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CHAPTER

AN OVERVIEW OF THE THESIS

oon after the discovery of the electron, both chemists and physicists started developing
(S the concept of bonding between atoms in terms of valence electrons but the electronic
structure of even the simplest molecules remained an unsolved mystery until the development
of quantum mechanics. Heitler and London’ took the challenge and, by using quantum
mechanics, showed for the first time how atoms combine to form molecules. Their approach
laid the foundations of Valence Bond (VB) theory. At about the same time Hund,?>* Mul-
liken> and Leonard-Jones® developed another approach called Molecular Orbital (MO) the-
ory. For a long time, the VB method used to be the popular approach for the electronic
structure of molecules. With the advent of electronic computers, the MO methods became
prominent while the VB methods slowly "left the stage" because of the difhculties involved
in the computational implementation and applications due to the nonorthogonality of the
orbitals. However, the classical VB theory left behind "a rich legacy of useful concepts and
of theoretical methods"” which not only attract chemists but also physicists.®° This is one
of the reasons that the past three decades have seen a re-emergence of the VB methods in a
powerful ab initio form.'°"'¢ Moreover, recent advances in computer technology have made
it possible to use these methods to study almost the same range of molecules that are accessible
by higher level MO methods.

One of the most general forms of modern VB approaches is the Valence Bond Self-
Consistent Field (VBSCF) method and its efficient implementation in the TURTLE program
due to van Lenthe and co-workers. 1°!7 The author became involved with these methods with
the aim of further developing the VBSCF methodology and its applications to solve chemical
problems. The main focus has been on making the orbital optimisation procedure more

efficient and the implementation more user friendly like automatic generation of the VB wave
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functions in terms of chemically significant configurations. Some important developments
are summarised in this thesis.

Some aspects of @b initio electronic structure theory are discussed briefly in chapter 2. In
chapter 3 a procedure to construct VB wave functions in terms of some chemically meaning-
ful configurations (the Kekulé valence structures) is described along with the results of some
actual calculations. In chapter 4 a second-order VBSCF method for simultaneous optimisa-
tion of orbitals and CI coeflicients is presented, based on a Newton-Raphson scheme. The
convergence behaviour of this method is analysed using different test cases and its efficiency is
compared with the Super-CI method. A discussion on the efficiency of different algorithms
for orbital optimisation in VBSCF methods is presented in chapter 5. In the last chapter the
VBSCF method is applied to calculate resonance energies of cyclic conjugated systems using
two orbital models. The resonance is considered an important measure of aromaticity. It is
shown that resonance energies calculated with fully optimised orbitals, while retaining the
intuitive chemical picture of VB structures, are more reliable than those obtained by strictly

atomic but otherwise optimised orbitals.
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CHAPTER

A BRIEF INTRODUCTION TO ELECTRONIC
STRUCTURE METHODS

b initio quantum chemistry has become a powerful tool to study the electronic
%struoture and properties of molecules. According to quantum mechanics all pos-
sible information about the electronic structure and other observable properties of a molecule,
in its stationary state, can be derived completely from a wave function ¥(g) which is obtained

by solving the time-independent Schrédinger wave equation. '3

HV(q)=EV(q) 2.1)

where %2 is the Hamiltonian operator, E is the eigenvalue of this operator (i.e., the total
energy of the system) and g represents the space and spin variables of the wave function.
Neglecting the spin-orbit interactions and other relativistic effects and adopting the "clamped
nuclei” or Born-Oppenheimer approximation, > the Hamiltonian for a system of M nuclei

and N electrons (in atomic units) is given by:

H = Z V2+ZZ

A B>A

ZyZp

LYY LYY S e

1]>zl] A i

where A and B refer to nuclei with atomic numbers Z, and Zp, respectively and R 45 is the
distance between them, 7 and j refer to electrons, Ty is the distance between electron 7 and j,
R, represents the distance between electron 7 and nucleus A. Vf is the Laplacian operator
which involves differentiation with respect to the coordinates of ith electron. The first term
in Eq. (2.2) is the kinetic energy operator for electrons. The second and third terms are the

potential energies due to nuclear-nuclear and electron-electron repulsions, respectively and
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the last term is the electron-nuclear attraction.

The time-independent Schrodinger wave equation (Eq. (2.1)) can be solved analytically
for only a few systems, for example, the hydrogen atom, H;, He™, etc. The "exact" solu-
tion for a system with more than one electron is impossible. However, by using a number
of approximations, it is possible to find accurate solutions for many-electron systems. The
Schrédinger wave equation is central in all 26 initio quantum mechanical methods. The aim
of these methods is to solve this equation for a system of N-electrons in atoms, molecules or

solids and these methods are usually called electronic structure methods.

2.1 One- and N-electron Basis Approximation

The most commonly used approach to solve the electronic Schrodinger equation for
molecules is the orbital method. In this method the one-electron wave functions, i.e., the
molecular orbitals (MOs), are constructed from a linear combination of one-particle basis
functions. The antisymmetrised products of these MOs are then used to build the N-electron
wave functions.

In principle an MO can be expanded in terms of hydrogen-like atomic orbitals, expo-
nential or gaussian functions, plane waves, etc. However, two type of atom-centred basis
functions are more commonly used in the electronic structure methods, namely the Slater
Type Orbitals (proposed by Zener® and Slater”) and Gaussian Type Orbitals (after Boys®
and McWeeny?). These basis functions are also called atomic orbitals (AOs), although they
are not solutions to an atomic Schrodinger wave equation in general. The Slater type orbitals
have the ¢¢” form where ¢ is called orbital exponent which can have any positive values
and 7 is the electron-nucleus distance. Due to this exponential relationship with the nucleus-
electron distance, the STOs mimics the hydrogen-like orbitals and show excellent behaviour
in the near and far regions of the atomic nucleus. For polyatomic molecules, however, the
solution of Eq. (2.1) requires multi-centred (two, three and four centred) two-electron integ-
rals for which the STOs have complicated analytical solutions. This factor makes the choice
of STOs computationally expensive.

To make ab initio calculations faster and feasible for large systems, the use of Gaussian
type orbitals (GTOs) was proposed which have the <" form. Compared to STOs, Gaussian
functions are inferior in approximating an orbital. However, a linear combination of several
Gaussians can be taken to approximate an STO. Since the product of two Gaussian functions
centred at two nuclei is an another Gaussian centred at a third point, the evaluation of multi-
centred two electron integrals is much cheaper than with STOs. This factor makes GTOs a
preferred choice for performing ab initio calculations.

The total N-electron wave function, constructed from MOs, must be anti-symmetric



Chapter 2 A Brief Introduction to Electronic Structure Methods

with respect to the exchange of coordinates of two electrons (Pauli's principle'?). This anti-
symmetry requirement can be achieved by writing the wave function in the form of determ-
inants, usually called Slater determinants.'' When a Slater determinant, or a linear combin-
ation of a few symmetry adapted Slater determinants, is an eigenfunction of the N-electrons'
spin operators $2 and éz for a given system it is called a configuration state function (CSF)
or simply a configuration. If the one-electron functions form a complete set and N-electrons
wave functions are expanded in a complete N-electron basis (all possible CSFs), the exact
solution of Eq. (2.1) can be found. However, a complete one-particle basis requires that the
unknown MOs are expanded in an infinite number of one-particle basis functions which is
not feasible. In practice the MOs are expanded in a basis set of finite size. So even when
the N-electron basis is complete in the given one-electron space, it is still an approximation
because of the incomplete one-electron basis set. Thus, both the size and the quality of the
basis set affect the accuracy of a solution. Furthermore, the number of CSFs grows factori-
ally with the number of electrons and the size of the basis set. This puts further restrictions
on the choice of the N-electron space and more approximations have to be made to make

calculations possible for reasonably large systems.

2.2 Hartree-Fock Method

The simplest approach to solve the electronic Schrédinger equation is the Hartree-Fock
method '?7¢ where the N-electron wave function is approximated by a single Slater deter-
minant (a single CSF). For a normalised wave function, the energy is then calculated as an

expectation value of the Hamiltonian:
E = (Vpp|# W) (2.3)

where W, 1 is the single determinant Hartree-Fock wave function composed of spin-orbitals,

¢. Using the Hamiltonian given in Eq. (2.2) the above energy expression becomes:
1
E= Z hit Z Z(]J —K,)+ Vi (2.4)
i i
where
ZA

. 1#0) @)

hy= <¢z(1)| - ivf - Z
A

describes the kinetic energy of electron 1 and its attraction to all the nuclei,

Iy= {81181, 2o

7
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and )
K;=(¢,(1)¢,2)|—Ig,(1)$,(2)) 2.7)
"2
are the coulomb and the exchange interactions and V) is the potential energy due to the
nucleus-nucleus interaction.

Starting with an initial guess, the orbitals in the W5 are determined using the vari-
ational principle'” so that the energy expectation value in Eq. (2.4) becomes a minimum or
at least stationary. The variation in the orbitals is subjected to the constraint that they remain
orthonormal. The minimisation of the energy with respect to change in the orbitals leads to

the following Hartree-Fock equations:
E()$ (i) = e,4,3) (2.8)
where F (7) is an effective one-electron operator, called the Fock operator and is written as:

F) =)+ ()~ K(9) 29)

Since the Fock operator is dependent on the orbitals, the Hartree-Fock equations (Eq. (2.8))
are solved iteratively in a way called self-consistent field (SCF) method. The Hartree-Fock

16,18 However, these

integro-differential equations can be solved using numerical methods.
methods are limited to only atoms and some small (usually diatomic) molecules due to the
computational difficulties involved. In the commonly used method, the unknown molecular

orbitals are expanded in terms of known basis functions. '?*°

¢ = Z Cujlu (2.10)
U

and the coefficients of expansion ¢, are determined using the variational principle. The res-

ulting equations, called Hartree-Fock-Roothaan-Hall equations, have the following form:
FY =2 uil (2.11)
p 7

which, after left multiplying with a basis function and integrating, can be written in matrix
form as:

FC =SCe (2.12)

The F in Eq. (2.12) is called the Fock matrix, the S is the overlap matrix between the basis
functions, C is the matrix of coefhicients and € is the matrix of orbital energies. The basis

functions used to expand the MOs are not orthogonal, however, a linear combination can be
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chosen such that this new set forms an orthogonal basis. With this choice the new overlap
matrix S’ becomes a unit matrix and the expression in Eq. (2.12) is reduced to eigenvalue
equation:

F'C'=C*% (2.13)

In Egs. (2.8) and (2.13) the matrix of orbital energies is a diagonal matrix and the resulting
MOs are called canonical MOs. According to Koopman's theorem, ! the orbital energies ¢,
for canonical MOs are approximately equal to the negative of the ionization energy.

The Hartree-Fock approximation implies that an electron moves in an average potential
field created by other electrons, without any instantaneous interaction. It is quite successful
in determining the electronic structure and some one-electron properties of most (but not
all) molecules near their equilibrium geometries. It can recover more than 99% of the total
energy for atomic or molecular systems. However, it can not be used in situations where the
electrons undergo rearrangements, as in the formation and dissociation of bonds. In that case
this approximation breaks down.

In its most popular form the HF method uses the same set of spatial orbitals for electrons
whose spins are paired. For closed-shell systems where all electrons are paired, this form is
called restricted HF (RHF) or simply HF and for open-shell systems (where one or more
electrons are unpaired) it is called restricted open-shell HF (ROHF). It is also possible to
use different spatial orbitals for electrons with different spin in both closed-shell and open-
shell systems. This approach is called unrestricted Hartree-Fock (UHF ). The UHF wave
functions give correct dissociation of atoms or molecular fragments and for open-shell systems
at equilibrium geometry, gives slightly lower energies than ROHFE. However, a disadvantage
of this method is that the wave functions are incorrect as they are not eigenfunctions of the

total spin operator S%.

2.3 Electron Correlation Methods

The serious shortcomings of the Hartree-Fock method can be related to its neglect of
electron correlation effects. The correlation effects are usually divided into near-degeneracy
effects (static correlation) and dynamic correlation. ?* The static correlation is the inadequacy
of the Hartree-Fock wave function to describe the situations where several configurations
become degenerate or near degenerate. This happens most often when bonds are formed or
broken. Dynamic correlation stems from the fact that electrons tend to avoid each other
instantaneously, due to the coulomb repulsion. In the Hartree-Fock method the electron-
electron interaction is treated in an average way using a single CSE. For a more accurate

picture, the instantaneous interaction between the electrons must be taken into account in-
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stead of an average interaction. The electronic structure methods which take care of electron
correlation are called electron correlation methods.

23,24

The correlation energy is defined as the difference between the exact non-relativistic

energy of the system and the energy of the Hartree-Fock wave function in a complete basis.

2.3.1 Configuration Interaction Methods

In the Configuration Interaction (CI) method,?>>*¢ the N-electron wave function is ex-

panded as a linear combination of CSFs:

Vo= o (2.14)

7

These CFESs are generated by distributing /V electrons in the 7 orbitals in all possible ways.
The coefficients ¢;s of the linear expansion are determined by the variational principle'” while
the orbitals (MO coeflicients) are held fixed. When all possible configurations are included in
Eq. (2.14) in a given basis set, this approach is called full CI. Full CI gives the "exact" energy
of Eq. (2.1) within the given basis set. The difference between the Hartree-Fock energy in
a given one-electron basis and the results of a full CI in the same basis is called the basis ser
correlation energy.”* In the full CI, the number of CSFs grows factorially with the number of
electrons and the size of the basis set. The total number of CSFs for a system of NV electrons,

m basis functions with total spin § is given by Weyl's formula: 27-%°

285 +1 +1 +1
Josp(nm,S)= lm ) " (2.15)

For a small system like the C, molecule with 12 electrons and 100 orbitals, the number
of CSFs is approximately 10", This makes full CI calculations impossible for all but very
small molecules in a small basis. To make the CI calculations practical for large systems, it
is necessary to truncate the CI expansion space in some way by ignoring certain CSFs. This
gives rise to the truncated versions of full CI which are abbreviated as CIS, CID, CISD,
CISDT, CISDTQ, so on where S, D, T, Q, represents singly, doubly, triply, quadruply,
excited CSFs. According to the Brillouin theorem,?° the singly excited CSFs do not interact
with the Hartree-Fock wave function through the Hamiltonian. The CID level is, therefore,
the smallest truncation which can provide an improved wave function and energy over the

Hartree-Fock reference.

An essential requirement in the a6 initio methods is their size extensivity>* which allows a
consistent comparison of the energies of molecules of different sizes. A method that scales lin-

early, i.e., scales as the exact energy does, with the number of (interacting or non-interacting)

10
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particles in the system, is called a size extensive method. Size consistency?* is another required
feature in ab initio approaches. A method is size consistent if it gives the energy of two or
more infinitely separated atomic or molecular fragments equal to the sum of the energies of
the isolated fragments. The full CI method is both size extensive and size consistent, however,
it is not practical for large systems. A major problem with the truncated CI methods is that

they are neither size extensive nor size consistent.

2.3.2 Multi-Configurational Self-Consistent Field Methods

In the multi-configuration self-consistent field (MCSCF) methods?*"*° the wave func-
tion is constructed as a linear combination of a limited number of carefully chosen CSFs and
both the CI coeflicients and the orbitals are optimised by an SCF procedure to yield the low-
est energy expectation value. The optimisation of an MCSCF wave function is much more
work than optimising only the CI coefficients and several schemes based on the generalized
Brillouin theorem“® (an extended form of Brillouin theorem for MCSCF wave functions),
Newton-Raphson method or direct minimisation of the energy have been developed for this

purpose (for a review of these methods see Ref. 41 and references therein).

In a special form of the MCSCF method the orbitals (and similarly the electrons) are
divided into a set of "inactive" orbitals which remain doubly occupied in all CSFs and an
"active" space of variably occupied orbitals. In the active space the CSFs are generated by
distributing active electrons among the active orbitals in all possible ways (a full CI in the
active space). This method is called a fully optimised reaction space (FORS) method #>44
or a complete active space SCF (CASSCF) method. “>48 It is widely used in the situations

where near to complete degeneracies play important roles.

To account for both the dynamic and static correlation, a combination of MCSCF
and CI approaches has also been developed, called Multireference Configuration Interac-
tion (MR-CI).?® In the conventional CI usually the HF wave function is taken as a reference
while in the MR-CI, the MCSCF (or CASSCF) wave function is taken as reference and then
a Cl is performed by including all singly and doubly excited CSFs with respect to the refer-
ence. This approach is mainly used for small molecules and gives accurate results. However,

for large systems it becomes computationally extremely demanding,.

2.3.3 Perturbation Theory

The Raleigh-Schrodinger perturbation theory (RS-PT) is another way to obtain cor-
rections to HF wave functions and recover electron correlation effects. In this method the

Hamiltonian for the system to be solved is divided into an unperturbed Hamiltonian (7)),

11



Chapter 2 A Brief Introduction to Electronic Structure Methods

for which solutions have already been found, plus a small perturbation (V).
H =T+ IV (2.16)

where A is a parameter so that when A = 0 there is no perturbation and when A =1 the
system is fully perturbed. The unperturbed Hamiltonian has known eigenfunctions and ei-
genvalues. For small perturbations, the solution for the perturbed system can then be found

by expanding the wave function and energy in terms of the following series:

U =0 4 )p® 4 20@ 4 B3gB) 4......

E=FO 4 \EO 4+ 2E@ 4 BEC) 4...... 217)

where U() is an unperturbed wave function and E(©) s its eigenvalue. The higher terms
are the first order, second order, and so on, corrections to the wave function and energy.
A special variant of RS-PT is Mgller-Plesset (MP) perturbation theory.*’ In this approach
the unperturbed Hamiltonian is taken as the sum of one-electron Fock-operators and W(%)
is taken to be the Hartree-Fock wave function. The truncation of the series in Eq. (2.17) is
denoted as MPn (n = 1, 2, 3 ---), for example, MP2, MP3, MP4, etc. MP2 is the lowest
level required to get an improvement on the HF energy. It is the most economical way to
account for the correlation energy. MP2 method is size extensive and in most cases it can

recover more than 80-90% of the correlation energy.

In the MPn methods the perturbation is applied to a single determinant HF wave func-
tion. When a system has a (nearly-)degenerate ground state, a single configuration is not
enough to describe the unperturbed wave function. In that case a proper reference is a mul-
ticonfiguration wave function. Such methods have been developed where the MCSCEF (CAS-
SCF) wave function is taken as the zeroth order wave function and then the perturbation is
applied. These methods are commonly called CASPT2,°9>? CASPT3,°? depending on the
level of the applied perturbation. These methods are not size extensive in general. However,
using appropriate zeroth-order Hamiltonian an exactly size extensive and size consistent form
of Multi-reference Meller-Plesset (MRMP) perturbation theory has also been developed. >#°°
The convergence of these approaches is almost of the same quality as MRCI methods but the

former are quite less intensive in computational cost.

2.3.4 Coupled Cluster Methods

In the Coupled Cluster (CC) approach®®>” the wavefunction is expanded from the HF

reference as:

Voo =6 @, (2.18)

12
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where the operator ¢/ is define by Taylor series expansion as:

T ~ Lo 1oy
2! 3! — A
The cluster operator T is defined as:
T=T +T,+T,++Ty (2.20)

Tl, fz, 7:3, and so on, are one-particle, two-particle, three-particle, up to N-particle excita-
tion operators. The exponential nature of the cluster operator ensures size extensivity at all
levels. When all fN operators are included in the expansion, this method becomes equival-
ent to the full CI method. However, as mentioned earlier, that is only possible for quite
small systems in small basis sets. The CCSD level, where T = fl + fz, is commonly used.
The CCSDT is the next level which contains the contribution of triple excitations. It gives
highly accurate results for correlation energies but is also computationally very demanding.
Some approximate forms of CCSDT have been developed among which the CCSD(T) >%>?
is widely used. In CCSD(T) the contribution of the triples is estimated using perturbation

theory.

2.4 Valence Bond Methods

In the ab initio approaches discussed so far the molecular orbitals (MOs) are expanded
as linear combinations of atomic orbitals (LCAQ), i.e., the basis functions. These MOs are
orthogonal to each other and each MO spans the entire molecule rather than being localised
on atoms or in the bonding regions. This approach is called Molecular Orbital (MO) the-
ory 0% the simplest of which is the Hartree-Fock method. These delocalised MOs do not
give the intuitive picture of a chemist's idea of a bond. They may be transformed to localised

orbitals 68

do that.

An alternate approach to find the solutions of the electronic Schrodinger equation for

without affecting the total wave function, however, there is no unique way to

molecular systems is the use of Valence Bond (VB) theory which is closely related to the chem-
ist's idea of molecules as being composed of atoms and held together by chemical bonds. Ac-
tually, the idea that atoms combine by sharing their valence electrons to form molecules pred-
ates modern quantum mechanics. ®® Heitler and London,”® using the principles of quantum
mechanics, showed for the first time how the sharing of electrons holds the atoms together
in a covalent molecule like H, thus providing the quantum mechanical basis for this the-

ory. Pauling and Slater introduced the idea of maximum overlap between the orbital and

13
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the "changed quantization" (hybridisation) which became very popular among the organic

7374 and many others””

chemists. Further efforts by Heitler and Rumer,”* Slater,”” Pauling
developed the Heitler-London's methods into a general theory of electronic structure which

is now known as valence bond theory.
2.4.1 Classical Valence Bond Theory

In the Heitler-London method”? a bond is described as a singlet-coupled pair of singly
occupied orbitals. For example, for the H, molecule the 15, orbital of one hydrogen atom is
singlet-coupled to the 15, orbital of the second hydrogen atom. In the determinantal form the
Heitler-London wave function for H, molecule can be represented by a linear combination

of two Slater determinants as follows:

Dy = N {|1s,(D1s,(2)] = [15,(1)15,(2)[} (2.21)

@ = A {15,(1)1sy(2) + 15,(1)1s,(2)Ha(1) (2) = B(1)a(2)} (2.22)

where // is the normalisation constant. The above wave function gives a qualitatively correct
picture of bonding. For quantitative results it can be improved by adding more configurations

which correspond to ionic structures.

@ iomic = N {15,(N)15,(2) + 15,(N15,(2)Ha(1) 5(2) = B(1)a(2)} (2.23)

The total VB wave function is then taken as a linear combination of these structures:

Vyp =Py + 69 (2.24)

The number of all (ionic and covalent) VB structures for a system can be determined by

Eq. (2.15) while the number of covalent structures is given by:

N N N
_ _ 2.25
/s <§N+S) (;N+S+1> (2.23)

where N is the number of electrons and § is the total spin of the system.
2.4.2 Coulson-Fisher Approach

In the classical form of the VB method, the atomic orbitals are not allowed to distort
freely as the atoms approach each other in a molecule. To compensate this effect, a large
number of ionic structures is required. As the number of ionic structures becomes large, the

76

simple predictive power of VB wave functions is obscured. Coulson and Fischer”¢ suggested

14
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the use of optimal (slightly deformed atomic) orbitals. For the H, molecule, a Coulson-

Fischer wave function can be represented as:

Ver =/ {$1(1)9:(2) + ¢2(1)$1 (2 Ha(1)5(2) - B(1)a(2)} (2.26)

where ¢1 and ¢2 are now deformed atomic orbitals:
b, =1s,+ Als, and by =1s,+ Als, (2.27)

where A is a variationally adjustable parameter. The resulting orbitals are predominantly
atomic in character, however, they are slightly delocalised. Since this deformation of the
orbitals automatically includes the effect of the ionic structures, an obvious advantage of the
Coulson-Fischer approach is that the number of structures in the wave function can be kept

to a minimum.
2.4.3 Generalised Valence Bond Method

The first VB method based on the Coulson-Fisher approach is the generalised valence
bond (GVB) method.””~7? In the GVB approach, two nonorthogonal orbitals are used to
describe a pair of electrons in a bond. Each pair of electrons in a bond is coupled to a singlet.
The singlet coupled pairs of orbitals are then combined to give the total wave function of a
system with an overall singlet spin state. This is known as the GVB perfect pairing (GVB-
PP) approach. Such two electron two orbital pairs are called geminal pairs. These orbitals
are optimised variationally. The computation cost is reduced by posing strong orthogonal-
ity (SO) between different geminal pairs. The SO-GVB-PP is a restricted form of VB where
only a single spin-coupling pattern is allowed. In another form called unrestricted SO-GVB#°
multiple spin-couplings are allowed for a given number of singly occupied orbitals. The re-
striction on different pairs to remain orthogonal, while computationally advantageous, leads

sometimes to artefacts. 2>8!

2.4.4 Spin-Coupled Valence Bond Method

The spin-coupled valence bond (SCVB) method 827> uses a more generalised form of the
Coulson-Fisher wave function for molecules. In the SCVB approach, the /V electrons which
are involved in the bonding are described by /Vsingly occupied nonorthogonal orbitals. These
orbitals are then singlet-coupled in all possible ways to give the overall spin S of the system.

The general form of an SCVB wave function is:

ng
Yscyp = /’/ZC%M[%%% e ¢N@]5\{M;k] (2.28)
k=1
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where /" is the normalisation factor, $ is an antisymmetriser, @]S\f 115 describes a particular
spin-coupling pattern between the orbitals and cg, is the spin-coupling coefhicient. The dif-
ferent spin-coupling modes are generally referred to as VB structures. The total number of
these structures, fSN is determined by Eq. (2.25). Both the orbitals and the VB coefficients

are optimised.
2.4.5 Valence Bond Self-Consistent Field Method

The Valence Bond Self-Consistent Field (VBSCF) method 868 is the most general form
of the modern VB approaches. Mathematically, it is the nonorthogonal equivalent of MC-
SCF methods which are based on the generalised Brillouin theorem. In the VBSCF ap-
proach the VB wave functions can be constructed using any number of VB structures and
any amount of nonorthogonality among the orbitals is allowed. Both the orbitals and VB
structure coeflicients are optimised. The resulting wave functions are compact and can be
easily interpreted in terms of chemical concepts. The orbitals used to build the VB structures
may be fully optimised as in the SCVB or they may be restricted to a subspace of the full or-
bital space, e.g., just on the atoms where they are centred. The expressions for the analytical

8990 and second order response properties®! have also been de-

molecular energy gradients
veloped for the VBSCF wave functions. Recently, a new approach, called Atoms in Valence
Bond (AIVB) method ?*?? has been developed within the framework of the VBSCF method.
In this approach, instead of the traditional VB structures, the wave function is constructed
as a linear combination of all possible atomic states of the different atoms in a molecule. The
advantage of this approach is that no preconceptions are required about a system to describe

its electronic structure or properties.
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CHAPTER

GENERATION OF KEKULE VALENCE STRUCTURES
AND THE CORRESPONDING VALENCE BOND WAVE
FUNCTIONS

Abstract

A general method based on a recursive algorithm is presented for generating Kekulé valence struc-
tures. This method is applicable for all kinds of (poly)cyclic conjugated systems including fullerenes.
The application of the algorithm in generating Valence Bond wave functions, in terms of Kekulé
valence structures, is discussed and illustrated in actual Valence Bond calculations. Two types of VB-
SCF calculations, one involving Kekulé valence structures only and the second one involving all co-
valent VB structures, were performed for benzene, pentalene, benzocyclobutadiene and naphthalene.
Both strictly local and delocalised p-orbitals were used in these calculations. Our results show that
when the orbitals are restricted to their own atoms, other VB structures (Dewar structures) also have
a significant contribution in the VB wave function. When removing this restriction, the other VB
structures (Dewar and also the ionic structures) are accommodated in the Kekulé valence structures,
automatically. Therefore, at VBSCF delocal level, the ground states of these systems can be described

almost quantitatively by considering Kekulé valence structures only at a considerable saving of time.

Zahid Rashid and Joop H. van Lenthe, /. Comput. Chem. 2011, 32, 696-708.



Chapter 3 Generation of Kekulé Valence Structures and the Corresponding VB Wave Functions

3.1 Introduction

ekulé valence structures have been around for more than a century and these struc-
tures have played a key role in understanding the stability of (poly)cyclic conjugated
systems. ' A Kekulé structure is a representation of an aromatic molecular entity (such as ben-
zene), with fixed alternating single and double bonds, in which interactions between multiple
bonds are assumed to be absent.* Shown in Figure 3.1 are the two Kekulé valence structures of

the benzene molecule.

Figure 3.1: The two Kekulé valence structures of the benzene molecule

The number of Kekulé valence structures for a system depends upon the arrangement
of the atoms. Different structural isomers, therefore, can have different number of Kekulé
valence structures, for example, anthracene and phenanthrene. The former has four and the
latter has five Kekulé valence structures. It is not difficult to generate all Kekulé valence struc-
tures for smaller (poly)cyclic conjugated systems, however, the problem quickly goes out of
hand for bigger molecules as Pauling says, "A few minutes suffices to draw the four unexcited
(Kekulé) structures for anthracene, the five for phenanthrene, or the six for pyrene ........... an
hour or two might be needed for the 110 structures of tetrabenzoheptacene'.> A lot of work has
been done on the enumeration of these structures for different kinds of system and has been

%10 and research articles (for an overview see a Chem. Rev.

discussed in books,®® reviews
article by M. Randi¢'® and the references therein). But very few methods have been reported
so far for constructing all Kekulé valence structures for a given system. Randi¢'! described
an algorithm based on the graph of a molecule to generate Kekulé valence structures for
(poly)cyclic conjugated systems. Based on the reduced graph of a molecule, Dzonova-Jerman-
Blazic and Trinajsti¢'? discussed an elegant algorithm for the enumeration and display of
Kekulé valence structures for benzenoids. Cai and co-workers'? proposed a method for gen-
erating Kekulé valence structures and longer range resonance valence structures (Dewar struc-
tures) using the adjacency matrix and adjacency bonding array. The adjacency matrix A is
defined as a square matrix (with dimensions N X N for an N-atoms system) with the following
elements. %17

1 bonded directly are j and 7 if

1, .
4 0 otherwise

The adjacency matrix is related to the well known Hiickel's Hamiltonian matrix.'¢ The lat-

ter can be converted to adjacency matrix after a suitable scaling (the set of approximations
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used by Hiickel'® to construct the Hamiltonian matrix and the (0,1) notation was originally

introduced by Bloch'”>'%). For the benzene molecule in Figure 3.1 the adjacency matrix is

(hydrogens excluded):
(0100 0 1]
1 01 0 00
01 0100
001 010
00 01 01
10001 0,

where the diagonal of the above matrix represents the atom itself and the off-diagonal non zero
entries shows its neighbours. An adjacency bonding array is defined as a connection matrix
(with dimensions NV X 3, based on the concept that a carbon atom involved in the Kekulé
valence structures can have maximum three adjacent atoms) which records the position of
the non-zero elements in the adjacency matrix of a molecule. The elements of the adjacency

bonding array ((#ba),,, k=1, 2, 3) will be:

) Lis a. if
(aba), = { Jj is a;; i

0 otherwise

The adjacency bonding array for the benzene molecule, based on the above adjacency

matrix, will be;

(V) B @) SRV B NI I @)
S O O o O

— N =N

0

here the first row shows that atom number 2 and 6 are neighbours of atom number 1 and so
on. If some of the rows of the adjacency matrix of a system have three non-zero elements (e.g.,
in case of the adjacency matrix of the naphthalene molecule, excluding hydrogen atoms) the

corresponding rows of the adjacency bonding array will have three non-zero entries.

In this chapter a new approach is presented to generate all Kekulé valence structures for
a given system. For any kind of system we record the number of all unique (single) bonds
and their positions and we call this representation /st of non-redundant bonds. The idea is

similar to that described by Cai and co-workers'? but in terms of adjacency matrix, we use
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only the upper triangle (or the transpose of the lower triangle) of this matrix. Our method
is very economical in memory and very efficient in computing time. In this method only a
one dimensional array of /V integers is required to generate all Kekulé valence structures for
an [V atoms system. Since Kekulé valence structures are central in the 26 initio Valence Bond
based quantum chemical description of aromaticity, our main focus is the generation of a
Valence Bond wave function in terms of all Kekulé valence structures for a given (poly)cyclic
conjugated system. First, an introduction to the list of non-redundant bonds is presented
and, based on this list, the algorithm is described for generating Kekulé valence structures.
The implementation of the algorithm is explained and its efficiency is discussed based on
selected examples of benzenoids, among which the most complicated case has 206 carbon
atoms and has more than 10'° Kekulé valence structures, and fullerenes where the most
complicated one has 140 carbon atoms and more than 10? Kekulé valence structures. Next,
a brief introduction to a Valence Bond (VB) structure and VB wave function is given along
with the role of Kekulé valence structures in the b initio VB based calculations. Finally, the

results of actual VBSCEF calculations on some selected systems are presented.

3.2 Generation of Kekulé Valence Structures

To generate Kekulé valence structures a list of non-redundant bonds is constructed for a
given system. For illustration we take the example of pyrene as shown in Figure 3.2. Through-
out the rest of this section we will be considering only that part of a molecule which is actually
involved in the Kekulé valence structures (i.e., the part of the system where the position of
single and double bonds is resonating) and we will call it the skeleton of the system. The hy-
drogens atoms or other substituents that are not involved in Kekulé valence structures, will be
excluded. A bond x— y between two atoms x and y will always be a nearest neighbour bond.
We will use IV for the total number of atoms or the number of singly occupied p-orbitals that

are involved in the Kekulé valence structures. /V will always be an even number.
3.2.1 List of Non-redundant Bonds

A list of non-redundant bonds is a representation for all the single bonds in the skeleton
along which double bonds can be assigned in any of the Kekulé valence structures for that sys-
tem. To make this list, the atoms in the skeleton are numbered from 1 to /V. The numbering
is completely arbitrary and can start wherever one wants. Then in each x—y bond, the higher
numbered atom is listed as a neighbour of the lower numbered atom but the lower numbered
atom is not listed as a neighbour of the higher numbered atom. Any atom x, therefore, has
only those atoms as its neighbours which are higher than x in numbering order. Such neigh-
bours of each atom are called non-redundant neighbours and in the list, each non-redundant

neighbour of an atom x represents a bond between atom x and the neighbour atom. As soon
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Non-redundant bonds

Adjacency bonding array Atom Non-redundant

T2 4 57 _ neighbours_
1
11 21 3 6 2 § 2 5
9 8 312 7 13 3 7 13
411 8 14 4 8 14
5(1 9 15 5 9 15
5 4 62 10 16 6 |10 16
713 12 0 7 12
15 14 84 11 o 8 |1
915 11 0 9 11
13 16 10(6 12 0 10 12
1m|8 9 0 11
3 6 1217 10 0 12
1313 15 0 13 15
7 10 1414 16 0 14 16
1515 13 0 15
12 166 14 0 16 | |
(a) (b) (o)

Figure 3.2: (a). carbon skeleton of the pyrene molecule, (b). adjacency bonding array for the skel-

eton, (c). list of non-redundant bonds for the skeleton.
as we have decided which atoms are involved in the Kekulé valence structures, this list can be
generated, automatically, from the atomic coordinates of the system by specifying a suitable
distance for nearest neighbours. It can also be generated from the adjacency matrix for that
system. In the latter case the position of non-zero entries in a row x in the upper triangle
of the matrix would be the non-redundant neighbours for atom x. The adjacency bonding
array can also be used to construct the list of non-redundant bonds and in that case if the
non-zero element in a row x of the adjacency bonding array is higher than x then it will be a
non-redundant neighbour of atom x.

Figure 3.2 shows the skeleton of pyrene, the adjacency bonding array and the "list of
non-redundant bonds" for it. In the list of non-redundant bonds (Figure 3.2¢), for example,
atom 1 has three non-redundant neighbours, i.e., 2, 4 and 5, and with atom 1, each of these
neighbours represents a bond, i.e., 1 =2, 1 —4 and 1 — 5 are non-redundant bonds as we do
not consider them againas2—1,4—1or5—1.

In the skeleton, if there is an atom that has an adjacency of three then there must be
another atom which also has an adjacency of three and the total number of such atoms (i.e.,
atoms having an adjacency of three) must be even. Otherwise the third adjacency of the
former atom will be a substituent and we have to exclude this from the skeleton and renumber
the remaining part to construct Kekulé valence structures for that system. This situation is
explained in Figure 3.3. In Figure 3.3a atom number 3 has three adjacent atoms, i.e., 2, 7
and 13, and there is no other atom with an adjacency of three in this system. To construct
the Kekulé valence structures for this system we have to treat atom number 7 and the rest
of the tail attached to it, as substituent and then renumber the atoms in the remaining six
membered skeleton. Note that the position of the double bonds in the substituent will remain
fixed (non-resonating double bonds) and these non-resonating double bonds can be included

in each Kekulé valence structure after the Kekulé valence structures are generated. For the
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Figure 3.3: Substituents and non-redundant neighbours in the skeleton.

systems shown in Figures 3.3b to 3.3d all atoms can be included in Kekulé valence structures
as each of these systems has an even number of those atoms having an adjacency of three and
the double bonds will be resonating in the entire system.

As each bond is counted with the lower numbered atom only, for two atoms having
an adjacency of three we get only one extra non-redundant bond or neighbour. For mono-
cyclic conjugated hydrocarbons, like 1,3-cyclobutadiene or benzene, the total number of
non-redundant bond or neighbours of all the atoms is always equal to the number of atoms
(V) in the skeleton. For all polycyclic conjugated hydrocarbons, the total number of non-
redundant bonds or neighbours of all atoms can be calculated as N + 2772, where nT is the
total number of atoms having an adjacency of three. In the list of non-redundant bonds the
first atom always has at least two or at most three non-redundant neighbours, atom number
2 has one up to three and atoms from 3 to NV - 3 can have zero up to a maximum of three
non-redundant neighbours. Atom /V - 2 can have zero up to two, atom N - 1 can have zero
or one and the Nth atom cannot have any non-redundant neighbour.

Once this list is generated from any arbitrary numbering, the numbering order of the
atoms and the non-redundant neighbours for each atom are fixed. We can not change this

order or any neighbour of an atom. This is the base of our algorithm.

3.2.2 Algorithm

Considering all bonds in the list of non-redundant bonds as double bonds, we make all
possible combinations of these bonds with the only condition that no atom can be present
twice in any combination. Each of these combinations is called a candidate (Kekulé) struc-
ture. We begin the procedure with a candidate structure containing no atom or bond (an
empty candidate structure). Then starting from atom 1 in the list and going to each next atom
one by one in order (the order is important), any of the (double) bonds for each atom can be
selected to combine it with the existing candidate structure as long as the above mentioned
condition is not violated. On reaching the last atom, in the list of non-redundant bonds,
if all atoms have been included in the candidate structure then that candidate structure is a

Kekulé valence structure. The algorithm, presented here, to generate candidate structures is
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recursive procedure generateKekule (kneib, ineib, kekule, N, katom, natom)

integer N, katom, natom ! N = total number of atoms in the system.

katom = the atom we have selected from the list.

natom = no. of atoms stored in candidate structure.

on first time entering the procedure natom will be zero

integer kneib(N+N/2)

integer ineib(N)

kneib(*) contains all non-redundant neighbours.

ineib(*) contains number of non-redundant neighbours

for each atom.

integer kekule(natom+2) kekule(*) is a candidate (kekule) structure. It is an

array of numbers (atom numbers) that represent the position

of (double) bonds in a candidate (kekule) structure.

natom is the number of atoms already stored in this array and

2 provides the space for the next two atoms (i.e., a double bond)

that can be combined with this candidate (kekule) structure.
1: start of the procedure
if katom is not present in the candidate (kekule) structure then
if katom has non-redundant neighbours then
for all non-redundant neighbours i of katom
do
if i is not present in the candidate (kekule) structure then
store katom and i as a (double) bond in the candidate (kekule)
structure at natom + 1 and natom + 2
recursive call generateKekule (kneib, ineib, kekule, N, katom+l, natom+2)
end if
end do
end if
else (i.e., katom is already present in the candidate (kekule) structure)
if katom < N (i.e., all atoms have not been included yet in the candidate
(kekule) structure) then choose the next atom from the list of
non-redundant bonds as katom (i.e., increment katom by 1)
go to 1
else (i.e., katom = N and all atoms have been included in the candidate structure)
A Kekule structure has been generated.
Store this Kekule structure and exit the procedure (to go up in recursion(s)).
end if

end of the procedure

Figure 3.4: A description of the algorithm to generate Kekulé valence structures.

recursive. To combine a (double) bond, with the existing candidate structure, the algorithm
calls itself. Starting from the first atom in the list (we call this atom karom), the algorithm is

described in Figure 3.4.

As the algorithm is recursive, it keeps on calling itself within itself unless the last atom
is selected as katom from the list of non-redundant bonds. Each time, calling the procedure
for the next katom means making the next recursion within the loop 7 over the neighbours
of current katom. In the next recursion, there is again a loop i over the neighbours of new
katom and then there is again a recursive call. When the algorithm reaches the last atom in
the recursion, a candidate structure containing a (double) bond for each atom is generated.
This structure is stored as a Kekulé valence structure and the algorithm goes up in recursion(s)

to make a new candidate structure.
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@ (b)

Figure 3.5: Two candidate structures which are not suitable for Kekulé valence structures.

When generating a candidate structure, there may be a situation where all the neigh-
bours of an atom x have already been included in a candidate structure and atom x itself is
left alone. This kind of situation is shown in Figure 3.5. In Figure 3.52 atom number 11
is left alone (only the lowest numbered atom is mentioned here) and now a bond (i.e., a
double bond) is not possible for it in this candidate structure. This candidate structure is,
therefore, not going to be a part of a Kekulé valence structure. The same is the situation in
Figure 3.5b where atom number 9 is left alone. As soon as such an atom is selected as katom
in the list of non-redundant bonds, i.e., an atom whose neighbours are already present in
the candidate structure but that atom itself is not present in it, the algorithm does not go
further in combining the rest of the possible bonds with this structure. Instead, it goes up
in the recursion(s) in order to generate a different candidate structure. If it gets stuck again
somewhere in the same situation as shown in Figure 3.5, it again goes up in the recursion(s).
In this way it tries to create every possible candidate structure but finally gives only Kekulé
valence structures. The rest of the structures disappear automatically. The non-redundancy
of neighbours of each atom in the list of non-redundant bonds and the check to find out if
the newly selected katom is already present in the candidate (Kekulé) structure, ensure that
each Kekulé valence structure will be unique. The last mentioned two factors are also the

points where the algorithm gains its efficiency.
3.2.3 Implementation and Efficiency

The algorithm has been implemented in Fortran. The program allocates two integer
arrays of size (IN+/N/2) and (V) to store the non-redundant neighbours for all the atoms and
their number for each atom, respectively (for monocyclic systems an integer array of size
(V) is required to store all non-redundant neighbours). An integer array of size (V) is used
to store the candidate structures. As soon as a Kekulé valence structure is generated, the
program writes it (if requested) to an output file. For the pyrene molecule in Figure 3.2,
the six Kekulé valence structures generated using this algorithm, are presented in Table 3.1.
In this representation each atom at odd position forms a double bond to the atom that is

immediately to its right. These Kekulé valence structures are graphically shown in Figure 3.6.
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Table 3.1: Symbolic representation of the six Kekulé valence structures of pyrene.

Structure Representation
1 1 2 3 7 4 14 5 9 6 16 8 11 10 12 13 15
2 1 2 3 13 4 8 5 15 6 10 7 12 9 11 14 16
3 1 4 2 3 5 9 6 10 7 12 8 11 13 15 14 16
4 1 4 2 6 3 7 5 9 8 11 10 12 13 15 14 16
5 1 5 2 3 4 8 6 10 7 12 9 11 13 15 14 16
6 1 52 6 3 7 4 8 9 11 10 12 13 15 14 16

Figure 3.7: Some selected benzenoids for which Kekulé valence structures are generated.
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Table 3.2: The number of Kekulé valence structures for molecules 1-10 in Figure 3.7 and computa-
tional cost.

Compound No. of atoms (&) No. of Kekulé structures  Time (seconds)

1 16 6" 0.000
2 24 20 -~ 0.000
3 26 25 0.000
4 32 50 * 0.000
5 40 81 * 0.000
6 48 520 0.003
7 66 1365 * 0.002
8 106 145908 0.324
9 132 125820416 * 803.762
10 206 11983093719 56635.887

*Literature values are availabe. See Refs. 10, 13

Table 3.3: The number of Kekulé valence structures for some Fullerenes and computational cost.*

Fullerene/N  Symmetry Group  No. of Kekulé structures  Time (seconds)

Cyo I, 36 0.000
Cs, D, 184 0.000
Ceo I, 12500 T 0.058
Cro Dy, 52168 T 0.324
Co I, 140625 T 1.002
Ceo Dy, 270153 1.854
Coo D, 1384341 7.275
Cioo (o 4792838 26.154
Ciio (o 19105016 111.003
Ciro (o 90229920 459.907
Ciro D, 97491466 521.936
Cis0 (o 420111098 6947.965
Crio I, 2178836352 T 15314.475
Ciao D, 2181807742 15399.886

*For all fullerenes cartesian coordinates were used to make the list of non-redundant bonds.

T Licerature values are availabe. See Refs. 10, 13, 19, 20

To check the efficiency of the program, it has been tested by generating Kekulé valence
structures for some selected benzenoids shown in Figure 3.7 and fullerenes. The number of
Kekulé valence structures generated and the computing time is given in Tables 3.2 and 3.3.
All test were run on a 1.5 GHz Itanium-2 single processor. For all examples the storage of the
Kekulé valence structures was turned off to save output file space (for the biggest benzenoid
shown in Figure 3.7, about 9 TB of disk space is required to store all Kekulé structures). It is

apparent from Tables 3.2 and 3.3 that the algorithm is very efficient and takes a few minutes
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to generate more than 10® and a few hours for more than 10'° Kekulé valence structures. For
most of these benzenoids and some of the fullerenes, the number of Kekulé valence structures
has already been reported in the literature. '%!3!%2° The number of generated Kekulé valence
structures using this algorithm are in line with the literature values. Since the described
algorithm tries to assign the double bonds in the candidate structures in every possible way,

this guarantees that it will not forget any of the Kekulé structures of a given system.

3.3 Kekulé Valence Structures in Valence Bond Theory

Valence Bond (VB) Theory has special importance for chemists because it directly deals
with the structures of the molecular systems that chemists are familiar with. However, other

(indirect) methods?2!—24

also exist where the localised picture of electrons in the bond regions
or lone pairs can be regained after transforming the delocalised molecular orbitals obtained
from a calculation based on molecular orbital theory. In VB Theory a bond is described as
resulting from the overlap of two orbitals ¢, and ¢, lying on atom 1 and 2, respectively, that

are singlet-coupled. Thus a bond is:

(bond);, = {|$1 5] = |1 4,1} =(1-2) (3.1)

where /' is the normalisation constant. A "VB structure” for a system is defined as a multiple

of these bonds:
& =/ [(core)(1 —2)(3 —4)(5 = 6).o.((n— 1) = )] (3.2)

where core represents doubly occupied core orbitals and o isan anti-symmetriser. If the same
set of orbitals is used to describe different structures of a system then these structures differ
only in their spin part (i.e., the spin coupling pattern of the orbitals). An ionic structure
can be defined as having orbital ¢, occupied twice or alternatively with two singly occupied
orbitals on the same atom that share the same space. The VB wave function for a molecule

is then constructed as a linear combination of these VB structures.

v, = ®, (3.3)

7

Each structure (®) is a linear combination of Slater determinants and can be expressed as:
e=> a,A, (3.4)

where A\, is an anti-symmetrised product of orbitals.
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Table 3.4: The number of Kekulé valence structures vs the total number of VB structures and the
number of Slater determinants per structure for some (poly)cyclic conjugated systems.

No. of singly occupied No. of Kekulé ~ No. of det./

ilelerls p-orbitals fSN valence structures structure
benzene 6 5 2 8
naphthalene 10 42 3 32
anthracene 14 429 4 128
phenanthrene 14 429 5 128
pyrene 16 1430 6 256
coronene 24 208012 20 4096

The total number of, linearly independent, VB structures with only covalent bonds is

obtained by the expression;?°

N N N
= — 3.5
fs <§N+S> <§N+S+1> (3.3

where N is the number of electrons, § is the overall spin of the system and fQN is the number
of covalent VB structures. The relative importance of each structure is determined by solving

the generalized eigenvalue problem for the structure coeflicients:
[H—ES]c=0 (3.6)

where H is the Hamiltonian matrix and S is the overlap matrix.

Rumer's diagram method ¢ is widely used to generate VB structures (spin-functions). In
this method the orbitals (i.e., the singly occupied orbitals) are singlet coupled in all possible
ways as long as the bonds do not intersect. In a Valence Bond description of (poly)cyclic con-
jugated systems, these VB structures are always related to the Kekulé and Dewar structures.
For these systems, the VB structures where all the bonds are between the nearest neighbours,
are Kekulé valence structures. Those with one or more long bonds are Dewar structures.
Table 3.4 shows the total number of VB structures, fSN , and the number of Kekulé valence
structures for some (poly)cyclic conjugated systems. It is obvious from the table that the total
number of VB structures and the number of Slater determinants increases exponentially with

the number of electrons (singly occupied p-orbitals).

Because of the computational cost, a6 initio VB calculations involving all VB structures,
are possible for systems having only a few electrons or singly occupied p-orbitals. However, it
was discovered ?7-?® that for (poly)cyclic conjugated systems the most important structures are

those where the bonds are between the nearest neighbours (i.e., Kekulé valence structures) and
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their contribution in the VB wave function is more than 80%. The number of Kekulé valence
structures for these systems does not grow so fast with the number of electrons or singly
occupied p-orbitals. To make 26 initio VB calculations practical for systems like phenanthrene
or pyrene, the ground state wave function can be approximated as a linear combination of

Kekulé valence structures (X) only.

U, = cK; (3.7)

7

Equation (6.4) is then solved for the energy eigenvalues (E) and the structure coefhicients (c,)
to determine the relative importance of each Kekulé valence structure in the wave function.
It is necessary, however, to point out that for systems having twentyfour singly occupied p-
orbitals, for example coronene, the ab initio VB calculation is not an easy task (beyond the
limits of normal desktop computers) because of the large number of determinants involved,
even though the number of Kekulé valence structures is not too large (only 20 structures in

the case of coronene).

In order to generate a Valence Bond wave function as a linear combination of Kekulé
valence structures only, the above algorithm has been implemented in the @b initio Valence
Bond program TURTLE?’(a VB/VBCI/VBSCEF program available as part of GAMESS-
UK?°). In the ab initio VB method each singly occupied atomic p-orbital is expanded as

a linear combination of Gaussian-type orbitals (GTOs), centred at different atoms:

¢7Ti :Zc,ui)(,u (38)

7

where each Xu is a set of contracted primitive Gaussian functions for a given basis. The
program uses these localised atomic GTOs to figure out which p-orbital is centred on which

atom by checking the orbital coefficients, ¢,. It uses the atomic coordinates to make a list

c
7
of non-redundant bonds for the atoms involved in the Kekulé valence structures. For each
Kekulé valence structure, a corresponding spin-function is generated. The linear combina-
tion of these spin-functions is then used as the Valence Bond wave function in ab initio VB

calculations.

3.4 Test Calculations

VBSCEF calculations were performed on benzene, pentalene, benzocyclobutadiene and
naphthalene (compounds 1-4 in Figure 3.8). The geometries of the compounds 1-4 (Fig-
ure 3.8) were optimised, within the given point group symmetry and without any other
constraint, at the Hartree-Fock level using GAMESS-UK.?° In these calculations a 6-31G
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O®CRLC

Figure 3.8: Selected systems for VBSCF study (only a single Kekulé valence structure of each system
is shown). 1. benzene (Dy,), 2. pentalene (C,,), 3. benzocylcobutadiene (C,,), 4.
naphthalene (D,,)

PP0YY

Figure 3.9: Graphical representation of the 5 VB structures of benzene

basis set (after Pople and co-workers®') was used. For pentalene only the C,, symmetric
structure was considered as earlier results show that the highly symmetrical D,, molecule
is not a genuine minimum.*%3% The Hessian calculations showed that these geometries are

genuine minima.
3.4.1 VBSCEF Calculations
The ab initio VBSCEF calculations were performed with the TURTLE? program pack-

age. In these calculations again the 6-31G basis set was used. For each system, the VB wave
function was constructed as a linear combination of all Kekulé valence structures. The ini-
tial (doubly occupied) o-orbitals, for each system, were taken from a preceding restricted
Hartree-Fock calculation and for the 7-system singly occupied atomic p-orbitals were used.
In all the calculations, the o-orbitals were orthogonal to each other and to the p-orbitals
while the p-orbitals were allowed to be nonorthogonal to each other. Both the structure
coefhicients and the orbitals coeflicients (for all o and m-orbitals) were optimised. In the
optimisation procedure two methods were used. In the first method, that we call VB-local,
each p-orbital is expanded only in the basis functions which are centred on the same atom
and mixing with the basis functions which are centred on different a