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An extension of the CEPA1 method to the multi-reference case is presented, the MR-CEPA1
approach. The method takes the variationally included terms into account as in MRDCEPA
and corrects for the exclusion principle violating terms as in closed shell CEPA1. It is shown
that this method yields potential energy curves that are close to those of the multi-reference
coupled cluster method and parallel the full CI results quite well. The size consistency of
the method is as good as the MRDCEPA method and much better than approaches
that ignore the VI terms like MR-ACPF and MR-AQCC. A simpler method, where the EPV
terms are not corrected on an individual basis for the doubly occupied orbitals, dubbed the
multi-reference averaged CEPA1 method (MR-ACEPA), which is akin to methods previously
suggested by Szalay et al., is comparable in performance.

1. Introduction

Restricted CI methods are among the most common
and easily applied approaches to introduce electron
correlation. Efficient algorithms and computer pro-
grams have been developed for its application [1–5].
Since the restricted CI method is not size extensive,
much effort has been put into modifying this method in
order to get approximate size extensivity. The guidelines
used for this purpose are taken from coupled cluster
(CC) methods [6, 7], which by using the exponential
ansatz are specifically designed to meet this requirement.
For the single reference case, assuming that the HF

wave function is dominant in the correlated wave
function, this has resulted in the coupled electron pairs
approaches (CEPA) [8]. They yield good approxima-
tions to the CC results, which are size-extensive while
being much less expensive.
For the multi-reference case, the generalization of

the CC method is not straightforward. Indeed, many
formalisms are possible in principle, but most of these
seem only to be applicable in special cases [9–11].
However, a recent proposal for a state-selective MR-CC

approach [12] seems to be promising in the sense that
it is generally applicable and that the results compare
favourably with full CI results. Several attempts to
generalize the CEPA method to the multi-reference case
also exist, such as the MR-ACPF [13], MR-AQCC [14]
and MRDCEPA[15] methods. In all these cases a
complete active space (CAS) reference set is used.

In order to compare these methods, we start from the
linearized version of the MR-CC method (MRCEPA0)
[16] in a MRCI-type implementation. This method
suffers from several disadvantages leading to numerical
results which are no better than those obtained with
MRCI calculations. The MR-ACPF and MR-AQCC
methods improve on this method by compensating for
the exclusion principle violating (EPV) terms [17–19],
which are present in the MRCEPA0 formalism. In the
MRDCEPA method, on the other hand, no EPV
corrections appear. Instead, it is focussed on the
redundancies that are automatically introduced into a
straightforward generalization of the CEPA method to
the multi-reference case, corresponding to the variation-
ally interacting (VI) terms [15]. In the method proposed
in this paper we combine the previous approaches
into a method, which is capable of approximating
MR-CC results closely while retaining the simplicity
of the modified CI approach. It is in fact an exten-
sion of the MR-AQCC-mc approach proposed by
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Szalay and co-workers [20], the main difference being
that the EPV corrections for the inactive orbital space
are treated in analogy to the CEPA1 method. Therefore
we will use the acronym MR-CEPA1 for our method.
In a simpler approach, which is very much like the
work of Szalay et al., we will not distinguish between
individual inactive orbitals, but use an average shift,
resulting in a MR Averaged CEPA (MR-ACEPA)
method. Calculations for test systems used for validat-
ing the MR-CC method show that for these test cases
our methods performs better than any of MR-ACPF,
MR-AQCC or MRDCEPA.
We have also tested the performance of several

methods with respect to the size consistency condition:
E(AþB)¼E(A)þE(B) if A and B do not interact.
It will be shown that the MR-ACPF and MR-AQCC
methods may suffer from large discrepancies for sys-
tems with near-degeneracies, e.g. A¼B¼O2ð

3P�

g Þ.
The MRDCEPA, MR-CEPA1 and MR-ACEPA
methods appear to behave much better in this respect.
As will be shown in a following paper [21], this is due
to the inclusion of the VI terms. However, our research
also suggests that it is impossible to obtain exact
size consistency if only diagonal shifts are allowed,
as is the case for all currently known implementa-
tions of multi-reference generalizations of the CEPA
method.

2. Theory

In all MRCEPA versions the orbital space is divided
into three subspaces, which are determined by the
occupations in the reference configurations [15]. The
inactive orbitals are doubly occupied in all reference
configurations, while the active orbitals have variable
occupations and the virtual orbitals are empty. The full
CI space is also divided into three subspaces: the P space
includes the reference functions, the Q space is the
interacting space of the P space and the R space includes
all higher excitations. As in the CC method it is suffi-
cient to consider the R space as consisting only of the
interacting space of the Q space. In the following the
spin-restricted formalism and CAS reference spaces will
be used throughout.
The normalized MR-CEPA function has the follow-

ing form

�C ¼
X
I

cI�
P
I þ

X
J

cJ�
Q
J ð1aÞ

with

cI ¼ h�P
I j�Ci and cJ ¼ h�

Q
J j�Ci: ð1bÞ

A further division of the excitations will be made
according to the excitation class [15]. The excitation
class of a function is defined by the number of holes k
in the inactive orbital space (04 k4 2) and by the
number of particles ‘ in the virtual orbital space
(04 ‘4 2). All reference functions �P

I thus belong to
class (0, 0). A Q-space function belonging to class (k, ‘)
is denoted by �

Q
J (k, ‘). We also introduce excitation

operators, which generate the Q-space functions from
the reference functions �P

I :

j�
Q
j ðk, ‘Þi ¼ E ijðk, ‘Þj�

P
i i: ð2Þ

Following the CEPA philosophy, the unlinked con-
tributions of the R-space functions are used to restore
the size extensivity. The corresponding corrections to the
MRCI equations are implemented by applying diagonal
shifts to the H-matrix. This corresponds to using
equations of the form:

h�P
I jH � Ej�Ci ¼ 0 ð3Þ

h�
Q
J jH � Ej�Ci þ KJcJ ¼ 0 ð4Þ

where KJ is the diagonal shift for �
Q
J . In the single

reference case the shift represents the effect of the triple
and higher excitations. The explicit form of KJ may be
derived from the coupled cluster equations, assuming
that products of the single and/or double excitation
coefficients give the coefficients of the higher excitations.
The normal CI equations are obtained by setting all
KJ s to 0.

Since equations (3) and (4) are homogeneous, the
normalization is arbitrary. For our purpose it is con-
venient to use intermediate normalization, using the
projection of the MR-CEPA function �C to the
reference space as the reference function �0:

�0 ¼
X
I

j�P
I ih�

P
I j�Ci ¼

X
I

cI j�
P
I i

with
X
I

c2I ¼ 1: ð5Þ

The reference energy E0 is then obtained as:

E0 ¼ h�0jHj�0i ¼
X
IJ

cI cJh�
P
I jHj�P

J i ð6Þ

and the correlation energy follows from equation (3):

EC ¼ E � E0 ¼
X
J

cJh�0jH j�
Q
J i: ð7Þ
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The correlation energy is divided into particle–hole class
contributions according to:

EC ¼
X2
k¼0

X2
‘¼0

"ðk, ‘Þ ð8Þ

with

"ðk, ‘Þ ¼
X
J

cJ �0jHj�
Q
J ðk, ‘Þ

D E
: ð9Þ

Note that "(0, 0)¼ 0.0, since we assume a CAS reference
space.
The MRCEPA function may also be written as [15]:

�C i ¼j 1þ T þ Pa
1

2
T 2 þ

1

6
T 3 þ � � �

� �� �����0
�

ð10Þ

where T generates all single and double excitations with
the appropriate coefficients, and

T ¼
X2
k, ‘¼0

except k¼‘¼0

Tðk, ‘Þ ð11Þ

and

Pa ¼
X2
k, ‘¼0

except k¼‘¼0

Pðk, ‘Þ ð12Þ

P(k, ‘) projects to the excitations of class (k, ‘).
The effect of the projection by Pa may be represented

by introducing the topological matrices T k‘, which are
defined by

if ðkþ p � 2 and ‘þ q � 2Þ T k‘
pq ¼ 1; else T k‘

pq ¼ 0

ð13Þ

where k and p denote the numbers of holes and ‘ and q
denote the numbers of particles.
The MR-CEPA function (equation (10)) can now be

written

j�Ci ¼

�
1þ T þ

X
k‘

X
pq

T k‘
pqTðk, ‘ÞTð p, qÞ

þ � � �multiple products � � �

�����0
�

ð14Þ

where we have used the following property of the
excitation operators:

Eðk, ‘ÞEð p, qÞ
���P

I

�
¼ j�ðkþ p, ‘þ qÞi: ð15Þ

The multiple products in equation (14) contain terms
like ð1=6ÞT 3

1 . In the following these terms will be
neglected.

3. Shifts in MR-CEPA

The diagonal shifts in equation (4) originate from the
unlinked contributions of the higher than double
excitations belonging to the R-space. The various
possibilities for choosing the MR-CEPA variants may
concisely be represented by introducing the shift
matrices U k‘, which select the correlation energy
contributions to be included in the diagonal shift for
�

Q
J (k, ‘):

KJðk, ‘Þ ¼
X
pq

U k‘
pq "ð p, qÞ: ð16Þ

As shown in [15], in the MRCEPA0 method any
combination of excitations from the P space to the
Q space, as in equation (14), is assumed to generate an
R space function. In equation (4) this corresponds to
taking

KJ ¼
X
k‘

"ðk, ‘Þ ¼ EC or U k‘
pq ¼ 1: ð17aÞ

However, the combined excitation only belongs to the
R space if kþ p>2 or ‘þ q>2. Since the interactions
of the �P

I with any Q-space function �(kþ p, ‘þ q) with
kþ p4 2 and ‘þ q4 2 are already present in the MRCI
equations (the first term of equation (4)), they should
not contribute to the diagonal shift. These are the
variationally included terms, which are included in
the Q-space of the MR-CEPA wavefunction via the
T-matrices, cf. equation (14). As a consequence, the
shift should depend on the excitation class of �

Q
J ,

thus including only those contributions not present in
the Q-space, i.e. taking the U matrix to be complemen-
tary to the T matrix:

KJðk, ‘Þ ¼
X
pq

1� T k‘
pq

� 	
"ð p, qÞ or U k‘

pq ¼ 1� T k‘
pq :

ð17bÞ
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With this choice, we have theMRDCEPA equations [15].
In the MRDCEPA no account is taken of the EPV
terms. In the MR-ACPF and MR-AQCC methods the
EPV terms are avoided in an average way by using a
damping factor dn, which depends on the total number
of correlated electrons n. Following Ahlrichs [22],
we gather all the mentioned methods in a table. Note,
however, that in the MR-ACPF and MR-AQCC
methods EC is defined by taking the energy difference
with respect to a variationally determined �0 in contrast
to MRCEPA0, MRDCEPA and MR-CC, where the
projection to the reference space is used.
We then have for all values of k, ‘, p and q:

MRCI: U k‘
pq ¼ 0 ð18aÞ

MRCEPA0: U k‘
pq ¼ 1 ð18bÞ

MR-ACPF: U k‘
pq ¼ dACPF

n ¼
n� 2

n
ð18cÞ

MR-AQCC: U k‘
pq ¼ dAQCC

n ¼
ðn� 2Þðn� 3Þ

nðn� 1Þ
ð18dÞ

MRDCEPA: U k‘
pq ¼ 1� T k‘

pq : ð18eÞ

In all these methods the invariance to orbital transfor-
mations within the orbital subsets is kept intact.
We will now combine the effects of the EPV terms

and the VI corrections. The first method is analogous
to the MR-ACPF and MR-AQCC methods, i.e. we use
damping factors for the U-matrix elements analogous
to the P-matrices used by Szalay et al. for the
MR-AQCC-mc method [23]. This will be called the
MR-ACEPA method. Our choice is almost identical
to the MR-AQCC-mc one. The U-matrices to be used

are given in table 1. In deriving the active orbital
contributions to the EPV factor, we have used the
same formulas as for the inactive orbitals. The latter
ones are taken over from Szalay [23]. However, there
is a difference for the combination k¼ p¼ 1, where
for both (k, ‘) and ( p, q) one electron is excited
from the inactive orbitals. Since the coincidences in
the inactive and active orbital spaces respectively are
independent of each other, the U1‘

1q shift contribution
is taken as the product of the inactive and the
active orbital factors, leading to an EPV correction
for this case, whereas in the MR-AQCC-mc method
U1‘

1‘0 ¼ 1 [23].
The second method is analogous to CEPA1 [8] in the

sense that the EPV corrections are expressed in terms
of individual pair energies. We call this method
MR-CEPA1.

Since there is no clear-cut way to define pair energies
for the active space orbitals, the CEPA1 technique can
only be applied to the inactive space, i.e. to the classes
(1, ‘) and (2, ‘), which are analogous to the single
reference single and double excitations respectively. In
this case the (k¼ 1, p¼ 2), (k¼ 2, p¼ 1) and (k¼ 2,
p¼ 2) combinations (the Ai and Bi blocks in table 1)
are not represented by a damping factor. Instead
we define the pair excitation operators Eij, which
create two holes in the inactive orbitals i and j. The Eij

generate the pair excitation functions |�
Q
J (ij)i and the

pair correlation energy contributions "ij are then
obtained by:

"ij ¼
X
J

cJ �0jH j�
Q
J ðijÞ

D E
: ð19Þ

Table 1. Uk‘
pq in KJ ðk, ‘Þ ¼

P
pq U

k‘
pq "ð p, qÞ for MR-ACEPA.

p 0 0 0 1 1 1 2 2 2

q 0 1 2 0 1 2 0 1 2

k ‘
0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 Aa 0 0 Ba 0 0 1

0 2 0 Aa Aa 0 Ba Ba 0 1 1

1 0 0 0 0 0 0 0 Bi Bi Bi

1 1 0 0 Ba 0 0 Ci *Ca Bi Bi Bi

1 2 0 Ba Ba 0 Ci *Ca Ci *Ca Bi Bi Bi

2 0 0 0 0 Bi Bi Bi Ai Ai Ai

2 1 0 0 1 Bi Bi Bi Ai Ai Ai

2 2 0 1 1 Bi Bi Bi Ai Ai Ai

A ¼
ðn� 2Þðn� 3Þ

nðn� 1Þ
B ¼

n� 2

n
C ¼

n� 1

n

Ai,Bi,Ci with ni ¼ number of inactive electrons,

Aa,Ba,Ca with na ¼ number of active electrons:
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Orbital correlation contributions "i are defined
analogously by:

"i ¼
X
J

cJ �0jHj�
Q
J ðiÞ

D E
ð20Þ

where �
Q
J (i) represents an excitation with one hole in

orbital i. The summations in equations (19) and (20)
include all possibilities for the number of particles since
these were also all included in the shifts corresponding
to the Ai and Bi blocks of table 1. In the single reference
CEPA1 method these contributions are not used,
since they vanish because of the Brillouin Theorem,
assuming HF orbitals are used. In the multi-reference
case, however, the Generalized Brillouin Theorem may
only be used for certain linear combinations of the
j�

Q
J ðiÞi[24].
All combinations except those corresponding to the

Ai and Bi blocks in table 1 are treated in the same way as
in the MR-ACEPA method, i.e. as in table 1. The shift
for a 2-hole excitation �QðijÞ is taken as [17–19, 22]

Kijð2, ‘Þ ¼
X
pq

U2‘
pq"ð p, qÞ �

1

4

Xndoc
k¼1

ð"ik þ "jkÞ þ "ii þ "jj

" #

�
1

2
ð"i þ "jÞ ð21Þ

where the summations are over the inactive orbitals and
U2‘

2q ¼ U2‘
1q ¼ 1.

For the shift for a 1-hole excitation �QðiÞ we take:

Kið1, ‘Þ ¼
X
pq

U1‘
pq"ð p, qÞ �

1

2

Xndoc
k¼1

"ik ð22Þ

and U1‘
1q ¼ 1. With these choices our MR-CEPA1

method simplifies for the single reference closed shell
case to the standard CEPA1 method.

4. Implementation

The formalism is implemented in the Direct CI program
of Saunders et al. [1] as incorporated in the GAMESS-
UK package [25]. This program uses an internal
occupation scheme, augmented by a model external
space consisting of two orbitals. All corresponding
states with at most two electrons in the external space
are represented by this occupation scheme. It is held in
store using a packed binary format. For this purpose a
total of five 64-bit words per configuration are allocated,

the CONF array, two of which are for the orbital
occupations, allowing a total of 62 internal orbitals.
This array is used in configuration generation and
selection and in calculating the internal spin coupling
coefficients [26]. The same array is used in the later
stages of the calculation to store various addresses
and dimensions of the CI vectors associated with the
occupation pattern. In this array one may store the extra
information needed in the CEPA calculation. Thus an
individual treatment of each configuration is possible.
All external orbitals are treated on an equal footing.
It is possible to distinguish between singlet and triplet
coupling of these orbitals for the 2-particle states. This
array also allows the storage of pair information, in case
of the closed shell CEPA variants, and the specific
information for the various MR-CEPA approaches.

The pair energies and the shifts are addressed in
an identical fashion. In the CONF array we store the
address for the shift or pair energy. For the closed shell
CEPAs this would be derived from the positions of
the holes leaving two positions for the singlet/triplet
spincoupling. For the MRDCEPA or MR-ACEPA
variants, the number of holes and particles would be
used. The MR-CEPA1 requires separate information
about number of holes, number of particles and position
of holes, and thus needs a more involved addressing
scheme. The only parts of the program that show any
difference between the CEPA variants are therefore the
parts devising the addressing and using the pair energies
to generate the shifts. A new CEPA variant may be
implemented within half a day by an experienced
programmer.

The pair energies are calculated as

EpairðI Þ ¼
XNref

R

cR
XExtn
i

c
Q
i ðI Þ �R Hj j�

Q
i ðI Þ

D E
ð23Þ

where the�
Q
i are the external configurations, which may

be in the vacuum space (0 particles), the single 1-particle
space or the double 2-particle space and the summation
is over the external space. The �R are the reference
configuration with their coefficients, as they are in the
current CI vector. Since our formalism requires inter-
mediate normalization, the pair energies are scaled by a
factor

scale ¼
1:0PNref

R c2R
: ð24Þ

The pair energies are calculated by special variants of
the (iajb), (ijka) and (ijkl) H *C¼Z calculating routines
of the direct CI program [1]. The calculation of the pair
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energies only requires the calculation of interactions
involving the reference part of the vacuum space and
is thus neglible in comparison with a full H *C matrix
vector product.
The shifts are added in the Davidson diagonalization

[27, 28] part of the program. No changes are made to the
originally calculated C and Z-vectors or to the diagonal
of the H-matrix. As the shifts change during the opti-
misation process, the H-matrix elements of the
Davidson matrix have to be recalculated every time.
The original matrix elements are calculated as

Hij ¼ Ci *Zj: ð25Þ

The shifted matrix elements are

H
0

ij ¼ Ci *Zj þ Ci *K *Cj ¼ Hij þ Ci *K *Cj ð26Þ

K is the diagonal shift-matrix. Similarly the diagonal of
the H-matrix used in determining a new perturbation
vector has to be adapted.
As there are often very few different shifts, in the case

of MR-ACEPA or MRDCEPA only nine, those parts
of the Ci *Cj products are pre-calculated and stored,
so that calculating a new shifted H-matrix requires only
nine multiplication–additions per matrix element. For
methods like MR-ACPF or MR-AQCC only the over-
lap between the projections of the CI vectors onto the
reference space are required. If a variance minimizer is
requested, which requires Zi *Zj products, also Ci *Zj

partial inner products have to be recalculated. Thus, as
the shift matrix is diagonal, the calculation of a shifted
Davidson matrix is a very cheap process.
The shifts depend on the current eigenvector, which in

turn depends on the shifted Davidson matrix. It is thus
advantageous to define within the Davidson iteration-
process a micro iteration process:

– ‘‘calculate current best vector’’
– ‘‘calculate pair energies’’
– ‘‘calculate shifts and shifted Davidson matrix’’
– ‘‘calculate new current best vector’’
– etc.

In general this process converges sufficiently within
three iterations and the time required is insignificant
compared to a full HC¼Z operation. Using this
scheme, the CEPA calculation generally only takes a
few iterations more than a regular CI calculation.
Of course, due to the linear dependence of the CEPA
energy of the CI coefficients, the convergence on the CI
vector has to be tightened to ensure 6 decimals
accuracy in the energy, which will give rise to a few
more matrix-vector products.

5. Calculations

The test calculations are focused on model systems for
which a MR approach is necessary for a proper
description. Most of these model systems have been
previously adopted in the literature and we follow them
closely. The results are compared with the MR-CCSD
and FCI calculations, where available. The first four
example calculations follow Szalay and co-workers [12].
However, we found a small discrepancy in the way the
reference space had been generated and the one
presented in the article. For all examples it comprises
a set of symmetry non-restricted but spin adapted
configuration state functions (CSFs) within a certain
choice of active molecular orbitals.

Additionally, we checked the robustness of our
MRCEPA variants with respect to the size consistency
for open shell systems with near-degeneracy, i.e. two
oxygen molecules ð3

P�

g Þ at infinity.

5.1. Symmetric cleavage of water molecule

The equilibrium parameters of the water molecule
(valence angle 110.565240�, bond length Re¼

1.84345 a.u.) [12, 29] were chosen as a starting point.
Subsequently, the two OH bonds were stretched simul-
taneously keeping the angle constant. All the calcula-
tions were carried out with a cc-pVDZ basis set using
spherical harmonics.

For a good qualitative description a minimal (4� 4)
CAS reference space was required including the 3a1, 4a1,
1b2 and 2b2 orbitals. The data are summarized in table 2
and illustrated in figure 1.

MR-CEPA1 and MR-ACEPA both describe the
symmetric cleavage of the molecule well. At large
distances the MR-CEPA1 is closest to the multi-
reference coupled cluster, whereas near equilibrium the
average variant performs marginally better. They are
very close to the MR-CC results and are also quite
parallel to the FCI. Test calculations with the MR-
AQCC-mc method yield a curve lower than the MR-
CEPA1, which is thus farther from the MR-CC curve,
but closer to Full CI.

5.2. Eight-atom hydrogen cluster

This model system was proposed to test the applicability
of a method in the case of near-degeneracy. The
character of the wave function can be gradually changed
by varying a parameter alpha, which is responsible for
the geometric definition of the H8 cluster [30]. We used
Huzinaga’s (5s)–[2s] [31] DZ contraction, as described
in [12]. Three configurations were included in the (2� 2)
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reference space, i.e.

ð1agÞ
2
ð1b3uÞ

2
ð1b2uÞ

2
ð2agÞ

2
��� ���
ð1agÞ

2
ð1b3uÞ

2
ð1b2uÞ

2
ð1b1gÞ

2
��� ���
ð1agÞ

2
ð1b3uÞ

2
ð1b2uÞ

2
ð1b1gÞ

1
ð2agÞ

1
��� ���:

The results in figure 2 and table 3 show that the
MRDCEPA and MR-ACPF exhibit a poor perfor-
mance. They overshoot the FCI result. MR-AQCC is
slightly better, even though, the numbers are scattered in
the neighbourhood of the FCI curve. MR-CEPA1 and
MR-ACEPA follow closely the shape of the MR-CC
curve. Furthermore, they do not overshoot FCI.

5.3. The Be/H2 system

This is another typical example where a multiconfigura-
tional approach is needed because of near-degeneracy.
When the Be is far from the hydrogen molecule,
|(1a1)

2(2a1)
2(3a1)

2| is the dominant configuration. The

insertion of the Be atom into the hydrogen molecule
results in a more important |(1a1)

2(2a1)
2(1b2)

2| config-
uration. The geometrical parameters are published in
[32]. An ANO basis set proposed by Widmark–
Malmquist–Roos [33] was adopted as valence triple
zeta plus double polarization contraction (H: 3s2p, Be:
4s3p2d) using spherical harmonics. A (2� 2) CASSCF
calculation was carried out and the same active orbitals
were used to generate the reference space (| . . . 3a211b

0
2|,

| . . . 3a011b
2
2| and | . . . 3a111b

1
2|) in all subsequent MR

calculations. The FCI total energies were also obtained.
The results are listed in figure 3 and table 4.

5.4. Singlet-triplet separation of methylene (CH2)

We used the FCI results obtained by Bauschlicher and
Taylor [34] as a benchmark of the energy difference
between the 1A1 and

3B1 states of CH2. The DZP basis
set was exploited with core orbitals frozen at CASSCF
level. Two different reference spaces were considered:
one generated with and another without symmetry
restriction, for the set of 3a1 and 1b1 orbitals occupied

Table 2. Total energies in atomic units for symmetric stretching of the ground state water molecule. Re¼ 1.84345 a.u. is the
equilibrium OH distance.

1.0Re 1.5Re 2.0Re 2.5Re 3.0Re 100Re

MRDCI �76.237179 �76.068040 �75.948222 �75.915029 �75.909099 �75.907489

MR-ACPF �76.242480 �76.073110 �75.952000 �75.918202 �75.912128 �75.910473

MR-AQCC �76.241236 �76.071914 �75.951117 �75.917466 �75.911426 �75.909783

MRDCEPA �76.242988 �76.073448 �75.952571 �75.918833 �75.912766 �75.911111

MR-ACEPA �76.240677 �76.071291 �75.950835 �75.917305 �75.911290 �75.909652

MR-CEPA1 �76.240376 �76.070980 �75.950588 �75.917090 �75.911083 �75.909449

MR-CCSD �76.240656 �76.071345 �75.950818 �75.917136 �75.911064 –

FCI �76.241860 �76.072348 �75.951665 �75.917985 �75.911946 �75.910300

Figure 2. Potential energy surface for the H8 model system.
The MR-CCSD/ag curve is copied from [12].

Figure 1. Potential energy surface for water molecule
cleavage.
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with two electrons. In the symmetry restricted case,
we have only one configuration for the triplet (3a111b

1
1)

and two for the singlet (3a211b
0
1, 3a

0
11b

2
1) state. In the

symmetry non-restricted case, the reference space
comprises three different CSFs (3a211b

0
1, 3a

0
11b

2
1 and

3a111b
1
1). All results are compiled in table 5.

5.5. Two O2 molecules

As a particularly challenging example, the size consis-
tency of various methods was tested using two O2ð

3��
g Þ

molecules (Re¼ 1.2 Å) at a large distance from each
other. Because of the near-degeneracy in O2ð

3��
g Þ the

deviations from size consistency may be expected to be
relatively large. The calculations were carried out with
the standard DZP basis set. The monomer reference
function was generated by performing a CASSCF
calculation with six electrons in the 1pxu, 1pyu, 1pxg
and 1pyg MOs. The 1�g and 1�u MOs were frozen to the
RHF level. For the dimer calculations the two-monomer
CASSCF functions were combined into a quintet func-
tion. All calculations were carried out without imposing
symmetry restrictions on the reference set used for
generating the excitations. The results are given in table 6.

From table 6 it appears that using either the Davidson
or the Pople corrections cannot compensate for the
large errors in the MRCI calculations. The MR-ACPF
and MR-AQCC methods also lead to large errors. All
methods including the VI corrections, however, lead to
much smaller errors (<1mH), which are all of the same
order of magnitude.

Table 3. Dependence of the total ground state energy of H8 model system of the parameter � in Hartrees.

� MRDCI MR-ACPF MR-AQCC MRDCEPA MR-ACEPA MR-CEPA1 *MR-CCSD/ag FCI

0.0001 �4.300005 �4.313412 �4.309024 �4.310277 �4.305637 �4.305922 �4.306265 �4.308040

0.001 �4.300025 �4.313441 �4.309050 �4.310303 �4.305661 �4.305946 �4.306289 �4.308064

0.003 �4.300075 �4.313509 �4.309111 �4.310370 �4.305719 �4.306005 �4.306347 �4.308122

0.006 �4.300156 �4.313627 �4.309215 �4.310490 �4.305819 �4.306107 �4.306445 �4.308218

0.01 �4.300283 �4.313800 �4.309371 �4.310679 �4.305976 �4.306265 �4.306598 �4.308362

0.03 �4.301244 �4.314853 �4.310383 �4.311977 �4.307079 �4.307382 �4.307692 �4.309354

0.06 �4.303579 �4.316999 �4.312587 �4.314779 �4.309561 �4.309900 �4.310161 -4.311628

0.1 �4.307870 �4.320912 �4.316627 �4.319616 �4.313996 �4.314396 �4.314577 �4.315812

0.5 �4.361839 �4.372788 �4.369172 �4.375571 �4.368477 �4.370349 �4.369373 �4.370090

1 �4.408469 �4.418498 �4.415255 �4.421200 �4.414673 �4.416572 �4.416033 �4.416537

*The numbers for MRCCSD/ag are copied from [12].

Table 4. FCI relative energies in mHartree for the ground state of Be/H2 system. Inter-atomic distances
in Bohrs. The values of the FCI energies in Hartree are shown in the last row.

R(BeH2) 2.50 2.75 3.00

R(H2) 2.78 2.55 2.32

MRCI 2.900 3.503 4.609

MR-ACPF �1.402 �1.773 �1.081

MR-AQCC 0.465 0.576 1.494

MRDCEPA �2.9764 �3.2721 �4.5424

MR-ACEPA 1.0376 1.2178 1.1196

MR-CEPA1 1.6890 2.1467 2.0485

MR-CCSD/a1* 1.6750 2.2490 1.7390

MR-CCSD/b2* 1.2680 1.8900 2.4690

FCI �15.698037 �15.671616 �15.678210

*MRCCSD/a1: | . . . 3a
2
11b

0
2| as vacuum state; MRCCSD/b1: | . . . 3a

0
11b

2
2| as vacuum state.

Figure 3. Energies in mHartree for the ground state Be/H2

system, cf. table 4.
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We therefore conclude that the inclusion of the VI
corrections is essential for obtaining a method, which
is nearly size-consistent. The performance of the
MR-CEPA1 method is not really better than that
of the MR-ACEPA method, even though the EPV
corrections are handled in a formally better way.

6. Conclusions

We combined the previously suggested corrections
for ‘variationally included’ and ‘exclusion principle
violating’ (EPV) terms to arrive at two new
MR-CEPA variants. The corrections for the VI terms,
as already implemented in the MRDCEPA, alleviate the
bulk of the size-inconsistency of the MRCI. The EPV
terms then damp the corrections to get closer to the
MR-CC results. The resulting MR-CEPA1 and MR-
ACEPA yield comparable results that are consistently
close to the MR-CC. As the MR-ACEPA, which is akin

to Szalay’s MR-AQCC-mc approach, is the most simple
to implement, it is the preferred MR-CEPA method.

No MR-CEPA method is exactly size-consistent;
we believe that the MR-ACEPA method is the best
MR-CEPA method that one can realistically attain
using only diagonal shifts.
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