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CHAPTER

1
AN OVERVIEW OF THE THESIS

 oon after the discovery of the electron, both chemists and physicists started developing
the concept of bonding between atoms in terms of valence electrons but the electronic

structure of even the simplest molecules remained an unsolved mystery until the development
of quantum mechanics. Heitler and London¹ took the challenge and, by using quantum
mechanics, showed for the ërst time how atoms combine to form molecules. eir approach
laid the foundations of Valence Bond (VB) theory. At about the same time Hund,²⁴ Mul-
liken⁵ and Leonard-Jones⁶ developed another approach called Molecular Orbital (MO) the-
ory. For a long time, the VB method used to be the popular approach for the electronic
structure of molecules. With the advent of electronic computers, the MO methods became
prominent while the VB methods slowly "left the stage" because of the difficulties involved
in the computational implementation and applications due to the nonorthogonality of the
orbitals. However, the classical VB theory left behind "a rich legacy of useful concepts and
of theoretical methods"⁷ which not only attract chemists but also physicists.⁸⁹ is is one
of the reasons that the past three decades have seen a re-emergence of the VB methods in a
powerful ab initio form.¹⁰¹⁶ Moreover, recent advances in computer technology have made
it possible to use these methods to study almost the same range of molecules that are accessible
by higher level MO methods.

One of the most general forms of modern VB approaches is the Valence Bond Self-
Consistent Field (VBSCF) method and its efficient implementation in the TURTLE program
due to van Lenthe and co-workers.¹⁵¹⁷ e author became involved with these methods with
the aim of further developing the VBSCF methodology and its applications to solve chemical
problems. e main focus has been on making the orbital optimisation procedure more
efficient and the implementation more user friendly like automatic generation of the VB wave
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functions in terms of chemically signiëcant conëgurations. Some important developments
are summarised in this thesis.

Some aspects of ab initio electronic structure theory are discussed brieìy in chapter 2. In
chapter 3 a procedure to construct VB wave functions in terms of some chemically meaning-
ful conëgurations (the Kekulé valence structures) is described along with the results of some
actual calculations. In chapter 4 a second-order VBSCF method for simultaneous optimisa-
tion of orbitals and CI coefficients is presented, based on a Newton-Raphson scheme. e
convergence behaviour of this method is analysed using different test cases and its efficiency is
compared with the Super-CI method. A discussion on the efficiency of different algorithms
for orbital optimisation in VBSCF methods is presented in chapter 5. In the last chapter the
VBSCF method is applied to calculate resonance energies of cyclic conjugated systems using
two orbital models. e resonance is considered an important measure of aromaticity. It is
shown that resonance energies calculated with fully optimised orbitals, while retaining the
intuitive chemical picture of VB structures, are more reliable than those obtained by strictly
atomic but otherwise optimised orbitals.
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CHAPTER

2
A BRIEF INTRODUCTION TO ELECTRONIC

STRUCTURE METHODS

 b initio quantum chemistry has become a powerful tool to study the electronic
structure and properties of molecules. According to quantum mechanics all pos-

sible information about the electronic structure and other observable properties of a molecule,
in its stationary state, can be derived completely from a wave functionΨ(q)which is obtained
by solving the time-independent Schrödinger wave equation.¹³

Ĥ Ψ(q) = EΨ(q) (2.1)

where Ĥ is the Hamiltonian operator, E is the eigenvalue of this operator (i.e., the total
energy of the system) and q represents the space and spin variables of the wave function.
Neglecting the spin-orbit interactions and other relativistic effects and adopting the "clamped
nuclei" or Born-Oppenheimer approximation,⁴⁵ the Hamiltonian for a system of M nuclei
and N electrons (in atomic units) is given by:

Ĥ =−∑
i

1

2
∇2

i +
∑

A

∑
B>A

ZAZB

RAB
+
∑
i

∑
j> i

1

rij
−∑

A

∑
i

ZA

RAi
(2.2)

where A and B refer to nuclei with atomic numbers ZA and ZB , respectively and RAB is the
distance between them, i and j refer to electrons, rij is the distance between electron i and j,
RAi represents the distance between electron i and nucleus A. ∇2

i is the Laplacian operator
which involves differentiation with respect to the coordinates of ith electron. e ërst term
in Eq. (2.2) is the kinetic energy operator for electrons. e second and third terms are the
potential energies due to nuclear-nuclear and electron-electron repulsions, respectively and
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the last term is the electron-nuclear attraction.
e time-independent Schrödinger wave equation (Eq. (2.1)) can be solved analytically

for only a few systems, for example, the hydrogen atom, H+2 , He+, etc. e "exact" solu-
tion for a system with more than one electron is impossible. However, by using a number
of approximations, it is possible to ënd accurate solutions for many-electron systems. e
Schrödinger wave equation is central in all ab initio quantum mechanical methods. e aim
of these methods is to solve this equation for a system of N-electrons in atoms, molecules or
solids and these methods are usually called electronic structure methods.

2.1 One- and N-electron Basis Approximation

e most commonly used approach to solve the electronic Schrödinger equation for
molecules is the orbital method. In this method the one-electron wave functions, i.e., the
molecular orbitals (MOs), are constructed from a linear combination of one-particle basis
functions. e antisymmetrised products of these MOs are then used to build the N-electron
wave functions.

In principle an MO can be expanded in terms of hydrogen-like atomic orbitals, expo-
nential or gaussian functions, plane waves, etc. However, two type of atom-centred basis
functions are more commonly used in the electronic structure methods, namely the Slater
Type Orbitals (proposed by Zener⁶ and Slater⁷) and Gaussian Type Orbitals (after Boys⁸
and McWeeny⁹). ese basis functions are also called atomic orbitals (AOs), although they
are not solutions to an atomic Schrödinger wave equation in general. e Slater type orbitals
have the e−ζ r form where ζ is called orbital exponent which can have any positive values
and r is the electron-nucleus distance. Due to this exponential relationship with the nucleus-
electron distance, the STOs mimics the hydrogen-like orbitals and show excellent behaviour
in the near and far regions of the atomic nucleus. For polyatomic molecules, however, the
solution of Eq. (2.1) requires multi-centred (two, three and four centred) two-electron integ-
rals for which the STOs have complicated analytical solutions. is factor makes the choice
of STOs computationally expensive.

To make ab initio calculations faster and feasible for large systems, the use of Gaussian
type orbitals (GTOs) was proposed which have the e−ζ r2 form. Compared to STOs, Gaussian
functions are inferior in approximating an orbital. However, a linear combination of several
Gaussians can be taken to approximate an STO. Since the product of two Gaussian functions
centred at two nuclei is an another Gaussian centred at a third point, the evaluation of multi-
centred two electron integrals is much cheaper than with STOs. is factor makes GTOs a
preferred choice for performing ab initio calculations.

e total N-electron wave function, constructed from MOs, must be anti-symmetric
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with respect to the exchange of coordinates of two electrons (Pauli's principle¹⁰). is anti-
symmetry requirement can be achieved by writing the wave function in the form of determ-
inants, usually called Slater determinants.¹¹ When a Slater determinant, or a linear combin-
ation of a few symmetry adapted Slater determinants, is an eigenfunction of the N-electrons'
spin operators Ŝ2 and Ŝz for a given system it is called a conëguration state function (CSF)
or simply a conëguration. If the one-electron functions form a complete set and N-electrons
wave functions are expanded in a complete N-electron basis (all possible CSFs), the exact
solution of Eq. (2.1) can be found. However, a complete one-particle basis requires that the
unknown MOs are expanded in an inënite number of one-particle basis functions which is
not feasible. In practice the MOs are expanded in a basis set of ënite size. So even when
the N-electron basis is complete in the given one-electron space, it is still an approximation
because of the incomplete one-electron basis set. us, both the size and the quality of the
basis set affect the accuracy of a solution. Furthermore, the number of CSFs grows factori-
ally with the number of electrons and the size of the basis set. is puts further restrictions
on the choice of the N-electron space and more approximations have to be made to make
calculations possible for reasonably large systems.

2.2 Hartree-Fock Method

e simplest approach to solve the electronic Schrödinger equation is the Hartree-Fock
method¹²¹⁶ where the N-electron wave function is approximated by a single Slater deter-
minant (a single CSF). For a normalised wave function, the energy is then calculated as an
expectation value of the Hamiltonian:

E = 〈ΨH F |Ĥ |ΨH F 〉 (2.3)

whereΨH F is the single determinant Hartree-Fock wave function composed of spin-orbitals,
ϕ. Using the Hamiltonian given in Eq. (2.2) the above energy expression becomes:

E =
∑
i

hii+
1

2

∑
i

∑
j

(Jij−Kij)+VNN (2.4)

where

hii = 〈ϕi(1)| −
1

2
∇2

1−
∑

A

ZA

RA1
|ϕi(1)〉 (2.5)

describes the kinetic energy of electron 1 and its attraction to all the nuclei,

Jij = 〈ϕi(1)ϕj(2)|
1

r12
|ϕi(1)ϕj(2)〉 (2.6)
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and
Kij = 〈ϕi(1)ϕj(2)|

1

r12
|ϕj(1)ϕi(2)〉 (2.7)

are the coulomb and the exchange interactions and VNN is the potential energy due to the
nucleus-nucleus interaction.

Starting with an initial guess, the orbitals in the ΨH F are determined using the vari-
ational principle¹⁷ so that the energy expectation value in Eq. (2.4) becomes a minimum or
at least stationary. e variation in the orbitals is subjected to the constraint that they remain
orthonormal. e minimisation of the energy with respect to change in the orbitals leads to
the following Hartree-Fock equations:

F̂ (i)ϕj(i) = εjϕj(i) (2.8)

where F̂ (i) is an effective one-electron operator, called the Fock operator and is written as:

F̂ (i) = ĥ(i)+
∑
j

(Ĵj(i)− K̂j(i)) (2.9)

Since the Fock operator is dependent on the orbitals, the Hartree-Fock equations (Eq. (2.8))
are solved iteratively in a way called self-consistent ëeld (SCF) method. e Hartree-Fock
integro-differential equations can be solved using numerical methods.¹⁶¹⁸ However, these
methods are limited to only atoms and some small (usually diatomic) molecules due to the
computational difficulties involved. In the commonly used method, the unknown molecular
orbitals are expanded in terms of known basis functions.¹⁹²⁰

ϕj =
∑
µ

cµjχµ (2.10)

and the coefficients of expansion cµ are determined using the variational principle. e res-
ulting equations, called Hartree-Fock-Roothaan-Hall equations, have the following form:

F̂
∑
µ

cµjχµ = εj
∑
µ

cµjχµ (2.11)

which, after left multiplying with a basis function and integrating, can be written in matrix
form as:

FC= SCϵ (2.12)

e F in Eq. (2.12) is called the Fock matrix, the S is the overlap matrix between the basis
functions, C is the matrix of coefficients and ϵ is the matrix of orbital energies. e basis
functions used to expand the MOs are not orthogonal, however, a linear combination can be

8
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chosen such that this new set forms an orthogonal basis. With this choice the new overlap
matrix Ś becomes a unit matrix and the expression in Eq. (2.12) is reduced to eigenvalue
equation:

F́ Ć = Ćϵ (2.13)

In Eqs. (2.8) and (2.13) the matrix of orbital energies is a diagonal matrix and the resulting
MOs are called canonical MOs. According to Koopman's theorem,²¹ the orbital energies εi
for canonical MOs are approximately equal to the negative of the ionization energy.

e Hartree-Fock approximation implies that an electron moves in an average potential
ëeld created by other electrons, without any instantaneous interaction. It is quite successful
in determining the electronic structure and some one-electron properties of most (but not
all) molecules near their equilibrium geometries. It can recover more than 99% of the total
energy for atomic or molecular systems. However, it can not be used in situations where the
electrons undergo rearrangements, as in the formation and dissociation of bonds. In that case
this approximation breaks down.

In its most popular form the HF method uses the same set of spatial orbitals for electrons
whose spins are paired. For closed-shell systems where all electrons are paired, this form is
called restricted HF (RHF) or simply HF and for open-shell systems (where one or more
electrons are unpaired) it is called restricted open-shell HF (ROHF). It is also possible to
use different spatial orbitals for electrons with different spin in both closed-shell and open-
shell systems. is approach is called unrestricted Hartree-Fock (UHF ). e UHF wave
functions give correct dissociation of atoms or molecular fragments and for open-shell systems
at equilibrium geometry, gives slightly lower energies than ROHF. However, a disadvantage
of this method is that the wave functions are incorrect as they are not eigenfunctions of the
total spin operator Ŝ2.

2.3 Electron Correlation Methods

e serious shortcomings of the Hartree-Fock method can be related to its neglect of
electron correlation effects. e correlation effects are usually divided into near-degeneracy
effects (static correlation) and dynamic correlation.²² e static correlation is the inadequacy
of the Hartree-Fock wave function to describe the situations where several conëgurations
become degenerate or near degenerate. is happens most often when bonds are formed or
broken. Dynamic correlation stems from the fact that electrons tend to avoid each other
instantaneously, due to the coulomb repulsion. In the Hartree-Fock method the electron-
electron interaction is treated in an average way using a single CSF. For a more accurate
picture, the instantaneous interaction between the electrons must be taken into account in-

9
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stead of an average interaction. e electronic structure methods which take care of electron
correlation are called electron correlation methods.

e correlation energy²³²⁴ is deëned as the difference between the exact non-relativistic
energy of the system and the energy of the Hartree-Fock wave function in a complete basis.

2.3.1 Coníguration Interaction Methods

In the Conëguration Interaction (CI) method,²⁵²⁶ the N-electron wave function is ex-
panded as a linear combination of CSFs:

ΨC I =
∑
i

ciΦi (2.14)

ese CFSs are generated by distributing N electrons in the m orbitals in all possible ways.
e coefficients cis of the linear expansion are determined by the variational principle¹⁷ while
the orbitals (MO coefficients) are held ëxed. When all possible conëgurations are included in
Eq. (2.14) in a given basis set, this approach is called full CI. Full CI gives the "exact" energy
of Eq. (2.1) within the given basis set. e difference between the Hartree-Fock energy in
a given one-electron basis and the results of a full CI in the same basis is called the basis set
correlation energy.²⁴ In the full CI, the number of CSFs grows factorially with the number of
electrons and the size of the basis set. e total number of CSFs for a system of N electrons,
m basis functions with total spin S is given by Weyl's formula:²⁷²⁹

fC SF s(n,m, S) =
2S + 1

m+ 1

(
m+ 1

1
2N − S

)(
m+ 1

1
2N + S + 1

)
(2.15)

For a small system like the C2 molecule with 12 electrons and 100 orbitals, the number
of CSFs is approximately 1017. is makes full CI calculations impossible for all but very
small molecules in a small basis. To make the CI calculations practical for large systems, it
is necessary to truncate the CI expansion space in some way by ignoring certain CSFs. is
gives rise to the truncated versions of full CI which are abbreviated as CIS, CID, CISD,
CISDT, CISDTQ, so on where S, D, T, Q, represents singly, doubly, triply, quadruply,
excited CSFs. According to the Brillouin theorem,³⁰ the singly excited CSFs do not interact
with the Hartree-Fock wave function through the Hamiltonian. e CID level is, therefore,
the smallest truncation which can provide an improved wave function and energy over the
Hartree-Fock reference.

An essential requirement in the ab initiomethods is their size extensivity³¹ which allows a
consistent comparison of the energies of molecules of different sizes. A method that scales lin-
early, i.e., scales as the exact energy does, with the number of (interacting or non-interacting)

10
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particles in the system, is called a size extensive method. Size consistency³² is another required
feature in ab initio approaches. A method is size consistent if it gives the energy of two or
more inënitely separated atomic or molecular fragments equal to the sum of the energies of
the isolated fragments. e full CI method is both size extensive and size consistent, however,
it is not practical for large systems. A major problem with the truncated CI methods is that
they are neither size extensive nor size consistent.

2.3.2 Multi-Conígurational Self-Consistent Field Methods

In the multi-conëguration self-consistent ëeld (MCSCF) methods³³³⁹ the wave func-
tion is constructed as a linear combination of a limited number of carefully chosen CSFs and
both the CI coefficients and the orbitals are optimised by an SCF procedure to yield the low-
est energy expectation value. e optimisation of an MCSCF wave function is much more
work than optimising only the CI coefficients and several schemes based on the generalized
Brillouin theorem⁴⁰ (an extended form of Brillouin theorem for MCSCF wave functions),
Newton-Raphson method or direct minimisation of the energy have been developed for this
purpose (for a review of these methods see Ref. 41 and references therein).

In a special form of the MCSCF method the orbitals (and similarly the electrons) are
divided into a set of "inactive" orbitals which remain doubly occupied in all CSFs and an
"active" space of variably occupied orbitals. In the active space the CSFs are generated by
distributing active electrons among the active orbitals in all possible ways (a full CI in the
active space). is method is called a fully optimised reaction space (FORS) method⁴²⁴⁴
or a complete active space SCF (CASSCF) method.⁴⁵⁴⁸ It is widely used in the situations
where near to complete degeneracies play important roles.

To account for both the dynamic and static correlation, a combination of MCSCF
and CI approaches has also been developed, called Multireference Conëguration Interac-
tion (MR-CI).³⁸ In the conventional CI usually the HF wave function is taken as a reference
while in the MR-CI, the MCSCF (or CASSCF) wave function is taken as reference and then
a CI is performed by including all singly and doubly excited CSFs with respect to the refer-
ence. is approach is mainly used for small molecules and gives accurate results. However,
for large systems it becomes computationally extremely demanding.

2.3.3 Perturbation eory

e Raleigh-Schrödinger perturbation theory (RS-PT) is another way to obtain cor-
rections to HF wave functions and recover electron correlation effects. In this method the
Hamiltonian for the system to be solved is divided into an unperturbed Hamiltonian (Ĥ0),
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for which solutions have already been found, plus a small perturbation (V̂ ).

Ĥ = Ĥ0+λV̂ (2.16)

where λ is a parameter so that when λ = 0 there is no perturbation and when λ = 1 the
system is fully perturbed. e unperturbed Hamiltonian has known eigenfunctions and ei-
genvalues. For small perturbations, the solution for the perturbed system can then be found
by expanding the wave function and energy in terms of the following series:

Ψ=Ψ(0)+λΨ(1)+λ2Ψ(2)+λ3Ψ(3)+ · · · · · ·
E = E (0)+λE (1)+λ2E (2)+λ3E (3)+ · · · · · · (2.17)

where Ψ(0) is an unperturbed wave function and E (0) is its eigenvalue. e higher terms
are the ërst order, second order, and so on, corrections to the wave function and energy.
A special variant of RS-PT is Møller-Plesset (MP) perturbation theory.⁴⁹ In this approach
the unperturbed Hamiltonian is taken as the sum of one-electron Fock-operators and Ψ(0)

is taken to be the Hartree-Fock wave function. e truncation of the series in Eq. (2.17) is
denoted as MPn (n = 1, 2, 3 · · · ), for example, MP2, MP3, MP4, etc. MP2 is the lowest
level required to get an improvement on the HF energy. It is the most economical way to
account for the correlation energy. MP2 method is size extensive and in most cases it can
recover more than 80-90% of the correlation energy.

In the MPn methods the perturbation is applied to a single determinant HF wave func-
tion. When a system has a (nearly-)degenerate ground state, a single conëguration is not
enough to describe the unperturbed wave function. In that case a proper reference is a mul-
ticonëguration wave function. Such methods have been developed where the MCSCF (CAS-
SCF) wave function is taken as the zeroth order wave function and then the perturbation is
applied. ese methods are commonly called CASPT2,⁵⁰⁵² CASPT3,⁵³ depending on the
level of the applied perturbation. ese methods are not size extensive in general. However,
using appropriate zeroth-order Hamiltonian an exactly size extensive and size consistent form
of Multi-reference Møller-Plesset (MRMP) perturbation theory has also been developed.⁵⁴⁵⁵
e convergence of these approaches is almost of the same quality as MRCI methods but the
former are quite less intensive in computational cost.

2.3.4 Coupled Cluster Methods

In the Coupled Cluster (CC) approach⁵⁶⁵⁷ the wavefunction is expanded from the HF
reference as:

ΨC C = eT̂Φ0 (2.18)
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where the operator eT̂ is deëne by Taylor series expansion as:

eT̂ = 1+ T̂ +
1

2!
T̂ 2+

1

3!
T̂ 3+ · · ·=

∞∑
k=0

T̂ k

k!
(2.19)

e cluster operator T̂ is deëned as:

T̂ = T̂1+ T̂2+ T̂3+ · · ·+ T̂N (2.20)

T̂1, T̂2, T̂3, and so on, are one-particle, two-particle, three-particle, up to N-particle excita-
tion operators. e exponential nature of the cluster operator ensures size extensivity at all
levels. When all T̂N operators are included in the expansion, this method becomes equival-
ent to the full CI method. However, as mentioned earlier, that is only possible for quite
small systems in small basis sets. e CCSD level, where T̂ = T̂1+ T̂2, is commonly used.
e CCSDT is the next level which contains the contribution of triple excitations. It gives
highly accurate results for correlation energies but is also computationally very demanding.
Some approximate forms of CCSDT have been developed among which the CCSD(T)⁵⁸⁵⁹
is widely used. In CCSD(T) the contribution of the triples is estimated using perturbation
theory.

2.4 Valence Bond Methods

In the ab initio approaches discussed so far the molecular orbitals (MOs) are expanded
as linear combinations of atomic orbitals (LCAO), i.e., the basis functions. ese MOs are
orthogonal to each other and each MO spans the entire molecule rather than being localised
on atoms or in the bonding regions. is approach is called Molecular Orbital (MO) the-
ory⁶⁰⁶⁴ the simplest of which is the Hartree-Fock method. ese delocalised MOs do not
give the intuitive picture of a chemist's idea of a bond. ey may be transformed to localised
orbitals⁶⁵⁶⁸ without affecting the total wave function, however, there is no unique way to
do that.

An alternate approach to ënd the solutions of the electronic Schrödinger equation for
molecular systems is the use of Valence Bond (VB) theory which is closely related to the chem-
ist's idea of molecules as being composed of atoms and held together by chemical bonds. Ac-
tually, the idea that atoms combine by sharing their valence electrons to form molecules pred-
ates modern quantum mechanics.⁶⁹ Heitler and London,⁷⁰ using the principles of quantum
mechanics, showed for the ërst time how the sharing of electrons holds the atoms together
in a covalent molecule like H2 thus providing the quantum mechanical basis for this the-
ory. Pauling and Slater introduced the idea of maximum overlap between the orbital and

13



Chapter 2 A Brief Introduction to Electronic Structure Methods

the "changed quantization" (hybridisation) which became very popular among the organic
chemists. Further efforts by Heitler and Rumer,⁷¹ Slater,⁷² Pauling⁷³⁷⁴ and many others⁷⁵
developed the Heitler-London's methods into a general theory of electronic structure which
is now known as valence bond theory.

2.4.1 Classical Valence Bond eory

In the Heitler-London method⁷⁰ a bond is described as a singlet-coupled pair of singly
occupied orbitals. For example, for the H2 molecule the 1sa orbital of one hydrogen atom is
singlet-coupled to the 1sb orbital of the second hydrogen atom. In the determinantal form the
Heitler-London wave function for H2 molecule can be represented by a linear combination
of two Slater determinants as follows:

ΦH L =N {|1sa(1)1sb(2)| − |1sa(1)1sb(2)|} (2.21)

or
ΦH L =N {1sa(1)1sb(2)+ 1sb(1)1sa(2)}{α(1)β(2)−β(1)α(2)} (2.22)

whereN is the normalisation constant. e above wave function gives a qualitatively correct
picture of bonding. For quantitative results it can be improved by adding more conëgurations
which correspond to ionic structures.

Φionic =N {1sa(1)1sa(2)+ 1sb(1)1sb(2)}{α(1)β(2)−β(1)α(2)} (2.23)

e total VB wave function is then taken as a linear combination of these structures:

ΨV B = c1ΦH L+ c2Φionic (2.24)

e number of all (ionic and covalent) VB structures for a system can be determined by
Eq. (2.15) while the number of covalent structures is given by:

f N
S =

(
N

1
2N + S

)
−
(

N
1
2N + S + 1

)
(2.25)

where N is the number of electrons and S is the total spin of the system.

2.4.2 Coulson-Fisher Approach

In the classical form of the VB method, the atomic orbitals are not allowed to distort
freely as the atoms approach each other in a molecule. To compensate this effect, a large
number of ionic structures is required. As the number of ionic structures becomes large, the
simple predictive power of VB wave functions is obscured. Coulson and Fischer⁷⁶ suggested
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the use of optimal (slightly deformed atomic) orbitals. For the H2 molecule, a Coulson-
Fischer wave function can be represented as:

ΨC F =N {ϕ1(1)ϕ2(2)+ϕ2(1)ϕ1(2)}{α(1)β(2)−β(1)α(2)} (2.26)

where ϕ1 and ϕ2 are now deformed atomic orbitals:

ϕ1 = 1sa+λ1sb and ϕ2 = 1sb+λ1sa (2.27)

where λ is a variationally adjustable parameter. e resulting orbitals are predominantly
atomic in character, however, they are slightly delocalised. Since this deformation of the
orbitals automatically includes the effect of the ionic structures, an obvious advantage of the
Coulson-Fischer approach is that the number of structures in the wave function can be kept
to a minimum.

2.4.3 Generalised Valence Bond Method

e ërst VB method based on the Coulson-Fisher approach is the generalised valence
bond (GVB) method.⁷⁷⁷⁹ In the GVB approach, two nonorthogonal orbitals are used to
describe a pair of electrons in a bond. Each pair of electrons in a bond is coupled to a singlet.
e singlet coupled pairs of orbitals are then combined to give the total wave function of a
system with an overall singlet spin state. is is known as the GVB perfect pairing (GVB-
PP) approach. Such two electron two orbital pairs are called geminal pairs. ese orbitals
are optimised variationally. e computation cost is reduced by posing strong orthogonal-
ity (SO) between different geminal pairs. e SO-GVB-PP is a restricted form of VB where
only a single spin-coupling pattern is allowed. In another form called unrestricted SO-GVB⁸⁰
multiple spin-couplings are allowed for a given number of singly occupied orbitals. e re-
striction on different pairs to remain orthogonal, while computationally advantageous, leads
sometimes to artefacts.²²⁸¹

2.4.4 Spin-Coupled Valence Bond Method

e spin-coupled valence bond (SCVB) method⁸²⁸⁵ uses a more generalised form of the
Coulson-Fisher wave function for molecules. In the SCVB approach, the N electrons which
are involved in the bonding are described byN singly occupied nonorthogonal orbitals. ese
orbitals are then singlet-coupled in all possible ways to give the overall spin S of the system.
e general form of an SCVB wave function is:

ΨSCV B =N
f N
S∑

k=1

cSkÂ [ϕ1ϕ2ϕ3 · · ·ϕNΘ
N
S,M ;k] (2.28)
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where N is the normalisation factor, Â is an antisymmetriser, ΘN
S,M ;k describes a particular

spin-coupling pattern between the orbitals and cSk is the spin-coupling coefficient. e dif-
ferent spin-coupling modes are generally referred to as VB structures. e total number of
these structures, f N

S is determined by Eq. (2.25). Both the orbitals and the VB coefficients
are optimised.

2.4.5 Valence Bond Self-Consistent Field Method

e Valence Bond Self-Consistent Field (VBSCF) method⁸⁶⁸⁸ is the most general form
of the modern VB approaches. Mathematically, it is the nonorthogonal equivalent of MC-
SCF methods which are based on the generalised Brillouin theorem. In the VBSCF ap-
proach the VB wave functions can be constructed using any number of VB structures and
any amount of nonorthogonality among the orbitals is allowed. Both the orbitals and VB
structure coefficients are optimised. e resulting wave functions are compact and can be
easily interpreted in terms of chemical concepts. e orbitals used to build the VB structures
may be fully optimised as in the SCVB or they may be restricted to a subspace of the full or-
bital space, e.g., just on the atoms where they are centred. e expressions for the analytical
molecular energy gradients⁸⁹⁹⁰ and second order response properties⁹¹ have also been de-
veloped for the VBSCF wave functions. Recently, a new approach, called Atoms in Valence
Bond (AIVB) method⁹²⁹³ has been developed within the framework of the VBSCF method.
In this approach, instead of the traditional VB structures, the wave function is constructed
as a linear combination of all possible atomic states of the different atoms in a molecule. e
advantage of this approach is that no preconceptions are required about a system to describe
its electronic structure or properties.
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CHAPTER

3
GENERATION OF KEKULÉ VALENCE STRUCTURES
AND THE CORRESPONDING VALENCE BOND WAVE

FUNCTIONS

Abstract

A general method based on a recursive algorithm is presented for generating Kekulé valence struc-
tures. is method is applicable for all kinds of (poly)cyclic conjugated systems including fullerenes.
e application of the algorithm in generating Valence Bond wave functions, in terms of Kekulé
valence structures, is discussed and illustrated in actual Valence Bond calculations. Two types of VB-
SCF calculations, one involving Kekulé valence structures only and the second one involving all co-
valent VB structures, were performed for benzene, pentalene, benzocyclobutadiene and naphthalene.
Both strictly local and delocalised p-orbitals were used in these calculations. Our results show that
when the orbitals are restricted to their own atoms, other VB structures (Dewar structures) also have
a signiëcant contribution in the VB wave function. When removing this restriction, the other VB
structures (Dewar and also the ionic structures) are accommodated in the Kekulé valence structures,
automatically. erefore, at VBSCF delocal level, the ground states of these systems can be described
almost quantitatively by considering Kekulé valence structures only at a considerable saving of time.

Zahid Rashid and Joop H. van Lenthe, J. Comput. Chem. 2011, 32, 696-708.



Chapter 3 Generation of Kekulé Valence Structures and the Corresponding VB Wave Functions

3.1 Introduction

 ekulé valence structures have been around for more than a century and these struc-
tures have played a key role in understanding the stability of (poly)cyclic conjugated

systems.¹³ A Kekulé structure is a representation of an aromatic molecular entity (such as ben-
zene), with íxed alternating single and double bonds, in which interactions between multiple
bonds are assumed to be absent.⁴ Shown in Figure 3.1 are the two Kekulé valence structures of
the benzene molecule.

and

1

26

35

4

1

26

35

4

Figure 3.1: e two Kekulé valence structures of the benzene molecule

e number of Kekulé valence structures for a system depends upon the arrangement
of the atoms. Different structural isomers, therefore, can have different number of Kekulé
valence structures, for example, anthracene and phenanthrene. e former has four and the
latter has ëve Kekulé valence structures. It is not difficult to generate all Kekulé valence struc-
tures for smaller (poly)cyclic conjugated systems, however, the problem quickly goes out of
hand for bigger molecules as Pauling says, "A few minutes suffices to draw the four unexcited
(Kekulé) structures for anthracene, the íve for phenanthrene, or the six for pyrene ........... an
hour or two might be needed for the 110 structures of tetrabenzoheptacene''.⁵ A lot of work has
been done on the enumeration of these structures for different kinds of system and has been
discussed in books,⁶⁸ reviews⁹¹⁰ and research articles (for an overview see a Chem. Rev.
article by M. Randić¹⁰ and the references therein). But very few methods have been reported
so far for constructing all Kekulé valence structures for a given system. Randić¹¹ described
an algorithm based on the graph of a molecule to generate Kekulé valence structures for
(poly)cyclic conjugated systems. Based on the reduced graph of a molecule, Dzonova-Jerman-
Blazic and Trinajstić¹² discussed an elegant algorithm for the enumeration and display of
Kekulé valence structures for benzenoids. Cai and co-workers¹³ proposed a method for gen-
erating Kekulé valence structures and longer range resonance valence structures (Dewar struc-
tures) using the adjacency matrix and adjacency bonding array. e adjacency matrix A is
deëned as a square matrix (with dimensionsN×N for anN-atoms system) with the following
elements.¹⁴¹⁵

aij =

{
1 bonded directly are j and i if
0 otherwise

e adjacency matrix is related to the well known Hückel's Hamiltonian matrix.¹⁶ e lat-
ter can be converted to adjacency matrix after a suitable scaling (the set of approximations
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used by Hückel¹⁶ to construct the Hamiltonian matrix and the (0,1) notation was originally
introduced by Bloch¹⁷¹⁸). For the benzene molecule in Figure 3.1 the adjacency matrix is
(hydrogens excluded): 

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0


where the diagonal of the above matrix represents the atom itself and the off-diagonal non zero
entries shows its neighbours. An adjacency bonding array is deëned as a connection matrix
(with dimensions N × 3, based on the concept that a carbon atom involved in the Kekulé
valence structures can have maximum three adjacent atoms) which records the position of
the non-zero elements in the adjacency matrix of a molecule. e elements of the adjacency
bonding array ((aba)ik, k = 1, 2, 3) will be:

(aba)ik =

{
j 1 is aij if

0 otherwise

e adjacency bonding array for the benzene molecule, based on the above adjacency
matrix, will be; 

2 6 0
1 3 0
2 4 0
3 5 0
4 6 0
1 5 0


here the ërst row shows that atom number 2 and 6 are neighbours of atom number 1 and so
on. If some of the rows of the adjacency matrix of a system have three non-zero elements (e.g.,
in case of the adjacency matrix of the naphthalene molecule, excluding hydrogen atoms) the
corresponding rows of the adjacency bonding array will have three non-zero entries.

In this chapter a new approach is presented to generate all Kekulé valence structures for
a given system. For any kind of system we record the number of all unique (single) bonds
and their positions and we call this representation list of non-redundant bonds. e idea is
similar to that described by Cai and co-workers¹³ but in terms of adjacency matrix, we use
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only the upper triangle (or the transpose of the lower triangle) of this matrix. Our method
is very economical in memory and very efficient in computing time. In this method only a
one dimensional array of N integers is required to generate all Kekulé valence structures for
an N atoms system. Since Kekulé valence structures are central in the ab initio Valence Bond
based quantum chemical description of aromaticity, our main focus is the generation of a
Valence Bond wave function in terms of all Kekulé valence structures for a given (poly)cyclic
conjugated system. First, an introduction to the list of non-redundant bonds is presented
and, based on this list, the algorithm is described for generating Kekulé valence structures.
e implementation of the algorithm is explained and its efficiency is discussed based on
selected examples of benzenoids, among which the most complicated case has 206 carbon
atoms and has more than 1010 Kekulé valence structures, and fullerenes where the most
complicated one has 140 carbon atoms and more than 109 Kekulé valence structures. Next,
a brief introduction to a Valence Bond (VB) structure and VB wave function is given along
with the role of Kekulé valence structures in the ab initio VB based calculations. Finally, the
results of actual VBSCF calculations on some selected systems are presented.

3.2 Generation of Kekulé Valence Structures

To generate Kekulé valence structures a list of non-redundant bonds is constructed for a
given system. For illustration we take the example of pyrene as shown in Figure 3.2. rough-
out the rest of this section we will be considering only that part of a molecule which is actually
involved in the Kekulé valence structures (i.e., the part of the system where the position of
single and double bonds is resonating) and we will call it the skeleton of the system. e hy-
drogens atoms or other substituents that are not involved in Kekulé valence structures, will be
excluded. A bond x− y between two atoms x and y will always be a nearest neighbour bond.
We will use N for the total number of atoms or the number of singly occupied p-orbitals that
are involved in the Kekulé valence structures. N will always be an even number.

3.2.1 List of Non-redundant Bonds

A list of non-redundant bonds is a representation for all the single bonds in the skeleton
along which double bonds can be assigned in any of the Kekulé valence structures for that sys-
tem. To make this list, the atoms in the skeleton are numbered from 1 to N. e numbering
is completely arbitrary and can start wherever one wants. en in each x−y bond, the higher
numbered atom is listed as a neighbour of the lower numbered atom but the lower numbered
atom is not listed as a neighbour of the higher numbered atom. Any atom x, therefore, has
only those atoms as its neighbours which are higher than x in numbering order. Such neigh-
bours of each atom are called non-redundant neighbours and in the list, each non-redundant
neighbour of an atom x represents a bond between atom x and the neighbour atom. As soon
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Figure 3.2: (a). carbon skeleton of the pyrene molecule, (b). adjacency bonding array for the skel-
eton, (c). list of non-redundant bonds for the skeleton.

as we have decided which atoms are involved in the Kekulé valence structures, this list can be
generated, automatically, from the atomic coordinates of the system by specifying a suitable
distance for nearest neighbours. It can also be generated from the adjacency matrix for that
system. In the latter case the position of non-zero entries in a row x in the upper triangle
of the matrix would be the non-redundant neighbours for atom x. e adjacency bonding
array can also be used to construct the list of non-redundant bonds and in that case if the
non-zero element in a row x of the adjacency bonding array is higher than x then it will be a
non-redundant neighbour of atom x.

Figure 3.2 shows the skeleton of pyrene, the adjacency bonding array and the "list of
non-redundant bonds" for it. In the list of non-redundant bonds (Figure 3.2c), for example,
atom 1 has three non-redundant neighbours, i.e., 2, 4 and 5, and with atom 1, each of these
neighbours represents a bond, i.e., 1−2, 1−4 and 1−5 are non-redundant bonds as we do
not consider them again as 2− 1, 4− 1 or 5− 1.

In the skeleton, if there is an atom that has an adjacency of three then there must be
another atom which also has an adjacency of three and the total number of such atoms (i.e.,
atoms having an adjacency of three) must be even. Otherwise the third adjacency of the
former atom will be a substituent and we have to exclude this from the skeleton and renumber
the remaining part to construct Kekulé valence structures for that system. is situation is
explained in Figure 3.3. In Figure 3.3a atom number 3 has three adjacent atoms, i.e., 2, 7
and 13, and there is no other atom with an adjacency of three in this system. To construct
the Kekulé valence structures for this system we have to treat atom number 7 and the rest
of the tail attached to it, as substituent and then renumber the atoms in the remaining six
membered skeleton. Note that the position of the double bonds in the substituent will remain
ëxed (non-resonating double bonds) and these non-resonating double bonds can be included
in each Kekulé valence structure after the Kekulé valence structures are generated. For the
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Figure 3.3: Substituents and non-redundant neighbours in the skeleton.

systems shown in Figures 3.3b to 3.3d all atoms can be included in Kekulé valence structures
as each of these systems has an even number of those atoms having an adjacency of three and
the double bonds will be resonating in the entire system.

As each bond is counted with the lower numbered atom only, for two atoms having
an adjacency of three we get only one extra non-redundant bond or neighbour. For mono-
cyclic conjugated hydrocarbons, like 1,3-cyclobutadiene or benzene, the total number of
non-redundant bond or neighbours of all the atoms is always equal to the number of atoms
(N) in the skeleton. For all polycyclic conjugated hydrocarbons, the total number of non-
redundant bonds or neighbours of all atoms can be calculated as N + nT/2, where nT is the
total number of atoms having an adjacency of three. In the list of non-redundant bonds the
ërst atom always has at least two or at most three non-redundant neighbours, atom number
2 has one up to three and atoms from 3 to N - 3 can have zero up to a maximum of three
non-redundant neighbours. Atom N - 2 can have zero up to two, atom N - 1 can have zero
or one and the Nth atom cannot have any non-redundant neighbour.

Once this list is generated from any arbitrary numbering, the numbering order of the
atoms and the non-redundant neighbours for each atom are ëxed. We can not change this
order or any neighbour of an atom. is is the base of our algorithm.

3.2.2 Algorithm

Considering all bonds in the list of non-redundant bonds as double bonds, we make all
possible combinations of these bonds with the only condition that no atom can be present
twice in any combination. Each of these combinations is called a candidate (Kekulé) struc-
ture. We begin the procedure with a candidate structure containing no atom or bond (an
empty candidate structure). en starting from atom 1 in the list and going to each next atom
one by one in order (the order is important), any of the (double) bonds for each atom can be
selected to combine it with the existing candidate structure as long as the above mentioned
condition is not violated. On reaching the last atom, in the list of non-redundant bonds,
if all atoms have been included in the candidate structure then that candidate structure is a
Kekulé valence structure. e algorithm, presented here, to generate candidate structures is
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recursive procedure generateKekule (kneib, ineib, kekule, N, katom, natom)

integer N, katom, natom ! N = total number of atoms in the system.

! katom = the atom we have selected from the list.

! natom = no. of atoms stored in candidate structure.

! on first time entering the procedure natom will be zero

integer kneib(N+N/2) ! kneib(*) contains all non-redundant neighbours.

integer ineib(N) ! ineib(*) contains number of non-redundant neighbours

! for each atom.

integer kekule(natom+2) ! kekule(*) is a candidate (kekule) structure. It is an

! array of numbers (atom numbers) that represent the position

! of (double) bonds in a candidate (kekule) structure.

! natom is the number of atoms already stored in this array and

! 2 provides the space for the next two atoms (i.e., a double bond)

! that can be combined with this candidate (kekule) structure.

1: start of the procedure

if katom is not present in the candidate (kekule) structure then

if katom has non-redundant neighbours then

for all non-redundant neighbours i of katom

do

if i is not present in the candidate (kekule) structure then

store katom and i as a (double) bond in the candidate (kekule)

structure at natom + 1 and natom + 2

recursive call generateKekule (kneib, ineib, kekule, N, katom+1, natom+2)

end if

end do

end if

else (i.e., katom is already present in the candidate (kekule) structure)

if katom < N (i.e., all atoms have not been included yet in the candidate

(kekule) structure) then choose the next atom from the list of

non-redundant bonds as katom (i.e., increment katom by 1)

go to 1

else (i.e., katom = N and all atoms have been included in the candidate structure)

A Kekule structure has been generated.

Store this Kekule structure and exit the procedure (to go up in recursion(s)).

end if

end of the procedure

1

Figure 3.4: A description of the algorithm to generate Kekulé valence structures.

recursive. To combine a (double) bond, with the existing candidate structure, the algorithm
calls itself. Starting from the ërst atom in the list (we call this atom katom), the algorithm is
described in Figure 3.4.

As the algorithm is recursive, it keeps on calling itself within itself unless the last atom
is selected as katom from the list of non-redundant bonds. Each time, calling the procedure
for the next katom means making the next recursion within the loop i over the neighbours
of current katom. In the next recursion, there is again a loop i over the neighbours of new
katom and then there is again a recursive call. When the algorithm reaches the last atom in
the recursion, a candidate structure containing a (double) bond for each atom is generated.
is structure is stored as a Kekulé valence structure and the algorithm goes up in recursion(s)
to make a new candidate structure.
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Figure 3.5: Two candidate structures which are not suitable for Kekulé valence structures.

When generating a candidate structure, there may be a situation where all the neigh-
bours of an atom x have already been included in a candidate structure and atom x itself is
left alone. is kind of situation is shown in Figure 3.5. In Figure 3.5a atom number 11
is left alone (only the lowest numbered atom is mentioned here) and now a bond (i.e., a
double bond) is not possible for it in this candidate structure. is candidate structure is,
therefore, not going to be a part of a Kekulé valence structure. e same is the situation in
Figure 3.5b where atom number 9 is left alone. As soon as such an atom is selected as katom
in the list of non-redundant bonds, i.e., an atom whose neighbours are already present in
the candidate structure but that atom itself is not present in it, the algorithm does not go
further in combining the rest of the possible bonds with this structure. Instead, it goes up
in the recursion(s) in order to generate a different candidate structure. If it gets stuck again
somewhere in the same situation as shown in Figure 3.5, it again goes up in the recursion(s).
In this way it tries to create every possible candidate structure but ënally gives only Kekulé
valence structures. e rest of the structures disappear automatically. e non-redundancy
of neighbours of each atom in the list of non-redundant bonds and the check to ënd out if
the newly selected katom is already present in the candidate (Kekulé) structure, ensure that
each Kekulé valence structure will be unique. e last mentioned two factors are also the
points where the algorithm gains its efficiency.

3.2.3 Implementation and Efficiency

e algorithm has been implemented in Fortran. e program allocates two integer
arrays of size (N+N/2) and (N) to store the non-redundant neighbours for all the atoms and
their number for each atom, respectively (for monocyclic systems an integer array of size
(N) is required to store all non-redundant neighbours). An integer array of size (N) is used
to store the candidate structures. As soon as a Kekulé valence structure is generated, the
program writes it (if requested) to an output ële. For the pyrene molecule in Figure 3.2,
the six Kekulé valence structures generated using this algorithm, are presented in Table 3.1.
In this representation each atom at odd position forms a double bond to the atom that is
immediately to its right. ese Kekulé valence structures are graphically shown in Figure 3.6.
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Table 3.1: Symbolic representation of the six Kekulé valence structures of pyrene.

Structure Representation

1 1 2 3 7 4 14 5 9 6 16 8 11 10 12 13 15
2 1 2 3 13 4 8 5 15 6 10 7 12 9 11 14 16
3 1 4 2 3 5 9 6 10 7 12 8 11 13 15 14 16
4 1 4 2 6 3 7 5 9 8 11 10 12 13 15 14 16
5 1 5 2 3 4 8 6 10 7 12 9 11 13 15 14 16
6 1 5 2 6 3 7 4 8 9 11 10 12 13 15 14 16
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Figure 3.6: Graphical representation of the six Kekulé valence structures of pyrene.
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Figure 3.7: Some selected benzenoids for which Kekulé valence structures are generated.
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Table 3.2: e number of Kekulé valence structures for molecules 1-10 in Figure 3.7 and computa-
tional cost.

Compound No. of atoms (N) No. of Kekulé structures Time (seconds)

1 16 6 ∗ 0.000
2 24 20 ∗ 0.000
3 26 25 0.000
4 32 50 ∗ 0.000
5 40 81 ∗ 0.000
6 48 520 0.003
7 66 1365 ∗ 0.002
8 106 145908 0.324
9 132 125820416 ∗ 803.762
10 206 11983093719 56635.887

∗Literature values are availabe. See Refs. 10, 13

Table 3.3: e number of Kekulé valence structures for some Fullerenes and computational cost.∗

Fullerene/N Symmetry Group No. of Kekulé structures Time (seconds)

C20 Ih 36 0.000
C32 D2 184 0.000
C60 Ih 12500 † 0.058
C70 D5h 52168 † 0.324
C80 Ih 140625 † 1.002
C80 D5d 270153 1.854
C90 D5h 1384341 7.275
C100 C2 4792838 26.154
C110 C2 19105016 111.003
C120 C2 90229920 459.907
C120 D2 97491466 521.936
C130 C2 420111098 6947.965
C140 Ih 2178836352 † 15314.475
C140 D2 2181807742 15399.886
∗For all fullerenes cartesian coordinates were used to make the list of non-redundant bonds.
†Literature values are availabe. See Refs. 10, 13, 19, 20

To check the efficiency of the program, it has been tested by generating Kekulé valence
structures for some selected benzenoids shown in Figure 3.7 and fullerenes. e number of
Kekulé valence structures generated and the computing time is given in Tables 3.2 and 3.3.
All test were run on a 1.5 GHz Itanium-2 single processor. For all examples the storage of the
Kekulé valence structures was turned off to save output ële space (for the biggest benzenoid
shown in Figure 3.7, about 9 TB of disk space is required to store all Kekulé structures). It is
apparent from Tables 3.2 and 3.3 that the algorithm is very efficient and takes a few minutes
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to generate more than 108 and a few hours for more than 1010 Kekulé valence structures. For
most of these benzenoids and some of the fullerenes, the number of Kekulé valence structures
has already been reported in the literature.¹⁰¹³¹⁹²⁰ e number of generated Kekulé valence
structures using this algorithm are in line with the literature values. Since the described
algorithm tries to assign the double bonds in the candidate structures in every possible way,
this guarantees that it will not forget any of the Kekulé structures of a given system.

3.3 Kekulé Valence Structures in Valence Bond eory

Valence Bond (VB) eory has special importance for chemists because it directly deals
with the structures of the molecular systems that chemists are familiar with. However, other
(indirect) methods²¹²⁴ also exist where the localised picture of electrons in the bond regions
or lone pairs can be regained after transforming the delocalised molecular orbitals obtained
from a calculation based on molecular orbital theory. In VB eory a bond is described as
resulting from the overlap of two orbitalsϕ1 andϕ2 lying on atom 1 and 2, respectively, that
are singlet-coupled. us a bond is:

(bond)12 =N {|ϕ1ϕ2| − |ϕ1ϕ2|} ≡ (1− 2) (3.1)

whereN is the normalisation constant. A "VB structure" for a system is deëned as a multiple
of these bonds:

Φ= Â [(core)(1− 2)(3− 4)(5− 6)......((n− 1)− n)] (3.2)

where core represents doubly occupied core orbitals and Â is an anti-symmetriser. If the same
set of orbitals is used to describe different structures of a system then these structures differ
only in their spin part (i.e., the spin coupling pattern of the orbitals). An ionic structure
can be deëned as having orbital ϕi occupied twice or alternatively with two singly occupied
orbitals on the same atom that share the same space. e VB wave function for a molecule
is then constructed as a linear combination of these VB structures.

Ψ0 =
∑
i

ciΦi (3.3)

Each structure (Φ) is a linear combination of Slater determinants and can be expressed as:

Φ=
∑
i

αi∆i (3.4)

where ∆i is an anti-symmetrised product of orbitals.
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Table 3.4: e number of Kekulé valence structures vs the total number of VB structures and the
number of Slater determinants per structure for some (poly)cyclic conjugated systems.

No. of singly occupied No. of Kekulé No. of det./
Molecule

p-orbitals f N
S valence structures structure

benzene 6 5 2 8
naphthalene 10 42 3 32
anthracene 14 429 4 128
phenanthrene 14 429 5 128
pyrene 16 1430 6 256
coronene 24 208012 20 4096

e total number of, linearly independent, VB structures with only covalent bonds is
obtained by the expression;²⁵

f N
S =

(
N

1
2N + S

)
−
(

N
1
2N + S + 1

)
(3.5)

where N is the number of electrons, S is the overall spin of the system and f N
S is the number

of covalent VB structures. e relative importance of each structure is determined by solving
the generalized eigenvalue problem for the structure coefficients:

[H− ES]c= 0 (3.6)

where H is the Hamiltonian matrix and S is the overlap matrix.

Rumer's diagram method²⁶ is widely used to generate VB structures (spin-functions). In
this method the orbitals (i.e., the singly occupied orbitals) are singlet coupled in all possible
ways as long as the bonds do not intersect. In a Valence Bond description of (poly)cyclic con-
jugated systems, these VB structures are always related to the Kekulé and Dewar structures.
For these systems, the VB structures where all the bonds are between the nearest neighbours,
are Kekulé valence structures. ose with one or more long bonds are Dewar structures.
Table 3.4 shows the total number of VB structures, f N

S , and the number of Kekulé valence
structures for some (poly)cyclic conjugated systems. It is obvious from the table that the total
number of VB structures and the number of Slater determinants increases exponentially with
the number of electrons (singly occupied p-orbitals).

Because of the computational cost, ab initio VB calculations involving all VB structures,
are possible for systems having only a few electrons or singly occupied p-orbitals. However, it
was discovered²⁷²⁸ that for (poly)cyclic conjugated systems the most important structures are
those where the bonds are between the nearest neighbours (i.e., Kekulé valence structures) and
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their contribution in the VB wave function is more than 80%. e number of Kekulé valence
structures for these systems does not grow so fast with the number of electrons or singly
occupied p-orbitals. To make ab initioVB calculations practical for systems like phenanthrene
or pyrene, the ground state wave function can be approximated as a linear combination of
Kekulé valence structures (K) only.

Ψ0 =
∑
i

ciKi (3.7)

Equation (6.4) is then solved for the energy eigenvalues (E) and the structure coefficients (ci)
to determine the relative importance of each Kekulé valence structure in the wave function.
It is necessary, however, to point out that for systems having twentyfour singly occupied p-
orbitals, for example coronene, the ab initio VB calculation is not an easy task (beyond the
limits of normal desktop computers) because of the large number of determinants involved,
even though the number of Kekulé valence structures is not too large (only 20 structures in
the case of coronene).

In order to generate a Valence Bond wave function as a linear combination of Kekulé
valence structures only, the above algorithm has been implemented in the ab initio Valence
Bond program TURTLE²⁹(a VB/VBCI/VBSCF program available as part of GAMESS-
UK³⁰). In the ab initio VB method each singly occupied atomic p-orbital is expanded as
a linear combination of Gaussian-type orbitals (GTOs), centred at different atoms:

ϕπi
=
∑
µ

cµiχµ (3.8)

where each χµ is a set of contracted primitive Gaussian functions for a given basis. e
program uses these localised atomic GTOs to ëgure out which p-orbital is centred on which
atom by checking the orbital coefficients, cµ. It uses the atomic coordinates to make a list
of non-redundant bonds for the atoms involved in the Kekulé valence structures. For each
Kekulé valence structure, a corresponding spin-function is generated. e linear combina-
tion of these spin-functions is then used as the Valence Bond wave function in ab initio VB
calculations.

3.4 Test Calculations

VBSCF calculations were performed on benzene, pentalene, benzocyclobutadiene and
naphthalene (compounds 1-4 in Figure 3.8). e geometries of the compounds 1-4 (Fig-
ure 3.8) were optimised, within the given point group symmetry and without any other
constraint, at the Hartree-Fock level using GAMESS-UK.³⁰ In these calculations a 6-31G
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1 2 3 4

Figure 3.8: Selected systems for VBSCF study (only a single Kekulé valence structure of each system
is shown). 1. benzene (D6h), 2. pentalene (C2h), 3. benzocylcobutadiene (C2v), 4.

naphthalene (D2h)

1 2 3 4 5

Figure 3.9: Graphical representation of the 5 VB structures of benzene

basis set (after Pople and co-workers³¹) was used. For pentalene only the C2h symmetric
structure was considered as earlier results show that the highly symmetrical D2h molecule
is not a genuine minimum.³²³³ e Hessian calculations showed that these geometries are
genuine minima.

3.4.1 VBSCF Calculations

e ab initio VBSCF calculations were performed with the TURTLE²⁹ program pack-
age. In these calculations again the 6-31G basis set was used. For each system, the VB wave
function was constructed as a linear combination of all Kekulé valence structures. e ini-
tial (doubly occupied) σ-orbitals, for each system, were taken from a preceding restricted
Hartree-Fock calculation and for the π-system singly occupied atomic p-orbitals were used.
In all the calculations, the σ-orbitals were orthogonal to each other and to the p-orbitals
while the p-orbitals were allowed to be nonorthogonal to each other. Both the structure
coefficients and the orbitals coefficients (for all σ and π-orbitals) were optimised. In the
optimisation procedure two methods were used. In the ërst method, that we call VB-local,
each p-orbital is expanded only in the basis functions which are centred on the same atom
and mixing with the basis functions which are centred on different atoms is not allowed. In
the second method, called VB-delocal, each p-orbital was allowed to expand arbitrarily, i.e.,
its tail may lie on the neighbouring atoms or beyond. For comparison, VBSCF calculations
on a complete set of covalent VB structures (spin-functions) were also performed for each
system. To each structure, a weight was assigned according to the formula:

Wi =N |ci|2/(S−1)ii where N =
1∑

j |cj|2/(S−1)jj
(3.9)

after Gallup and Norbeck³⁴ where Wi and ci represent, respectively, the weight and the VB
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Table 3.5: Results of VBSCF calculation for benzene with 2 Kekulé valence structures.
(here and in the following tables Ei = energy of structure i (hartree), Wi = weight of struc-
ture i, Etotal = total energy of the system (hartree), Ediff = EΨ of the given method - EΨ of

VB-delocal (kcal/mol)).

Method E1 = E2 Etotal W1 =W2 Ediff (kcal/mol)

RHF -230.624474 42.83
VB-local -230.496517 -230.540678 0.500 95.41
VB-delocal -230.660858 -230.692726 0.500 0

Table 3.6: Results of VBSCF with 2 Kekulé valence structures, with 175 (covalent + ionic) structures
and the full CI (6 electrons in 12 orbitals) calculation for benzene (in these calculations

the σ-orbitals taken from a preceding RHF calculation were treated as frozen core).

Method Etotal (hartree) Ediff (kcal/mol)

VB-delocal (2 Kekulé structures) -230.692579 0
VB-local (175 structures) -230.695052 -1.55
Full CI (in the π-space) -230.709822 -10.82

coefficient of structure i, (S−1)ii is the element of the inverse overlap matrix between the
structures and N is the normalisation constant. With this deënition the weight of a con-
tributing structure is always ≥ 0 and the sum of the weights of all the structures in the VB
wave function equals 1.

3.4.2 Results and Discussion

Benzene

e benzene molecule can be described with two Kekulé and three Dewar structures
(Figure 3.9). e results of the VBSCF calculations with two Kekulé valence structures only
are shown in Table 3.5. e contribution of each structure to the VB wave function is 50%.
Although the p-orbitals in VB-local are optimised they still remain atomic p-orbitals because
of the local restriction. As a consequence the energy of the VB wave function is higher than
the HF wave function. In VB-delocal, the orbitals are free to relax and their symmetrical
distortion towards the neighbouring atoms results in an enhanced overlap between the or-
bitals (stronger bonds) in benzene. e energies of the individual structures and also of the
VB wave function, thus, decrease compared to the VB-local energies. Because the orbitals
are now allowed to delocalise, the other (ionic and Dewar-)structures are automatically in-
cluded in the Kekulé valence structures. We, therefore, expect that the two wave functions,
the one with only two Kekulé valence structures at VB-delocal level and the other one with
all covalent and ionic structures at VB-local level, will have almost the same energy and that
is indeed the case (the VB-local wave function containing all covalent and ionic structures for
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Table 3.7: Results of VBSCF calculation for benzene with 5 VB structures.∗

Method E1−2 E3−5 Etotal W1−2 W3−5 Ediff

VB-local -230.496469 -230.431936 -230.545424 0.3836 0.0776 92.64
VB-delocal -230.660406 -230.631763 -230.693050 0.4670 0.0219 0
∗Ei and Etotal in hartree, Ediff in kcal/mol

1 2 3 4

5 6 7 8

9 10 11 12

13 14

Figure 3.10: Graphical representation of the 14 VB structures of pentalene

benzene gives a lower energy than the two Kekulé valence structure VB-delocal wave func-
tion by 1.55 kcal/mol, see Table 3.6). To see how close to the "exact" energy (full CI energy
within the π-space) we can get with only two Kekulé valence structures at VB-delocal level,
we performed a full CI (in the π-space/6-electrons in 12-orbitals) calculation for benzene.
e results are shown in Table 3.6. It can be seen that the difference between the energies of
the full CI wave function and the VB wave function with two Kekulé valence structures (at
the VB-delocal level) is only 10.82 kcal/mol.

When the three Dewar structures are also included in the VB wave function, the con-
tribution of each Dewar structures in the wave function is almost 8% at VB-local level (see
Table 3.7) and the total energy decreases by 0.004746 hartree or 2.98 kcal/mol compared to
the VB-local with only Kekulé valence structures. In VB-delocal, however, the involvement
of three Dewar structures does not make much difference in the total energy and a difference
of only 0.000324 hartree (0.20 kcal/mol) is found which is negligible. Moreover, the total
contribution of the three Dewar structures in the wave function is only 7% in VB-delocal.

Pentalene

e pentalene molecule has 8 singly occupied p-orbitals and 14 VB structures (Fig-
ure 3.10). Only two of them (structure 1 and 9 in Figure 3.10) are Kekulé valence structures.
As the molecule has C2h symmetry, the two Kekulé valence structure are not equivalent. One
of them (structure 1) has double bonds along the shorter bond lengths while the second one
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Table 3.8: Results of VBSCF calculation for pentalene with 2 Kekulé valence structures.∗

Method E1 E9 Etotal W1 W9 Ediff

RHF -306.229649 72.27
VB-local -306.157948 -306.021966 -306.160810 0.9798 0.0202 115.47
VB-delocal -306.344124 -306.155291 -306.344816 0.9964 0.0036 0
∗Ei and Etotal in hartree, Ediff in kcal/mol

Table 3.9: Results of VBSCF calculation for pentalene with 14 VB structures.∗

Structure Ei (VB-local) Wi (VB-local) Ei (VB-delocal) Wi (VB-delocal)

1 -306.157914 0.8215 -306.343708 0.8782
2 -306.045334 0.0330 -306.250341 0.0201
3 -306.034970 0.0242 -306.247963 0.0178
4 -306.002072 0.0036 -306.167232 0.0016
5 -305.994890 0.0003 -306.228032 0.0000
6 -306.045334 0.0330 -306.250341 0.0201
7 -305.938334 0.0016 -306.161832 0.0010
8 -305.993417 0.0001 -306.151839 0.0000
9 -306.021933 0.0025 -306.141540 0.0001

10 -306.002072 0.0036 -306.167232 0.0016
11 -305.977333 0.0522 -306.207638 0.0412
12 -305.993417 0.0001 -306.151839 0.0000
13 -306.034970 0.0242 -306.247963 0.0178
14 -305.918086 0.0000 -306.155135 0.0002

∗Ei in hartree

EV B−delocal = -306.347050 hartree, ERH F = -306.229649 hartree, Ediff = 73.67 kcal/mol,

EV B−local = -306.170678 hartree, Ediff = 110.68 kcal/mol

(structure 9) has all the double bonds along the longer bonds. e results of the VBSCF cal-
culations, when the wave function is a linear combination of two Kekulé valence structures
only, are summarised in Table 3.8. Here, structure 1 contributes almost 98% when the p-
orbitals are restricted to remain atomic while this contribution goes to more than 99.6% when
the restriction is removed. is means that the molecule is almost a single structure (struc-
ture 1). e overlap between the orbitals shows that the distortion of orbitals towards the
neighbours is non-symmetrical and unlike the p-orbitals of benzene, the orbitals of pentalene
are distorted more towards the shorter bonds.

When the VB wave function is constructed as linear combination of all 14 structures,
structure 1 is, again, the major contributor in the wave function (results in Table 3.9). Struc-
ture 11 is second in importance and its contribution is more than 4%. Among the other
structures the two symmetry related structures 2 and 6 are next in importance. Structures 5,
8, 9, 12 and 14 are non-contributing structures. e inclusion of 12 Dewar structures res-
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1 2 3 4

5 6 7 8

9 10 11 12

13 14

Figure 3.11: Graphical representation of the 14 VB structures of benzocyclobutadiene

Table 3.10: Results of VBSCF calculation for benzocyclobutadiene with 3 Kekulé valence structures.∗

Method E1 E9 E13 Etotal Ediff

RHF -306.217848 66.31
VB-local -305.980220 -306.113201 -306.037765 -306.132106 120.12
VB-delocal -306.125190 -306.316705 -306.207114 -306.323523 0
∗Ei and Etotal in hartree, Ediff in kcal/mol

ults in an energy decrease of -0.009868 hartree (-6.19 kcal/mol) in VB-local and -0.002234
(-1.40 kcal/mol) in case of VB-delocal.

Benzocyclobutadiene

e benzocyclobutadiene molecule has three Kekulé valence structures (structure 1, 9
and 13 in Figure 3.11) and 11 Dewar structures. e results of VBSCF calculations, when
the VB wave function is a linear combination of the three Kekulé valence structures, are sum-
marised in Tables 3.10 and 3.11. e weight of the structures shows that in VB-local, almost
90% of the VB wave function is composed of only one Kekulé valence structure (structure
9) while structure 13 is the second important structure in the wave function. Structure 1
is the least contributing structure in this case and it accounts for 1.45% of the total wave
function. In VB-delocal, structure 9 becomes even closer to the VB wave function and forms
97.5% of it while the contribution of structure 1 is almost zero in this case. ese results can
be rationalised easily in terms of the 4n+2 rule. Both structures 9 and 13 have three double
bonds within the benzene-like six membered ring (benzene-like Kekulé valence structure)
while the position of the fourth double bond remains the same in both structures. However,
unlike benzene where the two Kekulé structures have equal weights, these two structures of
benzocyclobutadiene show totally different weights. It is because in structure 13 of ben-
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Table 3.11: Contribution of the Kekulé valence structures to the VB wave function of benzocyc-
lobutadiene.

Method W1 W9 W13

VB-local 0.0145 0.9046 0.0809
VB-delocal 0.0019 0.9746 0.0235

Table 3.12: Results of VBSCF calculation for benzocyclobutadiene with 14 VB structures.∗

Structure Ei (VB-local) Wi(VB-local) Ei(VB-delocal) Wi(VB-delocal)

1 -305.980200 0.0014 -306.112856 0.0002
2 -305.965709 0.0096 -306.141493 0.0032
3 -305.932391 0.0009 -306.122735 0.0061
4 -305.990559 0.0441 -306.216432 0.0310
5 -305.894231 0.0039 -306.141359 0.0012
6 -305.965709 0.0096 -306.141493 0.0032
7 -305.953244 0.0007 -306.201998 0.0004
8 -305.990559 0.0441 -306.216432 0.0310
9 -306.113149 0.5344 -306.316461 0.6632

10 -306.017936 0.0543 -306.242661 0.0465
11 -305.894231 0.0039 -306.141359 0.0012
12 -306.017936 0.0543 -306.242661 0.0465
13 -306.037721 0.1447 -306.192599 0.0982
14 -306.002575 0.0940 -306.233333 0.0678

∗Ei in hartree

EV B−delocal = -306.324945 hartree, ERH F = -306.217847 hartree, Ediff = 67.20 kcal/mol,

EV B−local = -306.139516 hartree, Ediff = 116.36 kcal/mol

zocyclobutadiene a double bond in the benzene-like ring also fully contributes to the four
membered ring and makes it a cyclobutadiene-like ring which is an unstable system. is
cyclobutadiene-like contribution is absent in structure 9. So the dominance of structure 9
is apparent. In structure 1 the stable benzene-like contribution is absent while it has a con-
tribution of the unstable cyclobutadiene-like ring. erefore, compared to structures 9 and
13, structure 1 is expected to be the least contributing structure in the VB wave function and
that is clearly the case (see Tables 3.10 and 3.11).

e results of the VBSCF calculations when benzocyclobutadiene is described with all
14 covalent structures, are presented in Table 3.12. Here structure 9 is again the most im-
portant structure and contributes more than 66% to the wave function. Structure 13 is the
second important contributing structure while structure 1 is of least importance. By in-
cluding 11 Dewar structures in the wave function, a decrease in energy of -0.00741 hartree
(-4.65 kcal/mol) and -0.001422 hartree (-0.89 kcal/mol) is found at the VB-local and the
VB-delocal level, respectively.
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Figure 3.12: Graphical representation of the 42 VB structures of naphthalene

Table 3.13: Results of VBSCF calculation for naphthalene with 3 Kekulé valence structures.∗

Method E1,23 E4 Etotal W1,23 W4 Ediff

RHF - - -383.222722 - - 71.65
VB-local -382.991841 -383.020040 -383.070923 0.2716 0.4567 166.91
VB-delocal -383.246795 -383.315526 -383.336904 0.1809 0.6382 0
∗Ei and Etotal in hartree, Ediff in kcal/mol

Naphthalene

e naphthalene molecule can be described with 42 covalent structures (Figure 3.12).
ree of them (structures 1, 4 and 23 in Figure 3.12) are the Kekulé valence structures. e
remaining 39 structures are the Dewar structures. e results of VBSCF calculations, when
the wave function is constructed as linear combination of the Kekulé valence structures only,
are summarised in Table 3.13 which shows that, of the three Kekulé valence structures of
naphthalene, structure 4 is the most important structure both at the VB-local and the delocal
level because its both rings resemble benzene in the arrangement of double bonds. e other
two structures (each with one ring having benzene-like arrangement of double bonds) also
have a considerable contribution in the wave function.

Involving 39 Dewar structures along with the 3 Kekulé valence structures in VBSCF
calculation results in an energy decrease of -8.76 kcal/mol and -0.96 kcal/mol at VB-local
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Table 3.14: Results of the VBSCF calculation for naphthalene with 42 VB structures.∗

Structure Ei (VB-local) Wi(VB-local) Ei(VB-delocal)† Wi(VB-delocal)

1 -382.991793 0.0467 -383.235160 0.0406
2 -382.945211 0.0226 -383.258334 0.0120
3 -382.945211 0.0226 -383.258332 0.0120
4 -383.019825 0.5128 -383.315945 0.7442
5 -382.936885 0.0869 -383.252191 0.0435
6 -382.910902 0.0091 -383.153406 0.0022
7 -382.855841 0.0026 -383.164978 0.0004
8 -382.916832 0.0155 -383.185673 0.0086
9 -382.945211 0.0226 -383.258332 0.0120

10 -382.854006 0.0017 -383.187546 0.0003
11 -382.845129 0.0004 -383.129737 0.0000
12 -382.855841 0.0026 -383.164977 0.0004
13 -382.842985 0.0013 -383.122272 0.0002
14 -382.799190 0.0009 -383.156860 0.0000
15 -382.899059 0.0060 -383.160967 0.0032
16 -382.854006 0.0017 -383.187546 0.0003
17 -382.854006 0.0017 -383.187545 0.0003
18 -382.936885 0.0869 -383.252188 0.0435
19 -382.853506 0.0136 -383.187973 0.0030
20 -382.888201 0.0046 -383.100237 0.0000
21 -382.842985 0.0013 -383.122268 0.0002
22 -382.910902 0.0091 -383.153400 0.0022
23 -382.991793 0.0467 -383.235154 0.0406
24 -382.899059 0.0060 -383.160963 0.0032
25 -382.830724 0.0008 -383.086078 0.0001
26 -382.910902 0.0091 -383.153401 0.0022
27 -382.888201 0.0046 -383.100237 0.0000
28 -382.842985 0.0013 -383.122268 0.0002
29 -382.842985 0.0013 -383.122274 0.0002
30 -382.799190 0.0009 -383.156863 0.0000
31 -382.855841 0.0026 -383.164977 0.0004
32 -382.945211 0.0226 -383.258332 0.0120
33 -382.854006 0.0017 -383.187546 0.0003
34 -382.845129 0.0004 -383.129739 0.0000
35 -382.916832 0.0155 -383.185677 0.0086
36 -382.910902 0.0091 -383.153406 0.0022
37 -382.855841 0.0026 -383.164977 0.0004
38 -382.776101 0.0000 -383.076460 0.0000
39 -382.845129 0.0004 -383.129735 0.0000

continue on the next page
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Table 3.14: -- continued from the previous page.

Structure Ei (VB-local) Wi(VB-local) Ei(VB-delocal) Wi(VB-delocal)

40 -382.830724 0.0008 -383.086081 0.0001
41 -382.845129 0.0004 -383.129733 0.0000
42 -382.776101 0.0000 -383.076459 0.0000

∗Ei in hartree
†e slight difference (at ëfth or sixth decimal place) in the energies of some symmetry

equivalent structures in VB-delocal is due to the low convergence criterion used.

EV B−delocal = -383.338435 hartree, ERH F = -383.222722 hartree, Ediff = 72.61 kcal/mol,

EV B−local = -383.084880 hartree, Ediff = 159.11 kcal/mol

and VB-delocal level, respectively. e results are presented in Table 3.14. e weights of
the structures show that structure 4 is again the major contributing structure. Among the
other structures, 5 and 18 (each with one longer bond) have larger weights compared to the
other two Kekulé valence structures (i.e., structures 1 and 23). Each of these structures (i.e.,
5, 18, 1 and 23) has one benzene-like contributing ring. e benzene-like contributing ring
in structures 5 and 18 is similar to that of structure 4 (the most stable structure) so they
get stabilised by their larger overlap with the most stable structure. erefore, despite of
having one longer bond, their weights are still larger both at VB-local and VB-delocal level
compared to the two Kekulé valence structures. e total contribution of the three Kekulé
valence structures is 60.6% and 82.6% in the wave function at VB-local and VB-delocal level,
respectively.

3.5 Conclusion

A new scheme has been presented to record the number and position of bonds which are
involved in the Kekulé valence structures for a given system. Based on this, an efficient and
economical method (both in memory and time) for generating all Kekulé valence structures
for a given system has been devised. e efficiency of the algorithm has been tested by a
Kekulé valence structures count for selected cases of small as well as giant conjugated systems.
e application of the algorithm for generating a Valence Bond wave function in terms of
Kekulé valence structures has been discussed. As a VB wave function is very expensive to
calculate, we have shown that for (poly)cyclic conjugated systems, in their ground states,
almost quantitative results can be obtained by considering only Kekulé valence structures in
ab initio VBSCF calculations at the delocal level.
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CHAPTER

4
A QUADRATICALLY CONVERGENT VBSCF METHOD

Abstract

A quadratically convergent Valence Bond Self-Consistent Field method is described where the
simultaneous optimisation of orbitals and CI (VB-structure) coefficients is based on a Newton-Raphson
scheme. e applicability of the method is demonstrated in actual calculations. e convergence and
efficiency is compared with the Super-CI method. A necessary condition to achieve convergence in
the Newton-Raphson method is that the Hessian is positive deënite. When this is not the case, a com-
bination of the Super-CI and Newton-Raphson methods is shown to be an optimal choice instead of
shifting the eigenvalues of the Hessian to make it positive deënite. In the combined method, the
ërst few iterations are performed with the Super-CI method and then the Newton-Raphson scheme
is switched on based on an internal indicator. is approach is found computationally a more eco-
nomical choice than using either the Newton-Raphson or Super-CI method alone to perform a full
optimisation of the nonorthogonal orbitals.

Zahid Rashid and Joop H. van Lenthe, Submitted to J. Chem. Phys. with dedication to the memory of
Joseph Gerratt.



Chapter 4 A Quadratically Convergent VBSCF Method

4.1 Introduction

 he Valence Bond Self-Consistent Field (VBSCF) method¹³ describes the electronic
structure of molecules with a few chemically meaningful conëgurations (VB struc-

tures). is method is a powerful generalisation of analogous MCSCF methods⁴⁸ which
allows the use of nonorthogonal orbitals to construct molecular wave functions. Like in the
MCSCF methods, usually a small number of conëgurations is sufficient to give an accurate
description of the electronic structure of molecules. If required, however, all possible con-
ëgurations within a given "active space" can also by employed which correspond to covalent
and ionic VB structures.

Unlike the classical VB theory⁹¹¹ which uses non-optimised atomic orbitals, in the VB-
SCF method the orbitals and the coefficients of the conëgurations (in the following referred
to as CI coefficients) are optimised according to the variational principle. e nonortho-
gonality amongst the orbitals presents a major difficulty in the optimisation procedures as
compared to the equivalent methods which use orthogonal orbitals. Whereas in MCSCF
methods, the most intensive computational step is generally the four index transformation
required in each iteration, the case is more complicated in VBSCF method. In the latter,
the additional challenge is the evaluation of matrix elements over the Slater determinants. In
VBSCF calculations if the basis set (one-electron basis) is not too large, the time required for
the four-index transformation is usually a small fraction of that taken in the calculations of
matrix elements.

In the orbital optimisation procedure in the VBSCF methods, the orbital changes are de-
rived from the vectors of a "Super-CI" (SCI)⁵ matrix consisting of the VBSCF wave function
and all singly excited conëgurations. e iterative procedure of Super-CI is divided into two
parts. In the ërst part the CI coefficients are calculated by solving a linear variation problem
in the conëguration space. In the second part the orbital optimisation is performed while the
CI coefficients are held ëxed. e time taken by the ërst part is usually quite small compared
to that required in the orbital optimisation procedure. e convergence behaviour of this
method is quite robust and when combined with DIIS¹²¹³ and level shift¹⁴ it almost always
works.¹⁵ However, with the Super-CI method only ërst-order convergence is achieved.

A second-order (quadratic) convergence behaviour is important for mainly two reasons.
First, to calculate the molecular energy gradients or other properties of the molecules (e.g.,
dipole moment, response properties, etc.), the wave function has to be well converged. If
the optimisation procedure is quadratically convergent, only a few iterations are required to
reach the optimal solution. Second, the additional efforts required to calculate the second
derivative matrix of the energy with respect to the wave function parameters (Hessian matrix)
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is usually compensated by a substantial reduction in the number of iterations.

In the past few decades, efficient schemes for the second-order MCSCF methods have
been developed⁷¹⁶²⁴ (for a review of these methods see Ref. 25 and references therein).
For optimisation of nonorthogonal orbitals, however, the progress is less remarkable. For the
Spin-Coupled VB method, Gerratt and co-workers²⁶²⁷ developed a quadratically convergent
method based on a Newton-Raphson scheme. In most of these methods (for orthogonal
or nonorthogonal orbitals), usually the quadratic convergence starts close to the minimum.
However, it is still important due to the above mentioned reasons. Especially, when calculat-
ing potential energy surfaces, the solutions at neighbouring points (the previous step) usually
provide very good starting orbitals. e quadratic convergence in that case is achieved from
the very beginning and thus improves the efficiency considerably.

In this chapter a quadratically convergent procedure for optimisation of VBSCF wave
functions is described. is method is based on a Newton-Raphson scheme where the or-
bitals and CI-coefficients are optimised simultaneously. e linear equations which deëne
the improved orbitals and CI-coefficients are solved in a single step by inverting the Hessian
matrix. Explicit formulae for the orbital gradients and all second derivatives of energy with
respect to the change in orbitals, CI-coefficients and coupled orbital-CI coefficients, which
appear in the Newton-Raphson method, are presented for a general VBSCF wave function.
Since all these second derivatives of energy are required in the Newton-Raphson method to
get an overall quadratic convergence, a Newton-Raphson iteration is computationally more
expensive than that of the Super-CI. To get convergence in the Newton-Raphson method,
an essential requirement is that the second derivative matrix (Hessian) is positive deënite. If
this is not the case, the Hessian has to be augmented to make it positive deënite otherwise
the iterative procedure may not converge. When this is done, the Newton-Raphson method
usually shows linear convergence at a substantially higher computational cost. In that case,
instead of making the Hessian positive deënite, we present an alternate approach where the
optimisation procedure is started with the Super-CI method and after the ërst 2-5 iterations
switched to the Newton-Raphson method. We show that this approach is computationally
more economical than using either the Super-CI or Newton-Raphson method alone.

4.2 VBSCF Wave Functions and Energy Expressions

In the VBSCF method the reference wave function is constructed from a linear combin-
ation of valence bond conëgurations (VB structures) as:

Ψ0 =
∑
i

ciΦi where 〈Φi|Φj〉= Sij ̸= 0 (4.1)
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Each Φ in itself is a spin-adapted linear combination of Slater determinants.

Ψ0 =
∑
p

cp∆p (4.2)

and each Slater determinant is an antisymmetrised product of spin-orbitals (ϕ's) which are
nonorthogonal to each other.∫

ϕ(1)∗iϕj(2)dτ = 〈ϕi|ϕj〉= Sij (4.3)

ese orbitals are expanded as linear combinations of mutually nonorthogonal basis functions
(AOs).

ϕi =
∑
µ

dµiχµ (4.4)

For a given set of orbitals and CI coefficients, the energy of the VBSCF wave function is
calculated using Löwdin's formula²⁸ as:

E0 = 〈Ψ0|Ĥ |Ψ0〉
=
∑
ik

hik
∑
p

∑
q

S(i,k)pq cpcq+
∑

i<j,k<l

(
〈ij|kl〉− 〈ij|lk〉

)∑
p

∑
q

S(i,j,k,l)
pq cpcq

(4.5)

where
hik = 〈ϕi(1)|ĥ|ϕk(1)〉 (4.6)

and
〈ij|kl〉= 〈ϕi(1)ϕj(2)|

1

r12
|ϕk(1)ϕl(2)〉 (4.7)

are one- and two-electron integrals over MOs. S(i,k)pq and S(i,j,k,l)
pq are the ërst- and second-order

cofactors of the overlap matrix. cp and cq are the coefficients of the determinants∆p and∆q,
respectively. e indices i and j refer to the occupied orbitals in determinant∆p and k, l to the
occupied orbitals in∆q. Efficient schemes for the rapid evaluation of nonorthogonal matrix
elements and cofactors²⁹³¹ have been developed based on the generalisation of Löwdin's
formula²⁸ and Slater-Condon rules.³²³³

e aim of the optimisation procedure is to minimise the energy of the wave function
with respect to orbital rotations and CI coefficients. In the VBSCF method these orbitals may
be fully optimised as in the spin-coupled VB approach²⁶²⁷³⁴³⁶ or they may be restricted
to a subspace of the full orbital space, e.g., on the atoms where they are centred. e ërst
approach (full optimisation) is called the VB-delocal method while the latter is called the
VB-local method.
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4.3 Orbital Optimisation

4.3.1 e Super-CI Method

e Super-CI method for orbital optimisation is well documented.¹²⁵⁶⁸¹⁵ Here we
brieìy describe this method again. To optimise the orbitals, consider the effect of an inën-
itesimal change in an orbital ϕi, due to mixing with an other orbital ϕj by an amount δγij

ϕi→ϕi+ δγijϕj (4.8)

is change in orbitalϕi is accompanied by a corresponding change in the the wave function
Ψ0:

Ψ0→Ψ0+ δγijΨij (4.9)

where Ψij is called a Brillouin state function which is obtained from the reference function
Ψ0 by replacing the spatial orbital ϕi by the orbital ϕj, once for α and once for β spin in
each determinant of Ψ0. us the Brillouin state Ψij may be represented as:

Ψij =Ci→jΨ0 (4.10)

where Ci→j is an un-normalised excitation operator.³⁷ e total number of singly excited Bril-
louin states, nBrill in Eqs. (4.9) and (4.10) depends on the number of active occupied orbitals
N and the number of basis functions m and, ignoring the spacial symmetry of the orbitals, is
approximately equal tomN. Note that the above deënitions are valid for multi-determinantal
states without orthogonality restrictions as in the VBSCF method. e excitation operator,
therefore, does not have to adhere to the unitary condition, as is the case for orthogonal or-
bitals. If orthogonality constraints are used, like in the MCSCF methods⁵⁶ or orthogonal
VB, the deënition of the Brillouin state includes the unitary condition⁴

Ψunitary
ij =

(
Ci→j−Cj→i

)
Ψ0 (4.11)

To ënd the optimum mixing coefficients δγij, which minimise the energy, the wave function
is expanded in the space spanned by the reference function Ψ0 and all the Brillouin state
functions Ψij.

ΨSC I = b0Ψ0+
∑
j ̸=i

bijΨij (4.12)

e ΨSC I is called the Super-CI wave function.⁵ e coefficients b0 and bij are obtained by
solving this Super-CI problem which is a linear variation problem in the space of Ψ0 and
all Ψij. e bij's lower the energy expectation value, they are "absorbed" into the reference
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function so that Ψ0 approaches ΨSC I . is leads to the following orbital transformation:

ϕ′i→ b0ϕi+
∑
j̸=i

bijϕj (4.13)

From these new orbitals, ϕ′i, new Brillouin state functions are generated and a new Super-CI
problem is solved. is process is repeated until all bij's approach zero or at least below a
certain threshold and a stationary condition for the energy is achieved.

4.3.2 e Newton-Raphson Method

e Newton-Raphson set of linear equations is derived by expanding the energy of the
VBSCF wave function up to second order around the current wave function parameters.
Collecting the current wave function parameters in a vector x0 and the new parameters (which
result from the second-order energy expansion) in a vector x we can write:

E (2)(x) = E0(x0)+ g†(x−x0)+
1

2
(x−x0)

†H(x−x0)+ · · · (4.14)

e stationary condition is given by requiring that the gradient of E (2)(x) in Eq. (4.14)
vanishes at x. is leads to the following set of Newton-Raphson equations.

H(x−x0)+ g= 0 or δc=−H−1.g (4.15)

where δc = (x−x0) is the correction vector for the wave function parameters, g is the gradient
and H is the Hessian of energy at current parameters x0.

gi =
(∂E0

∂xi

)
x0

and Hi, j =
( ∂2E0

∂xi∂xj

)
x0

(4.16)

Equation (4.15) deënes the sequence of the Newton-Raphson iterative procedure. If the
energy is an exact quadratic function of the wave function parameters, a single iteration is re-
quired to reach the optimal solution. In general, however, more iterations are needed because
the expansion in Eq. (4.14) also contains terms beyond the second-order. Typically Newton-
Raphson method shows quadratic convergence if the initial guess parameters are close to the
ënal solution and the second-order expansion of the energy is a good approximation to the
true energy. In that case the norm of the gradient vector is reduced quadratically in each
iteration, i.e., if the norm reduces by a factor of 1 in the ërst iteration, it will decrease by a
factor of 2 in the second and a factor of 4 in the third iteration.

To get a quadratic convergence with the Newton-Raphson method, it is necessary that all
the wave function parameters are optimised simultaneously.⁷ For this we need the orbital and

50



Chapter 4 A Quadratically Convergent VBSCF Method

CI gradients and the orbital, CI and coupled orbital-CI Hessian. When these are calculated,
Eq. (4.15) is used to ënd the corrections to the old parameters.

e VBSCF Gradient and Hessian

Using the deënitions of orbital mixings and the Brillouin states given in the Section 4.3.1,
the orbital gradient can be calculated by differentiation of E0 with respect to the orbital mix-
ing coefficients γij: ²

∂E0

∂γij
= gOrb

ij = 2〈Ψ0 |H − E0|Ψij〉 for 〈Ψ0|Ψ0〉= 1 (4.17)

e orbital Hessian (HOrb−Orb) is obtained by differentiating E0 twice:²

∂2E0

∂γkl∂γij
=H Orb−Orb

ij,kl =2〈Ψkl |H − E0|Ψij〉+ 2〈Ψ0 |H − E0|Ψij,kl〉

− 4〈Ψ0 |H − E0|Ψij〉〈Ψ0|Ψkl〉− 4〈Ψ0 |H − E0|Ψkl〉〈Ψ0|Ψij〉
(4.18)

e Ψij,kl appearing in the above equation is a doubly excited state which is obtained by
applying two excitation operators Ci→j and Ck→l to the reference wave function. When the
orbitals are orthogonal as in the MCSCF methods, the last two terms in Eq. (4.18) disappear
while in the Super-CI for orthogonal orbitals⁵⁶⁸ or nonorthogonal orbitals¹²¹⁵ only the ërst
term in Eq. (4.18) is used as an approximation to the Hessian. e CI part of the gradient is
calculated by differentiating E0 with respect to change in CI coefficients:

∂E0

∂ck
= gC I

ck
= 2〈Ψ0 |H − E0|Φk〉= 0 (4.19)

e CI gradient is zero because for a given set of orbitals, the CI coefficients are already
optimised. e CI part of the Hessian (HCI−CI) is calculated by differentiating E0 twice
with respect to the CI coefficients:³⁸

∂2E0

∂cl∂ck
=H C I−C I

ck,cl
=2〈Φl|H − E0|Φk〉
− 4〈Ψ0|H − E0|Φk〉〈Ψ0|Φl〉− 4〈Ψ0|H − E0|Φl〉〈Ψ0|Φk〉

(4.20)

where the last two CI gradient-like terms will disappear. e coupled orbital-CI Hessian
(HOrb−CI) is given as:³⁸
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∂2E0

∂ck∂γij
=H Orb−C I

ij,ck
=2〈Φk|H − E0|Ψij〉+ 2〈Ψ0|H − E0|(Φk)ij〉

− 4〈Ψ0|H − E0|Ψij〉〈Ψ0|Φk〉− 4〈Ψ0|H − E0|Φk〉〈Ψ0|Ψij〉
(4.21)

again the last term in Eq. (4.21) will be zero. Eq. (4.15) for the orbital and CI update
coefficients becomes:[

δcOrb

δcCI

]
=−

[
HOrb−Orb HOrb−CI

HOrb−CI† HCI−CI

]−1[
gOrb

gCI

]
(4.22)

Equation (4.22) can be solved in a single step by inverting the Hessian matrix. Alternately,
conjugate gradient methods can be used to solve it iteratively. Due to the normalisation
condition (i.e., 〈Ψ|Ψ〉 = 1), not all wave function parameter are independent. In other
words, if there are N total parameters, N - 1 can be determined independently while the Nth
parameter is determined by the independent parameters and the normalisation constraint.
is constraint reduces the dimensions of the Hessian matrix by 1. e new orbitals are
found by adding the correction to the old vectors while setting one correction parameter
equal to 1 for each orbital ϕi.

ϕ′i→ c0ϕi+
∑
j̸=i

cijϕj (by setting c0 = 1) (4.23)

e new orbitals are subsequently re-normalised and the process is then iterated until conver-
gence. For a converged wave function, according to the Brillouin theorem,⁴ the interaction
between the Ψ0 and all singly substituted states (i.e., the orbital gradient) will vanish

〈Ψ0|H − E0|Ψij〉= 0 (4.24)

e necessary condition for the convergence of the Newton-Raphson scheme is that
the Hessian matrix is positive deënite. When far away from the solution the Hessian often
has many negative or very small eigenvalues and the Eq. (4.22) in that case produces very
large values for the orbital corrections in the beginning. When this is the case, the Newton-
Raphson method may lead to divergence. To force the iterative procedure to converge, a level
shift is necessary which makes the Hessian positive deënite and the step vector δc sufficiently
small. In that situation (i.e., when the Hessian is not positive deënite) we can either use the
Super-CI method in the ërst few iterations (see Section 4.5 for more details) or the so-called
"stabilised Newton-Raphson" approach.²⁶ In the stabilised Newton-Raphson method, the
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Hessian matrix is augmented as:

δc=−(H+λI)−1.g

with λ=−ε0+R.〈g|g〉 (4.25)

where I is the unit matrix, ε0 is the largest negative eigenvalue of the Hessian and R is a
suitably chosen scalar which ensures that the Hessian is positive deënite.

4.4 Test Calculations

e Newton-Raphson method described above has been implemented in the VB pro-
gram TURTLE³⁹ which is a part of the GAMESS-UK⁴⁰ quantum chemistry package. To
test the convergence and efficiency of the method, calculations were performed on N2, cyc-
lobutadiene, benzene molecules. e cc-pVTZ ((10s,5p,2d,1f/5s,2p,1d)→ [4s,3p,2d,1f/3s,
2p,1d]) basis set was used in all the calculations. is is a fairly large basis set and adds more
ìexibility to the basis functions using p and d functions on H and d and f functions on C
and N atoms. In the orbital optimisation procedure of the VBSCF method two models are
used. In the ërst model mixing between the orbitals that are centred on different atoms is
not considered. is model is called the VB-local method. In the second model, called the
VB-delocal method, a full optimisation is performed without any restrictions. us, all or-
bital mixings (i.e., with all singly occupied and all virtuals which are allowed by symmetry)
are taken into account. All calculations were run on a single core of intel XEON X7542
2.67GHz machine using the serial version of TURTLE. For all VBSCF calculations a con-
vergence criterion of 1.0× 10−10 was used for the correction to the VB energy. For the
nitrogen molecule at each geometrical step the number of iterations required to get conver-
gence, the maximum component of the orbital gradient vector (gmax) after the ënal iteration
and the total cpu time (in seconds) were noted. For cyclobutadiene and benzene, the decrease
in gmax, the correction to the VB energy and the cpu time were collected after each iteration.

4.4.1 Potential Energy Curves for the N2 Molecule

For the nitrogen molecule we calculated the potential energy (PE) curves for the singlet
ground state of the molecule using the VB-local and VB-delocal methods. A single conëgura-
tion VB wave function was used in these calculations. In VB-local, the nitrogen 1s,2s,2px,2py
and 2pz orbitals were used as starting vectors which were taken from a preceding atomic
RHF/cc-pVTZ calculation and all these orbitals were optimised in the VBSCF calculations.
e VB-local results are presented in Table 4.1 using the Newton-Raphson and the Super-CI
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Table 4.1: Convergence of the second-order VBSCF and Super-CI for PE curve calculations of N2
using the VB-local method in cc-pVTZ basis.

Newton-Raphson Super-CI
r12 (Å) No. Iter. gmax cpu(s) No. Iter. gmax cpu(s) VB Energy (hartree)

0.800 5 9.6E-11 123 10 1.1E-06 134 -108.43872201
1.000 5 1.6E-13 122 9 7.0E-07 124 -108.91415109
1.100 4 1.7E-11 99 8 1.4E-06 107 -108.94327542
1.094∗ - 7.1E-14 105 - 1.1E-06 167 -108.94336792
1.200 5 5.6E-13 122 9 6.9E-07 122 -108.92124554
1.400 5 1.5E-13 123 8 4.9E-07 108 -108.83213680
1.600 4 5.0E-14 99 7 7.3E-07 95 -108.75925457
1.800 4 6.3E-14 98 8 2.5E-07 108 -108.72196978
2.000 3 8.5E-13 74 8 2.4E-07 107 -108.70705978
2.200 3 2.3E-13 75 7 6.0E-07 95 -108.70053116
2.400 3 3.4E-13 81 7 2.8E-07 97 -108.69660807
2.600 3 1.8E-12 76 6 5.2E-07 81 -108.69391806
2.800 2 9.5E-12 50 5 1.1E-06 67 -108.69214096
3.000 2 3.5E-12 50 5 8.5E-07 67 -108.69105147
3.500 2 1.4E-12 50 4 4.1E-07 55 -108.68998446
4.000 2 1.8E-12 50 3 3.7E-07 41 -108.68977968
5.000 1 7.3E-12 25 1 4.0E-07 14 -108.68974256
∞ 3 1.4E-11 41 7 6.8E-07 51 -108.68974201

Total cpu(s) = 1463 Total cpu(s) = 1640
∗Geometry from the previous step (1.10 Å) is allowed to relax, r12 = 1.09394 Å.

method. e Newton-Raphson method shows excellent convergence in this case. Although,
a single Newton-Raphson iteration is computationally more expensive than a Super-CI it-
eration, the overall results (the total time for the calculation of the curve) show that this
cost is overcompensated by a reduction in the number of iterations required in the Newton-
Raphson method. In VB-delocal (see Table 4.2) at very compressed geometry (i.e., at 0.80
Å) almost the same number of iterations are need in the Newton-Raphson method as in the
Super-CI method. So at that point the Newton-Raphson method is slightly more expensive
than the Super-CI method. However, again the total time for the calculation of the curve
using the Newton-Raphson method is less than that required using the Super-CI method.
Moreover, the wave function is more precisely converged in the Newton-Raphson method
than the Super-CI method both in VB-local and VB-delocal.

4.4.2 Cyclobutadiene and Benzene

For the cyclobutadiene and benzene molecules, RHF/cc-pVTZ optimised geometries
were used. e VBSCF calculations were performed only on the orbitals of π-symmetry.
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Table 4.2: Convergence of the second-order VBSCF and Super-CI for PE curve calculations of N2
using the VB-delocal method in cc-pVTZ basis.

Newton-Raphson Super-CI
r12 (Å) No. Iter. gmax cpu(s) No. Iter. gmax cpu(s) VB Energy (hartree)

0.800 11 1.1E-10 244 13 3.5E-07 181 -108.53998519
1.000 5 3.0E-13 126 9 6.0E-07 119 -109.02900261
1.100 5 3.7E-10 132 10 3.2E-07 140 -109.05948651
1.094∗ - 3.0E-12 163 - 9.5E-07 181 -109.05959762
1.200 6 4.0E-13 168 12 3.6E-07 190 -109.03550884
1.400 5 1.8E-13 156 14 4.5E-07 251 -108.93427308
1.600 4 4.2E-11 143 13 5.0E-07 258 -108.83977145
1.800 4 1.2E-12 161 10 6.4E-07 214 -108.77631398
2.000 4 1.5E-13 156 8 5.3E-07 171 -108.73853744
2.200 4 2.6E-13 172 7 3.1E-07 162 -108.71689988
2.400 3 3.5E-11 127 6 3.6E-07 139 -108.70465907
2.600 3 6.3E-13 133 5 9.4E-07 115 -108.69784635
2.800 3 4.4E-13 131 5 4.3E-07 116 -108.69411787
3.000 3 2.2E-13 123 5 4.4E-07 109 -108.69209400
3.500 3 1.1E-12 135 4 7.7E-07 91 -108.69026095
4.000 3 1.0E-12 132 5 1.6E-06 94 -108.68989353
5.000 1 7.0E-12 25 1 1.8E-07 14 -108.68974256
∞ 0 1.4E-11 1 0 1.4E-11 1 -108.68974201

Total cpu(s) = 2428 Total cpu(s) = 2546
∗Geometry from the previous step (1.10 Å) is allowed to relax, r12 = 1.09357 Å.

For the doubly occupied orbitals of σ-symmetry, RHF-SCF orbitals were used which were
kept frozen in the VB calculations. In the VB-local method, singly occupied atomic p-
orbitals, taken from a preceding atomic Hartree-Fock calculation, were used as an initial
guess. All spin-coupling modes between the singly occupied p-orbitals were considered in
the VB wave function which correspond to 2 conëguration state functions or VB structures
for cyclobutadiene and 5 for benzene.

In the VB-local calculations for both molecules, the only orbital mixings are between
the "singly occupied orbitals and the corresponding virtuals (on the same atom)". e results
of the Newton-Raphson and Super-CI iterations are summarised in Tables 4.3 and 4.4. In
the Newton-Raphson method the Hessian matrix exhibiteds no negative eigenvalues in any
iteration for both molecules and the optimisation procedure goes quadratically from the very
beginning. Only 3 iterations are required in this case to minimise the energy correction to
less than 1×10−10 hartree. With the same initial vectors the Super-CI converges more slowly
and takes 5 iteration to decrease the energy correction to a similar value. e time required to
perform one Newton-Raphson iteration for both systems is almost the same as that required
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Table 4.3: Convergence of the second-order VBSCF method and Super-CI for cyclobutadiene us-
ing the VB-local method (2 structures, 4 singly occupied and 12 doubly occupied/frozen

orbitals, cc-pVTZ basis).

Newton-Raphson Super-CI
it. ∆E(it,it−1) (hartree) gmax cpu(s) ∆E(it,it−1) (hartree) gmax cpu(s)

0 -153.6656878103 6.1E-02 98 -153.6656878103 6.1E-02 96
1 -0.0314269657 2.1E-03 179 -0.0311914562 6.3E-03 177
2 -0.0000469668 2.9E-06 261 -0.0002807006 5.1E-04 259
3 0.0000000000 5.2E-12 341 -0.0000017613 4.4E-05 345
4 -0.0000000143 3.9E-06 425
5 -0.0000000001 3.5E-07 503

Table 4.4: Convergence of the second-order VBSCF method and Super-CI for benzene using the
VB-local method (5 structures, 6 singly occupied and 18 doubly occupied/frozen orbitals,

cc-pVTZ basis).

Newton-Raphson Super-CI
it. ∆E(it,it−1) (hartree) gmax cpu(s) ∆E(it,it−1) (hartree) gmax cpu(s)

0 -230.6598655922 5.9E-02 255 -230.6598655922 5.9E-02 254
1 -0.0335719529 6.1E-04 455 -0.0335161482 2.5E-03 449
2 -0.0000032764 1.2E-07 654 -0.0000588137 1.7E-04 644
3 0.0000000000 2.1E-15 853 -0.0000002657 1.3E-05 838
4 -0.0000000018 1.1E-06 1032
5 0.0000000000 1.0E-07 1226

Table 4.5: Convergence of the second-order VBSCF method and Super-CI for cyclobutadiene using
the VB-delocal method (2 structures, 4 singly occupied and 12 doubly occupied/frozen

orbitals, cc-pVTZ basis).

Newton-Raphson Super-CI
it. ∆E(it,it−1) (hartree) gmax cpu(s) ∆E(it,it−1) (hartree) gmax cpu(s)

0 -153.6971617429 7.0E-02 102 -153.6971617429 7.0E-02 95
1 -0.0553953655 1.9E-02 193 -0.0570020283 2.0E-02 179
2 -0.0039995033 3.5E-03 277 -0.0026079505 7.2E-04 265
3 -0.0002195682 2.8E-04 361 -0.0000069087 2.4E-05 347
4 -0.0000024653 6.0E-06 446 -0.0000000156 2.6E-06 427
5 -0.0000000011 3.1E-09 531 -0.0000000002 4.2E-07 509
6 0.0000000000 1.8E-15 615 0.0000000000 4.0E-08 596

in the Super-CI method. is is because the basis set is quite big compared to the number
of active VB orbitals (more precisely the number of Brillouin states, nBrill, see Eqs. (4.9)
and (4.10)) so the 4-index transformation is the most expensive part in each iteration of VB-
local calculations for these systems. As the Newton-Raphson scheme requires less iterations
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Table 4.6: Convergence of the second-order VBSCF method and Super-CI for benzene using the VB-
delocal method (5 structures, 6 singly occupied and 18 doubly occupied/frozen orbitals,

cc-pVTZ basis).

Newton-Raphson Super-CI
it. ∆E(it,it−1) (hartree) gmax cpu(s) ∆E(it,it−1) (hartree) gmax cpu(s)

0 -230.6934408216 6.1E-02 265 -230.6934408216 6.1E-02 262
1 -0.1013617755 3.2E-02 (4)∗ 731 -0.0970436377 4.6E-02 626
2 -0.0373469262 1.2E-02 (4) 1197 -0.0350191849 2.6E-02 971
3 -0.0078561640 3.4E-03 (1) 1662 -0.0139572868 6.9E-03 1333
4 -0.0008452295 4.8E-04 (1) 2146 -0.0014225024 6.4E-04 1694
5 -0.0000472300 7.0E-05 (1) 2630 -0.0000151943 2.0E-05 2055
6 -0.0000012788 2.0E-05 3113 -0.0000006562 9.3E-06 2416
7 -0.0000000752 2.8E-06 3596 -0.0000001620 4.7E-06 2777
8 -0.0000000015 6.3E-08 4060 -0.0000000417 2.4E-06 3138
9 0.0000000000 2.6E-11 4543 -0.0000000108 1.2E-06 3491
10 -0.0000000028 6.3E-07 3850
11 -0.0000000007 3.2E-07 4203
12 -0.0000000002 1.6E-07 4556
13 -0.0000000001 8.4E-08 4910
∗Number of negative eigenvalues of the Hessian in the parentheses.

than Super-CI, a considerable time is saved using the former method.

Using the well converged VB-local orbitals as initial guess, the results of full optimisa-
tion (VB-delocal) are presented in Tables 4.5 and 4.6. For cyclobutadiene the Hessian matrix
is positive deënite and quadratic convergence is achieved from the 2nd iteration. However,
the Super-CI method is equally good in this case. So the computational time is almost the
same in both the Newton-Raphson and Super-CI methods. For the benzene molecule in
the starting few iterations, the Hessian matrix has a few negative eigenvalues in the Newton-
Raphson method. is is an indication that the starting vectors are not so good and they
change a lot in the beginning. To restrict the step size, the Hessian was augmented according
to Eq. (4.25) using R= 1.5. After the 5th iteration the Hessian becomes positive deënite on
its own and no further adjustment is required. Although, in case of benzene, the Newton-
Raphson method shows quadratic behaviour in the last 4 iterations, it is still computationally
less expensive than Super-CI which takes 13 iterations to converge as compared to 9 itera-
tions in the Newton-Raphson method. Also the Newton-Raphson method provides a better
converged wave function than the Super-CI method in all these calculations.

It is worth mentioning that the second-order VBSCF method described above is very
general and, apart from VB-local and VB-delocal methods, also works for the breathing or-
bital valence bond (BOVB) method⁴¹⁴² and for the optimisation of nonorthogonal orbitals
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Table 4.7: Convergence of the Newton-Raphson method combined with Super-CI for cyc-
lobutadiene using the VB-delocal method (2 structures, 4 singly occupied and 12 doubly

occupied/frozen orbitals, cc-pVTZ basis).

Super-CI + Newton-Raphson
it. ∆E(it,it−1) (hartree) gmax cpu(s)

0 -153.6971617429 7.0E-02 95
1 (SCI) -0.0570020283 2.0E-02 178
2 (SCI) -0.0026079505 7.2E-04 263
3 (NR) -0.0000069245 3.0E-06 345
4 (NR) -0.0000000002 2.8E-10 434
5 (NR) 0.0000000000 2.0E-15 521

Table 4.8: Convergence of the Newton-Raphson method combined with Super-CI for benzene using
the VB-delocal method (5 structures, 6 singly occupied and 18 doubly occupied/frozen

orbitals, cc-pVTZ basis).

Super-CI + Newton-Raphson
it. ∆E(it,it−1) (hartree) gmax cpu(s)

0 -230.6934408216 6.1E-02 268
1 (SCI) -0.0970436377 4.6E-02 618
2 (SCI) -0.0350191889 2.6E-02 969
3 (SCI) -0.0139572830 6.9E-03 1319
4 (SCI) -0.0014225024 6.4E-04 1688
5 (NR) -0.0000160608 9.1E-06 2175
6 (NR) -0.0000000080 1.2E-08 2662
7 (NR) -0.0000000000 7.9E-14 3149

with (other) arbitrary restrictions, for example, bond distorted orbitals (where the orbitals are
allowed to distort only towards certain centres), block localised wave functions (BLW)⁴³ and
resonating block localised wave functions (RBLW).⁴⁴

4.5 A Combined Super-CI and Newton-Raphson Approach

As has been demonstrated previously¹⁵ the Super-CI and the Newton-Raphson method
are very closely related to each other. Our own experience tells us that the Super-CI method is
quite good at the start. However, it becomes slow as convergence is approached. On the other
hand, the Newton-Raphson method is not so good in the beginning if the Hessian matrix
is not positive deënite. In that case the Newton-Raphson method shows linear convergence
in the starting few iterations at a considerably higher cost compared to Super-CI, due to the
requirement to compute the exact Hessian matrix. However, close to the minimum it shows
quadratic convergence. In our approach, we combine the advantages of both these methods.
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In this combined method, when the initial guess orbitals are far away from the minimum
which is usually the case in the VB-delocal method, the optimisation procedure is started
with the Super-CI method which produces very good correction vectors in the beginning. As
the largest correction vector drops below a certain threshold the Newton-Raphson method
is switched on. is approach is used for the optimisation of orbitals for cyclobutadiene and
benzene using the VB-delocal method and the results are shown in Tables 4.7 and 4.8. A
value of 0.02 for the maximum component of the orbital correction vector (the bij/b0 ratio
in Eq. (4.13)) was used as switching criterion from the Super-CI to the Newton-Raphson
method in these calculations. As can be seen from the results, this strategy considerably im-
proves the efficiency. In case of cyclobutadiene it takes one iteration less than using either
Newton-Raphson or Super-CI alone. While for the benzene molecule, the number of itera-
tions is now reduced to 7 instead of 9 in the Newton-Raphson or 13 in the Super-CI method
and a considerable time saving is achieved.

4.6 Conclusion

A second-order VBSCF method has been presented based on the Newton-Raphson
scheme. Test calculations have shown that this method shows quadratic convergence from
the start when the orbital mixings are only between the doubly or singly occupied orbitals
and the virtual orbitals. is is usually the case when a restricted optimisation is performed
as in the VB-local method. In that case, only 3-5 iterations have been found sufficient to
reduce the energy correction to less than 1.0× 10−10. When the singly occupied orbitals
also mix with each other, the quadratic convergence behaviour was found in the last 4 or
5 iterations. A comparison of the Newton-Raphson method and the Super-CI have shown
that the former is more efficient in most of the test calculations presented above. Since a one
full iteration is computationally more expensive in the Newton-Raphson method than in the
Super-CI, another approach has been presented which combines these two methods. In the
combined method the ërst few iterations were performed with the Super-CI and then the
Newton-Raphson method was used. When performing a full optimisation, this approach
has been found computationally more economical than using the Newton-Raphson method
alone.
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CHAPTER

5
THE EFFICIENCY OF VBSCF ALGORITHMS

Abstract

e efficiency of two orbital optimisation algorithms in VBSCF methods is discussed. One of
these algorithms is based on the approximate Newton-Raphson (aNR) method which employs the
orbital gradient and the diagonal of the Super-CI matrix (as an approximation to the orbital Hessian)
for the optimisation of nonorthogonal orbitals. e second algorithm uses a Fock matrix to compute
a matrix element between two different determinants, which can be used for orbital optimisation.
Detailed timings for orbital optimisation in terms of different orbital types in the calculations are
presented for both algorithms.

Joop H. van Lenthe, Ria Broer and Zahid Rashid, J. Comput. Chem. 2012, 33, 911-913.



Chapter 5 e Efficiency of VBSCF Algorithms

5.1 Introduction

 odern Valence Bond approaches¹⁶ describe the electronic structure of mo-
lecules with variationally optimised wave functions. In most of these methods,

the VB wave functions are multiconëgurational in form and each conëguration is construc-
ted from a set of nonorthogonal orbitals. e Valence Bond Self-Consistent Field (VBSCF)
method⁴⁶ is one of the most general form of these VB methods and offers a complete free-
dom in the choice of conëgurations and the amount of nonorthogonality amongst the orbit-
als. A general VBSCF wave function is constructed as a linear combinations of conëgurations
(usually called VB structures):

ΨV BSC F =
∑
i

CiΦi (5.1)

where each conëguration is a linear combination of Slater determinants composed of nonortho-
gonal orbitals. e orbitals and the CI coefficients are determined variationally by an iterative
SCF procedure. e optimisation of these wave functions and more speciëcally the orbit-
als is a difficult task. e bottleneck in the VBSCF calculations is the evaluation of the
Hamiltonian matrix elements between the determinants. Difficulties arise due to the use of
nonorthogonal orbitals and a large number of cofactors of the overlap matrices need to be cal-
culated. is problem is absent in the multiconëgurational approaches which use orthogonal
orbitals.

In the past, efficient schemes have been developed for the optimisation of VB wave
functions based on the Newton-Raphson method⁷⁸ and the generalised Brillouin theorem
as extended to nonorthogonal orbitals.⁴⁶⁹ It is the aim of this chapter to discuss the effi-
ciency of two orbital optimisation approaches in the VBSCF method. One of these is based
on an approximation to the exact Newton-Raphson scheme and uses only the orbital gradient
and the diagonal elements of the Super-CI matrix to derive orbital changes. In the second
approach the Fock matrix is used to calculate the matrix elements required in the orbital op-
timisation. e computational complexity O of the major steps involved in the optimisation
procedure is described and the most time consuming part in each of these algorithms is dis-
cussed in a way that is more or less machine independent. Finally, the results of actual test
calculations are presented.

5.2 Orbital Optimisation

When optimising the orbitals various approaches, including the simplest one (simplex),¹⁰
may be used. Most efficient is to employ an exact gradient and either an exact Hessian or
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some reasonable approximation thereof. For a single determinant wave function with doubly
occupied orthogonal orbitals we have the well known Fock matrix,¹¹ where the off-diagonal
elements are the gradients and an approximation to the Hessian may be generated from the
diagonal elements. is Fock matrix may be simply obtained by adding the product of the 2-
electron super matrix and the density matrix to the one-electron matrix. Since the 2-electron
super matrix has n4 elements (roughly) the computational effort is deemed to beO (n4), where
n is the number of basis functions.

In the Super-CI method¹²¹³ or its derivatives one expresses the orbital gradient in terms
of Hamiltonian (H ) matrix elements between Ψ0 and the singly excited states, Ψij (which
we call Brillouin states), where Ψij is deëned as:

Ψij =Ci→jΨ0 (5.2)

where Ci→j is an operator, that replaces orbital i by orbital j, once forα and once forβ spin for
each determinant inΨ0. is deënition is valid for multi-determinantal states without ortho-
gonality restrictions as is the case in the Valence Bond methods. If orthogonality constraints
are used, like in the original Super-CI¹²¹³ the deënition of the Brillouin states includes the
unitary condition¹⁴

Ψunitary
ij = (Ci→j−Cj→i)Ψ0 (5.3)

Using these deënitions the gradient g for mixing orbital j into orbital i is:⁵

gij = 〈Ψ0|H − E0|Ψij〉 (5.4)

e generalised Brillouin theorem¹⁴ is obtained by putting the orbital gradient with the Bril-
louin state of Eq. (5.2) equal to 0. e orbital Hessian H is obtained by differentiating the
gradient to obtain:⁵¹⁵

Hij,kl =2〈Ψkl |H − E0|Ψij〉+ 2〈Ψ0 |H − E0|Ψij,kl〉
− 4〈Ψ0 |H − E0|Ψij〉〈Ψkl|Ψ0〉− 4〈Ψ0 |H − E0|Ψkl〉〈Ψij|Ψ0〉

(5.5)

whereΨij,kl is analogously a doubly excited state. Only the ërst term in Eq. (5.5) is used as an
approximation to the Hessian in the Super-CI for orthogonal (MCSCF)¹²¹³ or nonortho-
gonal (VBSCF)⁴⁵ calculations.

In the past an approximate scheme was deëned, called approximate Newton-Raphson
(aNR),¹⁶ where only the orbital gradient and the diagonal of the Super-CI problem is eval-
uated. Recently a scheme was published,¹⁷ where just the orbital gradient was calculated
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for a few orbital mixings using transition density matrices. In the following we analyse the
computational cost of these approaches.

e number of singly excited states (Brillouin states), which depends on the number of
basis functions n and the number of active occupied orbitals N, is approximately equal to
nN. In a complete Super-CI calculation we need the interaction between all the Brillouin
states 〈Ψkl|H − E0|Ψij〉, a total of (nN )2 matrix elements. As one matrix element requires
∼N 4 operations we estimate a total number of operations of n2N 6, ¹⁸ ignoring the triangle
symmetry which is a factor of 2.

Using the Fock matrix method, a gradient for the mixing of two orbitals i and j is calcu-
lated which is just one matrix element betweenΨ0 andΨij over the Hamiltonian. An efficient
method for the calculation of these matrix elements was developed by Broer and Nieuw-
poort¹⁹ and it has been used by Song and co-workers¹⁷ for the optimisation of nonortho-
gonal orbitals. e computational cost is indeed, as written in the original paper,¹⁹ O (n4)
per matrix element. As there are of the order of (n2/2) orbital gradients, the total cost is
about O (n6/2), really more then suggested in the literature.¹⁷

e computational complexity of the orbital optimisation procedure can be compared to
the complexity of the calculation of the Lagrangian, which is needed for the evaluation of the
molecular energy gradients (although in some formulations the Lagrangian is apparently not
needed, but then the restrictions on the wave function are not properly taken into account
(see Section 5.A)). A very rough guess of the cost for calculating the Lagrangian is of the
order of N 6 operations.¹⁸ us, when calculating the molecular energy gradients using the
VBSCF method, the evaluation of the Lagrangian is computationally less expensive than the
orbital optimisation because the latter scales as n2N 6.

5.3 Results and Discussion

We consider different types of orbitals featuring in the singly excited states to get a more
precise estimate of the number of Brillouin states, nBrill. Frozen orbitals (nfrz) are neither
excited from nor excited to. Doubly occupied orbitals (ndoc) are not available to excite to as
Pauli principle forbids it. e only orbitals available to excite from and to are the variably
occupied ones (nvoc) (including the singly occupieds). Finally exciting from an orbital to
itself produces no Brillouin state. e only virtuals (nvirt) available are the ones of the right
symmetry. So we get [ (ndoc × nvirt ) + nvoc × (nvoc-1 + nvirt) ] Brillouin states, ignoring
symmetry.

To be able to give a meaning to our estimates and to give actual timings we deëne some
example cases of the benzene molecule in a standard 6-31G basis, with all covalent VB struc-
tures.
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I. In the ërst case only the π orbitals are optimised. is means n = 66, N = 6, nfrz =
18, ndoc = 0, nvoc = 6 and nvirt = 6. Here we have ignored 36 virtual orbitals. e
only excitations involved are from the orbitals of π spatial-symmetry to the orbitals of π
symmetry and the number of singly excited Brillouin states is: 6 nvoc × ((6 - 1) nvoc
+ 6 nvirt ) = 66 .

II. Alternatively we could consider the case where only nine orbitals are frozen. en we
will have n = 66, N = 6 + 9. We have occupied and virtual orbitals of σ and π symmetry,
but we cannot excite from σ to π and vice versa. In this case, we have nfrz = 9, ndoc(σ)
= 9, nvoc(π) = 6, nvirt(σ) = 36 and nvirt(π) = 6. So the number of Brillouin states is: 9
ndoc × 36 nvirt(σ) + 6 nvoc × (5 nvoc + 6 nvirt(π)) = 324 + 66 = 390.

III. Finally we can destroy the σ-π spacial separation by moving a hydrogen out of the plane.
en we will have nfrz = 9, ndoc = 9, nvoc = 6 and nvirt = 42. e number of Brillouin
states then becomes: 9 ndoc × (6 nvoc + 42 nvirt) + 6 nvoc × (5 nvoc + 42 nvirt) =
714.

All these cases can be handled by the VBSCF program TURTLE⁶²⁰ and (presumably)
by the XMVB²¹²² program. Either program can employ less properly chosen Brillouin states,
if desired. e number of matrix elements that have to be calculated in each optimisation
procedures discussed above is dependent on the number of Brillouin states:

(a) In a Super-CI the number of matrix elements is nBrill× (nBrill+ 1)/2+ 1.

(b) In a Perturbation calculation (aNR), it is 2× nBrill+ 1.

(c) Using the Fock matrix it is nBrill+1 (although an estimate of the Hessian must be made).

In the aNR (or Super-CI) method, an orbital transformation is involved from atomic
orbital (AO) basis to the basis of VB orbitals. A 4-index transformation costs O ((25/24)n5)
for all matrix elements.²³ If there are only nactiv orbitals, for which we need to calculate the
integrals, we estimate a cost of about O (nactiv× n4).

e 4-index transformation is performed just once for all matrix elements, so we distrib-
ute that cost over all the matrix-elements. For the aNR scheme, this means that we get a cost
of

nactiv× n4

(2× nBrill)+ 1
(5.6)

which evaluates to O (1.71×106) operations for case I, O (1.38×106) operations for case II
and O (7.57× 105) operations for case III per matrix element. Note that for Super-CI the
cost of the 4-index transformation is even more negligible.
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Table 5.1: Timings per iteration (in seconds) for an aNR calculation for the three cases on a 2.67
GHz Xeon (using a single core).

Case I Case II Case III

No. of Brillouin states 66 390 (152)∗ 714 (243)∗
Matrix elements Ψ0 5.0 × 10−3 5.0 × 10−3 5.0 × 10−2

4-index Ψ0 2.4 × 10−1 2.9 × 10−1 3.4 × 10−1

Matrix elements orbital-opt. 2.0 × 10−2 2.6 × 100 3.7 × 100

4-index orbital-opt. 3.0 × 10−1 1.1 × 100 1.3 × 100

Fock matrix construction 4.0 × 10−2 3.5 × 10−2 4.5 × 10−2

∗Number of Brillouin states which are treated using a Fock matrix are given in parentheses.

One Brillouin state consists of determinants. In our examples each Brillouin state is built
up of 20 determinants. So one Brillouin matrix element consists of 210 matrix elements over
the determinants. Each takes O (N 4) operations, where N = 6 for case I or 15 in cases II
and III. Hence, for the evaluation of one Brillouin matrix element, we get O (210× 64 =
2.72×105) operations for case I and O (210×154 = 1.06×107) operations for cases II and
III.

In the Fock matrix method (Broer-Nieuwpoort method¹⁹), the cost of calculating one
matrix element is O (n4). So we have one matrix element at a cost of O (664 = 1.897× 107)
operations. is is considerably more than in the most expensive aNR scheme, and we do
not have an estimate of the Hessian yet and we have not considered the back-transformation.

In Table 5.1 we present some timings per iteration (in seconds) for an aNR calculation
for the three cases discussed above. For cases II and III we can use standard Fock matrix
elements for some of the orbital gradients.²⁴ So the number of Brillouin states are given for
aNR and the number of matrix elements among these which are done with a Fock matrix
are given separately in parenthesis. As only one Fock matrix has to be calculated considerable
time is saved. From the example cases given above and Table 5.1 it follows that the most time
consuming part is generally the calculation of the matrix elements in the orbital optimisation
procedure of the VBSCF method.

5.4 Conclusion

e computational costs of different steps has been analysed in detail in the different
orbital optimisation schemes for nonorthogonal orbitals in the VBSCF method. It has been
found that the Fock matrix method is slightly more expensive than the aNR method, although
the former does not involve a 4-index transformation from atomic orbitals to VB orbitals.
is is because the calculation of the matrix elements is often more expensive than the 4-index
transformation.
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APPENDIX

5.A Molecular Energy Gradients in VB and Lagrange Multipliers

When calculating the molecular energy gradients, the constraints in the wave function
must be taken into account.²⁵ In the orthogonal orbital approaches, these are maintaining the
orthonormality of the orbitals and conëguration state functions (in the multiconëguration
approaches). In Valence Bond methods it is only the normalisation of the total wave function.
To calculate the molecular energy gradients using VB, the normalisation restriction:

〈Ψ0|Ψ0〉= 1 or 〈Ψ0|Ψ0〉− 1= 0 (5a)

must be incorporated in the energy function. In the method of Lagrange multipliers this
constraint is handled by introducing another variable λ, called the Lagrange multiplier. By
multiplying the constraint with λ and subtracting it from the object function, which is the
energy expectation value, the associated Lagrange function becomes:

E = 〈Ψ0|H |Ψ0〉−λ
(〈Ψ0|Ψ0〉− 1

)
(5b)

where λ is determined by requiring that the derivative of E with respect to the wave function
variables (orbital and CI coefficients) vanishes. As we have only one restriction, it can be
shown that λ is equal to the energy E of the VB wave function.¹⁸ e expression for the
molecular energy gradient becomes:

∂E

∂R
=

∂

∂R

(
〈Ψ0|H |Ψ0〉− E

(〈Ψ0|Ψ0〉− 1
))

(5c)

e change in the one- and two-electron integrals at each geometrical step induces a change
in the norm of the wave function which is now incorporated in the above expression. In the
gradient expression given in Ref. 17 no such constraint is included.
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CHAPTER

6
RESONANCE AND AROMATICITY: AN AB INITIO VBSCF

APPROACH

Abstract

Resonance energy is one of the criteria to measure aromaticity. e effect of the use of different
orbital models is investigated in the calculated resonance energies of cyclic conjugated hydrocarbons
within the frame work of the ab initio Valence Bond Self-Consistent Field (VBSCF) method. e VB
wave function for each system was constructed using a linear combination of the VB structures (spin-
functions) which closely resemble the Kekulé valence structures and two types of orbitals, i.e., strictly
atomic (local) and delocalised atomic (delocal) p-orbitals, were used to describe the π-system. It is
found that the Pauling Wheland resonance energy with nonorthogonal structures decreases while the
same with orthogonalised structures and the total mean resonance energy (the sum of the weighted
off-diagonal contributions in the Hamiltonian matrix of orthogonalised structures) increase when
delocal orbitals are used compared to local p-orbitals. Analysis of the interactions between the different
structures of a system show that the resonance in the 6π electrons conjugated circuits have the largest
contributions to the resonance energy. e VBSCF calculations also show that the extra stability of
phenanthrene, a kinked benzenoid, compared to its linear counterpart, anthracene, is a consequence
of the resonance in the π system rather than the H−H interaction in the bay region as suggested
previously. Finally the empirical parameters for the resonance interactions between different (4n+2)
or 4n π electron conjugated circuits, used in the Randić's conjugated circuits theory or Herdon's semi-
emprical VB approach, are quantiëed. ese parameters have to be scaled by the structure coefficients
(weights) of the contributing structures.

Zahid Rashid, Joop H. van Lenthe and Remco W. A. Havenith, J. Phys. Chem. A 2012, 116, 4778-4788.
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6.1 Introduction

 romaticity is one of the most important and fundamental concepts in chem-
istry.¹⁴ It is associated with cyclic electron delocalisation⁵⁶ that provides extra

stability to the molecular systems. ere is, however, still much dispute about what aromati-
city really is and the notion is as elusive as ever.¹²⁷⁸ Because aromaticity is not an observable
or directly measurable quantity, it is deëned by convention. Several criteria like extra stabilisa-
tion (delocalisation and resonance) energy (energetic criterion⁹¹⁶), bond length equalisation
(geometric criterion³¹⁷¹⁸) and π electron ring currents induced by an external magnetic ëeld
(magnetic criterion⁶¹⁹²¹) are frequently used as indicators for aromaticity.

e energetic criterion is widely accepted as an index for aromaticity. Various quantum
mechanical and experimental schemes have been proposed to determine this extra stabilisa-
tion energy due to resonance or delocalisation for mono- and polycyclic conjugated com-
pounds. e ërst theoretical estimate of the delocalisation energy came from the work by
E. Hückel⁹¹¹ (Hückel delocalisation energy). Subsequently, Pauling and Wheland¹²¹⁴
used Valence Bond eory to calculate the resonance energies of conjugated systems (Pauling
Wheland resonance energy). Later various other approaches were also put forward to calcu-
late resonance or delocalisation energies. ese, among others, include Dewar method,²²
Hess-Schaad method,²³ topological or graph theoretical method,²⁴²⁶ Randić conjugated
circuits method,²⁷³⁰ Herndon semiempirical VB method³¹³² and the block-localised wave
function (BLW) method.³³³⁸ Some of these methods (Dewar method, Hess-Schaad method
and BLW method) calculate the extra stabilisation energy as the difference between the en-
ergy of the real molecule and a separate real or hypothetical "reference'' system lacking reson-
ance and/or cyclic delocalisation. is leads to a Hückel's type description of delocalisation
energy (a detailed discussion about the difference between delocalisation energy and the res-
onance energy can be found elsewhere³⁹⁴⁰). e choice of the reference system is crucial in
these methods and the computed delocalisation energies depend upon the chosen reference.⁴¹
However, in these approaches, no information regarding the importance of the different con-
tributing (Lewis or Kekulé) valence structures is obtained.

Different isodesmic⁴² and homodesmotic⁴³⁴⁵ reactions are also frequently used to es-
timate the extra stabilisation due to the π electrons delocalisation, the so-called Aromatic
Stabilisation Energy (ASE).³⁴⁴⁶ In this case too, the ASEs depend upon the formulation of
the reactions. An example is the ASE value for the benzene molecule which ranges from 20.3
kcal/mol to 74.7 kcal/mol depending upon the reaction scheme and the level of the theory
used in the calculation.³⁴⁴⁶ e same is the case with the experimental estimates which range
from 21 kcal/mol³ to 65 kcal/mol.³³
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Pauling and Wheland¹²¹⁴ used the concept of two Kekulé and three Dewar structures
(also the two Kekulé valence structures only) for the benzene molecule to study aromaticity.
ey employed an approximate form of the VB method which was developed by Heitler and
London⁴⁷ and the concept of quantum mechanical resonance, developed by Heisenberg⁴⁸⁵⁰
and later Pauling,¹⁴ was used to measure the aromaticity. In this method the resonance energy
arises as a result of the interaction between the structures which contribute to the ground state
of a system, for example, the two VB structures for the benzene molecule which correspond
to its two Kekulé valence structures. Pauling and Wheland¹²¹⁴ deëned the resonance en-
ergy, which we call the Pauling Wheland resonance energy, as the energy difference between
the energy of the multi-structure VB wave function and the energy of the most stable con-
tributing structure in the same calculation. Since the resonance energy in this method arises
automatically when two or more structures are involved in the VB wave function coupled
with the presence of an intrinsic reference (the structure with the lowest energy in the wave
function), a separate reference is not required. us the Pauling Wheland approach offers
the opportunity to calculate the resonance energy directly as a difference between the total
energy of the system and the energy of the most stable contributing structure in the same
calculation.

In the ab initio form of the VB method the contributing structures are represented as
multiples of singlet-coupled pairs of singly occupied orbitals as in Valence Bond Self Con-
sistent Field (VBSCF) method⁵¹⁵³ and Spin-Coupled VB (SCVB) method.⁵⁴⁵⁷ e latter
method uses the Kotani's branching diagrams method⁵⁸ to construct the spin-coupling pat-
terns but at the end of the calculation the spin functions can be transformed to Rumer basis⁵⁹
(singlet-coupled pairs of singly occupied orbitals).

A few years ago some of us calculated the resonance energy of benzene⁶⁰⁶¹ and naph-
thalene⁶² using the VBSCF approach with fully optimised p-orbitals, and pyrene⁶³ using
a VBCI approach with benzene-optimised atomic p-orbitals. In the VBSCF results for the
benzene molecule, it was found that the arbitrariness in the choice of the orbitals (restricted
atomic p-orbitals, delocalised p-orbitals and different orbitals for different structures) greatly
affects the resonance energy. e purpose of this work is to ënd whether there is a qualitative
trend in the resonance energies of different cyclic conjugated systems, with different VB or-
bital models, i.e. restricted (local) and delocalised atomic p-orbitals. For this purpose we ërst
treat the well rehearsed system, benzene, the archetypal aromatic compound and then extend
the calculations to different (4n+2) and 4n π electrons polycyclic systems. e systems stud-
ied include both anthracene and phenanthrene and our VB results present the opportunity to
elucidate the role of the π electrons resonance in their stability difference. At last, we quantify
the empirical parameters for the resonance interactions between different (4n+2) and 4n con-
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jugated circuits used in the Randić's π electron conjugated circuit theory²⁷³⁰ and Herdon's
semi-emprical Valence Bond approach.³¹³² ese parameters are scaled by the coefficients
(weights) of the structures between which these interactions occur.

6.2 Method

6.2.1 Valence Bond Method: eory

In the ab initio VBSCF⁵¹⁵³ method a bond is described as a singlet-coupled pair of
singly occupied orbitals, ϕ1 and ϕ2 centred on atom 1 and 2, respectively. us a bond is:

(bond)12 =N {|ϕ1ϕ2| − |ϕ1ϕ2|} ≡ (1− 2) (6.1)

where N is the normalisation constant. A VB structure for a system is deëned as a product
of all the bonds:

Φ= Â {(core)(1− 2)(3− 4)(5− 6)......((n− 1)− n)} (6.2)

where Â is an anti-symmetriser and core represents the doubly occupied core orbitals. If the
same set of orbitals is used to describe different structures of a system then these structures
differ only in their spin functions, i.e., the spin coupling mode of the orbitals. An ionic struc-
ture can be deëned with orbital ϕi occupied twice or alternatively with two singly occupied
orbitals on the same atom that share the same space.⁶⁴ e VB wave function for a molecule
is then constructed as a linear combination of these VB structures:

Ψ0 =
∑
i

ciΦi (6.3)

In the VBSCF method, the orbitals and the structure coefficients are optimised to get the
wave function which minimises energy expectation value. e relative importance of each
structure in the wave function is determined by solving the generalised eigenvalue problem
for the structure coefficients:

[H− ES]c= 0 (6.4)

Here H is the Hamiltonian matrix and S is the overlap matrix between the structures.

To each structure, a weight can be assigned according to the formula:⁶⁵

Wi =N |ci|2/(S−1)ii ; N −1 =
∑
j

|cj|2/(S−1)jj (6.5)
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where ci represents the coefficient of structure i, S−1
ii is the element of the inverse overlap

matrix between the structures andN is the normalisation constant. e sum of the weights
of all the structures in the VB wave function equals 1. e resonance energy of each system
is calculated according to Pauling and Wheland's¹²¹⁴ deënition as:

Eresonance = E − Estruc (6.6)

where E is the energy of the VB wave function and Estruc is the energy of the structure which
has the lowest energy in the wave function. When the Estruc is calculated from the Hamilto-
nian (H) matrix of nonorthogonal structures the calculated resonance energy in Eq. (6.6)
is called Pauling-Wheland resonance energy with nonorthogonal structures and we desig-
nate it as Eres (the abbreviations used for different types of resonance energies are given in
Table 6.13). e H matrix can also be transformed to an orthogonal basis using Löwdin's
symmetric orthogonalisation procedure.⁶⁶ In that case the structures are changed by changing
the space of each structure while the total space remains the same. e energies of the con-
tributing structures are, therefore, raised relative to the total energy of the system. After the
orthogonalisation there is no overlap between the structures and these structures can be inter-
preted as as separate from each other as possible while maintaining the closest resemblance to
the original nonorthogonal structures. In this case the use of Eq. (6.6) will give a more neg-
ative resonance energy than Eres. is resonance energy is called Pauling-Wheland resonance
energy with orthogonal structures (E⊥res). In the orthogonal H matrix (H⊥) the total energy
is partitioned into the weighted diagonal contribution (

∑
i c

2
i H⊥ii ) of the structures and the

weighted off-diagonal or resonance contribution (cicjH
⊥
ij ) between them:⁶³

E =
∑
i

∑
j

cicjH
⊥
ij =

∑
i

c2i H⊥ii + 2
∑
i<j

cicjH
⊥
ij (6.7)

e sum of the off-diagonal contributions is yet another measure of the resonance en-
ergy, called the total mean resonance energy (E⊥mres ) of the system with respect to the weighted
mean value of the energy of all structures. e E⊥mres of a system can be equal to or even more
negative than the E⊥res. If only two symmetrical structures are involved in the VB wave func-
tion, e.g., the two VB structures for the benzene molecule which correspond to its two Kekulé
valence structures, the energies of the two structures and similarly the structure coefficients
will be equal to each other, i.e., H11 = H22 and c1 = c2. Eq. (6.7), in that case, becomes
E = H11 + H12 (since the structure coefficients are normalised so 2c21 = 2c22 = 1) which
means that the E⊥res and the E⊥mres will be the same. In other cases, i.e., where two non-
symmetrical or more than two structures are involved, the E⊥mres will be more negative than

75



Chapter 6 Resonance and Aromaticity: An Ab Initio VBSCF Approach

1 2 3 4 5 6 7

8

9 10 11

12

4

1 32 4 5

7 8

9

1 6

Figure 6.1: Selected systems for VBSCF study (only a single Kekulé valence structure of each sys-
tem is shown). 1- benzene (D6h); 2- benzocyclobutadiene (C2v); 3- pentalene (C2h);
4- naphthalene (D2h); 5- azulene (C2v); 6- biphenylene (D2h); 7- anthracene (D2h); 8-

phenanthrene (C2v); 9- pyrene (D2h)

the E⊥res. e orthogonalised H matrix also enables the analysis of all resonance interactions
between different contributing structures of a system. e most important contributions to
the resonance energy, in terms of Clar's sextets⁶⁷⁶⁸ or π electrons conjugated circuits,²⁷²⁹
can thus be identiëed.

6.2.2 Computational Details

All calculations were performed using the 6-31G basis set.⁶⁹ e geometries of the
compounds 1-9 in Figure 6.1 were optimised, within the given point group symmetry and
without any other constraint, at RHF level using GAMESS-UK.⁷⁰ e geometries of com-
pounds 1, 3, 4, 7, 8 and 9 at RHF/6-31G level are in good agreement with B3LYP/6-31G∗∗
optimised geometries.⁷¹⁷² Also it is expected that the geometry optimisation at higher levels
of the theory would not change the Valence Bond picture of these systems. Hessian calcula-
tions conërmed that these geometries are genuine minima.

e ab initioVBSCF calculation were performed with TURTLE.⁷³ For each compound,
the VB wave function was constructed by a linear combination of those VB structures which
correspond to all the Kekulé valence structures of the system. From now on we will call these
VB structures the Kekulé valence structures. e (doubly occupied) σ-orbitals were taken
from a preceding RHF calculation and, as an initial guess, the π system was described by
singly occupied atomic p-orbitals. In all the VB calculations, the σ-orbitals were orthogonal
to each other and to the p-orbitals while the p-orbitals were nonorthogonal to each other.
Both the p-orbitals and the structure coefficients were optimised while the doubly occupied
σ-orbitals were frozen.

Two Valence Bond models were used in the orbital optimisation procedure. In the ërst
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model, each p-orbital is expanded only in the basis functions centred on the same atom and
mixing with the basis functions on different atoms is not allowed. We call this model VB-
local. e VB-local has an interpretational advantage and the spin-coupling modes (spin
functions) can be directly related to the Lewis or the Kekulé valence structures. In the second
model, each p-orbital is allowed to expand arbitrarily, i.e., its tail may lie on the neighbouring
atoms or beyond and this model is called VB-delocal. In VB-local, since the atomic orbitals
are not allowed to distort freely in a molecule, a large number of (physically untenable) ionic
and long-bond (Dewar) structures are required to compensate for this restriction. However,
the real interpretational advantage of VB is lost when all the covalent and ionic structures,
for example, 170 ionic and 3 longer-bond structures for 1 or 19362 ionic and 39 longer-
bond structures for 4. We, therefore, considered only Kekulé valence structures in the wave
function to compare it with the VB-delocal approach. e VB-delocal level gives an accurate
description of cyclic conjugated hydrocarbons in their ground states with only Kekulé valence
structures.⁷⁴⁷⁵

It has been shown in the past³⁹ that the VB-delocal resonance energy of benzene (1) is
practically insensitive to basis set size: both the 6-31G (66 AOs) and the aug-cc-pVQZ (954
AOs) basis set calculations give a resonance energy of 20 ± 0.5 kcal/mol at the VB-delocal
level. is insensitivity of the VB-delocal resonance energy with respect to basis set is also
expected for other related systems. is means that we can use the the modest 6-31G basis
set for the VB calculations, which is computationally advantageous.

6.3 Results and Discussion

6.3.1 e Choice of the Orbitals and the Resonance Energy

e Kekulé valence structures of the molecules 1-9 (Figure 6.1) and their contribu-
tion in the VB wave function of each system are shown in Figure 6.2. e total energies of
these systems at RHF, VB-local and VB-delocal level and the different resonance energies are
presented in Table 6.1.

Before analysing the different resonance energies, we discuss the quality of the VB wave
function in the VB-local and the VB-delocal models. In VB-local each p-orbital, though
optimised, is restricted to remain an atomic p-orbital. Due to this restriction the energy of the
(multi-determinant) VB wave function is higher than the energy of the (single determinant)
Hartree-Fock wave function. Also the bonds (double bonds) described with these restricted
p-orbitals are too weak in the contributing Kekulé valence structures and the energies of the
individual structures remain high in the wave function. In VB-delocal the wave function is
much better because the distortion of the orbitals towards the neighbouring atoms results in
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Figure 6.2: e Kekulé valence structures of the molecules 1-9 and their weights in the VB-local
(upper value) and VB-delocal (lower value) wave function

an enhanced overlap between the orbitals (stronger bonds). e individual structures, thus,
become more stable in VB-delocal compared to those in VB-local. e VB wave function also
has a lower energy in VB-delocal than in VB-local (or Hartree-Fock) because of the increased
interaction between the structures.

In the VB wave function with nonorthogonal structures, each structure also uses the
the space of other structures both in VB-local and VB-delocal. Due to the enhanced over-
lap between the orbitals in VB-delocal, the overlap between the structures is also increased
compared to that in VB-local. is increase in overlap between the structures decreases the
energies of the contributing Kekulé structures relative to the total energy. In other words the
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Table 6.1: Results of RHF and VBSCF calculations on the molecules 1-9 and their resonance energies
(in kcal/mol)

System Method E (hartree) Eres E⊥res E⊥mres

1 (benzene) RHF -230.624472 - - -
VB-local -230.540385 -27.74 -44.16 -44.16
VB-delocal -230.692578 -19.97 -60.79 -60.79

2 (benzocyclo- RHF -306.217848 - - -
butadiene) VB-local -306.131381 -11.80 -26.77 -49.33

VB-delocal -306.323242 -4.26 -39.98 -69.46
3 (pentalene) RHF -306.229649 - - -

VB-local -306.159860 -1.77 -5.05 -9.58
VB-delocal -306.344285 -0.41 -6.85 -13.04

4 (napthalene) RHF -383.222722 - - -
VB-local -383.070614 -31.90 -61.38 -64.18
VB-delocal -383.336654 -13.41 -83.12 -96.36

5 (azulene) RHF -383.147289 - - -
VB-local -383.000007 -14.44 -16.23 -16.23
VB-delocal -383.262309 -19.70 -31.81 -31.81

6 (biphenylene) RHF -458.847135 - - -
VB-local -458.670739 -32.43 -62.63 -86.16
VB-delocal -458.986715 -14.37 -67.81 -103.93

7 (anthracene) RHF -535.812437 - - -
VB-local -535.595274 -42.26 -71.97 -75.49
VB-delocal -535.972929 -26.58 -101.34 -109.82

8 (phenanthrene) RHF -535.824583 - - -
VB-local -535.600939 -49.72 -92.73 -94.81
VB-delocal -535.981031 -21.05 -123.55 -140.21

9 (pyrene) RHF -611.555552 - - -
VB-local -611.286993 -62.34 -95.38 -100.87
VB-delocal -611.731359 -41.15 -134.18 -141.61

difference between the energy of the most stable Kekulé valence structure and the total energy
of the system (i.e., the Eres) becomes smaller in VB-delocal compared to that in VB-local. e
Eres of a system calculated with VB-delocal method is, therefore, generally smaller than that
calculated with VB-local method. e Eres values at VB-delocal level are in excellent agree-
ment with those reported by Cooper et al.⁷⁶⁷⁸ (-19.96 to -21.0 kcal/mol for 1 and -18.2
kcal/mol for 4) with their SCVB approach.

When the structures are transformed to an orthogonal basis, the energies of the contrib-
uting Kekulé valence structures are raised and the difference between the total energy and the
energy of the most stable Kekulé valence structure increases. e E⊥res is, therefore, larger than
the Eres both in VB-local and VB-delocal. e effect of the orbital delocalisation (VB-delocal)
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Table 6.2: e energies (in hartree) of the Kekulé valence structures of 1-9. e values in the paren-
theses are after the Löwdin orthogonalisation

System/Method VB-local VB-delocal

1a, 1b -230.496173 (-230.470018) -230.660754 (-230.595707)
2a -306.112587 (-306.088720) -306.316451 (-306.259536)
2b -306.036693 (-305.973298) -306.206720 (-306.088287)
2c -305.978477 (-305.922757) -306.124709 (-306.032501)
3a -306.157042 (-306.151812) -306.343631 (-306.333363)
3b -306.020070 (-306.012359) -306.153677 (-306.132030)
4a -383.019784 (-382.972802) -383.315281 (-383.204187)
4b, 4c -382.991394 (-382.964411) -383.246728 (-383.161110)
5a, 5b -382.976987 (-382.974136) -383.230910 (-383.211612)
6a -458.619061 (-458.570936) -458.963775 (-458.878647)
6b, 6c -458.576114 (-458.524568) -458.890860 (-458.754201)
6d -458.517839 (-458.430062) -458.803825 (-458.597409)
6e -458.484216 (-458.432553) -458.724072 (-458.633006)
7a, 7b -535.527934 (-535.480588) -535.930574 (-535.811441)
7c, 7d -535.488766 (-535.461820) -535.853096 (-535.768051)
8a -535.521701 (-535.452288) -535.947492 (-535.819397)
8b, 8c -535.504245 (-535.452818) -535.892883 (-535.750870)
8d -535.479787 (-535.453160) -535.853078 (-535.747381)
8e -535.485941 (-535.433868) -535.844162 (-535.669941)
9a, 9b -611.187644 (-611.117732) -611.665779 (-611.496527)
9c, 9d -611.186540 (-611.135020) -611.658929 (-611.517535)
9e, 9f -611.152670 (-611.125702) -611.587155 (-611.499568)

on E⊥res is opposite to that on Eres. While the Eres generally decreases in VB-delocal compared
to that in VB-local, the E⊥res increases. is is because the overlap between the structures (in
the wave function with nonorthogonal structures) is larger in VB-delocal than in VB-local so
orthogonalisation raises the energy of the contributing structures more in VB-delocal than in
VB-local relative to the total energy at the same level. e E⊥mres also shows the same trend,
i.e., increases when going from VB-local to VB-delocal, because of the increased interactions
between the contributing structures.

e Eres value of 5 (azulene) shows an opposite trend with delocal orbitals. e reason
can be the charge separation in its π-system (calculated dipole moment (µ) at RHF/6-31G
= 1.74 D, experimental⁷⁹⁸⁰ = 0.80−1.08 D) that cannot be adequately described using the
VB-local model with only Kekulé valence structures (shown by the low dipole moment, µ
calculated at VB-local with two structures is 0.30 D). So the energy of the wave function
does not go as down as it would have been if a few ionic structures had been included. Con-
sequently, the energy difference between the total energy and the energy of the single Kekulé
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valence structure (the Eres) is small. In VB-delocal the orbitals are allowed to distort freely and
the effects of the ionic structures are automatically included in the space of the Kekulé valence
structures. e interaction between the two Kekulé valence structures (the off-diagonal ele-
ment of the H-matrix) is enhanced (µ at VB-delocal with two structures = 0.85 D) which
lowers the total energy of the system and results in the large energy gap between the energy
of the single Kekulé structure and the total energy, i.e., the Eres value.

e energies of the contributing structures (Table 6.2) in the VB wave function show
that the Kekulé valence structures with the maximum number of 6π electron conjugated
circuits have the lowest energy in VB-local when the structures are nonorthogonal. is is,
however, not the case in VB-delocal or when the structures are transformed to an orthogonal
basis in VB-local (see, for example, the energies of the contributing structures of 8 or 9).

Analysis of the different contributions to the E⊥mres (Tables 6.3 to 6.8) shows that those
interactions which lead to the 6π electron conjugated circuits or the Clar's sextets are the
most important contributors to the resonance energy. For 1 there is one 6π electron con-
jugated circuit and this is the only contribution to the E⊥mres . Its value increases from -44.16
kcal/mol in VB-local to -60.79 kcal/mol in VB-delocal (Table 6.1). For 2, 4, 6-9 the values
of the contributions of the 6π electron conjugated circuits range from -9.62 (in 9) to -30.03
kcal/mol (in 2) at VB-local and -9.34 (in 6) to -45.53 kcal/mol (in 2) at VB-delocal level.
e 10π electron conjugated circuits have a small contribution to the resonance energy in
the range of 3 kcal/mol to 11 kcal/mol. Interestingly, the contributions of the 4π and the
8π electron circuits in 2 also fall in the range of that of the 10π electron circuits. Tables 6.3
to 6.8 show that the contributions of the different π electron conjugated circuits to the E⊥mres
are also dependent upon the choice of the orbitals. However, no clear trend is found in the
values of these contributions while going from VB-local to VB-delocal.

e large difference in the contribution of the same type of conjugated circuits (espe-
cially the 6π electron conjugated circuits) in different systems can be related to the energy
differences of the Kekulé valence structures of a system between which these interactions oc-
cur and their weights (the structure coefficients, Eq. (6.3)) in the VB wave function. For
example, 1 has only two structures which contribute equally (c1a = c1b) to the wave function.
e interaction between these structures involve resonance in the 6π electron conjugated cir-
cuit and the value obtained for the resonance contribution is equal to H⊥(1a,1b) (since the wave
function is normalised, the 2c1ac1b in the second term of Eq. (6.7) is equal to 1). In other
cases where two nonsymmetrical or more than two structures are involved, the 2cicj is smaller
than 1 and the resonance contribution (H⊥ij ) is scaled down by 2cicj.

e resonance energies per π electron (EresonanceP E) for these systems (Table 6.9) show
that 1 has the largest values for the EresP E , E⊥resP E and E⊥mres P E both at VB-local and VB-
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Table 6.3: Contribution of different interactions to the E⊥mres (in kcal/mol) for 2

Structures 2a 2b 2a 2b
VB-local VB-delocal

2b -30.03 -45.53
2c -8.56 -10.73 -14.20 -9.73

Table 6.4: Contribution of different interactions to the E⊥mres (in kcal/mol) for 4

Structures 4a 4b 4a 4b
VB-local VB-delocal

4b -28.69 -42.41
4c -28.69 -6.79 -42.41 -11.54

Table 6.5: Contribution of different interactions to the E⊥mres (in kcal/mol) for 6

Structures 6a 6b 6c 6d
VB-local

6b -27.09
6c -27.09 0.49
6d -0.03 -10.61 -10.61
6e -0.62 -3.18 -3.18 -4.23

VB-delocal

6b -40.28
6c -40.28 0.97
6d -0.18 -9.34 -9.34
6e -0.67 -1.96 -1.96 -0.88

Table 6.6: Contribution of different interactions to the E⊥mres (in kcal/mol) for 7

Structures 7a 7b 7c
VB-local

7b -26.64
7c -5.50 -18.28
7d -18.28 -5.50 -1.29

VB-delocal

7b -33.63
7c -10.13 -26.00
7d -26.00 -10.13 -3.92

delocal levels and, hence, the most aromatic character. For 1, 4 and 7 (linear benzenoids) the
aromatic character decreases in the order 1> 4> 7 according to all resonance energies at the
VB-local level. In VB-delocal, however, only the E⊥resP E and the E⊥mres P E show this trend.
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Table 6.7: Contribution of different interactions to the E⊥mres (in kcal/mol) for 8

Structures 8a 8b 8c 8d
VB-local

8b -20.97
8c -20.97 0.16
8d -13.70 -3.88 -3.88
8e 0.03 -15.54 -15.54 -0.51

VB-delocal

8b -34.42
8c -34.42 0.11
8d -22.98 -4.18 -4.18
8e -0.25 -14.14 -14.14 -0.30

Table 6.8: Contribution of different interactions to the E⊥mres (in kcal/mol) for 9

Structures 9a 9b 9c 9d 9e
VB-local

9b -0.09
9c -16.97 -16.97
9d -16.97 -16.97 0.28
9e -9.62 -0.18 -3.15 -3.15
9f -0.18 -9.62 -3.15 -3.15 -0.94

VB-delocal

9b -0.58
9c -22.01 -22.01
9d -22.01 -22.01 0.79
9e -13.40 -1.06 -5.79 -5.79
9f -1.06 -13.40 -5.79 -5.79 -1.69

e EresP E value for 2 is quite small, especially in VB-delocal. However, the E⊥resP E
and the E⊥mres P E are reasonably high both at VB-local and VB-delocal levels. Previous spin-
coupled results⁸¹ suggested that 2 is a combination of a distorted benzene ring and an isol-
ated double bond and is a nonaromatic system. e nucleus-independent chemical shift
(NICS)²¹⁸² showed that the 6-membered ring is aromatic while the 4-membered ring is
antiaromatic and an overall moderately antiaromatic character was assigned to this system.
Based on the perpendicular component of magnetic shielding it was shown⁸³ that 2 is neither
an aromatic nor an antiaromatic system. e 6-membered ring was classiëed as a nonaro-
matic while the question of the (anti)aromaticity of the 4-membered ring was left open. Our
VBSCF results show that the resonance in the 6-membered ring is of the same magnitude as
that in 4. e EresonanceP E shows that 2 is stabilised by resonance to some extent. We, there-
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Table 6.9: Resonance energy (in kcal/mol) per π electron for 1-9

VB-local VB-delocal
System EresP E E⊥resP E E⊥mres P E EresP E E⊥resP E E⊥mres P E

1 -4.62 -7.36 -7.36 -3.33 -10.13 -10.13
2 -1.48 -3.35 -6.17 -0.53 -5.00 -8.68
3 -0.22 -0.63 -1.20 -0.05 -0.86 -1.63
4 -3.19 -6.14 -6.42 -1.34 -8.31 -9.64
5 -1.44 -1.62 -1.62 -1.97 -3.18 -3.18
6 -2.70 -5.22 -7.18 -1.20 -5.65 -8.66
7 -3.02 -5.14 -5.39 -1.90 -7.24 -7.84
8 -3.55 -6.62 -6.77 -1.50 -8.82 -10.02
9 -3.90 -5.96 -6.30 -2.57 -8.39 -8.85

fore, suggest that this system should be considered as nonaromatic if not slightly aromatic.
For 3 a resonance energy of -15.79 kcal/mol was reported⁸⁴ with the VB-local approach in
the D2h geometry and including 4 radical-type structures. But the D2h geometry is a trans-
ition state between the two symmetry-equivalent C2h minima. In C2h symmetry, the VB
wave function of 3 is completely dominated by a single structure (structure 3a in Figure 6.2)
and results in negligible values for all types of EresonanceP E . e NICS values suggested that
6 is moderately aromatic²¹⁸² while 9 is aromatic,⁶³⁸⁵⁸⁶ whereas our VBSCF results show
that both 6 and 9 have large EresonanceP E (nearly of the same magnitude as that of 4, 7 or 8)
and are as aromatic in nature as 4, 7 or 8 are.

In VB-local the values for all the EresonanceP E of 8 are larger than that of 7 but in VB-
delocal the EresP E shows the opposite trend. is change is caused by the larger overlap
of structure 8a (the most stable contributing structure of 8) with the other structures of 8
compared to the overlap of 7a or 7b with the other structures of 7. As mentioned before,
the overlap between the structures (the S matrix in Eq. (6.4)) lowers the energies of the
contributing structures relative to the total energy of the system. We can calculate this overlap
as
∑n

i ci〈Φi|Φ1〉 where 〈Φi|Φ1〉 are elements of the S matrix and ci is the coefficient of ith
structure. For 8a this overlap is 0.7625 in VB-local while it is 0.7683 in case of 7a or 7b.
In VB-delocal it increases to 0.9328 in case of 8a compared to 0.8987 in case of 7a or 7b.
is larger overlap decreases the energy of 8a compared to the energy of 7a or 7b in VB-
delocal and results in smaller Eres and EresP E for 8 than that for 7. When the structures are
transformed to orthogonal basis the energy of 8a again becomes higher than the energy of 7a
or 7b in VB-delocal while the total energy of 8 is lower than that of 7. Hence, the E⊥res and
the E⊥resP E values for 8 again become larger than those for 7.

Due to the use of strictly atomic orbitals, the VB-local approach is generally considered
as providing a clear correspondence between the VB structures (spin-functions) and the Lewis
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or the Kekulé valence structures. In VB-delocal the orbitals are slightly distorted and have
their tails on the neighbouring atoms or beyond. To see how much this distortion of the
atomic orbitals change the VB picture of the structures in VB-delocal, we calculated the
overlap between the orbitals obtained from VB-local and VB-delocal methods. It has been
found that for each system the delocalised atomic orbitals have more than 96% overlap with
the strictly atomic orbitals showing that the structures in VB-delocal remain essentially the
same as that in VB-local.

6.3.2 Why is Phenanthrene More Stable than Anthracene?

It is well established that the kinked or bent polycyclic benzenoids are more stable than
their linear or straight counter parts.⁶⁷⁸⁷ e case of anthracene and and phenanthrene (com-
pounds 7 and 8, respectively, in Figure 6.1) is an archetypal representative. Various exper-
imental⁸⁸⁹¹ and theoretical³⁰⁹²⁹⁷ studies have shown that 8 is 4-8 kcal/mol more stable
than 7. e question why kinked benzenoids are more stable than linear ones is still a matter
of discussion. Gutman and Stanković⁹⁸ have found that the greater stability of 8 over 7 is
due to the presence of two (symmetry equivalent) disjoint 6π electrons conjugated circuits or
Clar's sextets in the former. Bader and co-workers⁹⁹ have reported that the H−H bonding
interaction in the bay region in 8 is responsible for its extra stability, compared to 7. is
proposal of H−H bonding interaction has been challenged both theoretically¹⁰⁰¹⁰³ and ex-
perimentally¹⁰³ and it was shown that, in fact, the H−H interaction in the bay region of 8
is destabilising rather than bonding.

We present further evidence based on our VBSCF study on 7 and 8 that the extra sta-
bility of 8 is not due to the H−H interaction in the bay region instead it is a consequence
of resonance. e VBSCF calculations on the single most stable structure of 7 (7a or 7b
Figure 6.2) and 8 (8a Figure 6.2) were performed and the results are presented in Table 6.10.
If there would be a H−H stabilising effect, it should be present in the single structure of 8 at
both VB-local and VB-delocal level. In our VBSCF method the σ orbitals for both systems
were taken from a preceding RHF and were frozen. So the H−H interaction if present is
included in the core. e π system in both 7 and 8 is equally crude in VB-local (atomic
p-orbitals). If it is assumed that the stability of 8 is due to the H−H bonding interaction,
its single structure is expected to be more stable than that of 7. But this is not the case (see
Table 6.10). On the other hand 8 is 3.55 kcal/mol more stable than 7 at VB-local level (see
Table 6.1) which shows that it is resonance that makes 8 more stable than 7.

When the local restriction is removed from both systems, the single structure of 8 be-
comes more stable compared to that of 7 (Table 6.10) only by changes in its π electrons
system. Note that the energy of the single structure of both systems is lower than the energy
of the corresponding structures in the multi-structure wave function. is is because in the
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Table 6.10: VBSCF energy (hartree) for the single Kekulé valence structure of 7 and 8

Method/System 7a/7b 8a

VB-local -535.527965 -535.521742
VB-delocal -535.950550 -535.957943

single structure wave function the orbitals need to minimise the energy of one structure only
instead of being a compromise to minimise the total energy at the expense of the energy of
individual structures and the structure also uses the space of the other (missing) structures
both in VB-local and VB-delocal. is latter effect (which is unavoidable in a single structure
calculation) is less prominent in VB-local because the orbitals are not allowed to distort freely.
However, in VB-delocal it is quite obvious where it is in favour of 8a than 7a or 7b because
of the symmetry of the former. Structure 8a transforms as the totally symmetric represent-
ation of 8, while for 7 only the combination 7a + 7b transforms as the totally symmetric
representation. erefore, 8a can adapt the orbitals better than 7a or 7b to recover the effect
of the missing structures although it cannot recover the whole effect of the resonance in the
absence of other structures. So the energy of 8a becomes more negative than that of 7a or
7b in VB-delocal. e same effect is also present in the multi-structure VB wave function
that results in a smaller Eres for 8 than for 7. However, in the multi-structure wave function,
we can transform the VB structures to orthogonal basis to avoid the overlap between them.
After this transformation the energy of 8a again becomes higher than the energy of 7a or 7b
in VB-delocal (see Tables 6.1 and 6.2) while the total energy of 8 is still lower than that of 7
which again shows that the resonance is the factor which makes 8 more stable than 7.

A comparison of the different contributions to the resonance in both systems (Tables 6.6
and 6.7) shows that all interactions favour 7, except those which result from the resonance
in the outer 6-membered rings of 8 and leads to the 6π electron conjugated circuits. e
collective contribution of these 6π electron conjugated circuits in 8 dominates all other con-
tributions which favour 7 and makes 8 more stable than 7. ese results are in line with
Gutman and Stanković's⁹⁸ ëndings. We conclude from these results that the extra stabil-
ity of 8 over 7 is a consequence of resonance and/or delocalisation in the π-system and not
because of the H−H bonding interaction in the bay region.

6.3.3 Resonance Interactions Between Different π Conjugated Circuits

e π electron conjugated circuits theory²⁷²⁹ has proven to be very useful in getting
insight into aromaticity especially for the big systems which are far beyond the reach of ab
initio VB methods. e same can be said about Herdon's semi-emprical VB method.³¹³²
e Kekulé valence structures are central in both of these approaches and the interactions
between these structures are determined empirically to agree with the delocalisation energies
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Table 6.11: Values for the resonance interactions (kcal/mol) between different π electron conjugated
circuits for 1- 9†

System/Method VB-local VB-delocal
6 π

1a↔ 1b -44.12 (3.93) -60.74 (4.07)
2a↔ 2b -39.02 (1.17) -60.84 (4.17)
4a↔ 4b/4c -40.67 (0.48) -59.99 (3.32)
6a↔ 6b/6c -43.63 (3.44) -62.36 (5.69)
6b/6c↔ 6d -38.93 (1.26) -55.73 (0.94)
7a↔ 7b -38.03 (2.16) -48.85 (7.82)
7a↔ 7d, 7b↔ 7c -39.91 (0.28) -56.15 (0.52)
8a↔ 8b/8c -41.28 (1.09) -59.79 (3.12)
8a↔ 8d -36.45 (3.74) -51.88 (4.79)
8b/8c↔ 8e -43.05 (2.86) -60.91 (4.24)
9a/9b↔ 9c/9d -40.78 (0.59) -56.07 (0.60)
9a↔ 9e, 9b↔ 9f -36.46 (3.73) -46.76 (9.91)

10 π

4b↔ 4c -12.76 (0.24) -23.56 (1.59)
5a↔ 5b -16.23 (3.23) -31.81 (9.84)
7a↔ 7c, 7b↔ 7d -12.02 (0.98) -21.87 (0.10)
8b/8c↔ 8d -12.12 (0.88) -14.90 (7.07)
9c/9d↔ 9e/9f -11.86 (1.14) -17.73 (4.24)

14 π

7c↔ 7d -4.29 (1.18) -12.58 (6.52)
8d↔ 8e -1.90 (1.21) -1.67 (4.39)
9a↔ 9f, 9b↔ 9e -0.67 (2.44) -2.66 (3.40)
9e↔ 9f -5.57 (2.46) -7.34 (1.28)

4 π

2b↔ 2c 43.60 (2.98) 43.89 (12.11)
6d↔ 6e 37.63 (2.98) 19.67 (12.11)

8 π

2a↔ 2c 18.58 (0.65) 32.07 (4.24)
3a↔ 3b 21.62 (2.39) 30.21 (2.38)
6b, 6c↔ 6e 17.48 (1.75) 21.21 (6.62)

12 π

6a↔ 6d -0.08 (0.70) -0.58 (1.25)
6a↔ 6e 2.42 (1.80) 3.90 (3.23)
6b↔ 6c 1.12 (0.50) 2.79 (2.12)
8a↔ 8e 0.06 (0.56) -0.67 (1.34)
8b↔ 8c 0.38 (0.24) 0.30 (0.37)
9a↔ 9b -0.21 (0.83) -2.31 (2.98)
9c↔ 9d 0.68 (0.06) 1.28 (0.61)
†Values in parentheses are the absolute deviations from the corresponding

mean values.

87



Chapter 6 Resonance and Aromaticity: An Ab Initio VBSCF Approach

Table 6.12: Mean values for the resonance interactions (kcal/mol) between different π electron con-
jugated circuits

Circuit/Method VB-local VB-delocal

6 π -40.19 -56.67
10 π -13.00 -21.97
14 π -3.11 -6.06
4 π 40.62 31.78
8 π 19.23 27.83

12 π 0.62 0.67

derived from the Molecular Orbital eory-based calculations in the former case and the
spectroscopic data in the latter case. e resonance energy and the resonance energy per π
electron, calculated by Jiang and Li¹⁰⁴ with their VB approach, have also been used²⁹ to
determine these parameters. However, the parameters derived from these VB results show
that the interaction between 14 π electron conjugated circuits is more important than that of
10 π electron conjugated circuits which is counterintuitive.

In the ab initio VBSCF method, the resonance (off-diagonal) interactions between the
structures, i.e., 〈Φi|H |Φj〉 (short Φa↔ Φb), in the orthogonalised H matrix give a direct
measure of these resonance parameters. e values obtained for these interactions in 1-9 and
the mean values for each type of interaction (conjugated circuit) are collected, respectively,
in Tables 6.11 and 6.12. e mean values show that the interactions in the (4n+2) π electron
conjugated circuits have a negative (stabilising) contribution while that in 4n π electron con-
jugated circuits have a positive (destabilising) contribution. ese negative and the positive
contributions of, respectively, (4n+2) and 4n π electron conjugated circuits decrease with in-
creasing value of n. Table 6.12 also shows that these values for all interactions are dependent
upon the choice of the orbitals and, except for the 4π electron conjugated circuit, increase
in VB-delocal compared to those in VB-local. Also these values are substantially higher than
those chosen in the Refs. 27--29, 31, 32.

6.4 Conclusion

e resonance energy is a nonobservable property and its calculated value for any system
depends upon the underlying method and its deënition. Two types of p-orbital models (VB-
local and VB-delocal) have been used within the framework of the VBSCF method to see their
effect on the calculated Pauling-Wheland resonance energies and the total mean resonance
energies of cyclic conjugated systems. In VB-local method the variational space of the p-
orbitals is restricted which has an interpretational advantage but the quality of the VB wave
function is not so good. In VB-delocal the wave function is much better due to the distortion
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of the atomic p-orbitals which results in enhanced overlap between the orbitals. It has been
found that the choice of these two types of orbitals has a profound effect on the calculated
resonance energies and their qualitative trend.

When the contributing structures are nonorthogonal to each other (as in the original
Pauling-Wheland deënition of the resonance energy), each structure also uses the space of the
other structures which are present in the wave function. is overlap increases in VB-delocal
compared to that in VB-local. e Eres calculated with VB-delocal method is, therefore,
generally smaller than that obtained from VB-local for each system studied here, except for
compound 5 (azulene).

On transforming the VB wave function to orthogonal basis, the contributing structures
are changed and gain some positive energy. In this case the use of the Pauling Wheland
deënition results in large E⊥res compared to the Eres at the corresponding VB-local or VB-
delocal level. As the overlap between the contributing structures is larger in the VB-delocal
than in the VB-local, orthogonalisation raises the energy of the structures more in the VB-
delocal than in the VB-local relative to the total energy at the same level. is results in larger
E⊥res in VB-delocal than in VB-local. e same trend is also found for the E⊥mres with the two
choices of the p-orbitals.

For structural isomers, in general, non of the three different resonance energies are in
accordance with the order in their total energies in any of VB-local or VB-delocal method.
For structural isomers of benzenoids only, however, the E⊥res and the E⊥mres values are in the
same order as their total energies.

e resonance energy in cyclic conjugated systems is a ground state property and the VB-
delocal method is much better for calculating the ground states of these systems compared to
the VB-local method. It is, therefore, concluded here that the resonance energies calculated
using the VB-delocal method are more reliable than those calculated with VB-local method.
Although the wave function in the VB-delocal method includes the effect of the ionic and the
long-bond (Dewar) structures, the orbitals still remain predominantly atomic orbitals as they
have more than 96% overlap with the strictly atomic orbitals in VB-local in all cases studied
here thus retaining essentially the same correspondence between the VB spin-functions and
the intuitive Lewis or Kekué valence structures as in VB-local. Among the three deënitions
of the resonance energy, the E⊥res and the E⊥mres (which are close to each other and show similar
trends) are more reliable than the Eres because the use of nonorthogonal structures in the
latter case can create ambiguities in the estimates of the resonance energy.
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Table 6.13: List of Abbreviations

E Total energy of the system
Eres Pauling Wheland resonance energy with nonorthogonal structures
E⊥res Pauling Wheland resonance energy with Löwdin-orthogonalised structures
E⊥mres Total mean resonance energy with Löwdin-orthogonalised structures
EresonanceP E Resonance energy per π electron
EresP E Pauling Wheland resonance energy per π electron with nonorthogonal structures
E⊥resP E Pauling Wheland resonance energy per π electron with Löwdin-orthogonalised

structures
E⊥mres P E Total mean resonance energy per π electron with Löwdin-orthogonalised structures
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SUMMARY

e aim of this research has been to extend the ab initio Valence Bond Self-Consistent Field
(VBSCF) methodology and to apply this method to the electronic structure of molecules. e valence
bond method directly deals with the chemical structure of molecules in a pictorial language, which
chemists are familiar with. One of the problems in this case is the manual generation of the structures
where the spin-coupling patterns of the electrons correspond to the classical (Kekulé valence) structures
for polycyclic conjugated systems, which is cumbersome because the number of such structures grows
very rapidly with the size of the system. To solve this problem, a procedure has been developed which
can generate these structures automatically using the geometry (i.e., the coordinates of the atoms) of
the molecules. e efficiency of the method has been tested by generation of Kekulé valence structures
for selected cases of small as well as giant conjugated systems and it has been shown that the procedure
is computationally very efficient and economical (both in memory and time). For cyclic conjugated
systems it has also been shown that the consideration of only Kekulé valence structures in the VB wave
functions already gives an excellent description of their electronic structure.

Another methodological improvement that has been made in this work is on improving the
convergence of the VBSCF wave function. Second-order converging SCF techniques for the optim-
isation of orthogonal orbitals have made excellent progress in the past few decades, however, not for
the optimisation of non-orthogonal orbitals. A second-order converging VBSCF method has been
developed in this thesis based on a Newton-Raphson scheme. e convergence of the method has
been analysed using two optimisation models, i.e., a restricted optimisation (VB-local) and a full op-
timisation without any restriction (VB-delocal). e new method shows excellent convergence when
the singly occupied orbitals do not mix with each other, which is usually the case in VB-local. When
good starting orbitals are available in VB-delocal, the same convergence behaviour has been found in
the full optimisation. e convergence efficiency of the method has been compared with the Super-CI
method. Finally, a combination of Super-CI and Newton-Raphson methods has been shown to be
computationally more efficient than either the Super-CI or the Newton-Raphson method alone, in
particular for the initial guess orbitals which are far from convergence. In the combined method the
ërst few iterations are performed with Super-CI until reasonably small orbital gradients or correction
vectors, and then the ënal iterations are performed using the Newton-Raphson method.

Next, the efficiency of two quite different orbital optimisation algorithms in VBSCF methods has
been analysed in detail. One of these algorithms is based on an approximate Newton-Raphson (aNR)



method, where the Hessian matrix is approximated by a diagonal matrix to reduce the computational
effort. e second algorithm uses a Fock matrix for the orbital optimisation. It has been found that
the Fock matrix method is slightly more expensive than the aNR method, although the former does
not involve a 4-index transformation of the integrals from atomic orbital to VB orbital basis. is is
caused by the fact that the calculation of the matrix elements is often more expensive than the 4-index
transformation.

In the last chapter, the VBSCF method has been applied to calculate the resonance energies

of some small as well as reasonably large cyclic conjugated molecules using the VB-local and VB-

delocal methods. e resonance energy of cyclic conjugated systems is considered as an important

measure of their aromaticity. e effect of the choice of the orbitals on the calculated resonance

energies has been explored. It has been shown that resonance energies calculated with the VB-delocal

method are more reliable than those obtained from the VB-local method. Furthermore, the results for

phenanthrene and anthracene show that the extra stability of the kinked or bent benzenoid systems

over their linear counterparts is a result of the larger resonance energies in the bent benzenoids. At

last, the empirical parameters used in other semi-empirical VB methods and conjugated circuit theory

have been quantiëed with the results of the VBSCF calculations on cyclic conjugated molecules.
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SAMENVATTING

Het doel van dit onderzoek was het verbeteren van de ab initio Valence Bond Self-Consistent
Field (VBSCF) methodologie en de toepassing van de methode op de elektronen structuur van mo-
leculen. De Valence Bond methode heeft rechtstreeks te maken met de chemische structuur van
moleculen in een taal die scheikundigen begrijpen. Een van de eerste problemen die is opgepakt, is
het handmatig genereren van structuren waarbij de spin koppeling patronen corresponderen met de
klassieke (Kekulé valentie) structuren van polycyclische geconjugeerde systemen. Om dit probleem
op te oplossen is een procedure ontwikkeld die deze structuren automatisch kan genereren met als
invoer de geometrie van de moleculen (nl. de coördinaten van de atomen). De efficiëntie van deze
methode is getest door middel van het genereren van Kekulé valentie structuren voor een select aantal
gevallen van zowel kleine als zeer grote geconjugeerde systemen en het is aangetoond dat deze proced-
ure computationeel zeer efficiënt en economisch is (zowel in het geheugen als tijd). Tevens bleek de
beschouwing van alleen de Kekulé valentie structuren in de VB golffunctie voor polycyclische gecon-
jugeerde systemen een uitstekende beschrijving te geven van de elektronen structuur.

Een andere methodologische verbetering die aangebracht is in dit werk gaat over het verbeteren
van de convergentie van VBSCF golffuncties. In de laatste decennia is veel vooruitgang geboekt
bij de verbetering van tweede orde convergerende SCF technieken voor de optimalisatie van ortho-
gonale orbitals, echter niet voor de optimalisatie van niet-orthogonale orbitals. In dit proefschrift is
de ontwikkeling beschreven van een tweede orde convergerende VBSCF methode, gebaseerd op een
Newton-Raphson schema. De convergentie van de methode wordt geanalyseerd met gebruikmaking
van twee optimalisatie modellen, nl. een beperkte optimalisatie (VB lokaal) en een volledige optim-
alisatie zonder beperkingen (VB de-lokaal). De nieuwe methode toont uitstekende convergentie als
de enkel bezette orbitals niet met elkaar mengen, zoals bij VB lokaal het geval is. Als er goede start
orbitals beschikbaar zijn in VB de-lokaal, wordt hetzelfde convergentiegedrag gevonden bij volledige
optimalisatie. De efficiëntie van de methode wordt besproken in vergelijking tot de Super-CI meth-
ode. Tenslotte wordt aangetoond dat een combinatie van de methoden, d.w.z. Super-CI en Newton-
Raphson, computertechnisch efficiënter is dan alleen Newton-Raphson.

In het volgende hoofdstuk wordt de efficiëntie van twee totaal verschillende orbital optimalisatie
algoritmen in VBSCF methoden gedetailleerd geanalyseerd. Een van deze algoritmen is gebaseerd op
de benaderde Newton-Raphson (aNR) methode, waarbij de Hessian matrix wordt benaderd middels
een diagonale matrix om de rekentijd te beperken. Het tweede algoritme maakt gebruik van een Fock



matrix voor de orbital optimalisatie. De Fock matrix methode bleek enigszins duurder te zijn dan
de aNR methode, hoewel er bij de eerste geen 4-index transformatie van atomaire orbitals naar VB
orbitals vereist is. De reden is dat de berekening van matrix elementen vaak duurder is dan de 4-index
transformatie.

In het laatste hoofdstuk, is de VBSCF methode gebruikt om de resonantie energie van zowel
enkele kleine als van redelijk grote systemen te berekenen, met gebruikmaking van de VB lokaal
en de VB de-lokale methoden. Het effect van de keuze van de orbitals op de berekende resonantie
energie werd onderzocht. De resonantie energie van polycyclisch geconjugeerde systemen wordt als
een belangrijke maatstaf voor hun aromaticiteit beschouwd. Aangetoond wordt dat de resonantie
energieën berekend met de VB de-lokaal methode betrouwbaarder zijn, dan die verkregen met de VB
lokaal methode. Bovendien bleek uit de resultaten voor fenantreen en antraceen dat de extra stabiliteit
van de geknikte of gebogen benzenoide systemen ten opzichte van hun lineaire tegenhangers een gevolg
is van de grotere resonantie-energie in de gebogen benzenoids. Uiteindelijk konden de empirische
parameters die bij andere semi-empirische VB methoden gebruikt worden gekwantiëceerd worden
met de resultaten van de hier verrichtte VBSCF berekeningen aan cyclische geconjugeerde moleculen.
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