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INTRODUCTION

An unbounded queue, (or buffer working in FIFO mode) is a device able to

sequentially receive data values from adomain D, to-store: them and to deliver them in

the order in which they were received,

In order to describe the behaviour of queue Q it is assumed that D is finite,

moreover the input actions and output actions together form an alphabet of actions for

Q. These actions exclude one another in time,. In particular., for each d E D there are

these actions:

d :input d

d : output d

Sets D and A are defined by .L = {d f E D), A = D U D Then Q can be semantically

defined by the"following infinite system` of guarded equations:

iz(0)=2d.rT(d)

dED

rT (s* d) =d. rT (s) + 2 e.rT (e *s *d),

dED

where SED *, dED and * denotes the concatenation ttf strings. BED 'denotes the

empty string.

In the above system of equations rT (s), for SED*, can be thought as a process

in A- whose behaviour is that of a queue which initially contains a sequence s of

data values. Assuming that Q is initially empty its behaviour is given by rr(0) = Q.

Working in the two sorted system, containing both A°° and D as sorts as well as the

auxiliary operator TI, the above equations provide a finite equational specification of_ Q

The aim of this paper is to show that no finite system of guarded equations in the

*
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standard model A°° = (A°°, D of Process Algebra is capable of defining Q.

This result is proved in Section 2. It turns out, however, that Q can be defined by a finite

system of guarded equations in the signature containing the so-called renamingt
operators;' cf. [1].

'PROCESS ALGEBRA

Let A be a finite set of atomic actions. Processes are configurations of actions of

A. Composition- tools for processes are:

+ alternative composition

sequential composition

parallel composition (merge)

[L left merge.

The axioms of PA below, taken-froth[1rdescrit e theroperators; a varies over A.

X+Y=Y+X

X + (Y+Z) _ (X+Y) + Z
X+X=X,.,

(X+Y).Z = X.Z + Y.Z

(X.Y).'Z
a_

X (Y.Z)
v

XiIY = XILY + YILX

aIX=a.X -

(a.X)IY = aNIY)

(X+Y)ILZ = XILZ + YILZ

(A1)

(A2)

(A3)

(A4)

(A5)

(CM 1 )

(CM2)

(-CM3)

(CM4),

Because A is finite PA is finite too. As aniequational specification it has an initial

algebra, cailedAW:-As original references for processes and term models we mention

+, 11,

1.

X + X = X

=
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[7] and [6].

For'each r ene may identify coincide until depth n thus

obtaining 'a "congruence, =n on AW. An = AWn is a model of PA. as, well

The structures An(new) have a projective limit A°° which contains AW as a proper

substructure. ( A°° was introduced in [4] and is in fact an algebraic reconstruction of the

topological process semantics in [2,3].) A°° serves us as a standard model for

processes.

For processes X E A. one defines projections (X)n as follows,

=a

(aX) I = a

(aX)n+
1

a M.

(X+Y)n = Mn + Mn

The congruence can be formally defined by X =n (X)n =r(Y)n.

An element of A°° is just a sequence

(P 1 )P2,P3,...)

with Pr) E An (i.e. (Pn)n = Pr)) and for all n: (Pn+
1

)n = Pr), The operations and

are defined componentwise.

An equation Y = T(X
1

,...,Xk) over A°° is guarded if every occurence,.of Xi in T is

preceded in T by some atomic action. ..

A system of guarded fixed point equations Xi = T i (X
1

1 = 1,.., k

always has a unique solution X 1 ,...,Xk in A°°.

P is called recursively definable if there exists a (finite) system of guarded fixed

point equations with solutions X 1 ,...,Xk such that ,X
1 =

Recursive definitions are the most appropriate specification method in process

algebra.

,

(a)n

=

=n

,...,Xk)

p.
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2 QUEUI iO BE f EDUTASI I .Y DEFY I i 9 `A` +,-,1i 1L)

In this section we are going to prove the above statement. We assume that D

has two different input actions a and b. Thus A = {a,b,a,b). A queue over a

one-element set of input actions is just a "bag" and it is definable in A°°(+,.,ll,I.) by the

following recursive equation X a(X{{a). (see [4]).

This-section `is organized as follows. We start with preliminary definitions in

section 2.1, and prove some auxiliary results in section 2.2.

In section 2.3 the problem to frst-reduced4to'the same problem without

and L. Then the latter question is settled in the negative.

2.1 Preliminaries

2.1.1 Definition. Let
P

E A°°. By the set of states of p we mean the least set ST(p)

satisfying the following conditions

(1) p e ST(p)

(2) If c.q + r E ST(p), then q E ST(p), where c E A, q, r E A°°

2.1.2 Definition.The set of all semistates of p, SST(p), is the least set satisfying

these ' condition

(3) ST(p) D SST(p)

(4) if q + r E SST(p), then q E SST(p) where q,r E A°°.

2.1.3 Definition.We say that a process h is a factor of a process p, if for some q c

A°°, h.q = p.

In the context of this proof, however, a factor will be any process which is a

factor of a semistate of Q. Let F(Q) denote the set of all factors.

A trivial factor is a factor in F(Q) fl A. All other factors will be called. nontrivial.

The states of 0 are just all processes Tr(s) with s ranging over D*. Examples

=

11

P
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of semistates of -O "which are not states are:-tirr(s)_,, drf(d*s), b l rT(s: 2rT(d2#s),

where d, d I ) d2 E D, and S E D*. Examples of factors which are not semistates of Q

are: a, b, a + brr(b), 4b(arT(ab) + brT(bb) +"-b).'

The following inclusions are obvious: ST(Q) Q SST(Q) Q F(Q).

The second inclusion does not hold in general. However, in the case of Q, for every p E

SST (0) and for every g E A°°, p,'q = p, W. hick yields the required inclusion.

2.1.4 Let 6..E A , p, q E A°° We are going to define the relation which

intuitively means that a is a path in p which leads to q.

If e A* is the empty word, then p -i q iff there exists r E A°° such that

p =q+r.

Let c e A, then c: p -i q iff p = c(q+r 1)+r,? for some r 1 rte e A°°.

Finally, 6c: p q iff for some r E A°° .g: pr. and c: ,,r - q..

The following fact is easy to prove by induction on the length of a.

2.1.5 Fact.

(i) For every a E A* and for every p,q e A°°, if 6: p -* q, then q E SST(p)

(ii) Moreover, for every q E SST(p) there exists a E A such that .6 p -> q..,

In the case of Q we can deduce more.

2.1.6 Fact.

(i) For every q c SST(Q) there exists a unique G E (a,b)* such that G: Q ->

(ii') For everyq E ST(Q)and for every }G E A a: Q q iff rr(G) = q.

The proof of this fact is easy and we leave it for the reader.

-2.1.7 Now we are going to define the notion of a trace of a process p E A°°.

A finite word' a c A is a trace if there exist c c A and t E A such that

6 tc`and r : p - c. An infinite word V E AU is a trace of 'p if there exists a

+

:

- r,

-
q

=
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sequence of initial fragments of V, a I < 62 < ... < an

and a sequence of semistates of p, q 1, q2,

such that for every n E

qn,

d qn+ E SST(gn)::.q

Let tr(p) denote the set containing all finite and-infinite_traces' of, p.

A process is called perpetual iff it contains no finite traces. Clearly every

semistate of Q is a perpetual process. The following fact is obvious.

2.1.8 Fact. Let a E tr(p) fl A Then for every q E A°°, 6: pq - q.

Another general property of A°° which we will use later has a straightforward proof as

well.

2.1.9 Fact. For all q,r,p E A°° and c E A, if q + r = cp, then q = r

2.1.10 We introduce two functions 0,1: AU -*
(a,b)*

U (a,b)U

They are,uniqu.elydete.rm.ined by the

if V e (a,b)U, then '0(V) 0

If V e (a,b)U, then I(V) = 0

If c e {a,b) and V E AU, then I(cV) = cI(V), and 0(cV) = 0(V).

If c e {a,b) and Ve AU, then I(cV) = I(V), and 0(cV) = c0(V).

Intuitively (respectively 0(V)) is the sequence of all input (output) actions

of- V in the order in which they occur in V w

Call V E A input periodic if there. exists a e (a, b) + such;-that I (V) = a

Otherwise V will be called input nonperiodic.

V E` AU is said to have infinitely many output actions if O(V) e (a,b)U

The last result of this subsection is the following lemma.

w, an : p I

=

.
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2.1.11 Lemma. Let p0,p 1 E SST(Q) be such that tr(p0) n tr(p 1) contains an

input nonperiodic trace with infinitely many output actions. Then for some

p-0 and G:Q

Proof. Let o 0: Q -- p0 and _6

Assume that 6O X a 1. Let V E tr(p0) n tr(p 1 ) be a trace with infinitely many output

actions. We are going to show that V is input periodic.

Since 61: Q - pi, it follows that 6 s 0(V) for i .0, 1., Therefore either

6o < 61 or a I < c0. We may assume without loss of generality that 60 < 61. Let

t e (a,b)+ be such that P
1

Let VO be a sequence which results from V by removing from it the first

G0 output actions. Since V e tr(p0),, it follows that VO E tr(Q).

Let V
1

be a sequerce which results from `V by removing from it the first

output actions. Again we have V
1

E tr(Q). Moreover we have the; foil owing

relationships

(1)I(VO)=I(V1)=I(V),

(2) 0(V) = 6O 0(V0)

(3)0(V)=G0t0(V1).

Gl

Since Vo is a trace of Q with infinitely many output actions, it follows that 0(V°0)

I (V0).The same holds for V
1

I-(ence'bb (1), 0(.V0) 0(V'1 ) and by (2), ,(3) we obtain

ON) ON). Thus I(VO) = O(VO)TM= This, together with (1) proves the

lemma.

Q -a p 1 for some 60,6 I E (a,b)*

=

{a, b) = aO.r.

_

. =

= t
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2.2 Auxiliary results

Let- us start with the following result.

.2.2.1 Lemma.Lot, h be a, nontrivial factor., Then-_

(i) h has an input-nonperiodic trace with infinitely many output.actions.

(ii) there is a unique p E SST-(Q). such that ,h js:a:factor of: p..

Proof. We prove (i) first. Let h be a nontrivial factor and let q E A°° be such that

hq e SST(Q). If h is perpetual, then hq = h and h is a sernistate of Q. Then h obviously

satisfies (i). .

Suppose now that h is not perpetual and let 6 be a finite trace of h.

By Fact 2.1.8, G: hq - q. Therefore, by Fact 2.1.5 qE SST(Q). Let t,p e {a,b}# be such

that t: Q - q, and p: Q - hq (cf..Fact°2.1.6).

Since hq is a semistate of ,C) it can be uniquely presented in the following form

(*) hq = 7-cECc.pc

where C c {a,b,a)b), and pC E A°° for every C E C
x

Consider these two cases

(1) There exists ce C such that non pc: Q - q.

(2) For all c E C, pc: Q q.

Notice that (2) may happen only if C is a one element set.

Suppose (1) holds. We construct a V e A(O such that

(3) V E tr(rr(pc)) is input-nonperiodic

(4) for every initial segment a of V, non pca: Q -* q.
71

'(5) V has infinitefywmany output actions.

To see that such V exists take p' E (a,b) * such that rr(ps) = n(pc). If p' is not an

initial subword of t, then we may take as V any trace of Q which is input-nonperiodic

and which has infinitely Man 'o"' Utput actions. If, however, "p' is an initial subword of t,
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then it follows from (1) that p' x t. Then it is enough to take de V -eW,4here

e E (a,b) is such that p'a is not an initial so:bword of t, and'W E tr(Q)-is any

input-nonperiodic trace with infinitely many output actions.

Let V be a trace satisfyfr (3)( ). By(°)° and (4), cV -E trv(hq); and by (4) we

.

} `.

obtain that `"tV'must be a trace of h

Suppose nov that (2) Fholds. As we noticed this may happen only if C is a one

element set, say C = (c). Since hq = cpc and since h is nontrivial, there exist

Therefore, Ch
1

q + h2q = cpc.

By fact 2:1.9, ch I q = h2q, and we obtain ch 1 q = cpc.

The latter equality can be simplified to. h
1
q = pc.

Since h is a state" of 0 it follows that 'in the decomposition (*) `for h 1 q'the set C has at

least two elements. Thus the argument of case (1) is applicable to h 1 , and we may

conclude that h 1 contains an input-nonperiodic trace with infinitely many output

actions. Therefore h contains such a trace as well. This completes the proof of (i).

Now we prove (ii). Let p0,p 1 SST(Q) be such that for some

(6) h.qi = pi for i = 0,1

By (i) h has an input-nonperiodigc trace3with, inifitely, many out actions. Therefore, by (6),

tr(p0) n tr(p 1) contains such a trace and by Lemma 2.1.11 for some a E {a,b}*,

(7) G:'q - pi, for 1
=

0,1.

If p0 then by (7) this only possible if for some c E A and i0 E {0,.1 }, pi0 has a

trace starting with c and in p 1 -i 0 all traces start with a symbol different from c. Since

h
1

, h2 E A' such that h = ch
1 +

h2.

1

q

q0 q
1

E A',

=

x p
1

, is
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h-qi Q = p 1 Q, tt must- have a trace as well. Obtained contradiction proves (ii), and the

proof of Lemma .2.21, is completed,

2.2.2' Lrnma

(i) if _h1 +h2eF(Q)then h.h2EF(.Q)

(ii) if h 1.h2 E F(Q) then h) E F(Q), moreover if h) is not perpetual then

h 2 E F (Q) as=.well 3 µ

(iii) h 1 11 h2 =F(Q)

1

.U .h2
'F(Q) provided

Proof. (i) Suppose (h
1

is nota sum of atoms.

= q, q,E SST(Q), then h 1.

h 1 .r, h2.r E SST(Q) whence by definition h 1 , h2 E F(Q).

= gthus

(ii) Suppose (h
1

.h2).r = q,q E SST(Q), then h 1(h2,r) = q so h
1

E F(q). If a is a finite

trace of h 1 then by 2.1.8 6: h 1 (h2.r) h2.r, and also a: q -> h2.r.

So h2 r E ST(Q) by fact 2.1.5 and by definition h2 e F(Q)..

(iii) Suppose h 111 h2 E F(q). Let q c A°° be such that ( h 1 11 h2).q E SST(Q),

h
1

11 h2 cannot'be a b,a or b so_-h i h2 is a nontrivial factor. In view of Lemma 2.2.1

h h2 has an input bonperiodic infinite- trace V°,withinfinitely many output actions.

V must have both infinitely many 2's and b's. Let V

such that V can be obtained by merging V 1 and V2.

V2 be traces of h 1 resp. h2

Choose a e (a,b) such that 6: Q - ( h 1 11 h2).q. Then for every sequence U

obtained by merging V
1

and V2 aU E tr(Q). We will manufacture a. contradiction from

this situation.. First of, all we notice *that either V 1 or V 2 contain no output actions;

(iv) h L h2 h 1

+h2).r + h2.r

-->

11

1 11

1 and

(a,b)*



12

oth.arwise,, V.1- must contain an action and V2 an action b or,.conversely. Let us"

assume that V
1

= a i aU 1, V2 = G2bU2 then a6162aU'j' and 66162¢U 1 are both

traces of Q (because V 1 is infinite U 1 is infinite and both are 0 followed by a merge of

V 1 and V2). Now this is impossible,-because after 6616-2 at most one output is

possible. So suppose that V s.1--. contains infinitely ,many a's -and D's and V2 contains

only as and Us; aV 1 is a trace of Q, inserting the first action, say a, from V2 in aV i at

some position after a must also produce a trace of Q. However choose p and W such

that V
1

= pbW then apabW cannot be a trace of Q: because the output action in, V2

that corresponds to the displayed input b has now become incorrect. Thus we have

obtained a contradiction thereby proving (iii) of the Lemma.

(iv) he case for [L is similar to the previous one.

2.3 Proof of the main result

Let us now consider 'a recursive definition of Q: Xi = T1(X
I

---,Xn

with solutions .X 1 ,..., . , and X 1

Without loss of generality we may assume that the system has the following

properties:

(a1) All X1_ are infinite (otherwise they can be eliminated by

(a2) All are "used" (i.e. no proper sybsyste ail g Q aswell).,

(a3) None of the Ti has a subterm of the form (t2+t2).t3. (Such subterms are

eliminated using the equation A4).

(a4) None of the Ti has a subterm t 1 t2 with t1(X
1

,...,Xn) perpetual (in such

cases t2 can just-be omitted and the .X 1,...,Xn still constitute a unique

solution).

(a5.){;, . In subterms of form It ft t'?, i is not a suf isof atoms. use CM4

.2

1

i = 1

=

1
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and CM3).

We can now start the actual ,proof of the ,main. result of this paper with- the following

lemma.

2.3.1 Lemma. If can be. recursively defined in A

recursvely,deiined.in A_°',(+;,-)

Proof. We assume that the system

Xi = T1(X 1 ,...,X n) i = 1 ,...,n

I1=5 IL) then it can be

satisfies the requirements (a1)-(a5) above and. defines. Q.. Let K be the collection of all

subterms of the Ti(X
1

,...,Xn) We can define a distance d(,) between elements of K.

d is not symmetric, however:

(i)

(ii) if t' is an immediate subterm of t then d(t,t') = 1

(iii) d(t 1 _ t2)'=-m1r1{d(t1
,t,.)+d(t',t2) ,I t

C-

K}-

Now it follows that for each t 'E K, d(X 1 ,t) is defined. With induction-on d(X '] ,t-)- one

shows using Lemma 2.2.2 that

for each t(X 1 ,...,Xn) E K, t(X
1

,... Xn) is in F(Q),

Moreover by 2.1.1 we conclude that 11 and [L do not occur in any of the t E K. This =

proves the lemma.

2.3.2 Lemma. If Q has a recursive definition in A°°(+,) then ST (0) is generated (in

A°°(+,-)) by finitely manystates n((J I),...,T7(6K) E ST(Q).

Proof. According to [7] it is in general the case that the solutions X 1 ,... Xn

of a system of recursive equations generate all states of X
1

,...,Xn and in particular of

So let Xi = Ti(X 1 = 1 ,...,n, be a recursive definition in A°°(+,-) again

Q

d(t,t) = 0

t'

1 ,..,Xn),
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satisfying (a1 H(X5) ab6ve;4ithfsolution X and X Q. Then for each q E ST(Q)

there is a term t(X 1 ,...)Xn) in (A,+, .) such that t(X 1 --In) = q.

),et . F(Q) -> SST -(Q)_ be the
_

unique (in view of Lemma 2.2.1 (ii) q E SST(Q) such that for some h.p = q.

It follows from (*) in the proof of Lemma 2.3.1 that for every i = 1 ,...n, Xir E F(Q)

Claim. For every term t
(
X ..,Xn) in (A, if t (X

1
...,Xn) E SST(Q) then t

LX

1. .,v n)
t4Q( l ),... (Xn)>

Using this claim one finds that every q e ST(Q) is generated by the semistates

C(X 1),...*Xn).

Now, by the special definition of Q and sinceD has two elements, each semistate (X i )

ca,nbewritten.asc.l.rr(a11) rr(c'21).+-c1rr(631)_

for appropriate c j 1 E A and 6 j

It follows that the subset (n(6 j

e (a,b)

1 < i s n 1 < j s 3)

of ST(Q) generates al`I of ST(Q), thus proving the lemma.

Proof (of the Claim). Let L = L(X 1 )...,Xn) be the following inductively defined collection

of terms:

(i) Xi E L, for i = 1,.,..n,

(ii) c. t e L, for c E A, t

(iii) Xi.t E L, if t. E L

(iv) ti +t2EL,ift1 t2EL

(v) c e L, for c c A.

Now each term t over A,X 1,..., n is equivalent in PA to a term in L, and therefore it

suffices to prove the claim for every term in L. We prove the claim by induction on the

1

,...,Xn
i

=

p E A°°

+, .),

1

,... Xn) =

+

-
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structure of tE L.

Let us observe that gy(p) = p for every p E SST(Q).

We consider all cases generated by the inductive clauses (i),...,(v).

(i) is immediate

(ii) if c.t (X I ,...,Xn) E SST(Q) then t(X
i
,...,Xn) E SST(Q). So W(X 1 ... Xn))

tWXI and (c.t(XI,...,Xn)) = cAW 1 *Xn)).

(iii) if $)(Xit(X 1 ..,,Xn)) E SST(Q) then (X1t(X 1 ,...,Xn)) = X1t(X
1

,...,Xn)

4) (X1) = (X1).t(t(X I ),,..,t(Xn).

(iv) if t1 (X I ...,Xn) + t2(X I ,.,.,Xn) E SST(Q) then both summands are in

SST(Q) hence W i (XI ,...,Xn) + t2(XI ...,Xn)) = t I (t(XI),...,t(Xn))

t2(t(X I),..*Xn)).

(v) c is not in SST(Q).

2.3.3 Lemma. There is no finite subset TT(a i ),..T(6K) of ST (0) which generates

all of ST(Q) within A°°(+, ).

Proof. Suppose otherwise. Choose for each TT(G 1) a triple TT(t 1 I ), TT(t 12 ), TT(t 13 )

such that for appropriate c 1 J E A, e 1 Tt(G1) = c 1 I .rT(t1 I) + c125(t12) + c13Tr(t13)

then choose foreach T(t1i) aterm t1J(XI,..)XK) such that TT(t1J)

t 11(TT (a 1 ), ..., 5 (6k) ). The term t 1 i may be chosen such that it contains + and prefix

multiplication only because all TT(61) are perpetual and T(Q1).t can be replaced by

TT(61).

Substituting these identities into e1 one obtains a linear system of equations

),

_

=
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for the processes Ti (a}). According to [5] the rr(aj) will then be regular which is

certainly not the case. Combining lemmas 2.3.1, 2.3.2 and 2.3.3 we obtain the main

result of this paper:

Theorem. Q cannot be recursively defined in A°°(+) -,11,x).
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