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Numerical methods

3.1 Introduction

A finite volume multigrid method has been used to solve the system of partial differential
equations describing thermohaline convection in porous media (equations (2.16) and (2.17),
together with either (2.18) or (2.19). This method was originally developed for convection
of purely viscous fluids at infinite Prandtl number [Trompert and Hansen,1996]. General
characteristics of this method are first, a subdivision of the model domain into control volume
cells. Next, the equations are discretized in space and time separately, in a conservative way
(sections 3.2 and 3.3). The accuracy of the discretization is of second order. Finally, the
resulting system of algebraic equations is solved line-by-line with a multigrid method in
which a basic iterative method is used: Gauss-Seidel or damped Jacobi1.

The advantage of using one of these simple iterative methods is that the amount of com-
putation time needed for each iteration step is small, as compared to more advanced iterative
methods [Golub and Van Loan,1993]. However, the rate of convergence deteriorates as the
size of the problem grows. The reason for that is that the high-frequency Fourier modes of
the error are damped much more rapidly than the low-frequency ones. Here, the error is de-
fined as the difference between the iterated approximated solution and the exact solution of
the discrete system of equations. High-frequency Fourier modes are modes that cannot be
represented on coarser grids. The damping of the low-frequency modes becomes even worse
for an increasing problem size.

In the multigrid method, the low-frequency part of the error is approximated on coarser
grids. Subsequently, this approximation is used to improve the fine grid solution. A detailed
description of the multigrid method used in this thesis, is given byTrompert and Hansen
[1996]. For an extensive discussion of multigrid methods, the reader is referred toHackbush
[1985] andWesseling[1992]. With the multigrid method, computation time needed for one
iteration scales linearly with the number of cells. Consequently, problems with high spatial
resolution can be solved very economically, as compared with direct solution methods. In
the final section, the results of a number of benchmark tests of flow in porous media are
discussed.

1Optimization of the method to the computer platform used discriminates between these two methods: Gauss-
Seidel is used on scalar machines, damped Jacobi on vector platforms.
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3.2 The spatial discretization

A Cartesian geometry is divided in rectangular shaped cellsΩi,k. A control-volume dis-
cretization is used to discretize the non-dimensional equations (2.16)-(2.17), together with
(2.18) or (2.19). All three unknowns (pressure, temperature and compositional concentra-
tion) are defined at the center of each cell (see Figure 3.1). The velocity normal to a cell
face is defined at the center of that cell face. Note that the velocity vector is not unknown,
but can be calculated directly from the pressure and density distribution by Darcy’s law. The
equations can all be written in the general form

∂Q
∂t

+
∂F
∂x

+
∂G
∂z

= f , (3.1)

By using midpoint quadrature, all equations are integrated over the control volumeΩi,k with
center(xi ,zk) and sides∆x and∆z.(

∂Q
∂t

)
i,k

∆z∆x+ ∆z(Fi,k−Fi−1,k)+ ∆x(Gi,k−Gi,k−1) = fi,k∆z∆x. (3.2)

In thermochemical convection at Rayleigh numbers relevant to porous or partially molten
environments, thin horizontal boundary layers develop. Moreover, physical parameters like
permeability may vary significantly with depth. Therefore, we allow for a non-uniform grid
in thez-direction. The grid is uniform in thex-direction.

All derivatives are discretized in a straight-forward manner. The diffusion coefficients
are computed at the cell centers. However, the discretization of equation (3.2) requires the
diffusion coefficients at the midpoint of cell faces. Such a diffusion coefficient at a cell
edge is computed by using a harmonic interpolation based on continuity of fluxes [Patankar,
1981]. For example, on a uniform grid in one dimension the harmonic average of a diffusion
coefficientϕ is:

ϕc =
2ϕiϕi+1

ϕi + ϕi+1
. (3.3)

This leads to a more accurate discretization, when the diffusion coefficientϕ is discontinuous.
This is often the case in the momentum, energy and species equations.

3.2.1 Diffusive and dispersive fluxes

For the spatial discretization of the diffusive fluxes in equation (3.2), a central approximation
is used. For example, on a nonuniform grid in one dimension, the diffusive thermal flux
∂T/∂x on cell boundaryi + 1

2 separating cellΩi from Ωi+1, is computed in the following
manner:(

∂T
∂x

)
i+1/2

=
Ti+1−Ti

xi+1−xi
(3.4)

whereTi is the temperature at the center of cellΩi andxi the center of cellΩi .
The diagonal terms of the dispersive fluxes in the tensorial species equation are calculated

in a similar way as the thermal diffusion terms in equation (3.4). For the off-diagonal terms,
on the other hand, a vertical derivative has to be calculated on a vertical cell face and a
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Figure 3.1:The grid cellΩi,k used in the cell-centered discretization together with the variables asso-
ciated with this cell.

horizontal one on a horizontal cell face. For example, the vertical derivative of chemical
concentration on a vertical cell face is discretized as(

∂C
∂z

)
i+1/2

=
Ci+1,k+1 +Ci,k+1−Ci+1,k−1−Ci,k−1

2(zk+1−zk−1)
(3.5)

3.2.2 Advective fluxes

The upwind-biased Fromm scheme is used for the approximation of the advective thermal
fluxes. This scheme interpolates the temperature at cell faces using two upwind points and
one downwind point. It uses a Taylor series expansion for the interpolation using temperature
at cell centers and an approximation to the first derivative. In one dimension, the advective
thermal flux becomes:

(qT)i+1/2 = max(qi,0)
(

Ti +
(
xi+1/2−xi

) Ti+1−Ti−1

xi+1−xi−1

)
+ min(qi ,0)

(
Ti+1 +

(
xi+1/2−xi

) Ti+2−Ti

xi+2−xi

)
, (3.6)

whereqi is the normal velocity at cell boundaryi +1/2 andxi+1/2 the spatial coordinate of the
cell boundaryi + 1

2. Method (3.6) can produce some over- and undershoot near sharp inter-
faces, which may develop in the advection-dominated chemical field. Although the wiggles
produced by the upwind-biased scheme are small, they may lead to non-physical negative
concentrationsC. One way to avoid these instabilities is by changing to a first order upwind-
biased scheme. However, such a scheme leads to more numerical diffusion as compared to
second order upwind-biased methods and is, therefore, not very accurate. Another way to
suppress the wiggles is by considering flux-limiter methods [Sweby,1984]. These methods
have been developed to preserve the monotonicity of the solution, while the accuracy remains
higher than first-order upwind methods.

Here, we consider the flux-limited Fromm scheme, as derived byHundsdorfer and Trom-
pert [1994], for the advection ofC. Essentially, this scheme is second order but shifts to a
first-order approximation near sharp interfaces. Let us now derive the flux-limiter scheme in
a one dimensional domain, for the case whenq> 0. In the conservation form, the advective
flux is then written as:

(qC)i+1/2 = q(Ci + (d0 + d1θi)(Ci+1−Ci)) , with (3.7)
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θi =
Ci−Ci−1

Ci+1−Ci
and d0 = d1 =

zi+1−zi

zi+2 + zi+1−zi−zi−1
. (3.8)

Note that the Fromm scheme (3.6) is obtained from these equations, for an equidistant grid
(for whichd0 = d1 = 1/4). When we now rewrite(qC)i+1/2 as

(qC)i+1/2 = q(Ci + ψ(θi)(Ci+1−Ci)) , with (3.9)

ψ(θi) = max(0,min(1,d0 + d1θ,θ)) , (3.10)

it can be shown that the condition for positivity is satisfied when the Courant numberν =
q∆t/∆x≤ 1/2 [Hundsdorfer and Trompert,1994]. The functionψ determines a correction
on the upwind flux(qC)i+1/2, and is called the flux limiter.

In this way, the conservation properties of the finite volume discretization are sustained.
In other words, the mass balance of chemical concentration is preserved. Moreover, the
maximum principle theorem applies, which says that the unknown parameter can only take
its (local) maxima at the boundaries of the domain. Finally, the total variation of the solution
does not increase (TVD-scheme). In caseq< 0, equation (3.9) becomes

(qC)i+1/2 = q

(
Ci+1 + ψ

(
1

θi+1

)
(Ci+1−Ci)

)
. (3.11)

3.3 Time integration

3.3.1 Energy equation

Time integration of the energy equation (2.17) is carried out by a second order accurate
explicit-implicit method. The implicit Crank-Nicolson method is used for the diffusion and
an explicit Adams-Bashforth scheme for the advection. For variable time step sizes, this
discretization is defined as

Tn+1 = Tn− 1
2

∆t

[(
2+

∆t
∆tp

)
∇ · (qT)n− ∆t

∆tp
∇ · (qT)n−1

]
+

1
2

∆t
[
∇2Tn+1 + ∇2Tn] , (3.12)

where∆t = tn+1− tn is the current time step size and∆tp = tn− tn−1 the previous one. The
superscripts denote time levels. This method is only conditionally stable. In order to avoid
instabilities, a time step criterion is chosen as

∆t = 0.5/

(
‖u‖∞

∆x
+‖ w

∆z
‖∞

)
, (3.13)

where∆x and∆z are the cell sizes in each coordinate direction and‖.‖∞ is the maximum
norm. Since the grid is nonuniform inz-direction, the maximum ofw/∆z is computed. The
factor 0.5 is empirically determined so that, on the one hand, time step sizes are not extremely
small and, on the other hand, instabilities are avoided.
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3.3.2 Equation of species

The implemented temporal discretizations differ for the two species equations (2.18) and
(2.19). For the scalar effective dispersion model, the time discretization is almost similar to
the explicit-implicit method (3.12), as employed for the energy equation:

Cn+1 = Cn− 1
2φ∗

∆t

[(
2+

∆t
∆tp

)
∇ · (qC)n− ∆t

∆tp
∇ · (qC)n−1

]
+

1
2φ∗

∆t

[
∇ ·
(

1
Leeff

∇C

)n+1

+ ∇ ·
(

1
Leeff

∇C

)n
]
. (3.14)

Since the chemical components are advected with a velocityq/φ∗, rather thanq, the time
step size∆tC1 is computed as follows:

∆tC1 = 0.5/

(
‖u/φ∗‖∞

∆x
+‖w/φ∗

∆z
‖∞

)
. (3.15)

In case a tensorial dispersion model is employed (equation (2.19)), this explicit-implicit
method may result in an ill-posed problem, when velocity and therefore mechanical disper-
sion becomes zero locally. In order to avoid instabilities, an explicit second order Adams-
Bashforth scheme is employed for both advection and dispersion terms:

Cn+1 = Cn− 1
2φ∗

∆t

[(
2+

∆t
∆tp

)
∇ · (qC−D∇C)n

]
+

1
2φ∗

∆tp

[
∇ · (qC−D∇C)n−1

]
(3.16)

Here, the limitation of the time step depends on both advective and dispersive fluxes. For this
method, the time step size∆tC2 is chosen as:

∆tC2 = 0.5/

[
‖u/φ∗‖∞

∆x
+‖w/φ∗

∆z
‖∞ + 4

(
‖D11‖∞

∆x2 +‖D22

∆z2 ‖∞

)]
. (3.17)

3.3.3 Practical stability criterion

For the time step criteria derived above, the velocity at the previous time step is used (see
equations (3.13), (3.15) and (3.17)). These criteria are a good guess for the stability of the
system of non-linear equations, but are not exact. Instabilities may arise when the solution
field changes significantly over one time step. In order to avoid such instabilities, an addi-
tional practical stability criterion is considered. This criterion bounds the change in velocity
between two successive time stepsn andn+1. A time step size∆tq is selected in the follow-
ing manner (withε small (O(10−20)):

∆tq =
TOL ∆tp

∆Q
, with ∆Q = ‖qn+1

rms −qn
rms

qn+1
rms + ε

‖∞, (3.18)

where TOL is a user-defined tolerance, here chosen to be 0.1. The time step chosen is the
minimum of time steps determined by the stability of the integration methods (see equations
(3.13), (3.15), and (3.17)) and the limitation of the change in velocity (equation (3.18)):

∆t = min(∆tT ,∆tC1 or ∆tC2,∆tq) . (3.19)
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3.4 Benchmark results

In this section, the results of benchmark tests of pure thermal, thermochemical and chemical
convection in a porous medium are discussed.

3.4.1 Thermal convection benchmarks

Validation of the code is first accomplished by comparison with published results on pure
thermal driven convection in a closed, square domain. The dimensionless temperature is
fixed to 1 at the bottom and 0 at the top, while no heat is allowed to enter or leave the domain
through the vertical sides. We obtained both solutions for Rayleigh numbers in the range
RaT = 0−800. The solutions presented hereinafter were obtained using a mesh of 64 x 64
control cells, except for the solutions equal toRaT = 500 and above which were computed
with 128 x 128 cells. The grids are refined at the top and bottom of the domain, in order to
resolve the thermal boundary layers.

The numerical model used here predicts correctly the onset of convection atRaT = 39.5,
as estimated from linear stability analysis [e.g.Nield and Bejan,1992]. From this first
point of bifurcation up toRaT = 390, single-cellular flow is steady, while the intensity of the
convective motion increases with the Rayleigh number (see Table 3.1). The heat transport
results of the employed model match closely those of laboratory or other numerical experi-
ments [Caltagirone,1975;Steen and Aidun,1988;Cherkaoui and Wilcock,1999]. Here, the
dimensionless heat transport through the top, the Nusselt numberNuT , is defined as:

NuT =−∂T̂
∂ẑ

; ẑ= 0, (3.20)

where the overbar implies a horizontal average. AboveRaT = 390.7, the thermal boundary
layers of a single convection cell with aspect ratio 1 are unstable [Steen and Aidun,1988].
For RaT = 500, 540 and 800 the flow is simulated for periods long enough to determine
accurately the frequencies involved with the unstable boundary layers. Figure 3.2 shows the
temperature field of the simulation atRaT = 540. Tongue-like disturbances of the boundary
layers grow in amplitude while they are advected towards the vertical sides of the domain
[Kimura et al.,1986]. These blobs are also visible in the vertical plumes along the vertical
boundaries.

Due to these thermal disturbances, the Nusselt number oscillates periodically with two ba-
sic frequencies (figure 3.2b,c). The frequencies of the spectral peaks are in good agreement
with those observed in the experiments ofCaltagirone and Fabrie[1989] andCherkaoui and
Wilcock[1999] (see Table 3.2). The model also resolves the reverse transition from the mul-
tiple frequency to the single frequency regime at larger higher Rayleigh number, as predicted

RaT NuT

This study Caltagirone[1975] Steen and Cherkaoui and
Aidun[1988] Wilcock[1999]

50 1.450 1.44 1.450 1.450
100 2.643 2.65 2.651 2.647
200 3.806 3.81 3.810 3.801
300 4.511 4.52 4.523 4.519

Table 3.1:(a) Comparison of the Nusselt number for steady, unicellular thermal convection.
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Figure 3.2:Unsteady convection in a square domain atRaT = 540. (a) Evolution of the temperature
over one oscillatory cycle. Dark (light) shading denotes a high (low) temperature (see legend). (b)
Nusselt number as a function of time. (c) Power spectrum of the Nusselt number, of which the mean is
subtracted.

by Kimura et al.[1986]. For instance, atRaT = 800, the Nusselt number is characterized by
one prevailing frequency. The frequency off = 287.2 is in good agreement with published
results, like is its amplitude in the power spectrum (compare withCherkaoui and Wilcock,
[1999], their Figure 1).

3.4.2 Thermochemical convection benchmark

Next, the results of a thermochemical convection simulation are compared with those ob-
tained byRosenberg and Spera[1992]. The scalar dispersion model is used. An initially
cold and compositionally depleted fluid in a square domain with impermeable sides is heated
and salted from below. The dimensionless temperature and chemical concentration are equal
to 1 at the bottom, while at the top both quantities are fixed to 0. The vertical walls are insu-

This study Caltagirone and Cherkaoui and
Fabrie [1989] Wilcock[1999]

RaT NuT f̂1 f̂2 NuT f̂1 f̂2 NuT f̂1 f̂2
500 5.86 102.3 27.6 5.86 101.5 28.2 5.82 100.2 28.0
540 6.04 107.6 29.7 5.07 111.0 30.8 6.03 108.1 29.6
800 9.07 287.2 – 9.42 296.0 – 9.14 299.7 –

Table 3.2:Comparison of the average Nusselt number and the characteristic frequenciesf̂1 and f̂2 for
unsteady thermal convection.
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Figure 3.3:Steady-state solution of thermochemical convection in a square domain. Parameters are
RaT = 600,Rρ = 0 andLeeff = 20. Dark (light) shading denotes a high (low) temperature or composi-
tion (see legend).

lators with respect to heat and solute transport. The simulations are obtained on various grids
for the passive tracer case (the chemical field advects and diffuses but does not give rise to
density differences), for the parametersRaT = 600,Rρ = 0 andLeeff = 20. In all calculations
two side-by-side steady cells develop (see Figure 3.3). The flow consists of hot and compo-
sitionally enriched rising fluid, in the center of the domain, while colder and depleted fluid
sinks along the adiabatic and impermeable horizontal sides.

In Table 3.3, the values of the kinetic energy per unit massKE, and the thermal and chem-
ical Nusselt numbersNuT,C are given for the various discretizations. Here, kinetic energy per
unit mass is defined as:

KE =
1
2
〈q̂2

x̂ + q̂2
ẑ〉, (3.21)

where the brackets denote the global average. The chemical Nusselt numberNuC is defined
in a similar way, but then for chemical concentration instead of temperature:

NuC =−∂Ĉ
∂ẑ

; ẑ= 0. (3.22)

Note thatNuC is more sensitive to spatial resolution in the boundary layers thanKE or
NuT . The kinetic energy, on the other hand, is dominated by the higher velocities in the
interior of the domain and, therefore, it is less sensitive to the exact boundary layer thickness.
The solution converges quadratically to the ’exact’ solution when increasing the number of
cells. This confirms the second order spatial accuracy.

This study
Number of cells Grid KE NuT NuC NuC/NuT
256 graded 1609 6.522 22.75 3.49
1024 graded 1669 6.610 28.09 4.25
4096 graded 1685 6.628 29.52 4.45
16384 graded 1689 6.632 29.65 4.47
Rosenberg and Spera[1992]
2240 graded 1690 6.64 29.6 4.46

Table 3.3:Spatial resolution test and comparison for steady-state thermochemical convection (RaT =
600,RaC = 0,Leeff = 20).
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Figure 3.4:Geometry and boundary conditions of HYDROCOIN case 5 salt dome problem.

For a comparable number of nodes (Rosenberg and Spera[1992] used triangular ele-
ments with quadratic shape functions, which results in around 3 nodes per element), the
values ofKE and thermal and compositional Nusselt numbers agree within less than one
percent with the values of Rosenberg and Spera. From elementary scaling it can be derived
thatNuC/NuT = Le1/2, which in this case isLe1/2 ≈ 4.47. Clearly, the ratio of the Nusselt
numbers converges to this value for increasing number of cells.

3.4.3 Chemical convection benchmark

This test concerns the Hydrological Code Intercomparison (HYDROCOIN) project case 5: an
idealized shallow groundwater flow system overlies a subcropping salt dome [OECD, 1988,
1992]. While a pressure gradient imposed at the top boundary drives the fluid along the
surface of the salt dome, the dome itself represents the source of salt and brine in the active
flow system. For simulation of this problem, the advanced dispersion model (2.19) is used.

The geometrical setup and boundary conditions are shown in Figure 3.4. The system is
a two-dimensional cross-section of an 900 m wide and 300 m deep homogeneous, isotropic
aquifer which is recharged by fresh water at the surface. The side and bottom boundaries
are impermeable and insulators for solute flux, while the top boundary is represented by a
linearly varying specified-pressure condition. These boundary conditions induce flow from
left to right, but does not predetermine the rates of recharge and discharge nor the separation
point between the in- and outflow zones. The concentration associated with the recharge is
equal to zero. The fluid is assumed to be isothermal and isoviscous.

The salt dome is impermeable, so that salt is released into the active flow system only by
diffusive or dispersive processes which are driven by a gradient in chemical concentration.
The top of the salt dome, positioned at the central third of the bottom boundary, is exposed to
circulating groundwater in the overlying aquifer, slowly releasing saturated brine by a diffu-
sive/dispersive process. Note that the salt dome is represented by a constant-concentration at
the the lower horizontal cell faces of the lowermost cells, which are positioned exactly at the
bottom of the domain. The original problem was set up in a way that molecular diffusion of
the salt equals zero. The properties assigned to the flow and transport are given in Table 3.4.

The solution to this problem is highly nonlinear and represents a balance among ad-
vection and hydrodynamic dispersion. The flow evolves towards a steady state solution, in
which a brine pool has formed at the bottom (see Figure 3.5a). The positions of the isopleths
agree closely with previously published results, obtained with other numerical models (e.g.
Konikow et al.[1997], their Figure 4).
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Figure 3.5: (a) Steady-state salt concentration (as mass fraction), for case 5 problem, using a non-
equidistant 128 x 32 grid. (b) The brine concentration at a depth of 200 m.

Parameter Value
Permeability (k) 10−12m2

Porosity (φ) 0.2
Dynamic viscosity (µ) 10−3Pa s
Gravitational acceleration (g) 9.81 m s−2

Reference freshwater density (ρ f ) atĈ = 0.0 1000 kg m−3

Reference brine density (ρs) atĈ = 1.0 1200 kg m−3

Longitudinal dispersivity (al ) 20 m
Transversal dispersivity (at) 2 m
Effective molecular diffusivity (Dmol) 0 m2 s−1

Initial fluid pressure at (x = 0 m,z= 0 m) 105 Pa

Table 3.4:Physical parameters of salt dome problem.

3.4.4 Conclusions

The above results show that the spatial and time discretization methods are second order
accurate. The quantities derived here fall within a few percents of those obtained in the
laboratory, from analytical methods and with numerical models. Considering the efficiency
of the iterative multigrid method, the two-dimensional method is a powerful tool to study
thermochemical convection problems in porous media at high resolution in time and space.


