¢(t(Xy,. X)) =
(X ),..,9Xn)) and o(C.t(Xy,. ., Xn)) = CLAX ), b(Xp)).

(iii) it d(X;U(X1,... X)) € SST(Q) then (X;t(Xy,.. . Xn)) = XXy, X)) =
e(Xi) = d(X;). L(d(Xy),...,d(Xp).

(iv) it (X, X0 * (X, %) € SST(Q) then both summands are in

SST(Q) hence b(t (X 1,..Xn) + to(X 1, Kn)) = t(&(X (), (X)) +

to((X ), (X)),

(v) Cis notin SST(Q).

2.3.3 Lemma. There is no finite subset T(0 ). T(0y) of ST(Q) which generates
all of ST(Q) within A®°(+,).

Proof. Suppose otherwise. Choose for each 1(0;) a triple 7(t; ! ), ﬂ(t12), ﬂ(t13)
such that for appropriate cij € A, ey T(0y) = c,-]ﬂ(t]- My + C12Tf(t]-2) + C13T‘f(f]~3),
then choose for each ﬂ(tij) aterm th(X1,.‘,,XK) such that ﬂ(txj) =

t]J(TT(O] ),..,T(0)). The term tiJ may be chosen such that it contains + and prefix
multiplication only because all 11(0 ;) are perpetual and (0 ).t can be replaced by
m(0;),

Substituting these identities into e one obtains a linear system of equations



16

for the processes T(0 ;). According to [5] the (0 ;) will then be regular which is

certainly not the case. Combining lemmas 2.3.1, 2.3.2 and 2.3.3 we obtain the main
result of this paper:

Theorem. Q cannot be recursively defined in AT (+ - ||,1L).

REFERENCES

[1] BAETEN, J.C.M,, & J.A. BERGSTRA, Global renaming operators in concrete
process algebra, Department of Computer Science, CWI, Amsterdam,
Report CS - R 8521, 1985

[2] DE BAKKER, J.W. & J.I. ZUCKER, Denotational semantics of concurrency,
Proc. 14th ACM Symp. on Theory of Computing, p. 153-158 (1982).

[8] DE BAKKER,J.W. & J.I. ZUCKER, Processes and the denotational semantics of
concurrency, Information and Control, vol. 54, no. 1/2 (1982), p. 70-120.

[4] BERGSTRA, J.A. & J.W. KLOP, Process algebra for synchronous communication
Information & Control Vol. 60, Nos 1 -3, 1984, pag 109-137

[5] BERGSTRA, J.A. & J.W. KLOP, The algebrac of recursively defined processes
and the algebra of regular processes, in proceedings of ICALP '84,
Springer Lect. Notes in Comp. Sci.'72, pag.82 -94

[6] HENNESSY, M., A term model for synchronous processes, Information & Control
Vol. 51 no. 1, (1981), 58-75.

[7] MILNER, R., A calculus for communicating systems, Springer LNCS 92, (1982).



