Proceedings of the
Second Stratego Users Day

Eelco Visser (editor)

STRATEGO

www.stratego-language.org

Institute of Information and Computing Sciences
Universiteit Utrecht
February 8, 2001



Copyright (© 2001 by the authors of the individual contributions.

Address:

Institute of Information and Computing Sciences
Universiteit Utrecht

P.O.Box 80089

3508 TB Utrecht

email: visser@acm.org
http://www.cs.uu.nl/~visser/



Preface

These are the proceedings of the Second Stratego Users Day, which was held
on February 8, 2001 at Utrecht University. The Users Day was preceded by a
full day tutorial on February 7. The workshop and tutorial were supported by
the Software Technology Group of the Institute for Information and Computing
Sciences.

The workshop was attended by:

Arne de Bruijn (Utrecht University)

Eelco Dolstra (Utrecht University)

Magne Haveraaen (University of Bergen)
Ronald van Halen (Lucent)

Karl Trygve Kalleberg (University of Bergen)
Ralf Lammel (CWI / Vrije Universiteit)
Karina Olmos (Utrecht University)

Eelco Visser (Utrecht University)

Joost Visser (CWI)

Hedzer Westra (Utrecht University)

Utrecht, April 2001



Contents

Towards Typeful Stratego

1.1 Preamble . . . .. . . . ...
1.2 Examples . . . . . .. ..
1.3 Generic type-preserving strategies . . . ... ... ... ... ..
1.4 Folding children. . . . . ... ... ... ... ...
1.5 Generic type-unifying strategies . . . . . . ... ... ... ..
1.6 Plan . . . .. . . . .. e
Functional Stratego
2.1 Introduction. . . . .. .. . .. ... ...
2.2 Strategic programming in Haskell . . . . . . .. .. ... ... ..
2.3 Extending the A-calculus with a choice operator . . . . . .. . ..
2.3.1 Semantics . . . . . ... Lo
2.3.2 Comparison to other approaches . .. ... ... ... ..
24 Generic traversals . . . . . . .. ..o
2.5 Conclusion . . . . ... ..

XT Capita Selecta

3.1 Strategoand XT . . . . . . ..
3.2 Meta-tooling . . . ... ... . ...
3.3 XTeconstituents . . . . . .. .. ... ... oo
3.3.1 Graph transformation . .. ... .. ... ... ... ..
3.3.2 Tree transformation . ... ... .. ... .........
3.3.3 Grammar transformation . . ... ... ... ... ...
3.4 Programming and engineering techniques . . . . ... ... ...
3.5 Conclusions . . . . .. ... Lo
3.5.1 Strengths and weaknesses . . . . . ... .. ... ... ..
3.5.2  Suggestions for improvement . . . ... ... ...
SDL Re-engineering for 5ESS Feature Development
4.1 Lucent Technologies . . . . .. ... ... ... ... ... ....
4.2 5ESS Telephone exchange . . . . . ... .. ... .........
4.3 SDL background . .. ... ... ... ... ...
44 AT&T SDL Legacy . - - - v v v v v v i i it e e e e e e
45 Firstidea . . . . . . . .
4.6 Project goals SDL re-engineering . . . . . . .. ... .. ... ..
4.7 Approach . . . ...
4.8 UseofStratego . . . . . .. .. .. ...



4.9 Future Work . . ... ... ... .. ... 39
CobolX: Transformations for Improving COBOL Programs 40
5.1 Introduction. . . . .. ... .. ... 40
5.1.1 Organisation . . .. .. ... ... ... .. ... . 41
5.2 Goal . ... . 41
5.3 The transformation . . . . . . . ... .o 41
5.3.1 Implementation in Stratego . . . .. .. ... .. ... .. 42
5.4 Layout Preservation . ... ..................... 42
5.5 New and adapted XT tools . . . ... ... ... .. ....... 43
5.0.1 sdfcons . .. .. .. ... 43
9.5.2 sdf2stratego . . ... ... ... ..., 44
5.5.3 implode-asfix . . . . ... ... ... ... ... .. 44
5.5.4 ppgen2 . .. ... 44
5.5.5 hObox2text . . . . . . .. . .. ... ... 44
5.0.6 atermdiff . ... .. ... ... L. 44
5.5.7 ppconv . ... 44
5.5.8 striplayoutaterm. . . . . .. .. ... ... ... ... 44
5.6 Micro, an example language . . . ... ... ... ... ... .. 45
5.7 The CobolX transformation process . . . ... ... ....... 46
5.7.1 Imitialisation . . ... ... . ... .. oo 46
5.7.2 Transformingafile . . . . .. ... ... ... 46
5.73 Results . ... ... L 46
58 Conclusion . . ... .. ... 48
5.9 Sources . . ... 50
5.9.1 Library functions . . . . .. ... ... ... .. 50
5.10 LayoutPreserve . . . ... .. .. ... .. ... ... 50
0 9 = 51
512 SLASt . . . . o e e e 52
5.12.1 Micro . . . . . . . 53
513 micro.def . . . . . ... 53
5.14 micro-main . . . . .. ... Lo 57
5.15 micro-simplify . . . ... ... ... oo 58
Optimizing Pan programs with Stratego 61
6.1 Introduction. . . . . . ... ... ... ... 61
6.2 Pan . ... .. 62
6.3 Tiger. . . . . . . 63
6.4 Generating Ccode . . . .. .. .. . ... 64
6.5 Futurework . . . . .. . ... 65



Chapter 1

Towards Typeful Stratego

Ralf Lammel!

Abstract Stratego and the underlying system S are as yet untyped. We
propose a type system which covers the essence of system S. In addition
to system S, a generic traversal primitive for folding the children of a
term is considered. This primitive is essential for type-changing traver-
sal strategies. The type system which we propose is based on certain
signature-independent generic types. We also have to introduce a few
constructs which enable us to rephrase untyped Stratego programs in a
typeful manner.

1.1 Preamble

We know how to type simple rewrite rules in Stratego. Let us think of a standard
first-order many-sorted type system. We can also learn from other rewriting
frameworks how to provide types for (some) rewriting strategies in Stratego.
The type system of ELAN, for example, is pretty close to what we need for
Stratego if we want to cover strategy combinators like - + -, - 4 -, and -;-. The
hard part of typing Stratego or the underlying system S is to cover the generic
traversal primitives like O(-). Therefore, we will focus on generic strategies,
especially on concepts required for a corresponding type system. The extended
abstract is largely driven by examples.

1.2 Examples

In Figure 1.1, we illustrate four examples (I)—(IV) of intentionally generic traver-
sals. In (I), all naturals in the given tree are incremented as modelled by the
rewrite rule N — succ(N). We need to turn this rule into a traversal strategy
because the rule on its own is not confluent and terminating when considered as
rewrite system. The strategy should be generic, that is, it should be applicable

1CWI, Kruislaan 413, NL-1098 SJ Amsterdam, Vrije Universiteit, De Boelelaan 1081a,
NL-1081 HV Amsterdam. ralf@cwi.nl, http://www.cwi.nl/ ralf/. The work of the author
was supported, in part, by NWO, in the project “Generation of Program Transformation
Systems”.
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Figure 1.1: Generic traversals

to any term. In (IT), a particular pattern is rewritten according to the rewrite
rule g(P) — ¢'(P). Assume that we want to control this replacement so that
it is performed in bottom-up manner, and the first matching term is rewrit-
ten. The strategy to locate the pattern is completely generic. (I) and (II) are
examples of intentionally type-preserving strategies. We can easily solve these
problems in untyped system S and Stratego by some strategy definitions. Note
that we use recursive definitions rather than a recursive closure operator.

natural = zero + succ(ID)
traverse(ry = (natural; N — succ(N)) <+ O(traverse(r))
traversery = oncebu(g(P) — g'(P))

natural is an auxiliary strategy testing for naturals based on congruence strate-
gies for zero and succ. Recall, traverse ) is meant to increment all naturals. We
use natural as a kind of dynamic type check to enable the applicability of the
rewrite rule N — succ(N). traverse(rry finds the first pattern of form g(x) in
bottom-manner, and replaces it by ¢’'(z). Note the genericity of these traversals.
They can be applied to any term. Of course, the strategies are somewhat specific
because they deal with some constant or function symbols, namely zero, succ,
g, and g'. Types for traverse(;) and traverse ryy will be provided in Section 3.
The examples (III) and (IV) in Figure 1.1 are examples of type-changing
traversals, actually these are type-unifying traversals. In (III), we might test
some property of the tree, e.g., if naturals occur at all. In (IV), we collect all
the naturals in the tree using a left-to-right traversal. These strategies cannot
faithfully be described in system S. By contrast, the strategies can be described
in Stratego. The construct -#- offered by Stratego is essential to reduce children
in a term in a generic manner. We are not going to rely on that operator because



it is an obstacle to typing. We will later indicate a different but typeful operator
to reduce children (Section 4 and Section 5). Therefore, we also postpone giving
encodings of problems (IIT) and (IV).

1.3 Generic type-preserving strategies

Rewrite rules have many-sorted types. By contrast, generic strategies have
generic types. Let us start with generic type-preserving strategies. The corre-
sponding generic type is denoted by TP. Using a subtype relationship we can
relate specific and generic types as follows: ¢ — o < TP. Thus, the type TP
subsumes all specific strategy types where input and output type are the same.
It also means that a generic strategy can be applied to a specifically typed term.
Let us consider the types of some strategy primitives. The constant strategy ID
has the type ID : TP, i.e., it is a generic type-preserving strategy. The primitive
O(-) has the type O(-) : TP — TP, i.e., in O(s), the argument strategy s is a
generic type-preserving strategy, and O(s) itself is also a generic type-preserving
strategy (which applies s to all children). The question is how can we qualify
specific ingredients such as rewrite rules to become proper generic strategies.
Given a rewrite rule r, we cannot just say O(r) to apply r to all children be-
cause 1 has a specific type. Indeed, r does not know how to cope with terms of a
different type than r’s type. We might attempt to turn r into a generic strategy
through the combinations r ¢ ID or r ¢ FAIL. This is not a typeful approach
because - ¢ - is designed for choice based on success and failure. Thus, the
type of both ingredients for - ¢ - should be the same. Also, specifically typed
strategies would become generic to silently if the typing for s; ¢4 s2 would be
the least upper bound of the types of s; and s2. We need a new operator, say
- 48 -, for left-biased, type-sensitive choice. In s; <@ sa, the type of s; is more
specific. So s; will be tried if the given term is of s1’s type. Otherwise, we resort
to the generic default so. But note that so will never be tried if s; is applicable
no matter if s; succeeds or fails. Thus, - ¢ - and - < - embody different kinds
of choice.
We redefine traverse ) to obtain a typeful version:

traverse(;y = (natural; N — succ(N)) <« O(traverse(r))
= N — succ(N) «® O(traverse(y))

The simplification to eliminate the test for naturals is enabled by the typed
model since the many-sorted rewrite rule sufficiently disambiguates the type
of the specific ingredient. This solution illustrates that we can qualify specific
rewrite rules to become generic by - 4p -. The other intentionally type-preserving
strategy traverse(rry can be made fit in the same manner.

1.4 Folding children

Let us reconsider the problems (III) and (IV). We have to perform a kind of
reduction. Stratego offers the -#- construct to access the children of a term as
needed for reduction. The construct is similar to the univ operator (=..) of
Prolog. These constructs have in common that children are essentially handled
as lists. Since these lists are heterogeneous, there is little hope that we can



type a construct like -#-. We propose a different approach for accessing and
processing children of a term. The main idea is that we never explicitly deal
with children as lists, but we rather use a primitive to process the children. We
suggest the primitive (s, so|) to perform a list-like right-associative fold on the
children of a term. The first strategy parameter s, encodes the initial value
for folding. In the case of a constant symbol, this strategy defines the result of
folding. The second strategy parameter s, is used to compose a child with an
intermediate value of folding.

In Section 5, we will explain how to type (-,-) and derived strategies. A
fundamental traversal strategy based on folding is the following:

crush(V,Ve,vr) = v« (ve, (crush(v,ve,vz),ID); vz)

Note that we use the congruence strategy (s1,s2) for pairs in the strategy def-
inition. crush(s, s¢, s;) performs a form of top-down reduction as follows. s is
applied on the given term t. If s succeeds at some node, some data extracted
from the node is supposed to be returned by s. If s does not succeed, a fold
is performed to reduce the children. The two other parameter strategies can
be conceived as the encoding of a monoid to be used for reduction. The data
derived from crushing subtrees is composed with the strategy s, which is meant
to model the binary operation of the monoid for reduction. The strategy s
models the initial value for folding in the sense of the monoid’s zero.
We can provide solutions to the problems (III) and (IV):

traverse(yrry = crush(natural; N — true, () — false, or)
traverse(ryy = crush(natural; N = cons(N, nil), () = nil, app)

traverse(jyyy reduces truth values by or. The neutral element is false. Encoun-
tering a natural, true is returned. traverse v reduces lists by appending them.
The neutral element is the empty list nil. Encountering a natural N, a sin-
gleton list cons(N, nil) is constructed from it. The straightforward definitions
of or and app are omitted. Note the genericity of these traversals. The only
assumption of these strategies is that they “know” of the signature for naturals.

1.5 Generic type-unifying strategies

The consideration of type-changing (and especially type-unifying) strategies
leads us to other generic types than TP. The generic type TU(o) denotes all
type-unifying strategies, i.e., strategies which map all types to a fixed type o.
Subtyping is updated accordingly: o' — ¢ < TU(g). To provide a type for
(-, D, we need another auxiliary type TF(o) for its second parameter. Recall
that the second parameter works on pairs in the sense that it takes a child (of
any type) and an intermediate result of folding (of type o) and composes them
(to a value of type o). Subtyping is updated accordingly: (¢',0) — o < TF(0).
The types of (-, -)) and the derived strategy crush are as follows:

() : ()= o)xTF(o) x TU(o)
crush : Va. TU(a) x (() = o) x ((a,@) = a) = TU(a)

The type of crush illustrates that we also need to cope with polymorphism. The
strategy crush is polymorphic in the sense that the result type of crushing is



variable. The monoid parameters of crush determine this type. By contrast, the
strategy crush is generic in the sense that the type of the term to be processed
is arbitrary. We should not confuse polymorphism and genericity. A basic
assumption for a polymorphic abstraction is that it behaves the same for all
specific types. This is usually not the case for generic strategies because of the
specific ingredients.

We re-encounter the problem how to turn a strategy s of a specific type
into a generic one. So what is the generic default for a type-changing strategy
s? ID and FAIL were applicable for type-preserving strategies, but they are
not applicable for type-changing strategies because ID and FAIL themselves are
type-preserving. However, we can think of a generic concept of failure, say FAIL,
subscripted with the result type o. Of course, this is not sensible for identity.
Given a strategy s of a specific type ¢/ — o, we can turn this strategy into a
generic type-unifying strategy TU(o) by a new lifting operation s 4} 7 where 7
is a generic strategy type. We can think of s f} TU(c) as s «® FAIL,.

Let us rephrase the solution of problem (III) in a typeful manner. The
traversal was based on crush. The first parameter of crush is meant to identify
the data to be reduced. Potential failure is perfect for this identification process
because it means that a given term does not expose a relevant pattern. The
strategy traverse(;yy) as originally proposed is not typeable because the first pa-
rameter is instantiated with a specific strategy. We need to insert applications
of - 1} -. Also, the dynamic test for naturals becomes obsolete in our typeful set-
ting if we assume many-sorted variables which in turn sufficiently disambiguate
the type of the strategy. Finally, we need to perform type application because
of the type parameter of crush.

traverserryy = crush[Bool](N — true ff TU(Bool), () — false, or)

The other intentionally type-unifying strategy traverse ;v can be made fit in
the same manner.

1.6 Plan

What needs to be done to design and to develop a typeful Stratego?
e We start from first-order many-sorted strategies as in ELAN.
e Generic traversal primitives O(-), <(-), and U(+) are typed using TP.
e We do not include -#-. We rather include (-, -).
e (-,-) is typed using TU(o) and TF(o).
e Strategy application has to be type-sensitive for - «® - and - 1} -.
e Polymorphism needs to be accomplished.

e Special support for tuples has to be added to cope with multi-parameter
strategies.

e The impure constructs of Stratego not present in system S need to be
typed.



e We will have to decide what mixture of type-checking and type-inference
we want.

e We should understand the limitations of the present proposal.

e At some point we might want to migrate the Stratego library.



Chapter 2

Functional Stratego

Eelco Dolstral

Abstract Stratego is a domain-specific language intended for the con-
struction of program transformation systems. To that end, the language
has a number of interesting features; notably, first class pattern matching
and generic traversal mechanisms. The question arises whether and how
such features can be implemented in functional programming languages
and Haskell in particular. In a rewrite system it is essential that one can
easily recover from pattern match failure, so that alternative rewrite rules
can be tried. Typical functional languages do not support this very well
since local pattern match failure leads to global divergence. This article
shows how to solve this problem by adding a choice operator to a simple
functional language. It seems that this approach is not only useful to
strategic programming, but is also more powerful than previous propos-
als to extend Haskell’s pattern matching, such as views, patterns guards,
and transformational patterns. Furthermore, we discuss how the generic
programming techniques can be employed to implement generic traversals.

2.1 Introduction

Program transformation systems transform a computer program, typically rep-
resented as an abstract syntax tree, from one language to (possibly) another
language. Examples of such systems are code generators, optimizers, and ap-
plication generators (translating a high-level specification into a program in a
general purpose language).

There are a number of features that seem to be especially important to the
implementation of program transformations systems:

e Pattern matching, so that we can easily deconstruct and inspect values.
More importantly, we need to have first class pattern matching: if a pat-
tern fails to match, it should be easy to try alternatives.

e Traversal mechanisms. Transformations often need to applied at many
points in the abstract syntax tree. We should have generic operations that
can traverse arbitrary data structures, applying arbitrary transformations.

Ledolstra@students.cs.uu.nl
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Stratego [7] is a domain-specific language intended for the construction of
program transformation systems, and as such has extensive matching and traver-
sal features.

The question arises whether and how such features can be implemented
in functional programming languages. After all, functional languages like ML
and Haskell [4] are well-appreciated for their pattern matching facilities, and
recursion makes it relatively easy to traverse a structured value. Unfortunately,
pattern matching is not first class: pattern match failure leads to divergence
(i-e., a crash) of the entire program. Also, Stratego is untyped, which makes
generic traversal primitives like all possible; but in typed functional languages,
this becomes problematic.

This article proposes a solution to the first problem by means of a choice op-
erator which evaluates to its left argument, unless it fails; otherwise it evaluates
to its right argument.

Outline. Section 2.2 explores the problem space of implementing Stratego-like
constructs in Haskell. The addition of a choice operator is discussed in section
2.3, which also compares this to other proposals to extend pattern matching.
Finally, section 2.4 briefly discusses generic traversals. The reader should be
familiar with Stratego and Haskell.

2.2 Strategic programming in Haskell

It is not difficult to implement Stratego-like functionality. It would be nice if
we could write a Stratego rewrite rule like:

PlusZero: Plus(x, Const(0)) — x
as
plusZero = A(Plus x (Comnst 0)) — x (2.1)

Of course, this will not work because we cannot handle pattern match failure
in A-abstractions. So we wrap the result in a Maybe type:

plusZero (Plus x (Const 0)) = Just x
plusZero _ = Nothing

In general, then, a strategy has the following type:
type Strat a 8 = a — Maybe [

Stratego’s left choice and composition operators (here written as <*) are
trivial:

(<+) :: Strat a f — Strat a f — Strat a
sl <+ s2 = At — maybe (s2 t) Just (sl t)

(<x) :: Strat a f — Strat 8 v — Strat a ¥y
sl <*x s2 = A\t — maybe Nothing s2 (sl t)

11



Combining strategies is just as easy as in Stratego. Writing the basic rewrite
rules, however, is tiresome because we spend a lot of time packing and un-
packing the Maybe wrapper. For example, the congruence over a constructor
Add Expr Expr would look like this:

cgrAdd s1 s2 (Add el e2) = maybe Nothing (Ael’ —
maybe Nothing (Ae2’ — Just $ Add el’ e2’) (s2 e2)) (sl el)

Another issue is how to implement generic traversals. We have to describe
explicitly for each data type how to traverse over it. Type classes can be used
to make this generic:

class Trav a where
allS :: Strat @ a — Strat a «

Functions like bottomup can then be defined in the usual way:

bottomupS :: Trav a = Strat a o — Strat o «
bottomupS s = allS (bottomupS s) <* s

An instance might look like this:

instance Trav Expr where
allS s (Const n) = Just $ Const n
allS s (Add el e2) =
case s el of
Just el’ —
case s e2 of
Just e2’ — Just $ Add el’ e2’
Nothing — Nothing
Nothing — Nothing

There are more refined (and complex) approaches (see [5]), but these also
suffer from the fact that a lot of code must be written for each data type over
which we want to traverse.

2.3 Extending the A-calculus with a choice op-
erator

2.3.1 Semantics

In the previous section, example 2.1 did not work because it is not possible
to deal with pattern match failure in the left-hand side of A-abstractions. In
this section I shall give the semantics of a simple (untyped) functional language
extended with a choice operator which first tries to evaluate its left argument,
and if that fails, evaluates its right argument.

The syntax is the A-calculus extended with constructed values, pattern
matching A-abstraction, and a choice operator:

ex=z|ee|C|Ap—oe|e <+el|d
pu=a|pp|C

12



where z ranges over the variables, and C over the constructors. The constant
§ denotes pattern match failure. The choice operator <+ binds weaker than
A-abstraction and function application.

The semantics is given by the following rewrite rules:

Az —>er)es = [z:=el]er (B-reduction)
AC > e)C = e (pos. constr. match)
(ANCL = e1)Cy = 6 (if (C1 # C)) (neg. constr. match)
(Mp1p2) = e1)(ezez) = ((Ap1 — Apz.e1)ez)es  (application match)
e1 <+ ea = e (if NF(ep) #9) (left choice)
d<+e = e (right choice)
de = ¢ (failure propagation)

where NF(e) denotes the normal form of term e. These rules suffice to implement
a lazy evaluator (we have done so in Stratego for a system extended with let-
bindings).

The semantics is given as a set of rewrite rules from the language to the
language, i.e., as source transformations. The advantage is that no additional
syntax or notation is required. Furthermore, such rules can be employed directly
in e.g. an optimizer.

Unfortunately, something seems to be missing. For example, we would like
to define the if function as follows:

if = ATrue el e2 — el <+ )False el e2 — e2 (2.2)

expecting that if False 1 2 = 2. This is, after all, the behaviour expected
from Stratego. However, this obviously will not work, since in the evaluation of
if the choice operator will immediately pick the left side, since ATrue el e2
— el # 4.

We can get around this by writing instead:

if = dc el e2 — (
(ATrue el e2 — el) c el e2 <+ (2.3)
(NFalse el e2 — e2) c el e2)

This will enforce that ¢ is matched against the pattern True, and so the left
side will fail and the right side will be evaluated instead.

A nicer solution (which is admittedly somewhat ad hoc) is to add the fol-
lowing rule:

(Ap—e1) <+ ea = Ax— (Ap—e1)r <+ exx) (distr. arguments)

and to add the restriction to the left choice rule that e; must not be a \-
abstraction.

In other words, this rule pushes arguments into the choice operands until
we have a base type (a constructed value). It is easy to see that this rule
automatically transforms example 2.2 into example 2.3.

We don’t lose any expressive power here. Even if we actually want to choose
between functions and not results of functions (e.g. in (if b then f else g)
<+ h), where b may fail, we can do this by wrapping the function in a constructor
(e.g. (if b then F f else F g) <+ (F h)) and unpacking the result later,
outside of the scope of the choice operator.

13



A problem with the choice operator is that we do not have control over the
scope of the failure handling, e.g. in (A\Foo — e) <+ ... we might want the
choice operator to catch failure in the Foo-match but not in e. This problem also
confronts Stratego programmers. For example, if we want to rewrite Foo-terms
and nothing else, we might write in Stratego try(?Foo; s). Unfortunately, any
rewrite failure in s (including those due to programming errors) will be caught
indiscriminately by try.

2.3.2 Comparison to other approaches

The question is what the choice operator gains us, apart from nicer strategic
programming. It is well known that regular pattern matching is not perfect
[6, 2]. It turns out that the choice operator eliminates the need for many of the
proposals to extends Haskell’s pattern matching, such as views, pattern guards,
and transformational patterns. Furthermore, it makes Haskell’s “equational
style” (writing a function definition as a number of pattern-guarded equations
which must be tried one after another) unnecessary, as well as case-expressions.

Equational style unnecessary. Haskell allows us to write patterns not just
in A-abstractors but also in function definitions:

fpu .. pn=e
fpa ... pan = €2
f Pm1 --- Pmn = €m

The semantics here are different than in A-abstractions: if a pattern match fails,
the program does not diverge, but instead the next equation is tried. This is an
ad hoc mechanism that becomes redundant if we have a choice operator:

f =
)\pn ... Pin — €1 <t
)\p21 ... Pop — €2 <t
)\pml c+o+ Pmn — €m

In fact, a major advantage is that pattern matching A-abstractors are now
first class, so we can write:

f1. = Apu1 --. Pin = €1
fo = Ap21 ... pan = e
fm = APm1 -+ Pmn — €m
f =15 <+ f5 <+ ... <+ £,

and we can combine the f; arbitrarily.
Case-expressions can be eliminated from the language in a similar way.

Views. Views [8] were proposed to address the problem that regular pattern
matching is rather limited since we can only match with actual constructors. As
a consequence we cannot match against e.g. the end of a list instead of the head,
nor can we match against abstract data types since there is simply nothing to

14



match against. For example, using the proposed views for Haskell [1] we can
write the following view to match against the end of a list:

view Tsil a of [a] = Lin | Snoc y ys where
tsil xs =
case reverse xs of
[l — Lin
(y:ys) — Snoc y ys

where matching against a Snoc-constructor causes the function tsil to be ap-
plied to the value:

f (Snocy ) =y
f Lin =0

It is worth pointing out why views (and transformational patterns) are
useful. The reason is that the equational style can only be used if the non-
applicability of an equation can be discovered in the pattern. When that is
not possible, the equational style falls apart, and we have to explicitly write
the traversal through the alternatives (the equations) as a series of ever deeper
nested case-expressions. The choice operator liberates us from this regime,
hence the main motivation for views and transformational patterns disappears.
With it, the previous example becomes:

f=(A>@y:)) > y<+All - 0) . reverse

Views still have the advantage that the transformation to be applied (e.g.
tsil) is implicit in the name of the patterns (e.g. Snoc), but this seems only a
minor advantage.

Pattern guards. In Haskell’s equational notation, we can use boolean guards
to further restrict the applicability of an equation, e.g. f x | x > 3 = 123.
However, there is a disparity between patterns and guards: patterns can bind
variables, whereas guards cannot. For example, if we want to return a variable
from an environment, or 0 if it is undefined, we would write:

f env var | isJust (lookup env var)
fromJust (lookup env var)
f envvar = 0

where lookup has type [(a, )] — a — Maybe f. This is awkward because
we now inspect the result of lookup twice. Pattern guards [2] redefine a guard
as a list of qualifiers, just like in a list comprehension, so that binding can occur:

f env var | Just x < lookup env var = x
(2.4)
f env var = 0
But when we have a choice operator, we can just write:
f env var = let (Just x) = lookup env var in x <+ 0

Alternatively, we could just get rid of the Maybe result of lookup altogether,
making it of type [(a, 8)] — a — f, and then we get:

f env var = lookup env var <+ 0
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Transformational patterns. Transformational patterns [2] provide a cheap
alternative to views, allowing us to write example 2.4 as:

f env (Just x)!(lookup env) = x
f env var = 0

Hence, transformational patterns are just view transformations made explicit.
The choice operator allows a similar notation:

f env = (A(Just x) — x) . (lookup env)
<+ A =0

In general, a definition £ pat!fun = e can be written as £ = (Apat — e)
fun.

2.4 Generic traversals

Given the untyped calculus given in the previous section, it is not hard to define
the all primitive (which applies a function to each subterm of a term):

all = \f —
( AMcx) » (@ll £ c) (f x)
<+ dc — ¢

)

But it would be hard to type this function. Previous work on generic pro-
gramming, such as Generic Haskell [3], seems not to help us here. For example,
in Generic Haskell, we write a generic function by giving a clause for binary
sums, binary products, and primitive types, since all data types can be decom-
posed into a combination of these. Unfortunately, this moves us below the level
of constructors. For example, it is not hard to give the primitive clause for an
implementation of bottomup:

bottomup(t) :: (t = t) >t = t
bottomup(1l) f x = £ x

But we cannot give a clause for e.g. binary products: it is clear that we should
apply bottomup to the arguments, but then what? At some point £ should be
applied, but only if the binary product is in fact of type t, and not just part of
something of type t.

bottomup(a * b) £ (x, y) =
77?7 $ (bottomup(a) f x, bottomup(b) f y)

It also seems impossible to implement all, since a generic function traverses
the entire value, not just the top-level subterms.

2.5 Conclusion

We have discussed two features that seem to be useful to strategic programming
in a functional language. First, there is the proposed mechanism to handle pat-
tern match failure, which has the additional advantage of making some proposed
extensions to pattern matching redundant. Second, generic traversals are im-
portant, but it is not currently clear how these can be implemented elegantly.
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Chapter 3

XT Capita Selecta

Merijn de Jonge and Joost Visser

Abstract XT is a bundle of program-transformation tools. Stratego
is part of this bundle, and is used as implementation language for
many tools throughout its packages.

Giving special attention to the role of Stratego, we discuss a selection
of our XT experiences. These range from the construction of meta-
tools to support Stratego programming, through Stratego techniques
applied in constructing some of XT’s constituents, to projects where
XT (including Stratego and tools programmed in Stratego) has been
applied to program-transformation problems.

3.1 Stratego and xt

Overview of xt XT is a bundle of program-transformation tools [3]. Its pur-
pose is to support component-based development of program transformations.
Figure 3.1 gives an overview of the individual tool packages that are bundled
by XT. At the heart of XT lies the ATERM library [1]. The ATERM format is a
generic tree representation format, for which the ATERM library provides space
and time efficient support. Within XT, the ATERM format is used as a common
exchange format for parse trees and abstract syntax trees.

The Stratego package contains the Stratego compiler [12] and the Stratego
standard libraries [13]. ATERMs are used both as input and output of Stratego
programs and internally for term representation.

The syntax definition formalism SDF [5, 11] is used throughout XT as gram-
mar formalism. The packages pgen and sglr contain the parse table generator
and generic parser that support SDF. The pretty-print table generator and
generic pretty-printer for SDF are provided by the GPP package [2]. All these
tools make use of ATERMSs as exchange and representation format.

The JJForester package contains a code generator to support representation
and traversal of tree structures in Java [9]. Again, the ATERMs are used to
represent and exchange trees.

18



Grammar Tools

9]
o
gl || B 4| &
2 ? @ o 5
ATermLibrary

I
:
I
Grammar Base XT
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 3.1: XT is a bundle of packages.

The GrammarTools package contains a suite of tools for grammar analysis,
grammar (re)construction, and (parse) tree manipulation. Most of these tools
are built from components programmed in Stratego, and instantiations of sglr
and the generic pretty-printer. Again, ATERMs are used for tree exchange
between these components.

The Grammar Base is a collection of syntax definitions in SDF for a grow-
ing number of formats, specification languages, and programming languages.
The Grammar Base uses pgen, sglr, and GPP, and various constituents of the
GrammarTools.

The philosophy of xt In the design and organization of XT three guiding
principles have been followed to facilitate component-based transformation de-
velopment.

Many, small, stand-alone components The functionality offered by the var-
ious packages that XT bundles should as much as possible be available in
separate chunks that can be individually (re-)used. Integration of indi-
vidual pieces of functionality can be left to the user of the package, or
can be offered in such a way that separate use of the components is not
obstructed.

Simple, common exchange format The input and output of all components
should as much as possible be done in a simple, common exchange formats.
In xXT, ATERMS are used for this purpose. Having a common exchange
format ensures smooth interoperation of components from different pack-
ages.

Grammars as contracts The shape of (parse) trees that are represented in
the exchange format should be defined in grammars that are independent
of specific components, and independent of specific implementation lan-
guages. Code for tree representation, for reading and writing trees, for
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Figure 3.2: Meta-tools for parsing, signature generation, and pretty-printing
integrate Stratego with SDF.

parsing and for pretty-printing should be generated from grammars as
much as possible. Thus, grammars should be used as component interface
definitions (contracts).

The role of Stratego in xt As the overview of XT already suggests, Stratego
fulfills several roles in XT. Firstly, Stratego is a constituent of XT that can
be used by transformation developers as a powerful transformation language.
Secondly, it is used within XT itself as implementation language for tools in
various packages. For instance, almost all grammar tools are implemented in
Stratego, as are several components of GPP. Finally, Stratego programming is
supported by a number of meta-tools contained in the GrammarTools package.

In the upcoming sections we will shed light on these roles. In Section 3.2 we
explain the Stratego meta-tooling contained in XT. In Section 3.3 we discuss a
selection of the constituents of XT programmed in Stratego. In Section 3.4 we
touch on some programming and engineering techniques related to Stratego that
we deployed in the development of XT. Finally, Section 3.5 evaluates Stratego,
in light of its use in XT, and lists some suggestions for further development of
the language and its support.

3.2 Meta-tooling

Apart from the Stratego compiler, a number of meta-tools are available in XT
that support Stratego programming. These include tools that integrate Stratego
with SDF, and tools that analyze the import structure of Stratego programs.

Integration with sdf Figure 3.2 shows an overview of the meta-tools offered
by XT that integrate Stratego and SDF. In combination, these tools instanti-
ate a meta-tooling architecture where grammars are used as contracts between
components [4]. The shaded ellipses are tools that are themselves programmed
in Stratego.
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Normally, the Stratego programmer manually constructs the signatures he
needs. Also, the input and output of his programs are ATERMs. With the meta-
tooling offered by XT, the programmer can construct front and back-ends to his
programs for parsing and pretty-printing, and he can generate the signatures
he needs from the grammars he uses. In general, the programmer follows the
following steps:

e The programmer constructs or reuses an SDF grammar. From this gram-
mar, he generates a parse table, a signature, and a pretty-print table,
using the tools pgen, sdf2sig, and ppgen.

e The programmer imports the generated signature into his program.

e A concrete input term is fed into the generic parser sglr, together with
the generated parse table. The resulting parse tree is imploded to an
abstract syntax tree (AST) using the implode-asfix tool. As this AST
is represented by an aterm, it can be consumed by the Stratego program.

e The output of the Stratego program is pretty-printed in two steps. First,
the AST is transformed into a formatted BOX expression by ast2box,
using the formatting rules in the generated pretty-print tables (possibly
supplemented with customizations of the user). Secondly, the box expres-
sion is transformed to plain text, HTML, or IXTEX. This is done with the
Box back ends, which are not pictured.

Note that the parse and pretty-print tables are not Stratego-specific. Conse-
quently, the parsing and pretty-print back-ends can be used for any component
that consumes and produces aterms. Analogous to sdf2sig for Stratego, SDF-
driven code generators exist for other programming languages, e.g. JJForester
for Java. Stratego programs can seamlessly interoperate with programs in those
languages, because they use code generated from the same grammar and employ
the ATERM format as exchange format.

Import analysis Using Stratego’s import mechanism, Stratego programs can
be built from several modules. For various purposes, the import relations that
exist among modules need to be analyzed. One of these purposes is compilation.
In fact, one of the earliest phases of the Stratego compiler is packing, i.e. col-
lecting all imported modules into a single file. The pack-stratego component,
which takes care of packing, is actually a Stratego-specific instantiation of the
generic meta-tool pack, which is part of XT. Another instantiation is pack-sdf,
which collects SDF modules into a single SDF definition file. Apart from a file
with packed modules, the pack tool also produces a dependency file, which can
be included in a Makefile.

Another purpose for which import analysis is useful is program analysis and
program comprehension. For these purposes, XT offers another generic tool,
called import. When instantiated for Stratego, it analyses the import relations
for a given program, and presents the analysis results as a list of module names,
a list of full file names, or an import dependency graph. For instance, the
generated import graph for the Stratego library 1ib is show in Figure 3.3.
Note that this picture immediately reveales two mutual imports (of 1ib and
parse-options, and of 1list and list-filter) that are probably unintended.
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Figure 3.3: Generated import graph for the Stratego library.

Both pack and import make use of the generic graph strategies that are
contained in the Stratego library. These two tools have much functionality
in common. We consider combining them in a single tool that is not only
generic with respect to the input language, but also with respect to the actions
performed after analysis: result presentation or packing (several dimensions of
genericity).

3.3 xt constituents

Apart from the above-mentioned meta-tools for Stratego, XT contains a wide
variety of transformation components that have been programmed in Stratego.
We will explain a selection of these components for graph transformation, tree
transformation, and grammar transformation.

3.3.1 Graph transformation

Graph formats Graph formats and corresponding tooling play an impor-
tant role within xXT for code analysis and code visualization. According to the
component based idea, XT reuses existing graph visualization tooling based on
the dot input format [8]. This format allows graphs to be defined easily by
simply specifying the nodes and edges of the graph, and it provides the abil-
ity to influence the visual appearance by specifying additional properties of the
graph and its nodes and edges. XT also uses the GRAPHXML [6] graph for-
mat. This XML format provides the ability to transfer graphs between XT and
third-party tooling and allows for instance to re-use existing XML tooling for
the implementation of graph transformations. XT also offers the necessary con-
version tooling to transform a graph represented in GRAPHXML to dot. For
both formats SDF grammars are available in the Grammar Base and with XT’s
meta-tools mentioned above, parsers, pretty-printers and Stratego signatures
have been generated. These have been used to construct graph transformation
components.

Converters To convert between graph representation formats, several graph
transformations have been programmed, including GraphXML2dot.
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Analysers The Stratego module GraphXML-analysis contains a number of
reusable strategies that perform analysis on graphs represented in GRAPHXML.
The transformation component by the same name performs a number of these
analysis strategies, and presents the results as plain text. Most of these analyzers
are implemented using the standard set strategies as contained in the Stratego
library in combination with collect. For example, the strategy to obtain the
source nodes of a graph, was implemented as follows:

get-sources = collect( \ source(x) -> <de-quote>x \ )

Similarly, target nodes can be obtained using the get-targets strategy, imple-
mented as:

get-targets = collect( \ target(x) -> <de-quoted>x \ )

Both strategies can be combined to form more advanced analyzers. To ob-
tain those nodes from a graph with only in-going edges (sinks), the get-sinks
strategy was implemented:

get-sinks
= \g —> <diff>(targets,sources)
where <get-targets>g => targets
; <get-sources>g => sources

\

Extractors A number of components are available in XT for extracting graphs
from source code. An example is sdf2sg, which extracts a sort dependency
graph (or sort graph) from an SDF grammar. The extracted graph is represented
in GRAPHXML. The utility get-sort-graph is a script that glues the extractor
sdf2sg with the converter GraphXML2dot and the graph formatter dot.

3.3.2 Tree transformation

Tree visualization The component treeviz takes an arbitrary ATERM, and
produces a visualization of it in the GRAPHXML format. This is accomplished
by decomposing each term f(a1,...ay) using the ‘#’ construct of Stratego and
creating edges f — a; for each argument ter a; ... a,:

NodeToEdges =
7f#( args );
largs;
map (NodeToEdge (! target (<quote>f)))

NodeToEdge (target) =
?f#(_);
ledge ([source(<quote>f), <target>()] )

Parse tree implosion The component implode-asfix takes a parse tree in
the AsFix format, and produces a slimmed down syntax tree. Various command
line options allow control over which implosion filters are activated. When all
filters are active, the parse tree is transformed into an abstract syntax tree,
which contains no layout or literals, and in which lexical parse trees have been
flattened to strings.

The implode-asfix component demonstrates the use of command line op-
tions in Stratego and the sequential application of filters to an input term. To
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define command line options in addition to the standard set of options, we use
the strategy iowrap0 and pass it all additional options. The standard Stratego
options do not need to be passed to iowrap0.

main =

iowrap0( implode, Option( "--lex", !FlatLex )
+ Option( "--layout", !RemoveLayout )
+ Option( "--1it", 'Removelit )
+ Option( "--appl", 'ReplaceAppl )
+ Option( "--inj", 'FlatInj )
+ Option( "--list", !FlatList )
+ Option( "--seq", 'RemoveSeq )
+ Option( "--pt", 'RemovePT ) )

The iowrap0 strategy passes a tuple to its argument strategy (implode in the
example) consisting of the list of command line options as specified by the user
and the input term. The strategy should also return a tuple with the arguments
and the transformed term. The strategy implode accesses the command-line
options to determine which filter to apply to the input term. The strategy
option-defined is used to check whether an option was specified or not. On
success, a particular filter is applied, on failure the next option is checked.

implode =
?term;
try((option-defined (FlatLex), flat-lex));
try((option-defined (RemoveLayout), remove-layout));
try((option-defined (Removelit), remove-lit));
try((option-defined (FlatList), flat-1list));
try((option-defined(ReplaceAppl), replace-appl));
try((option-defined (FlatInj), flat-injections)) ;
try((option-defined (RemoveSeq), remove-seq)) ;
try((option-defined (RemovePT), remove-pt));

try(7term; (id, implode-asfix))

When no options were specified, the input term remains unchanged after all
option checks have been performed. The last match in the example, which
tries to match the same input term as the first match therefore succeeds, and a
default implosion will be applied.

Syntax tree formatting To format parse trees and abstract syntax trees,
Box front-ends asfix2box and ast2box are available. Apart from a tree, these
utilities take a sequence of pretty-print tables as input. The output is a term in
Box, a language independent markup language to describe the intended layout
of text. A BoOX term can be passed to one of the Box back-ends to obtain
HTML, BTEX or plain text as output.

The BoxX front-ends use Stratego’s table mechanism for efficient storage and
retrieval of pretty-print rules. During initialization, a global accessible table is
created with create-table and filled with all pretty-print rules defined in the
pretty-print tables:

read-pp-tables =
?names;
<create-table>"pp-table";
<map (ReadFromFile; build-pp-table)>names
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Pretty-print rules are inserted in the table with the table-put strategy:

StoreEntry =
?PP-Entry( path, template );
<table-put>("pp-table", <mk-key>path, (path, template))

After initialization, the pretty-print rules are accessed with table-get to trans-
form an abstract syntax tree or parse-tree to BOX:

pp-table-get =
7key;
<table-get>("pp-table", key ) => (path, template)

3.3.3 Grammar transformation

Grammars play an essential role in XT. They are used to generate parsers,
pretty-printers, Stratego signatures, and Java libraries for language-specific tree
transformation. In fact, grammars are used to fixate the interfaces between
transformation components [4]. To support this employment of grammars, we
need tools to create, manipulate, and transform grammars, and to generate code
from grammars. We discuss a few of these tools.

Syntax definition In XT, we use SDF as primary syntax definition formalism.
Because of its purity and declarativeness, grammars written in this formalism
are well suited to be used for different purposes (parsing, pretty-printing, code
generation), as is desired in XT. Also, its modularity and expressiveness enables
syntax reuse.

Grammar extraction Grammars can of course be written manually from
scratch, but when a language definition in a different formalism is already avail-
able, an SDF definition can be generated in stead. The GrammarTools include
several components for this purpose. The tool yacc2sdf extracts an SDF gram-
mar from a Yacc parser description. The tool happy2sdf does the same for
the Yacc-derivative Happy that targets Haskell. This latter tool is actually a
composition of happy2yacc and yacc2sdf.

In XML, document type definitions (DTDs) are used to describe the structure
of XML documents, i.e. to describe the abstract syntax to which they must
conform. The component dtd2sdf extracts an SDF definition from such a DTD.
From the extracted grammar, a validating! parser can be generated to parse
XML documents that conform to the given DTD. From the same grammar, a
DTD-specific Stratego signature can be generated, to support development of
DTD-aware Stratego components.

Grammar rephrasing Rephrasings are transformations where the source
and target language coincide, or largely overlap. Example of a grammar rephras-
ings are the tools sdf2asdf and sdf-normalize, which both map SDF to a
subset of SDF.

Other examples of rephrasings are sdf-cons and sdf-label, which syn-
thesise labels and constructor names from SDF productions, and add these to

1 An XML parser that enforces a document’s conformance to a DTD is called a walidating
parser.
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a grammar, and the converse tools rm-cons and rm-labels. The latter tool
makes use of Stratego’s overlay construct to simplify programming on parse
trees in the verbose parse tree format AsFix. The grammar of the SDF language
contains the following production for labelled symbols:

Literal ":" Symbol -> Symbol {cons('"label")}

Using the meta-tool sdf2overlay, which is an enhanced version of sdf2sig,
the following Stratego code can be generated:

signature
constructors
label : Literal * Symbol -> Symbol
overlays

label-overlay(u_20,v_20,w_20,x_20)
= appl(prod([cf (sort("Literal")),cf (opt(layout)),
1it(":"),cf (opt(layout)),cf (sort("Symbol"))],cf(
sort ("Symbol")) ,attrs([cons("label"),’id(
"Label-Sdf-Syntax")])), [u_20,v_20,appl(prod([
char-class([58])],1it(":") ,no-attrs),[58]),w_20,
x_20]1)

The right-hand side of the generated overlay is the AsFix fragment that rep-
resents the concrete parse tree that represents labeled symbols. Given this
generated overlay, the tool that removes labels is now simply programmed as
follows:

rm-labels
= topdown( try(\label-overlay(_,_,_,d) -> d\ ) )

Thus, the overlay is used to match labeled symbols, select their subterm that
represents the symbol without label, and replace them with this subterm.

3.4 Programming and engineering techniques

During the development of XT, we employed a range of programming and en-
gineering techniques that are more or less specific to Stratego. Though these
techniques are hardly novel, and certainly not earth-shaking, they might be of
interest to other (potential) Stratego practitioners. For that reason, we discuss
them.

Learning the ropes To learn Stratego, a wide range of sources is available.
In our experience, the best starting place is the Stratego Tutorial [14], in com-
bination with the Stratego Library [13]. To go beyond first principles, it is best
to consult examples of systems programmed in Stratego, such as the Stratego
Compiler itself [12]. We can also recommend the GrammarTools package of
XT, as it contains a large number of fairly small components. The Stratego
homepage is implemented as a Wiki server. There you can find (and add) in-
formation that is complementary to the official sources, and discussions about
Stratego practice. If you really get stuck, you can post an SOS message on the
Stratego mailing list.
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Understanding and reusing code Reuse is better than programming from
scratch. However, to reuse strategies, one first needs to understand them. In our
experience, this can be quite difficult. To find out, for instance, how to invoke
a strategy, one needs to know what kind of terms it expects, and what kinds of
strategies are needed to instantiate its parameters. Lacking a type system or a
documentation standard, such information is difficult to glean from the code.

To reconstruct such ‘usage information’, two complementary tactics can be
followed: look at the definition of the strategy, or look at its call sites. In our
experience, the second tactic is easier and more often successful. To find call
sites of strategies, one can perform searches in code bases, or PDF documents.

Despite the lack of a proper mechanism for code understanding in Stratego,
developing reusable code is simplified thanks to the modularization mechanism,
argument strategies, and untypedness. Stratego’s standard library provides a
great number of reusable strategies which significantly decreases the amount
of code that needs to be written for each application. Figure 3.3 depicts the
import graph of the Stratego library and gives an impression of the diversity of
he functionality of this library.

Choosing the proper construct Often, different language constructs can
be chosen to express the same. Which construct to use depends on personal
taste, there usually is no general rule to follow. Below we discuss a few of such
constructs.

e A Stratego rule is syntactic sugar for a strategy which starts with a match
and ends with a build construct:

L:1->r where s is equivalent to L={x1,..,xn: ?l;where(s);!r}

A Stratego rule looks similar to a rewrite rule, which transforms a term
from left to right. This similarity can be used as heuristic to choose
between a rule and a strategy: use a rule when a transformation is similar
to a rewrite step.

e Arguments to rules and strategies can be passed through strategy vari-
ables or by tupling. For instance, the iowrap0 discussed before uses two
strategy variables, whereas the strategy implode that is called by iowrap0
is passed a tuple with the specified command line options and the input
term. Tupling arguments usually requires explicit matching and construc-
tion of the tuple as in the example below:

7aterm;
<strategy_a>(argl, ..., argi, aterm);
?result;
<strategy_b>(argj, ..., argn, result)

With strategy variables, the two matches are not required, and the code
looks more like the sequential application of transformations:

strategy_a(argl, ..., argi);
strategy_b(argj, ..., argn)
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e To construct and de-construct terms in Stratego the match (‘?’) and build
(‘") operators can be used. For example, to construct a term t’ using a
sub-term s occurring in a term t, the following Stratego construct can be

used:
?t6(..., S, ... )3
(..., 8, ... )

This can also be done using the anonymous rule construct:
\t(.., s, ...) >t ..., s, ...0N\

This similarity allows rule-like definitions as strategies. See the definition
of get-sinks for an example. It uses an anonymous rule in a strategy
definition for matching the input term and building the output term.

e When the same term should be used at several places in a strategy defini-
tion, the term needs to be preserved before its first use until its last use.
This can be achieved by assigning the term to a Stratego variable:

?new_term
s_1;...;s_n
Inew_term

In this example, the input term is saved before executing the strategies
81 ...8, and restored afterwards. The same can be achieved without
introducing additional variables using the where construct. For example,
to search for a pattern in a term and assigning it to a variable pattern
without affecting the input term, the following Stratego code can be used:

where( oncetd(?f (a,b)=>pattern))

Debugging heuristics Debug support in Stratego is rather minimal, and
consequently errors are usually hard to locate. A few simple techniques are
available to help debugging Stratego programs, but debugging remains a time
consuming business.

e Stratego offers the debug strategy, which writes the subject term to stan-
dard error. This strategy accepts a string as optional argument which is
written before the subject term and helps to distinguish between different
debug invocations. An often occurring mistake is to forget to build the
argument string (by omitting the Stratego build operator). In this case
no debug output is displayed and you might conclude incorrectly that the
debug strategy is not reached because of a bug somewhere before. It is
because of the incorrect use of debug however that no debug output is
displayed, not necessarily due to a bug in your program.

e Often you believe that a subject term matches a particular pattern but
somehow a strategy operating on that term fails. Is the strategy incorrect,
or does the input term not match the expected pattern? An input term
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can be displayed with the debug strategy, but checking the output of the
debug strategy by hand is error prone. One can also pass an explicitly built
input term of the proper structure to the strategy and check whether the
strategy still fails or not. Similarly, one can check the result of a strategy
by inspecting the output of the debug strategy, or by explicit matching:

// Explicitly build a term to check a strategy:
'my_term(arg_1,...,arg_n);

s;

// Explicit match to verify that the structure of
// the output term of s is as expected.
?7a_term(arg_1,...,arg_j)

Unit, component, and integration testing Testing of Stratego programs
can be performed using unit, component, and integration tests.

e The Stratego library provides unit testing using the test-suite strategy
contained in the library module sunit. This strategy performs a number
of tests and produces a test report as output. The sunit module contains
standard tests for testing that a strategy succeeds for a particular input
or that it fails, and for checking the result of a strategy.

main = test-suite( !"my-unit-tests",
test-1;test-2;test-3)

test-1 = apply-test(!"testl", id, !"some input")
test-2 = apply-and-fail( !"test2", fail, !"some input")
test-3 = apply-and-check( !"test3", sqrt, !4.0, 72.0)

Such test suites can be defined in separate modules as is the case for part
of the Stratego library where a module m-test defines a test suite for the
strategies in the module m. One can also define the test suite in the same
module and turn it on using the —-main switch of the Stratego compiler.

For example, consider the module defining the strategy some-strategy
and a corresponding test suite below:

main = iowrap(some-strategy)
test-some-strategy = test-suite( .... )

Testing of some-strategy can be turned on by re-compiling the program
with the --main switch:

sc -1 program.r --main test-some-strategy

e To test a complete Stratego program (component testing) it can be passed
several fixed input terms, and the output can be matched against cor-
responding pre-build and verified result terms. In XT we use the test
mechanism of Automake [10] which executes a sequence of programs im-
plementing tests and builds a status report. We use diff to compare the
output of Stratego programs with pre-build terms.
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e Most Stratego programs in XT operate on parse-trees or abstract syntax
trees and the functionality of these programs is usually small because of the
component based approach of XT. Complete programs can be constructed
by connecting parsers and pretty-printers to Stratego components, and by
combining multiple (Stratego) components together. To test such complex
compositions of components, XT defines a collection of integration tests.
These tests execute the components of XT in different combinations with
different inputs and monitor the consistency of XT on a daily basis.

Refactoring When a piece of code from one program is candidate for reuse in
another program, it is extracted and put into a separate module. This module
is put in a lib directory of GT (GrammarTools). Modules in GT/lib expected to
be useful outside GT, can be nominated as candidates for the Stratego library.
This way, GT functions as a kind of nursery for the Stratego library.

Adding command line options Command line options and switches are
handled automatically when using one of the iowrap strategies. By using one
of these, the following options/switches are accepted and handled by default:

-b Write output in binary (BAF) format

-h -7 —help Display usage information

-i <file> —input <file>  Read input term from <file>

-0 <file> —output <file> Write output term to <file>

-s Write statistic information after execution
-S —Silent Silent execution

-v —version Display version information

In addition to these standard command line options, new options can be de-
fined. The iowrap0 strategy provides a simple mechanism to specify additional
switches. Section 3.3.2 contains an example that demonstrates the use of the
iowrap0 strategy and the definition of extra switches. Unfortunately, the generic
option handling mechanism of Stratego currently does not support extension of
the usage information. Hence, even when new options are accepted, the ——help
switch only displays usage information for the standard set of options.

Optimization The use of standard traversal strategies usually makes pro-
grams short and limits language dependence. However, it is often difficult to
choose between all different traversals that are provided by Stratego. When
several candidate traversal strategies are available to perform a particular job,
choosing one or another can influence performance significantly due to their
specific traversal pattern.

To control the exact behavior of a traversal an obvious approach is to explic-
itly program it. This is of course somewhat against the Stratego way of thinking,
but when performance really matters it might be an approach to follow.

An alternative approach is to use the skip strategies. Ordinary traversal
strategies do not distinguish between different nodes and during traversal all
nodes are accessed. Usually, a transformation only operates on particular sub
trees and only a traversal of these trees would suffice. The skip strategies accept
an additional argument which determines the trees that should be traversed.
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For example, the asfix-yield program obtains the yield of an AsFix parse
tree which corresponds to the original input string. AsFix is a huge parse tree
format and most of the information it contains is not used for this transforma-
tion. By traversing only those parts of the tree that contain lexical information,
performance is improved significantly. Therefore, asfix-yield is implemented
by defining a skip strategy for the AsFix constructs that only need partial
traversal and we define which sub-trees of these constructs should be traversed:

asfix-yieldl =

leaves(printstring, is-string, skipl)
skipl(x) =

term(id,id,id,id,id,x,x,x,id)

+ appl(id, id, list(x))

+ list(id, id, list(x))

+ lex(x, id)

This skipl strategy defines that only three of nine sub-terms of a term con-
structs need to be traversed. Similarly, of an appl construct only one of three
sub-trees will be traversed.

Connecting components Individual XT components should be designed for
reuse according to the component based approach of XT. Consequently, their
functionality usually will be restricted. Advanced programs can be construct-
ing be connecting such reusable components together using the ATERMs as
exchange format.

Several techniques are used in XT for gluing XT components together. Unix
pipes and scripting are used most frequently. Unix scripts handle user interac-
tion (including option handling) and execute all components. Pipes are used
to transfer data between components. Component gluing with make and Make-
files is another frequently used technique. The individual steps involved in the
execution of programs can be expressed clearly in Makefiles as make depen-
dencies. This improves understandability of programs in comparison to Unix
scripts. In contrast to Unix pipes, make uses files to pass data between com-
ponents. The combination of dependency checking and data exchange by files
enables automatic program optimization by only executing components when a
re-computation is required. In contrast to Unix scripting, option handling with
make is difficult.

A third approach being used in XT is Stratego as scripting language to glue
components together. This is a somewhat experimental approach because Strat-
ego does not offer real powerful process strategies yet. It offers the call strategy
to create a new process and execute an external program, data passing between
programs has to be programmed explicitly.

For example, GT defines a strategy sglr which uses call to execute the
parser sglr:

sglr : (tbl, in, out) -> out
where
<call> ("sglr", ["-p", tbl, "-i", in, "-o", out])

The terms in and out denote file names of the input and output terms. A
Stratego program is responsible for passing data to sglr using files. Execution
with input/output redirection is not supported.
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The option handling mechanism of Stratego and the ability to modify inter-
mediate trees between execution of components are strong motivations for using
Stratego for component gluing.

To simplify tool construction and tool use, XT requires that all components
performing input/output accept the -i, and -o switches to specify input and
output, respectively. Furthermore, tools should also handle the -h to provide
brief usage information to the user.

Documentation General documentation about XT, component descriptions
including usage information, and tasks descriptions are created and maintained
using Wiki 2, a system for collaborative web development. Wiki makes docu-
mentation writing and updating extremely simple and there is no delay between
documentation writing and documentation availability.

Stratego offers literate programming [7] facilities which can be used to doc-
ument Stratego programs. Together with a IATEX style file, this provides the
ability to produce BWTEX documents from your Stratego programs. A literate
Stratego program starts with \literate[<module-name>], which indicates the
start of an ordinary IATEX file. Code should be placed between \begin{code}
and \end{code}.

\literate{my-stratego}
Here comes a program description in \LaTeX.

\begin{code}
strategies

main = iowrap(id)
\end{code}

The \LaTeX document continuous here

When you include literate programs in you BTEX document, you should add
\usepackage{lit-style} to the document preamble. The Stratego parser ig-
nores all text except for the text between \begin{code} and \end{code}. An
increasing number of XT components are developed as literate programs.
Usage information about individual components can be obtained with the
-h command line switch. Specifying the -h switch provides a brief listing
of available switches. For most components however, also a separate Wiki
page is available, which contains additional usage information. To obtain in-
formation about or related to a tool, go to our XT web-site at http://www.
program-transformation.org/xt and enter the tool name in the search entry
at the bottom of the Wiki page. This gives you a list of all Wiki pages where
the tool name is used and this is an easy way to find the desired information.

3.5 Conclusions
Given our experiences with Stratego in the context of XT, we will attempt to

evaluate the language’s strengths and weaknesses. Also, we will suggest some
possible improvements.

2http://c2.com/cgi/wiki
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3.5.1 Strengths and weaknesses

Strengths Stratego has proven to be a very powerful implementation lan-
guage within the context of XT. This is due to various strong features of Strat-

ego.

Genericity. Strategy parameters and Stratego’s untypedness allow the
development of generic reusable strategies. The standard library of Strat-
ego best demonstrates how this helps to shorten your programs and it
demonstrates the development of such strategies.

Language independence. With the generic traversals offered by Stratego
your programs only need to depend on those language constructs that re-
quire transformation. This simplifies the development of transformations
significantly when only a relative small part of a language is affected. It
also simplifies maintenance of Stratego code after a language change.

Large libraries. The standard libraries in Stratego’s distribution offer an
extensive set of reusable generic strategies. Though not all of these strate-
gies are reused as often and with the same ease, they significanlty reduce
programming effort.

Common exchange format Stratego supports the ATERMs as exchange
format. This is in line with the philosophy of XT, and greatly simplifies
component-based development.

Weaknesses We also identified a number of weaknesses of Stratego, and the
support that is currently available for it.

e Performance. One of the most problematic properties of Stratego is the

poor performance of its compiler. This has great impact on the develop-
ment effort of Stratego programs because the development cycle editing—
compiling—testing takes so much time.

Static checking. Due to its untypedness, static checking of Stratego pro-
grams is limited and there is no way to see what type of data is expected
by strategies. This often results in unexpected behavior of Stratego pro-
grams.

Conceptual complexity. Stratego is a difficult language to learn because
programming with strategies is a technique that most people are unfa-
miliar with, because the syntax of the language is uncommon, language
documentation is still under development, and because of minimal debug-
ging facilities and poor error reporting. Consequently, it takes quite some
time and effort to get used to the language.

Code comprehension and reuse. Lack of a type system and minimal doc-
umentation of library strategies hampers reuse. Although there is a huge
amount of strategies available for reuse, it is hard to find out whether a
strategy with a specific functionality is available and how to use it. Find-
ing out what input a strategy expects and what output it returns are
re-occurring problems.
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3.5.2 Suggestions for improvement

o Additional checks and error reports. Short of a type system for Stratego,

and an accompanying type-checker, many additional static checks would
be helpful to the programmer. For instance, mistakes in arities of strate-
gies and strategy variables could be caught and reported as such by the
compiler, instead of leading to C compilation or linking errors.

Number of rewrites. Although the traversal strategy that is used can
have great impact on the performance of Stratego programs, there is no
mechanism (except for time measurements) to compare the use of differ-
ent strategies. Additional statistics, like statistics about the number of
rewrites for instance, would be of great help.

Globally accessible options. Code depending on command line switches
as specified by the user can occur everywhere in a program. The option
handling mechanism of Stratego now requires that the list of options is
passed through the program. This mechanism pollutes Stratego programs
and may affect many strategy definitions. Making the options globally
available would simplify Stratego programs, because it makes accessing
the command line switches easier and eliminates the need to pass switches
through a program.

Documentation. Reuse of strategies contained in the the Stratego library
is hampered because it is often not clear how to use a strategy. Adding
examples of strategy usage would improve the reusability of the library.
Also, a documentation standard for Stratego strategies is required to in-
dicate the arities of strategy argument, types of input and output terms,
and the types of variables. A reference card listing the most commonly
used strategies, and language constructs would assist the novice Stratego
user in learning the language.
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Chapter 4

SDL Re-engineering for
5ESS Feature Development

Ronald van Haalen?

Abstract Part of the operation of Lucent Technologies 5ESS telephone
exchange is described using an SDL dialect (Specification and Description
Language). SDL describes the behaviour using statemachines. This de-
scription can be a textual or a graphical one, but Lucent only uses the
textual description. Commercial tools are not available to interpret the
Lucent SDL models, because a proprietary dialect (AT&T SDL) is used.
By using Stratego and the XT toolset, a tool has been created that trans-
forms the textual AT&T SDL code into a graphical representation of a
statemachine. Stratego was used to collect the statenames and transitions
from the textual description. The XT tool set and a graph drawing pro-
gram were used to visualize the statemachine. The resulting graph shows
the transitions between the states. This makes it easier to understand
the behaviour of the code, because the generated graphical representation
abstracts from the details contained in the textual format.

4.1 Lucent Technologies

Lucent Technologies was split off from AT&T in 1996. Lucent currently has
125,000 employees worldwide as of October 2000 (of which 25% outside the
U.S.), with locations in more than 90 countries and territories. The major
product areas are:

e Optical networks
e Switching networks
e Wireless

The headquarters of Europe, Middle East and Afrika (EMEA) is located in
Hilversum. The mission of Lucent Bell Labs Twente (BLT) is to acquire and

1TLucent Technologies, Bell Labs Twente, haalen@lucent.com

36



maintain expertise on next generation network protocols and middleware plat-
forms for future multimedia services and applications. BLT mainly focusses on
domains of network architectures, protocol design and validation, Q.0.S. over
packet networks, billing and accounting, security, mobility, etc.

4.2 5ESS Telephone exchange

A large part (about 70%) of all telephone traffic routed in the Netherlands is
switched by 5ESS. The 5ESS switch has an availability of 99.999%, which means
that on average only in 0.001% of the time it is not functioning correctly (due
to hardware or software problems) Currently, about 700 million telephone lines
are implemented on this product. The code for the 5ESS switch is for the most
part written in C and SDL

4.3 SDL background

About SDL:

o It was initially defined by CCITT Z.100 standard as a formal language for
expressing requirements

e It has two representations: a graphical and a textual one
e It is tailored for specification of reactive systems

An SDL program describes a statemachine, with a state, a nextstate and an
input which causes the transition. The following example illustrates this:

STATE A;

INPUT example;
TASK C-code
NEXTSTATE B;
ENDSTATE A;

SDL can be used as:
e a formal specification language for expressing behavior requirements
e an implementation language

e documentation: a protocol between the designers and implementers

4.4 AT&T SDL Legacy

AT&T decided to make its own dialect of SDL, namely AT&T SDL. After some
time no tool support was given anymore for AT&T SDL, which lead to a legacy
problem: There are currently no tools to view or analyze the AT&T SDL code.
Still hundreds of Lucent employees work with AT&T SDL code, adding new
features and adapting old ones in the 5ESS code. Tools are needed to provide
insight in the SDL models, in order to efficiently:

e Reuse the SDL code
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e Change existing code in SDL or C
e Teach the new engineers the existing models in SDL

e Documentate

4.5 First idea

The first idea researched was to use commercial tools like Telelogic TAU, that are
based on standard SDL. For this, an AT&T SDL program should be converted
to the standard SDL format. This conversion turned out to be expensive and
difficult. The commercial tools have many additional analyses not useful for
AT&T SDL and too much information of the AT&T SDL code would be lost in
the conversion.

4.6 Project goals SDL re-engineering

It was decided to develop a tool in a short time that could give insight into SDL
code. The goals for the project were to:

o Investigate possible tooling of SDL
e Have new tools to provide insight in the AT&T-SDL legacy code
¢ Investigate and obtain expertise in re-engineering methods and tools

e Investigate if this kind of ”fast” tool development is useful for Lucent

4.7 Approach

An SDL grammar in YACC was available. In the first part of the project this
was re-engineered to an SDF grammar (this was done by Ramin Monajemi
(BLT) and Merijn de Jonge(CWI))

The XT tools are then used to:

e parse the SDL program
e pretty print the SDL code

Stratego is used for transformations and information gathering. Graphviz is a
graph visualisation program, it is used to visualize the finite statemachine.

4.8 Use of Stratego

Stratego is used to convert different formats and to collect information from the
SDL code. The following small programs are written in Stratego:

e collect states: returns the list of states defined in the sdl code

e collect transitions: returns a list containing the beginstate, endstate and
the transition name
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e transitions2ig: changes a list of transitions to the ig-format

e mk-labels: adds anchors and links to a box expression

4.9 Future Work

There are some ideas about what can be done in the future with the XT tools
and Stratego within Lucent:

e The prototype is going to be installed and tested for usefulness
e Extend the current prototype:

— More information: States and transitions dependencies (Stratego
would be used for this)

Improve the AT&T SDL grammar and the pretty printer

Support for C-code

Concat-sdl(program that combines multiple SDL files into one file)
with XT and Stratego instead of using Perl

— GraphXML format instead of ig format as intermediate language
between a list of transitions and dot.

e Make a similar tool that can visualize the graphical version of SDL

Whether this future work will actually be done, depends mainly on the evalua-
tion of the SDL tool.
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Chapter 5

CobolX: Transformations
for Improving COBOL
Programs

Hedzer Westral

5.1

We study the possibilities of using automatic program transformations to make
maintenance of legacy code easier. In particular, transformations on COBOL
are considered. We introduce a Y2K-class transformation on programs in this
language. In this paper we present the results of implementing such a transfor-
mation system using the XT package. The transformation itself is expressed in

Abstract There is a huge amount of legacy COBOL-code still being used
today, e.g. at bank computer systems. Manual maintenance of this code is
too expensive. Therefore, it is desirable to automate all kinds of routine
modifications. An important requirement in such modifications is the
preservation of comments and the original layout of the program.

CobolX is an environment for implementing transformations on COBOL
programs. The environment is built using the Transformation Tools (XT)
package, which provides tools for parsing (SDF/SGLR), transformation
(Stratego) and pretty printing (GPP).

Since COBOL is a complex language, it is necessary to generate all kinds of
tools from the syntax definition, since hand coding would not be feasible.
The XT package provides grammar tools for generating signatures and
pretty-print tables from syntax definitions. These tools were adapted to
support layout preservation.

As a first case study, the picture scaling transformation has been im-
plemented. Picture scaling involves propagating information about the
affected variables and then scaling picture declarations and constants.

Introduction

the Stratego language.

Thhwestra@cs.uu.nl
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We describe a new layout preservation system, which makes it possible to
preserve the original layout while transformating. With this system it is possible
to abstract from the layout in the transformation rules and strategies using
generated overlays.

5.1.1 Organisation

First the goal of this project will be discussed in section 5.2. In section 5.3
the implemented transformation rule is explained. Section 5.4 discusses the
proposed layout preservation system. Then follows a description of the XT tools
that we modify for this system, in section 5.5. An example of transforming with
layout is then shown in section 5.6 by means of a tiny language, Micro. In section
5.7 the details of the transformation pipe that CobolX uses are explained.

This paper ends with a conclusion in section 5.8 and an appendix containing
Stratego sources for the layout preservation system and sources for the Micro
example language.

5.2 Goal

The goal of this project is to implement a transformation on COBOL programs
in Stratego. The details of this transformation are discussed in section 5.3. The
results of the Stratego implementation are compared with implementations of
the same transformation in Perl and ASF+SDF2. The Perl project was called
Trafo.

The Software Improvement Group (SIG for short) is a CWT spin-off company
that, amongst others, improves software by automatic program transformations.
One can find them on the web at [2]. The SIG made the Perl and ASF+SDF
implementations and is interested in the possibilities that Stratego might offer
for program transformations. They have kindly supplied the results of the Perl
project, an Sdf2 COBOL grammar and pre/postprocessing utilities. In [1] they
explain the specifics of the required transformations.

5.3 The transformation

In the SIG project, there were eight distinct transformation rules to be imple-
mented. Two of those are done automatically, the other 6 are done manually
because that proved to be more time-efficient. For the CobolX project currently
only one of the two automatic rules is inspected: picture expansion®.

The picture expansion problem is comparable to the Y2K-problem: in the
original specification of the program it was expected that the so-called PRODKODE
field would never contain a value higher than 99. Time went by, and there
became a need for values up to 299. Not only the PRODKODE fields are
affected, but also fields that can contain PRODKODE values, e.g. because the
value of a PRODKODE field is copied into it.

2There has been an attempt to implement the transformation in Haskell but this was not
successfull.

3Implementation of other rules is planned for the future. This will provide information
about how easy it is to add transformation rules once a transformation system is set up.
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Input COBOL variable declaration:
01 PRODKODE PIC 99.
Desired output:

01 PRODKODE PIC 999.

Figure 5.1: PRODKODE picture expansion example
If PRODKODE is in the seek set ...
MOVE PRODKODE TO NUMBER

... NUMBER is added to the found set

Figure 5.2: propagation of affected variables

COBOL variables are declared by position, not by primitive type (e.g. inte-
ger or character). The change from picture 99 to picture 299 means the program,
which consists of 80,000+ lines of code, has to be refactored. Not an easy task
to do manually.

An example of a picture expansion is shown in figure 5.1.

5.3.1 Implementation in Stratego

To implement this rule in Stratego, the following transformation is devised:

1. Search for all variables with a specific name. This is called the seek set.

2. Propagate all affected variables through the program until a fixpoint is
found. The new set of variables is called the found set. An example of
propagation can be found in figure 5.2.

3. Rebuild the source, replacing the pictures of the found set by ones that
can contain the new PRODKODE values.

5.4 Layout Preservation

Implementing the expansion rule is not the biggest problem in this project. The
real issue is to modify source as least as possible, because it must be possible
to manually maintain the resulting COBOL source. This is severely obstructed
by dropping all layout and comments.

Three new data types are defined to satisfy the layout preservation require-
ment. They are: Layout, LList(a) and SList(a). The signatures can be found
in appendix 5.9.1, together with strategies and rules that support transforma-
tions with these types.

Layout terms contain the layout that is available in context-free produc-
tions. The example in figure 5.3 illustrates this. The overlay is provided for
transformation rules that abstract from the layout. These rules are explained
further in section 5.6.
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Sdf production:

context-free syntax
"if" Expr "then" Statement "else" Statement -> Statement
{cons("IfThenElse")}

Stratego signature without layout:

signature
constructors
IfThenElse: Expr Statement Statement -> Statement

Stratego signature with layout:

signature
constructors
IfThenElse: Layout Expr Layout Layout Statement
Layout Layout Statement -> Statement

Stratego overlay:

overlays
IfThenElse(e,sl1,s2) = IfThenElse(_ L(" "),e, _ L(" ™),
L(ll ")’Sl, L(ll |I),
_ L(" "),e2)

Figure 5.3: How layout is incorporated in signatures

The _ L(" ") construction is a special Stratego notation that is called Build-
Default. It is named like this because it supplies a default contructor, e.g.
L(" ") that is called if this strategy is used as a build. For a match the _ is
used; a wildcard that matches everything. This means that if the layout overlay
is used for a match strategy, all layout will be accepted. For builds, single spaces
are created?.

The data types LList(a) and SList(a) are defined for lists and separated
lists, respectively. A lot of Stratego library strategies defined in e.g.
list-basic.r are rewritten to support use of the LList(a) data type.

5.5 New and adapted XT tools

A lot of XT utilities need changes to enable layout preservation. These changes
are discussed below.

5.5.1 sdfcons

Sdfcons is used to generate constructor names for all Sdf productions in the
COBOL grammar. Unfortunately, the XT version of sdfcons uses an O(m * n?)
algorithm to make all the constructor names unique. This algorithm is replaced

4This might not be the preferred behaviour in all cases. Tt has been suggested to use e.g.
_ UL, where UL means Undefined Layout, which can be replaced by real layout in a separate
transformation phase.
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by an O(m *n) one, using the built-in ATerm hashing function. This reduces
the execution time of the process from two hours to five seconds.

5.5.2 sdf2stratego

There are two utilities for converting an Sdf2 grammar to Stratego: sdf2sig,
which generates signatures and sdf2stratego, which generates signatures and
AsFix overlays. Because AsFix representations of COBOL programs are huge,
an ATerm version is constructed. These ATerms contain not only the abstract
syntax of the COBOL programs, but also all of the layout. Special signatures
and overlays that make transforming with layout easy are generated by the new
version of sdf2stratego.

5.5.3 implode-asfix

To create this new type of ATerm, which contains all layout that is in the AsFix
tree, implode-asfix is adapted. Layout is not filtered out but imploded into
the new data type Layout. Because normal and separated lists are now inter-
spersed with layout, two other basic types are defined: LList(a) and SList(a),
respectively.

5.5.4 ppgen2

Ppgen2 is created to generated pretty print tables that convert the abstract
syntax to concrete syntax using the Layout elements.

5.5.5 hObox2text

Because the Box expressions that ast2abox yields only contain zero-spaced
horizontal boxes, due to conserving all layout in the ATerm, using box2text
is overkill. And, more important, much slower than hObox2text, which only
concatenates all strings in a Box. It does no actual layouting.

5.5.6 atermdiff

For debugging it is convenient to be able to compare two ATerms without clut-
tering the screen with Megabytes of data. This program tries to do as much. It
is also used in the check phase of the CobolX transformation pipe.

5.5.7 ppconv

Recently a new type of pretty print tables has been introduced. Ppconv converts
old tables to new ones.

5.5.8 striplayoutaterm

This strips all layout information from an ATerm.
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Transforming without layout:

rules
DeBrace: Assign(v,BracedExpr(e)) -> Assign(v,e)

Transforming with layout:

rules
DeBrace:: Assign(?v,7BracedExpr(e)) --> Assign(!v,!e)

Figure 5.4: A transformation rule without and with layout preservation

5.6 Micro, an example language

Micro is a simple language to study the layout preservation system. All of the
sources are available in appendix 5.12.1. With the Sdf definition of Micro it
is possible to generate Stratego signatures and overlays and a pretty printing
table, using the tools described in section 5.5.

As an example of a transformation that is possible with Micro, we present an
expression simplifier. In figure 5.4 two rules are shown. Both do the same task,
namely removing braces from an expression. The first cannot handle layout,
though, whereas the second can. One can see there are only minimal changes
needed to add handling of layout, and that the second rules abstracts from the
layout: the generated overlay takes care of that.

Maybe the second rule in figure 5.4 looks unfamiliar. The
rule:: input --> output where strategies rule is syntactic sugar for
rule = input; where (strategies); output whereas
rule: input -> output where strategies is syntactic sugar for
rule = 7input; where (strategies); !output.

This little difference means that the left- and righthand side of this special
rule should be a strategy in stead of a term, which is needed in this situation
to be able to work with the layout overlays.

Two drawbacks of the generated layout overlays are:

e Only transformations of the form shown in figure 5.4 are supported.

e New terms will contain single spaces as layout. If other layout is required
for new terms, e.g. for indentation, this will have to be done manually.

An example of an unsupported type of transformation:

DoRepeat::
(Assign(?v,BracedExpr(7e)),?n)
-—>
'Repeat (n,Assign(v,e))

This will replace all original layout with spaces. The solution is to explicitly
refer to the layout terms:

DoRepeat::
(Assign(?v,?711,712,BracedExpr(%e)),7n)
-—>
'Repeat (n,Assign(v,11,12,e))
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5.7 The CobolX transformation process

The transformation process consists of two phases: initialisation and transfor-
mation. In figure 5.5 the architecture of the system is depicted schematically.

5.7.1 Initialisation

The first phase takes as its input the Cobol.2 Sdf grammar and produces:
e the same Sdf grammar annotated with ATerm constructors,
e a Stratego signature and overlays for the layout preservation system and
e a pretty printing table.

The Sdf grammar is used to build a parse table. The Stratego signature
and overlays are included when compiling CobolX. Only if the Cobol grammar
changes the initialisation process is executed again.

5.7.2 Transforming a file

The second phase is a transformation pipe that is applied for each COBOL file
that is transformed. The elements of the pipe are, in input/ouput order:

| action | produced data type | file extension

copy input COBOL source cbli
preprocess preprocessed COBOL source pci

parse COBOL Binary AsFix tree pcas
implode uncompressed COBOL ATerm | pcai

CobolX uncompressed COBOL ATerm | pcao

pretty printing (ast2abox) BOX hObox
pretty printing (hObox2text) | preprocessed COBOL pco
postprocessing COBOL source cblo

When this pipe has finished, some checks are applied to make sure that the
output is correct. These checks are:

e Compare the COBOL output with the Trafo output, to see if the trans-
formation rule works identical to Trafo’s.

e Compare the input and output COBOL source, to find out what CobolX
has changed.

e Reparse the output COBOL and compare the resulting ATerm with the
CobolX output, to check that the pretty printing phase worked correctly;
pretty printing shouldn’t change the semantics. This check proved to be
useful for finding incorrectly placed layout, so it also serves as a check for
the transformation phase.

5.7.3 Results

The CobolX project is not fully completed at this moment. However, a prelim-
inary overview of the quality and speed of the system can already be made.
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Figure 5.5: CobolX architecture
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Trafo vs. CobolX

We compare the results of applying the picture expansion transformation rule
to 82 files. For Trafo and CobolX, we obtain the following numbers:

| | automatic | manual | total |

Trafo 217 28 245
CobolX | 161 161
equal 155 5 160
misses 61 23 84
extra 1 1

The Trafo project missed 6 possible automatic changes, 5 of which were done
manually. The other seems to have been overlooked.

CobolX misses 23 manual changes, probably because they are only detectable
by human inspection. Copybooks, which are comparable to C include files,
aren’t considered. This means that not all variable declarations are available
for the propagation phase.

The 61 automatic changes that CobolX misses are due to a limitation of the
implemented propagation rule. This will be fixed in the future. Another fix that
is needed is to transform all 85 files. The remaining 3 cannot be transformed
by CobolX because of some bugs in the adapted XT tools.

Execution time

It takes about two and a half hours to transform the 82 files on a FreeBSD
4.2 system running on a 500MHz Pentium IIT with 384 MB memory. In figure
5.6 we plot the execution time (cumulatively subdivided into 4 different phases)
against the file size of the input file. Note that the transformation phase takes
very little time, in comparison to the parse and check phases. Figure ?? shows
that this is due to implode-asfix. A possible explanation for the long execution
time is that it has to transform AsFix files, which are quite big. In figure ??
one can see that they are indeed the largest files that are handled during the
transformation pipe.

5.8 Conclusion

As shown above, it is possible to use Stratego to efficiently transform programs,
changing only the parts that need to be changed. Given an Sdf definition one can
generate all necessary sources. The transformation itself can then be expressed
in Stratego using the generated overlays, which make it possible to abstract
from the layout that is contained in the transformed ATerm.

In a best-case scenario, only small modifications will have to be made to add
layout preservation to an existing Stratego program. Sometimes, however, the
overlays do not suffice. Layout must then be explicitly handled.

The programs mentioned in section 5.5 will be added to the XT distribution
in due time.
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5.9 Sources
5.9.1 Library functions

5.10 LayoutPreserve

module LayoutPreserve

signature
constructors
NL : Layout
L : String -> Layout
UL : Layout
Us : Layout

Label: String * s -> Label

Bracket: String * Layout * s * Layout * String -> Bracket
overlays

Bracket(s) = Bracket(_ "(",_ UL,s,_ UL,_ "™)")

rules

layconc: (NL,NL) -> NL
layconc: (l@L(_),NL) =->1
layconc: (NL,1@L(_)) ->1
layconc: (L(11),L(12)) -> L(<concat-strings>[11,12])

layconc: (UL,NL) -> UL
layconc: (NL,UL) -> UL
layconc: (UL,UL) -> UL

// is this the behaviour we want??
layconc: (l@L(_),UL) ->1
layconc: (UL,1@L(_)) -> 1

strategies

layeq(s) = rec r({f,g,fs,gs:
(7£,71)
<+ (isLayout,isLayout)
<+ \a@(f#(fs) ,f#(gs)) -> a where
<eg>(<length>fs,<length>gs) ;<zip(r)>(fs,gs)\
<+ \a@(f#(fs),g#(gs)) -> a where <s>(f,g)
//this results in pretty large diffs..
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//;<eq>(<length>fs,<length>gs);
//<zip(xr)>(£fs,gs)
\
// <+ echo(!"shouldn’t be reached: ");fail
1))

isLayout = NL + UL + L(id)

5.11 LList

module LList
imports 1lib apply

signature
constructors
LCons : a * Layout * LList(a) -> LList(a)
overlays

LCons(hd,tl) = LCons(hd,_ UL,tl)
lsingle(s) = LCons(s,_ UL,Nil)

rules
112singleton: LCons(x,_,[1) -> [x]
strategies
set-last-layout(s) = rec r(LCons(id,s,[]) <+ LCons(id,r))

lmap(s) = rec r(LCons(s,r) + Nil)
lmap’’(s) = rec r(Nil <+ apply2(s,LCons(id,r)))
Ilmap’(s) = rec r(
{x’,1’: \ LCons(x,1,xs) -> LCons(x’,1’,<r>xs)
where <s>(x,1) => (x’,1’) \}
+ Nil)

lthread-map(s) = rec x((LCons"T(s,id,x) + Nil"T))

1filter(s) = rec x([] + (LCons(s,x)<+1T1l;x))
1fetch(s) = rec x(LCons(s,id) <+ LCons(id,x))
llength = rec x([1; '0 + 1T1; x; \n -> <add> (n, 1)\ )

(x LList(List(a)) -> List(a) *)
lconcat = rec x([] + \ LCons(1l,1s) -> <at-end(<x>1s)>1 \ )

(* List(LList(a)) —> LList(a) *)
lconcat’ = rec x([] + \ [1|1ls] -> <at-1l-end(<x>1s)>1 \ )
at-1-end(s) = rec x(LCons(id,x) + [];s)
at-1-last(s) = rec x(LCons(s,[]) <+ LCons(id,x))
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(* LList(LList(a)) -> LList(a) *)
lconcat’’ = rec x([] + \LCons(1,11,1s) -> <at-l-end’ (<x>1s)>(1,11)\)

at-1-end’(s) = 7(1,11);!'1;rec x( LComs(id,
\ 12 -> <layconc>(12,11) \,

7[1;s)
<+ LCons(id,x)
// <+ (?7[];s=>1s;!LCons(1s,11,[]1))
)
ConstoLCons = rec x([J+\[1]1s]->LCons(1,<x>1s)\)

LConstoCons = rec x([]J+\LCons(y,ys)->[yl<x>ys]\)

lLast = rec r(\LCons(x,Nil) -> x\ + \LCons(_,xs) -> <r>xs\)
1Init = rec r(\LCons(x,Nil) -> Nil\ + LCons(id,r))
rules

1T1: LCons(x,xs) -> Xs
1Hd: LCons(x,xs) -> x

lconc: (11,12) —> <at-1l-end(!12)> 11

5.12 SList
module SList
signature
constructors
SCons : a * Layout * String * Layout * SList(a) -> SList(a)
overlays

SCons (hd,t1)
= SCons(hd,_ L(" "),_ ",",_ L( "),tl)
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5.12.1 Micro
5.13 micro.def

definition

module Main
imports Program Disambiguate Layout AddPrecision

module Program
imports Statement
exports
sorts Program
context-free syntax
Statement+ -> Program {cons("Program")}

module Statement
imports Expr Var Bool
exports
context-free syntax
"if" Bool "then" Statement ("else" Statement)?
-> Statement {cons("IfThenElse")}

"{" Statement+ "}" -> Statement {cons("Block")}
"do" Statement "while" Bool -> Statement {cons("DoWhile")}
Var ":=" Expr -> Statement {cons("Assign")}

module Expr
imports Number Var

exports
context-free syntax
Expr "+" Expr -> Expr {cons("Plus")}
Expr "-" Expr -> Expr {cons("Minus")}
Expr "/" Expr -> Expr {cons("Div")}
Expr "x" Expr -> Expr {cons("Mul")}
"(" Expr ")" -> Expr {cons("BracedExpr")}
Number -> Expr {cons("NumExpr")}
Var -> Expr {cons("VarExpr")}

module Number
exports
lexical syntax
[0-9]+ -> Number {cons("Number")}

module Bool
imports Expr

exports
context-free syntax
"True" -> Bool {cons("True")}
"False" -> Bool {cons("False")}
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Expr "=" Expr
Expr "<" Expr
Expr ">" Expr
Expr ">=" Expr
Expr "<=" Expr
Expr "!=" Expr
"not" Bool
Bool "and" Bool
Bool "or" Bool
n (n Bool n)n

module Var
exports
lexical syntax
[a-zA-Z\_] [a-zA-Z0-9\_\-]*

module Disambiguate
imports Expr
exports
context-free priorities
Expr "*" Expr
Expr "+" Expr
Expr "-" Expr

"not" Bool
Bool "or" Bool
Bool "and" Bool

module AddPrecision
imports Number
exports
context-free syntax
(0] [0-91+
n_mn [O]

module Layout
exports
lexical syntax
[\ \t\n]
context-free restrictions
LAYOUT? -/- [\ \t\n]

micro.r

This file is created by sdf2stratego and contains the signatures and overlays

for the Micro language.

definition

module Main
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Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool

{cons("Eq")}
{cons("Lt")}
{cons("Gt")}
{cons("Ge")}
{cons("Le")}
{cons("Ne")}
{cons("Not")}
{cons("And")}
{cons("0r")}
{cons("BracedBool")}

Var {cons("Var")}

Expr {left} >
Expr {left} >
Expr {left},

Bool {left} >

Bool {left} >
Bool {left}

Number {reject}
Number {reject}

LAYOUT {cons("LAYOUT")}



imports LayoutPreserve LList SList Program Disambiguate Layout AddPrecision

module Program
imports LayoutPreserve LList SList Statement
signature
constructors
Program : LList(Statement) -> Program
START : Layout * Program * Layout -> START
overlays
START (a_0)
= START(_ L(" "),a_0,_ L(" ™)

module Statement
imports LayoutPreserve LList SList Expr Var Bool
signature
constructors
Block : Layout * LList(Statement) * Layout -> Statement
IfThenElse : Layout * Bool * Layout * Layout *
Statement * Layout * Option(Statement) -> Statement

DoWhile : Layout * Statement * Layout * Layout * Bool -> Statement
Assign : Var * Layout * Layout * Expr -> Statement
overlays
Block(c_0)

= Block(_ L(" "),c_0,_ L(" "))
IfThenElse(d_0,e_0,f_0)

= IfThenElse(_ L(" "),d_0,_ L(" "),_ L(" "),e_0,_ L(" "),f_0)
DoWhile(g_0,h_0)

= DoWhile(_ L(" "),g_0,_ L(" "),_ L(" "),h_0)
Assign(i_0,j_0)

= Assign(i_0,_ L(" "),_ L(" "),j_0)

module Expr
imports LayoutPreserve LList SList Number Var
signature
constructors
Plus : Expr * Layout * Layout * Expr -> Expr
Minus : Expr * Layout * Layout * Expr -> Expr
Div : Expr * Layout * Layout * Expr -> Expr
Mul : Expr * Layout * Layout * Expr -> Expr
BracedExpr : Layout * Expr * Layout -> Expr
NumExpr : Number -> Expr
VarExpr : Var -> Expr
overlays
Plus(k_0,1_0)
= Plus(k_0,_ L(" "),_ L(" "),1.0)
Minus(m_0,n_0)
= Minus(m_O,_ L(" "),_ L(" "),n_0)
Div(o_0,p_0)
= Div(o_0,_ L(" "),_ L(" "),p_0)
Mul(q_0,r_0)
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= Mlll(q_o,_ L(ll Il),_ L(" "),I‘_O)
BracedExpr(s_0)
= BracedExpr(_ L(" "),s_0,_ L(" ™))

module Number

module Bool
imports LayoutPreserve LList SList Expr
signature
constructors
True : Bool
False : Bool
Eq : Expr * Layout * Layout * Expr -> Bool
Lt : Expr * Layout * Layout * Expr -> Bool
Gt : Expr * Layout * Layout * Expr -> Bool
Ge : Expr * Layout * Layout * Expr -> Bool
Le : Expr * Layout * Layout * Expr -> Bool
Ne : Expr * Layout * Layout * Expr -> Bool
Not : Layout * Bool -> Bool
And : Bool * Layout * Layout * Bool -> Bool
Or : Bool * Layout * Layout * Bool -> Bool
BracedBool : Layout * Bool * Layout —-> Bool
overlays
Eq(v_0,w_0)
- Eq(V_O,_ L(" u)’_ L(" "),W_O)
Lt(x_0,y_0)
- Lt(X_O,_ L(" u)’_ L(" n),y_o)
Gt(z_0,a_1)
= Gt(Z_O,_ L(II |I)’_ L(ll Il)’a_l)
Ge(b_1,c_1)
= Ge(b_l,_ L(II |l),_ L(ll "),C_l)
Le(d_1,e_1)
= Le(d_l’_ L(II |I)’_ L(ll ll)’e_l)
Ne(f_1,g_1)
= Ne(f_l’_ L(II |I)’_ L(ll ll)’g_l)
Not (h_1)
= Not(_ L(" "),h_1)
And(i_1,j_1)
= And(i_l,_ L(" n),_ L(" "),j_l)
Or(k_1,1_1)
= Dr(k_l’_ L(ll |l)’_ L(ll ll),l_l)
BracedBool(m_1)
= BracedBool(_ L(" "),m_1,_ L(" "))

module Var

module Disambiguate
imports LayoutPreserve LList SList Expr

module AddPrecision
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imports LayoutPreserve LList SList Number

module Layout

micro.pp

This file is created by ppgen2 and contains the pretty printing rules for the
Micro language.

L
START -- Hhs=0[_1 _2 _3],
L -- Hhs=0[_1],
NL -- Hhs=0[],
SCons -- Hhs=0[_1 _2 _3 _4 _5],
SNil -- Hhs=0[_1],
LCons -- Hhs=0[_1 _2 _3],
LNil -- Hhs=0[_1],
TCons -- Hhs=0[_1 _2],
TNil -- Hhs=0[],
Program -- Hhs=0[_1],
Block -- Hhs=0[KW["{"] _1 _2 _3 KWw["}'
IfThenElse -- Hhs=0[KW["if"] _1 _2 _3
IfThenElse.7:seq —— H ["else" _1 1],
DoWhile -- Hhs=0[KW["do"] _1 _2 _3 KW["while"] _4 _5],
Assign -- Hhs=0[_1 _2 KW[":="] _3 _4],
Plus -- Hhs=0[_1 _2 Kw["+"] _3 _4],
Minus -- Hhs=0[_1 _2 KW["-"] _3 _4],
Div -- Hhs=0[_1 _2 Kw["/"] _3 _4],
Mul -- Hhs=0[_1 _2 KW["%"] _3 _4],
BracedExpr -- Hhs=0[KW["("] _1 _2 _3 Kw[")"]],
NumExpr -- Hhs=0[_1],
VarExpr -- Hhs=0[_1],
True -- Hhs=0[KW["True"]],
False -- Hhs=0[KW["False"]],
Eq -- Hhs=0[_1 _2 KWw["="] _3 _4],
Lt -- Hhs=0[_1 _2 KW["<"] _3 _4],
Gt -- Hhs=0[_1 _2 KW[">"] _3 _4],
Ge -- Hhs=0[_1 _2 KW[">="] _3 _4],
Le -- Hhs=0[_1 _2 KW["<="] _3 _4],
Ne -- Hhs=0[_1 _2 Kw["'!="] _3 _4],
Not -- Hhs=0[KW["not"] _1 _2],
And -- Hhs=0[_1 _2 KW["and"] _3 _4],
Or -- Hhs=0[_1 _2 KW["or"] _3 _4],
BracedBool -- Hhs=0[KW["("] _1 _2 _3 KW[")"]]

11,
KW["then"] _4 _5 _6 _71,

5.14 micro-main

module test-main

57



imports test-simplify lib io Main
strategies

simple=topdown(repeat(SimplifyAssign))
flatten=bottomup (try(DeBlock+DeBrace))

€
example strategy:
conv =
START (Program(?stats)); START(Program(![Assign("i",NumExpr("3"))]1))

example rule:
conv::
START (Program(?stats))
-=>
START (Program(! [Assign("i" ,NumExpr("3"))]1))
*)

main = stdio(simple;flatten)

5.15 micro-simplify

module test-simplify
imports io string Main
strategies

SimplifyDeepExprs = SimplifyExpr + SimplifyBraced
zeroOrOne(s) = test(s+all(s))
rules

DeBlock::
Block(?[el)
-—>
le

DeBrace::
Assign(?v,?BracedExpr(e))
-—>
Assign(lv,!le)

SimplifyAssign::
Assign(?var,7expr)
-—>
!Block(b)
where <SimplifyAllExprs>(var,expr) => b
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SimplifyAllExprs:
(var,expr)
->
<SimplifyDeepExprs> (var,expr,vl,v2)
where <not(zeroOrOne(?NumExpr (_)+7?VarExpr(_)+7?NL+7L(_)))>expr
; new => vl
; new => v2

SimplifyExpr:

(var,expr#([el1,11,12,e2]),v1,v2)
->
LCons (Assign(vl,el),

LCons (Assign(v2,e2),

LCons (Assign(var,

<mkterm> (expr, [VarExpr(v1l),11,12,VarExpr(v2)])),
[H»

where <7"Plus"+7"Minus"+7"Div"+?"Mul">expr

SimplifyBraced::
(?var ,BracedExpr(7e),?7v,id)
-=>
'LCons (Assign(v,e),
LCons (Assign(var,BracedExpr (VarExpr(v))),
1
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example input

This is an example input for the Micro expression simplifier. It simplifies all
expressions with more than one arithmetic operator, keeping as much original
layout intact as possible. Single spaces are inserted for every newly created
grammar element.

The layouting of this input is intentionally non-standard, to show how the
layout preservation and generation of new layout works.

{1i:=t + 3 x7
b := 4 %2
f:=0
}
if a=3 then c:=4
else
c:=8

if g>3 then d:=5

a := (4x%8)
{f:=0 }

example output

{{a0:=tb 0:=3*x71i:=a.0 +b. 0 }
b := 4 *2
f:=0
}
if a=3 then c:=4
else

if g>3 then d:=5
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Chapter 6

Optimizing Pan programs
with Stratego

Arne de Bruijn?

Abstract Pan is a language for image manipulation. Originally, Pan
programs are written with special constructors in the functional language
Haskell. These Haskell expressions are compiled to native code, with
heavy use of inlining. A common subexpression elimination phase is used
to reduce duplicate code. But the code remains too big, so another way
to write Pan programs is proposed, where more control over inlining is
possible: Pan code is rewritten in FunTiger, an experimental language,
and optimized with Stratego rules.

6.1 Introduction

In various domains execution speed is critical for the application. One of these
domains is interactive image manipulation. A difficulty with optimizing pro-
grams is maintaining a balance between maintainability and the level of op-
timization. This is addressed by the Pan language [2], where one can write
complex image manipulation programs by composing simpler functions. It is an
embedded language, and uses the functional language Haskell as host language.
Pan programs consist of special Haskell constructors which generate one big
expression for the program. The compiler is an Haskell program which rewrites
the expression to C code. There are no declarations in the Pan expression,
everything is inlined. To prevent large code size and multiple calculations of
the same expressions this inlining is partly undone by a common subexpression
elimination (CSE) phase in the compiler.

But the CSE doesn’t find common function applications in the code. The
approach taken here is to prevent unnecessary inlining in the first place, and
leave the CSE as it is. Since the current architecture doesn’t allow control
over the inlining, another approach was needed. This was found in writing Pan
programs in the experimental language Tiger [1]. This language was chosen
because of prior experience with an implementation of it in Stratego [3].

1

arne@knoware.nl
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Section 2 goes into more detail about Pan, section 3 is a short introduction
to Tiger, section 4 explains the generation of C code from Tiger programs, and
section 5 describes future work.

6.2 Pan

In Pan an image is a function that takes an z and y coordinate, and returns a
color for the given position. In the simplest case the images are just black and
white, and the color is represented by a boolean. For example the following is
a Pan program to create an image with a vertical bar:

vstrip (x,y) =y > -0.5 & y < 0.5

This is Haskell syntax to define a function vstrip that takes a pair (x,y) and
returns the boolean True if y is between -0.5 and 0.5 and False otherwise (in
the Haskell version of Pan the syntax is slightly different, to make it possible to
compile the expression with the Pan compiler).

Figure 6.1: vstrip

To display the image, a viewport and a resolution is needed. If the viewport
is (—5,—5) — (5,5), and the resolution is 256 x 256, the following loop renders
the image:

for y := 0 to 2565 do
for x := 0 to 255 do
imgl[y] [x] := vstrip(x * 10 / 256 - 5, y * 10 / 256 - 5)
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To optimize this loop, the function vstrip is inlined:

for y := 0 to 2565 do
for x := 0 to 265 do
imglyl[x] := (y » 10 / 2566 - 5 > -0.5) && (y * 10 / 256 - 5 < 0.5)

In this inlined code another optimization becomes possible: since the expression
is independent of x, it can be moved out of the inner loop.

for y := 0 to 2565 do
let
a :=(y* 10/ 256 - 5> -0.5) && (y * 10 / 256 - 5 < 0.5)
in
for x := 0 to 255 do
img[yl[x] := a

This shows the idea of Pan: the image is described in a clean abstract way,
but it compiles to specific, optimized code.

6.3 Tiger

The Tiger language is a small Pascal-alike language designed by Andrew W. Ap-
pel for his Modern Compiler Implementation series. An example Tiger program
to print ”Hello World” is the following:

let

function print2(a:string, b:string) = (print(a), print(b))
in

print2("Hello ", "world");

end

In the original implementation of the Tiger compiler in Stratego, the backend
generated MIPS assembler code. To make the compiler more flexible it was
rewritten to generate C code. The compiler now consists of the following phases:

e Parser

e Desugarer

Type checker

Translation to C code

Pretty printing the C code
e Compiling the C code

The parser takes the source code of a Tiger program and generates a concrete
syntax tree. The desugarer rewrites this tree to an abstract syntax tree. The
type checker collects all definitions and type declarations in the program, and
checks if these are consistently used. It also annotates some declarations with
their type, to facilitate further translations. The translation to ¢ code translates
the type-checked abstract Tiger syntax to an abstract syntax for C. The pretty
printer creates C source code from this abstract syntax. Finally the C code is
compiled to an executable.
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6.4 Generating C code

A logical choice to generate C code with Stratego is defining an abstract syntax
for C code, and writing a pretty printer for this syntax. This way the C code
can be generated and manipulated with Stratego rules. The abstract syntax
was designed to stay close to the language, to put the intelligence in the generic
rewriting rules, and keep the pretty printer as simple as possible.

The abstract syntax has the following elements.

e CId: Identifiers

e CExp: Expressions

e CType: Types

e CStm: Statements

e CFrag: Fragments (top-level constructs)
With constructors for constants, like:

Ccint : Int -> CExp
Ccstring: String -> CExp
Ccfloat : String -> CExp

And for operators, like:

Cbinop : BinOp * CExp * CExp -> CExp
Ccast : CExp * CType -> CExp

Ccall : CExp * List(CExp) -> CExp
Cassign : CExp * CExp -> CExp

This makes it possible to translate the Tiger abstract syntax to C abstract
syntax, for example a function call:

TrExp :
Call(Var(v), args) -> Ccall(Cvar(lab), args’)
where
<lookup-label> v => (lab, context, _);
( // no static link argument for external functions

<?"external"; !args> context
<+

! [<static-links> context | args]
) => args’

In this example TrExp is the rule to translate all expressions. A function
call like print2("Hello ", "world") is denoted in the abstract syntax as
Call(Var("print2"), [String("Hello "), String("world")]). This rule
first uses lookup-label to find the unique label of the function and context
where it is defined, and uses that to construct a function call in the C abstract
syntax, which would here look like:

Ccall(Cvar("g_Oprint2"),
[Cvar("_esc"), Ccstring("Hello "), Ccstring("world")])

The C variable _esc is the static link (it contains a pointer to a struct with the
escaping variables of the calling context).

64



6.5 Future work

The Tiger compiler has almost enough features to write the example Pan pro-
grams in Tiger. When this works, the goal is to write an inliner for Tiger, and
to find good heuristics that result in fast, but not too large, programs.
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