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Abstract

Although type systems do detect type errors in programs, they often produce uninfor-
mative error messages, that hardly give information about how to repair a program. One
important shortcoming is the inability to highlight the most likely cause for the detected
inconsistency. This paper presents a type inferencer with improved error reporting facil-
ities, based on the construction of type constraints. Unification of types is replaced by
the construction of constraint graphs. This approach increases the chance to report the
actual source of a type conflict, resulting in more useful error messages.

1 Introduction

Type systems are indispensable in modern higher-order, polymorphic languages. An impor-
tant contribution to the popularity of Haskell and ML is their advanced type system, which
enables detection of ill-typed expressions at compile-time. Modern language processors use
type inference techniques that are derived from the algorithm proposed by Milner [12], and
are based on the unification of types.

Since the error messages of most compilers and interpreters are often hard to interpret,
programmer productivity is hampered. Also, programmers new to the language are likely to be
discouraged from using it. Unfortunately it is not straightforward to change unification-based
systems to produce clear type error messages. One serious problem is that type conflicts might
be detected far away from the site of the error. Another problem is that the location where
an inconsistency is detected is influenced by the order in which types are unified. Unification-
based type systems have a bias to report type conflicts near the end of the program. This
left-to-right bias is caused by the way unification and substitution are used. A type inference
algorithm should be symmetric: subexpressions have to be handled identically without a
tendency to report type conflicts more often in certain parts of the program. Other problems
of type systems for polymorphic languages are the following.

e Type inference techniques are very local, assuming expressions to have correct types
until an inconsistency is found. A global approach takes the complete program into
consideration before it determines what is probably incorrect. The advantage of this
approach is that extra information becomes available, resulting in better error messages.



e Error messages are a brief explanation of a conflict. Occasionally an extensive clarifica-
tion of the conflict is required to identify errors. The desired level of detail in a message
depends on the experience of a programmer.

e Only the first type conflict that is detected is reported. It is useful to report multiple
(independent) type conflicts.

Ezxample:
The following ill-typed function illustrates the problem with current error messages:

f = Ar — case z of
0 — False;
1 — "one”;
2 — "two”;
3 — three”;

The error message produced by Hugs, an interpreter for Haskell, for this definition is:

ERROR "example.hs" (line 1): Type error in case expression
**x* Term : "one"

*xx Type : String

**x* Does not match : Bool

This message results from the different types of expressions on the right-hand side (three
expressions of type String and one of type Bool) and points to term ”one”. Considering the
large proportion of String constants it is reasonable to assume that expression False has an
incorrect type.

In this paper we present a new approach to type inference to remedy this shortcoming.
A set of constraints on types is generated for an expression. The power of constraint-based
program analysis is the separation of constraint generation, the specification of the analysis,
and constraint resolution, which is the implementation [I]. Although constraints are typically
generated locally, a set of constraints can describe global properties. Since we are no longer
forced to solve the constraints while they are generated, the system does not have a left-to-
right bias. Heuristics are used to remove inconsistencies in the complete set of constraints.
Each resolved inconsistency results in a reported type conflict.

Several papers discuss type inference techniques related to our approach. Lee and Yi
[9] formally define algorithm W (bottom-up), and a folklore algorithm M (top-down), that
both work for the Hindley-Milner let-polymorphic type inference system. They proof that for
each ill-typed expression, algorithm M detects an inconsistency earlier than . To find the
source of a type error instead of the location where an inconsistency is detected, Wand [14]
presents an algorithm that keeps track of reasons for deductions about the type of a variable.
A similar approach is discussed by Beaven and Stansifer [3], where an interactive system
traces all deductive steps to construct an explanation for a type conflict. Various techniques
to improve type error messages use constraints on types. Walz and Johnson [13] collect a set
of type equations that can be inconsistent. To resolve contradictions, variables are assigned
a type such that most of the hypotheses are satisfied. Unfortunately, the order in which the
equations are solved determines which conflict is reported. Aiken et al. [2] show how to
perform a constraint-based program analysis in a type inference algorithm for the lambda-
calculus without polymorphism. Gandhe et al. [7] discuss corrections of ill-typed expressions



using constraints on types; their system however cannot handle polymorphism. McAdam
[10] discusses the use of unification and substitution in conventional inference algorithms
which have a left-to-right bias. To remove this bias, a modification of the inference algorithm
proposed by Hindley-Milner is suggested that unifies substitutions instead of types. In a
different paper, McAdam presents a method to capture information about types in a graph
[11I]. This approach is a generalisation of several other techniques [4, 14, [6]. Jun [8] gives
an inference algorithm that reports conflicting sites rather than the site where a conflict is
detected. Only little knowledge about type checking is required to understand the reported
conflicts.

This paper is organised as follows. In the next section, an expression and type language
is presented, for which type inference rules are given in Section [3] In Section [4] we give a
specification of the constraint solving process. We use this specification to discuss the corre-
spondence between the presented type system and the Hindley-Milner type system in Section
Sections [6] and [7] present respectively an algorithm to solve constraints, and heuristics
to remove inconsistencies in a set of constraints, whereas Section |8 gives conclusions and
highlights topics for future research.

2 Expression and type language

We are interested in a higher-order functional language, suitable for type reconstruction. Our
language is described by:

Expr = identifier

|  constant

|  Exzpr Expr

| Aidentifier — FExpr

| case Expr of (Expr — Expr;)*

| let identifier (:: T'ype)? = Ezpr in Expr

The set of constants contains literals and data constructors, all carrying their own constant
type. Although expressions on the left-hand side of case-expressions are restricted to patterns,
it is not necessary to distinguish patterns and expressions. A let expression contains a single
declaration that can be assigned an explicit type, and recursive declarations are permitted.
Although an explicit type is often just used to ensure that the inferred type is the intended
type, it is necessary for polymorphic recursion.

The type language is given by:

Type ::= variable | constant | Type Type

The type system will benefit from the straightforwardness of this type language, especially
since no quantified types are required. Type variables are written v, vy, vs ..., type constants
are written ¢, ¢, co .... There is a special type constant (—) for representing function types.
An example of a function type is ((—) Int) Bool. In the rest of this paper we use the standard
infix notation for function types. We assume that spurious types, like ((—)(—)), do not
occur.
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Figure 1: Type inference rules

3 Type inference rules

We present a set of type inference rules to assign a type to an expression. We use judgements
of the form (F e : 7, A, C) to express that expression e has type 7 in environment A,
provided that the constraints on types in C' are satisfied. The environment contains type
variables assigned to the variables that are free in e. Figure [I] gives a typing schema that
provides a rule for each language construct. In this figure, the set of constraints is not included
in the judgements; the constraints that are constructed for the language construct at hand
are given in the right-hand column, next to the inference rule. We implicitly assume that the
set, of constraints for expression e contains the union of all constraints that are generated in
subexpressions of e.

The inference rule for a variable is straightforward: the variable is assigned a new type
variable o and this is recorded in an environment. A literal is associated with its constant
type, together with an empty environment. In the case of a constructor with a polymorphic
type a specialisation of the type is required, for instance, the constructor Cons with type
(Va . a — List a — List a) is specialised to (o« — List « — List «), with a as a new
type variable. For each application a new type variable « is introduced, which represents
the type of the application. The relation between the type of the function, the argument,
and the result, is expressed through an equality constraint. An equality constraint, written
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Figure 2: Example of an inference tree

(t1 = t2), represents a delayed unification of two types. Because the environments of the
function and its argument are combined after inferencing them separately, a variable can
be bound to different type variables in an environment. A lambda expression removes all
variables from the environment that become bound, and constructs an equality between the
associated type variables and a fresh type variable a. Two new type variables are introduced
for a case expression, representing the types of the left-hand sides and right-hand sides of
the alternatives respectively. Variables in a pattern bind free variables that are used on the
right-hand side of the same alternative. An equality constraint is constructed for each variable
that is bound by a pattern after this variable is removed from the environment.

Let expressions introduce polymorphism into a language. For each occurrence of a declared
variable in the body of a let expression, a specialisation of the inferred type of the declaration
is created. Equality constraints on types, however, are not sufficient to express specialisation
of polymorphic types. We introduce instance constraints of the form (t; <js t2) to express
that ¢; is a specialisation of t5. A set of monomorphic type variables M is stored for each
instance constraint. This set contains all type variable that were introduced by a lambda
expression (type variable o in [ABS]) outside the current let expression. The values of M
at the various sites can be computed by a simple traversal of the syntax tree. We have left
this implicit. Monomorphic type variables (or type variables equal to a monomorphic type
variable) are not generalised when a new instance is created.

When a let declaration is annotated with a type, each applied occurrence of the declared
variable is made an instance of the annotated type. There are no monomorphic type variables
for this instantiation. The declared type cannot be more general than the inferred type of
the declaration, which is expressed by a specialisation constraint (t; C t3).

Example:

Figure [2 depicts an inference tree for (let i = Az — x in i i), together with the collected set
of constraints. The set of monomorphic type variables is empty for both instance constraints
because there are no free variables in the declaration. In section |4 we present the function
S, which solves such a set of constraints. Applying S to the set of constraints results in the
polymorphic type (a — a) for vs.

At first sight one might wonder why we generate trivial constraints such as (v; = v9),
instead of substituting this immediately as is done in more conventional approaches. The
answer to this question touches the essence of our approach: since we may have to resolve in-
consistent constraints when dealing with inconsistencies, it is nice to have as much information
as possible available.



S :: ConstraintSet — Type — Type

(1) SO)yr = 7

(2) SH{e=ctuC)r = SCO) 7

(B) S{tita=tzta}UC) T = S{t1=ts, ta=t}UC) T
(4) SH{v=t}uC)r = S(jv:=tC) (Jv:=t]T)

if type variable v does not occur in ¢

(5) S{ti<mtz}UC) T = S{ti=M(t2)}UC) T
if no type variable in to occurs in C'

(6) SH{ti CtyulC) T = SO) 7
if no type variable in to occurs in C'
and there exists a o such that t; = o(t2)

Figure 3: Definition of function &

4 Constraint solving: specification

We give a specification of how to solve a set of constraints. We define the function S, that
solves a consistent set of constraints. If S succeeds, a substitution of types for type variables
is returned. Figure [3|shows an inductive definition of S that solves one constraint at a time.
The order in which the constraints are solved is irrelevant. Definition (1) expresses that if
the set of constraints is empty, no substitution is required. According to definition (2), (3),
and (4), solving equality constraint (¢t; = t2) corresponds to the unification of ¢; and ¢3. Note
that function S fails if the two types cannot be unified. Definition (5) and (6) solve instance
constraints and specification constraints respectively. To make an instantiation of type ¢, we
define M (t) as the closure of type t with respect to the set of monomorphic type variables M.
This definition is slightly different from the definition given by Damas and Milner [5], since
type variables are not quantified but replaced by fresh type variables.

M(t) = [al =1, e, Q= ¢n]t

where a; ... a, are all the type variables in ¢ but not in M,
and ¢q ... ¢, are fresh type variables

5 Correctness

We briefly explain the correspondence of our type system with the type system of Hindley-
Milner. According to our type inference rules, there is exactly one assumption for each
variable that is free in an expression. Furthermore, the inference rules of Hindley-Milner
require an assumption for each free variable in an expression. The function (A) constructs a
set of equality constraints from two assumption sets:

(D) :: AssumptionSet — AssumptionSet — ConstraintSet
ANA ={r=7|(xz—T1)EA (z—T1)e A}



This function merges the assumptions of two sets. Since in general a set of assumptions
can contain type-schemes, it follows that quantified types can occur in equality constraints.
Type-schemes are transformed into types by instantiating the quantified type variables; each
quantified type variables is replaced by a fresh type variable. We extend the definition of S
with the following rule.

(7) SH{Vz .o=7}UC) 7 = S{zx:=ylo=7UC) T
where y is a fresh type variable

We claim that our type system is correct with respect to the type system of Hindley-
Milner. Our type system has the following property:

Property:
Fe:7, A, C & A bFppe: 1

such that o7’ < o A/(o7)
with o=S(CU(A A A))

Given an expression e, we use our typing rules to derive a type 7, a set of assumptions A,
and a constraint set C. Given a set of assumptions A, the function (A) constructs a set of
equality constraints for corresponding assumptions in A and A’. Applying S to C and the set
obtained by merging A and A’ results in a substitution . Because substitution o is relevant
for type variables that are free in A’, we apply o not only to 7, but also to A’ and 7/. The
closure of (o7) is the principle type-scheme of e under assumptions (o.4'); in other words,
each 7/, such that (A’ Fuy e : 7') holds, must be a generic instance of this type.

6 Constraint solving: implementation

In this section we present an algorithm to solve the generated set of constraints. If the
algorithm is unable to find a solution for a set of constraints, it gives a good indication of
why it cannot be solved. This algorithm is an implementation of the function S. It provides
a way to pin-point the most likely location of a type error in an ill-typed expression, and
enables us to use heuristics to resolve inconsistencies. As a result, we are able to produce a
better explanation of the error by giving a better error message.

An equality graph is an undirected graph that is used as intermediate data structure to
store equalities between types. A vertex in an equality graph corresponds to a type variable or
a type constant, an edge represents an equality constraint between two types, and is labelled
with the constraint number. We start with a graph containing one vertex for each type
variable but without edges. Each constraint is translated into a transformation of the graph.
When all the constraints are resolved, a substitution can be obtained from the graph. The
constraint solving process maintains two invariants: a vertex containing a type constant has
exactly one edge to a vertex containing a type variable, and each type variable should occur
exactly once in a vertex, whereas a type constant can occur in several vertices.

The remaining part of this section explains how the three different types of constraints
(=, < and C) are solved using the equality graph. Finally, we present an algorithm to solve
a set of constraints.
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Figure 4: Equality graph before and after decomposition

Solving equality constraints

Each equality constraint results in a transformation of the equality graph.

e (c1 = c2) : this constraint is removed from the set without modifying the graph. How-
ever, if the constants ¢; and co are different, it should be marked as erroneous.

(c = v) : a vertex containing constant ¢ is added to the graph, together with an edge
between this new vertex and the vertex containing type variable v.

(c = t1 t9) : because this constraint cannot be solved, it can be removed from the set
and marked as erroneous.

e (v; =w2) : an edge is added between the vertices of v; and vs.
o (v =ty to) : to satisfy this constraint, v is decomposed in an application of two types.
o (11 to = t3 t4) : this constraint is replaced by (t1 = t3) and (t2 = t4).

The remaining three cases are obtained by swapping the types in an equality constraint.

Decomposition of a type variable means substituting the type variable by an application of
two fresh type variables. Decomposition of a type variable can only occur when its connected
component has no type constants, which would indicate that there is an inconsistency, and
also requires decomposition of the other type variables in its connected component. The
substitution is applied to each type in the constraint set, so the equality constraint that
requested the decomposition is also substituted into an application. The connected component
with the decomposed variables is duplicated, where the fresh type variables on the left-hand
side of the application replace the original type variables in one copy and the type variables on
the right-hand side alter the other copy. The structure of the duplicated component remains
the same.

Ezxample:

Consider the equality graph on the left in Figure [4] in combination with the constraint
(vqg = List vg). To satisfy this constraint, type variable v4 requires a decomposition. The sub-
stitution for the type variables in the component of vy is [v4 := v5 vg, V1 1= v7 V8, V2 := Vg V10].
Consequently, the equality constraint is changed to (vs vg = List v3). The equality graph
after decomposition is shown on the right in Figure



Solving instance constraints

An instance constraint (t; <ps t2) can be transformed into an equality constraint as soon as
to is fized. A type to is fixed if the interpretation of each connected component that contains
a type variable of ¢t will remain unchanged while the remaining constraints are solved. The
interpretation of a connected component can change as long as one of its type variables
occurs in an equality constraint that has not been dealt with: a constant can be inserted
into the connected component or an edge can combine two connected components. A type
variable occurring in an instance constraint can also result in a modification of the associated
connected component, because eventually this constraint will be transformed into an equality.
In other words, instantiation of a type is not possible as long as it can change when other
constraints in the set are taken into account. Postponing instance constraints corresponds to
the order in which let expressions are typed in algorithm W of Damas and Milner [5]: a type
for the declaration must be inferred before the type of the body can be dealt with.

When an instance constraint (f; <ps t2) is solved, a unique instance of ty is created
that must be equal to t;. The type variables in M are monomorphic; they are introduced
at a lambda expression containing the let expression that generated the instance constraint.
Monomorphic type variables (or type variables that are equal to a monomorphic type variable)
are not instantiated. To create an instance of t5, a substitution is constructed. Type variables
that are in the same component as one of the type variables in M remain unchanged, while
type variables in a connected component containing a constant are mapped to this constant.
All type variables in a connected component without a type constant are replaced by the
same fresh type variable.

Solving specialisation constraints

Specialisation constraints are only dealt with after the equality constraints and instance con-
straints. An explicit type cannot be more general than the inferred type of the declaration.
For each constraint (¢; C t2) we try to find a substitution o such that o(t3) = ¢1. If such a
substitution does not exist we report that the inferred type is not general enough.

Algorithm
INPUT : a set of constraints
OUTPUT : a substitution

Create an initial equality graph, and apply the following rules as long as possible, with earlier
rules having a higher priority. Return the substitution obtained from the equality graph.

(1) If there is an equality constraint that does not require a decom-
position, solve this constraint.

(2) If the equality graph is inconsistent, resolve this inconsistency.
(3) If there is an instance constraint (t; <js t2) and ts is fixed, create
an equality constraint between ¢; and an instantiation of ts.

(4) If there is an equality constraint (v = ¢; t3), decompose v and the
type variables in the same connected component as v.

When this algorithm terminates, the set of constraints only contains specialisation constraints



and the equality graph is consistent. For each specialisation constraint (t1 C t3), check if ¢;
is an instance of t5. The order in which rules are applied for a consistent set of constraints
does not influence the outcome of this algorithm. However, the order is important for solving
inconsistent sets. Resolving an inconsistency in the equality graph is postponed until there is
no more relevant information available in the set of constraints. Note that for decomposition,
instantiation, and specialisation, a consistent equality graph is required.

7 Solving inconsistencies

From an ill-typed expression we obtain an inconsistent set of constraints. When solving this
set, a conflict appears in the equality graph. We distinguish two types of inconsistencies.

e Two different type constants are in the same connected component. Because the graph
is undirected, there is at least one path connecting these constants. This path, referred
to as an error path, serves as evidence for the inconsistency and is used to construct
an appropriate error message. To avoid infinite paths only paths containing different
vertices are considered.

e A type variable of a connected component containing a type constant requires a de-
composition to satisfy an equality constraint. A decompose path is a path from a type
constant to a type variable requiring a decomposition, together with a constraint causing
the decomposition.

To remove an inconsistency at least one edge for each error path and decompose path has to
be removed, which results in splitting connected components in smaller parts. At this point
several heuristics can be used to determine which constraints to throw away. We discuss one
approach in which we select a set of edges with the lowest total removal cost.

We calculate a removal cost for each constraint. The removal cost represents the cost to
remove all edges in the graph produced by this constraint. This cost depends on the trust
value of a constraint, a measure of confidence in this constraint which is determined by the
origin of the constraint. For instance, a constraint originating from a reference to a prelude
function has a high trust value, and so do constraints for user-defined expressions with an
explicit type signature. Other constraints have an average trust value, for instance constraints
resulting from an application or a lambda abstraction.

Ezample:

Assuming that even has type Int — Bool, the expression (even True) has type ve with the
inconsistent set of constraints [#1 : vy = Int — Bool, #2 : vi = Bool — wvs]. The first
constraint has a high trust value; the second constraint has an average trust value because it
was constructed for an application. Constraint #2 is removed to restore consistency.

Another heuristic is to consider the number of occurrences of a type constant in a con-
nected component. Multiple occurrences of a constant increase the probability that this is the
intended type constant. Reconsider the case expression introduced in Section [I} In Figure [f]
the equality graph is presented for the constraints of this expression. The graph consists of
two connected components. The component on the right is inconsistent. The three occur-
rences of String versus one occurrence of Bool suggest the removal of #6. To achieve this we
collect all correct paths, a path between two vertices containing the same type constant. To

10



Figure 5: Inconsistent equality graph

prevent breaking a correct path, a constraint corresponding to an edge of a correct path is
assigned a higher removal cost.

The next program fragment calculates the removal cost of a constraint in a given equality
graph:

trust :: Constraint -> Int
correctpaths :: Graph -> [[Constraint]]

removalcost :: Constraint -> Graph -> Int
removalcost con graph = f graph * trust con
where f = (+1) . length . filter (con ‘elem‘) . correctpaths

The function trust returns the trust value of a constraint, correctpaths returns the set of
correct paths containing constraints. The minimal set of constraints with the lowest total
removal cost is removed from the equality graph. C' is a minimal set of constraints if removal
of edges that correspond to a constraint in C' results in a consistent equality graph, and if no
subset of C' is minimal.

Example:
The following expression illustrates the working of the algorithm. We assume that the function
plus has type Int — Int — Int.

1. Aa — plus ((A\b — case b of
2. True — b
3. False — a) True) 3

This expression is ill-typed because different type constants are assigned to variable b. There
are three indications that b has type Bool: b has to match the two expressions on the left-
hand side of the alternatives, and the term (Ao — ...) is applied to True. However, the
first argument of plus, which is the type of the expressions on the right-hand side of the case
expression, including expression b, must have type Int. Haskell produces the following error
message for this type conflict:

ERROR "example.hs" (line 1): Type error in application

*x** Expression : plus ((\b -> case b of {...}) True) 3
**%% Term : (\b -> case b of {...}) True
**xx Type : Bool

**x Does not match : Int

11



rhs case @

#3 #9 412

(oot ()2 (32)#1 C £8(05) 22 #5_(00)
' “Ab

lhs case

@#1 @#10 @#11@
@#1 @#10@#11

Figure 6: Inconsistent equality graph

first aréument of plus

The constraint-based approach leads to a better understanding of the type conflict. The set
of constraints for this expression is generated:

#1 : vy = Int— Int — Int H#7 : v = Uy

#2 vy = w9 #8 vy = U3

#3 : vy = Bool #9 . vy —vg = Bool — vg
#4 : wvs = Bool #10 v = vg — Vg
#5 : vg = w3 #11 vg = Int — vy
#6 V¢ = V4 #12 : V11 = V4

Constraints #1, #10 and #11 are the only constraints that demand a decomposition of a
type variable. Decomposition of type variables results in the substitution:

U1 ~~ Ulq — U1p — Vic
Vg "~ Vg9qg — V9p

After application of this substitution, the set of constraints is solved straightforwardly. Fig-
ure [6] shows the equality graph when the set of constraints is empty. The three error paths
(from Int to Bool) in the graph represent the type conflict. To restore consistency (at least)
one edge of each error path is removed. First, the minimal sets are computed: {#1}, {#5},
{#8}, {#9} and {#10}. In this example, the edges in the minimal sets are exactly those
edges of the overlapping part of the error paths. Then the removal cost for each constraint is
calculated. The total number of occurrences in either one of the four correct paths, combined
with the trust value, result in a removal cost. Table [1| presents the removal costs. For the
calculation, the high trust value assigned to constraint #1 (a reference to plus) is replaced
by the value 10, with a default value of 1 for the other trust values. Finally, we compare the
total removal cost of each minimal set. The lowest total removal cost is 1 for the minimal
sets {#5} and {#8} is 1. The constraints in one of the two sets are removed to resolve the
inconsistency.

12



good trust cost good trust cost

#1 1 high 20 #7 2 - 3
#2 2 - 3 #8 - - 1
#3 2 - 3 #9 2 - 3
#4 2 - 3 #10 1 -2
#5 - - 1 #11 1 -2
#6 - - 1 #12 — - 1

Table 1: Removal costs

In Figure[6]extra information is provided about the origin of type variables and constraints.
With this information we can produce a good explanation of the type conflict. The following
error message is produced for the removal of constraint #8:

TYPE ERROR: conflicting types for variable b because:

=> (\b -> {...}) is applied to True (line 1)
results in b :: Bool

=> b is in the rhs of case expression (line 2)
which is used as the first argument of plus (1ine 1)
results in b :: Int

8 Conclusion and future work

This paper presents a different approach to inferring the type of an expression. The approach
tries to improve the quality and exactness of a reported error message for ill-typed expressions.
The underlying concept is the construction of constraints on types, representing unification,
instantiation and specialisation of types. Inconsistencies that are detected while solving these
constraints are resolved using heuristics. Advantages of this approach are the following.

e The left-to-right bias is completely removed because the unification of types is delayed.
The order in which constraints are solved does not influence the outcome.

e Heuristics help to point to the most likely error in the source. It is possible to add more
heuristics.

e [t is possible to produce multiple, and more useful error messages.

More heuristics have to be added to the system to construct better error messages for com-
mon mistakes. Several features and extensions of the expression language must be included
in the type system before it can be used in a practical setting. One important extension for
the type system is the introduction of type and constructor classes, which provide a way to
overload functions. As a result of this extension, kind inferencing is necessary to determine ap-
propriate kinds. Using type synonyms in reported error messages will increase understanding,
but also introduces new problems for the type system.

13



Good error reporting facilities in a type assignment algorithm require additional overhead,
for instance using a graph as an intermediate data structure, and maintaining histories about
the deduction of type variables. Consequently, it is inevitable that our algorithm is less
time-efficient. We want to investigate if it is possible to combine a time-efficient unification-
based system with a constraint-based system with excellent error reporting, such that the
two desired properties are maintained. Currently we are working on a unification-based type
checker, that switches to the approach that is presented in this paper when a type conflict is
encountered.

To proof the practicality of the approach, real data should be collected from the intended
group of users, that is, programmers that are new to functional programming. These em-
pirical measurements should be obtained in a practical setting, for instance in a functional
programming course for first year students.

In Section [p| we briefly discussed the correctness of our algorithm with respect to the
Hindley-Milner type inference rules. A formal proof of this property will appear in a forth-
coming technical report.
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