
Computing Tolerance Parameters for
Fixturing and Feeding

Jingliang Chen, University of California at Berkeley, USA
Ken Goldberg∗, University of California at Berkeley, USA

Mark H. Overmars, University of Utrecht, The Netherlands
Dan Halperin, Tel Aviv University, Israel.

Karl F Böhringer, University of Washington, USA
Yan Zhuang, Qualcomm Inc., USA

1 January 2002

Abstract
Fixtures and feeders are important components of automated assembly

systems: fixtures accurately hold parts and feeders move parts into align-
ment. These components can fail when part shape varies. Parametric toler-
ance classes specify how much variation is allowable. In this paper we con-
sider fixturing convex polygonal parts using right-angle brackets and feeding
polygonal parts on conveyor belts using sequences of vertical fences. For
both cases, we define new tolerance classes and give algorithms for comput-
ing the parameter specifications such that the fixture or feeder will work for
all parts in the tolerance class. For fixturing we give an O(1) algorithm to
compute the dimensions of rectangular tolerance zones. For feeding we give
an O(n2) algorithm to compute the radius of the largest allowable tolerance
zone around each vertex. For each, we give an O(n) time algorithm for testing
if an n-sided part is in the tolerance class.

∗goldberg@ieor.berkeley.edu

1 Introduction

Issues in tolerancing and precision date back to the Industrial Revolution.
Variation describes how parts differ and tolerance is the amount of varia-
tion that can be tolerated. The goal of tolerancing is “to define a class of
objects that are (1) interchangeable in assembly operations and (2) function-
ally equivalent” [23]. During assembly, variation can cause processes such
as fixturing and feeding to fail, resulting in damage and costly production
delays.

In 1994, following a dozen years of preparation, the American Society
of Mechanical Engineers published the ASME Y14.5M standard for dimen-
sioning and tolerancing along with ASME Y14.5.1M, a set of mathematical
definitions of concepts such as a planar datum surface [19, 28]. That def-
inition is based on an uncountable set of lines in the plane; computational
definitions remain elusive.

123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123

123456789012345678901234567890121234567890123456
123456789012345678901234567890121234567890123456
123456789012345678901234567890121234567890123456

Clamp

Fixturing
ε

ε

ε

1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901

Fence Feeding

ε

Figure 1: Tolerance classes for feeding and fixturing based on part geome-
try. On the left, the tolerance parameter ε defines the radius of a disk that
specifies allowable variation in the location of the vertex for fence-based part
feeders. On the right, the tolerance parameter is the width of a square box
around each vertex that specifies allowable vertex variation for a given part
fixtured with a right-angle bracket.

In this paper we define new tolerance classes and algorithms for comput-
ing their parameters. We build on recent models for fixturing and feeding
that assume nominal part geometry as input. Given the nominal part P ,

2

it is possible to automatically compute a fixture or a set of feeding angles.
As illustrated in Figure 1, we define tolerance classes ∆(P, ε) based on the
nominal part and a variation parameter ε. We can check if a given part is
in a class in time linear in the number of part vertices. The parameter ε is
chosen so that the fixture or feeder will work for all parts in the tolerance
class.

2 Related Work

Zone-based tolerance models require only that the part fit within a defined
geometric zone: since part geometry can be arbitrarily baroque while re-
maining within the zone, it is extremely difficult to characterize the range
of resulting part behaviors. In contrast, parametric tolerance models use
a finite number of parameters to define a range of allowable shapes. One
scalar parameter might indicate the maximal distance that an edge defined
by a datum surface can vary from its ideal (nominal) position. In parametric
models, deviations from linearity along an edge are considered negligable.

Requicha’s review of industrial tolerancing practice highlighted the role of
“perfect form” datum surfaces: perfect lines or arcs that a matching surface
of the imperfect part must rest on prior to measurement. Requicha noted
a paucity of computational definitions in tolerancing and proposed a formal
definition of the popular maximal material conditions (MMC) and least ma-
terial conditions (LMC) based on the distance between a point to a subset
of Euclidean space (E3) and the regularized difference and complementarity
operators that can precisely specify positive and negative offset solids. Re-
quicha’s paper closed with a call for efficient algorithms to compute tolerance
specifications [23]. Other approaches to computer aided tolerancing can be
found in [5, 24, 31, 26, 27].

Yap and Chang [32] consider geometric metrology: given a set of sample
points on the boundary of a closed curve, decide if the curve lies within a
given geometric tolerance zone. Even for a (one-dimensional) line segment,
conservative classification policies may not exist; the authors illustrate that
deterministic policies and statistical decision rules can be non-trivial even
in one dimension. We define parametric tolerance models that permit exact
classification in linear time.

Brooks [7] and Donald [11] consider shape variation for robot motion plan-

3

ning. Brooks shows how parametric variables can be propagated through an
assembly and Donald treats parametric variables as additional dimensions in
configuration space. Hutchinson and Kac developed an AI-based approach
to tolerancing for assembly [13]. Latombe, Wilson and Cazals also consider
tolerancing in the context of assembly [17]. They propose a parametric tol-
erance model similar to ours in that they assume part edges are straight. To
make the analysis manageable, they add the requirement that edges/faces
maintain their relative orientation: i.e., edges in the tolerance class always
remain parallel to the nominal edge. Given a parametric tolerance class, the
authors give polynomial time algorithms to decide if an assembly sequence
exists that is guaranteed for all parts in the class. Computing parametric
tolerance bounds for mechanisms using kinematic pairs is the subject of an
ongoing analytic project by Joskowicz and Sacks [14].

Brost and Peters [8] propose a tolerance class for modular fixturing where
contact normals are allowed to vary within a cone of a given half angle.
Kavraki considered variation in part shape in the context of orienting parts
with a planar force field. She was able to bound the final orientation of a
part in terms of the shape difference between parts P and P ′: P−P ′∪P ′−P
[15, 16].

The work closest to our feeding model is by Akella and Mason [1, 3].
They also consider fence plans for feeding polygonal parts and parametric
tolerance classes based on circles around part vertices. One difference is that
they define a circular tolerance zone around the part’s center of mass. They
note that determining a bound on the possible center of mass of a uniform
mass polygon, in terms of bounds on its vertices, remains an open problem.
Instead, we define a tolerance class relative to a coordinate frame centered
at the part’s center of mass. Given the radius of a circular tolerance zone
around each vertex and the center of mass, Akella and Mason compute action
ranges and use breadth-first search of an AND/OR tree to check if a solution
exists. We modify their model for shape tolerance and give new algorithms for
computing its parameters. Other references specific to fixturing and feeding
are described below. A preliminary version of these results appeared in [9].

4

3 Parametric Tolerance Classes for Fixturing

A fixture is a device that locates and holds parts during assembly, inspection,
or machining. Modular fixturing systems typically include a lattice of holes
with precise spacing and an assortment of precision locating and clamping
modules that can be rigidly attached to the lattice. An excellent survey of
recent research can be found in [29].

Let P denote a convex polygonal projection of a part without parallel
edges. As illustrated in Figure 2, such a part can be fixtured using one
right-angle bracket and one clamp. Wentink, Van der Stappen and Overmars
proved that any convex polygonal part can be fixtured in this manner [20, 25].
We make the conservative assumption that the contacts are frictionless: a
fixture computed assuming zero friction will also immobilize the part when
friction is non-zero.

1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234

123456789012345678901234567890121234567890123456789012345678901212345678901234567890
123456789012345678901234567890121234567890123456789012345678901212345678901234567890
123456789012345678901234567890121234567890123456789012345678901212345678901234567890
123456789012345678901234567890121234567890123456789012345678901212345678901234567890

v1
v2

vc2

vc1

vp f1
f2

Clamp

Figure 2: The part P (shaded) in a fixture with right angle bracket and
clamp point.

When P is placed into the fixture, it slides into place on the horizontal
arm of the bracket with an edge contact and also makes a point contact on
the vertical arm of the bracket. Moving from the right to left, the clamp
establishes a point contact with a remaining edge of the part which we refer
to as the clamp edge of the part.

5

We label P ’s vertices counterclockwise: v1, . . . , vn. We label the two
endpoints of the horizontal edge contact v1 and v2, the point contact on the
vertical arm vp, and the endpoints of the clamp edge as vc1 and vc2. We
assign a coordinate frame to the part; its origin, c, is at midpoint of the edge
v1v2 and we align its x-axis with the edge v1v2.

If we draw vertical lines from v1 and v2, they intersect a horizontal line
from vp at points f1 and f2 respectively. We refer to the line segment f1f2 as
the fixturing segment . The right angle bracket and clamp will immobilize the
part if the normal of the clamp edge at the clamp contact point intersects
the fixturing segment. For details see [20].

We define the parametric tolerance class ∆(P, ε), assuming that part
edges are perfectly linear. This class specifies allowable variation in the
location of part vertices using square boxes and line segments.

v3 vc1

c

=
εε

2ε

f'2(ε)
f2

v1 v2

f'1(ε)

f1

v4= vc2

v5= vp

Figure 3: Parametric tolerance class based on parameter ε.

As illustrated in Figure 3, coordinates are expressed relative to the part
coordinate frame. Let P ′ be a candidate part. P ′ is loaded into the fixture
by placing it with edge v′1v

′
2 on the horizontal bracket edge, shifting the part

to the left until it hits the vertical bracket edge, and then moving the clamp
horizontally until it touches the part. Let c′ denote the center of the edge
v′1v

′
2. We say that P ′ ∈ ∆(P, ε) if we can place part P ′ such that c′ is

coincident with c, the bottom edges are aligned, and all the vertices of P ′ are
within a square of size ε around the corresponding vertices of the nominal
part P . It is easy to check if a candidate P ′ ∈ ∆(P, ε) in O(n) time.

6

When the part shape changes in the tolerance class, the fixturing seg-
ment may change in height and length, the clamp contact point may move
horizontally and its normal may rotate. Also, the vertex vp that makes the
contact with the vertical arm of the bracket may be changed. In this pa-
per, we restrict our tolerance zone such that this last type of change does
not happen and we only consider the case where v1, v2, vp, vc1, and vc2 are
distinct vertices.

3.1 Computing ε for Fixturing

Since we assume that v1,v2,vp,vc1 and vc2 are distinct vertices, a fixture is
valid for ∆(P, ε) if and only if for every P ′ ∈ ∆(P, ε), the normal at the
clamp lies between f1(ε) and f2(ε).

A

B

C

D

Clamp

l1
l2

l3

µ1 µ2 µ3

x1 x2 x3

Figure 4: The boundary condition for fixturing.

Consider the clamp edge of the part. The normal at the clamp point will
intersect the critical fixture segment at some position x. The part edge that
achieves the maximum (or minimum) x must have one endpoint at one of the
four extreme points (ABCD) since we could move the edge parallel to itself
until one of the endpoints reaches the boundary, and get a larger (smaller)
x.

Now we fix one of the endpoints of the part edge and look at the rela-
tionship between the orientation of the clamp edge and the x-coordinate of
intersection of the normal and the fixture segment. As indicated in Figure 5,

7

let y be the vertical distance from the fixed endpoint to the fixture segment,
and let h be the vertical distance from the clamp to the fixture segment. Let
x1 be the x-coordinate of the fixed endpoint, x2 the x-coordinate of the clamp
contact point, and x3 the x-coordinate of intersection between the normal
and the fixture segment. Let θ be the orientation of the clamp edge. Because
the normal is perpendicular to the clamp edge, we have

y − h

x2 − x2
=
x2 − x3

h
= tan θ (1)

From Equation 1 , we eliminate x2 and get

x3 = x1 + (y − h) cot θ − h tan θ (2)

Taking the derivative of x3 with respect to θ and setting it equal to 0,

−y − h

sin2 θ
− h

cos2 θ
= 0 (3)

Solving for θ,

θ = arctan

√
1− y

h
(4)

x2x1

x3

y

Clamp

h

θ

θ

Figure 5: Relationship between θ and x3 when we fix one endpoint of the
clamp edge.

8

Equation 4 has at most one solution in [0, π/2]. So, given ε, for each fixed
endpoint we only need to consider at most three directions: the maximal and
minimal θ within the tolerance zone and the solution of Equation 4. Also we
only need to consider four fixed endpoints (the corners of the tolerance box)
at each side of the clamp edge. Looking at this carefully, we get a total of 8
clamp edges and 2 points (f1(ε) and f2(ε)) within the tolerance zones that
might define the maximum or minimum position of the intersection of the
normal and the fixture edge. (The 8 edges are the four tangent lines of the
two tolerance boxes plus, for each of the 4 extreme vertices (2 per box), the
angle that comes out of Equation 4.) This leads to a system with a constant
number of equations from which we can compute the largest ε in which the
fixture design will work for all parts in ∆(P, ε) (assuming no topological
change). Since only five vertices are relevant in the calculation of ε, the
complexity of this algorithm is O(1). For details see [9]. We implemented
this algorithm and computed ε for the parts and fixtures shown in Figure 6.

4 Parametric Tolerance Classes for Part Feed-

ing

A part feeder is a device that accepts parts in random orientation and out-
puts them in a unique orientation. The design of part feeders is still a “black
art” that is responsible for up to 30% of the cost and 50% of workcell fail-
ures [6]. An algorithm for feeding polygonal parts was proposed in [12] and
subsequently refined in a series of papers [22, 10, 4]. The model we consider
here orients parts of a given shape as they are pushed by a sequence of fences
on a conveyor belt [21, 2, 30, 4]. A solution is a sequence of pushing angles.

Using the notation of [4], let P be the nominal convex polygonal part
with n vertices and center of mass c. We assign a fixed coordinate frame
to P , with c as its origin and x-axis aligned with the desired nominal final
orientation of the part after feeding.

As illustrated in Figure 7, all angles are expressed relative to this coor-
dinate frame. Vertices are counterclockwise labeled v1 . . . vn and ei is the
edge connecting vi and vi+1; the edge en connects vn and v1. Let αvi

be the
direction of the ray cvi in the coordinate system and αei

be the direction of
the normal from c to the line containing the edge ei. Let αri

= αei
− αvi

,

9

(a)

Clamp

(b)

Clamp

(c)

Clamp

(d)

Clamp

Figure 6: Four parts and fixtures with computed tolerance parameters.

10

v2 v3

v4

v5

v6

v1

e1

e2

e3

e4

e5

e6

c

αv6 αe5

αv5

αv4αv3
αv2

αe2

αv1 αl5

αr2

Figure 7: Critical part angles for feeding as defined from the part’s center of
mass.

11

αli = αvi+1
− αei

.

c'c

v1ε ε

c c'

v2
v'2 v3

v'1

v'3

v1

v'1

v2

v'2
v3 v'3

Figure 8: Parametric tolerance class ∆(P, ε) for feeding and procedure to
check if a candidate part P ′ is in the class.

Figure 8 illustrates the parametric tolerance class ∆(P, ε) for part feeding
based on a nominal part P with center of mass c and a test to check if a
candidate part P ′ is in the class. We assume that part edges are always
straight. Each vertex of P has a circular tolerance zone of radius ε. A part
P ′ with center of mass c′ is in ∆(P, ε) if we can position and orient P ′ such
that c′ is aligned with c and all of P ′’s vertices are inside the tolerance zones
around the corresponding vertices of P . We assume that topologies of the
convex hull of all the parts in ∆(P, ε) are the same. We can test whether or
not a polygon P ′ is in ∆(P, ε) by computing an angular interval Ω

′
i for each

vertex v′i such that rotating P ′ by ω ∈ Ωi′ will move v′i into the ε disk around
vi, or will keep it inside the disk if it is already inside the disk. If ∪iΩ

′
i �= ∅,

then P ′ ∈ ∆(P, ε). The complexity of this test is O(n).

4.1 The Push Function and Push Plans

As shown in Figure 9, the push function characterizes the mechanics of a
part pushed by a frictionless planar fence [18, 12]. The push function p :
[0, 2π) → [0, 2π) links every orientation φ to the orientation p(φ) in which
the part P settles after being pushed by a jaw with initial push direction φ.

The push function p of a polygonal part consists of steps, which are
intervals I ⊂ [0, 2π) such that for all φ ∈ I, p(φ) = C for some constant C ∈

12

0
0 π 2π

π

2π

el(e) r(e)ii i

p()

φ

φ

Figure 9: The push function for a polygonal part. Each step corresponds to
a stable edge of the part.

I; see Figure 9. The steps of the push function are easily constructed from
the αli’s and αri

’s. The interval I is bounded by two consecutive unstable
equilibrium push directions. All directions strictly inside the interval map
onto the stable equilibrium push directions corresponding to a stable edge.
(Note that the direction C itself maps onto C because it is the direction of
the stable edge.) As a result, the number of steps in the push function equals
the number of stable edges.

In preparation for the next section, we define for each stable edge ei two
open intervals l(ei) = {φ < αei

|p(φ) = αei
} and r(ei) = {φ > αei

|p(φ) = αei
}.

We refer to these intervals as ei’s left and right environment respectively. The
interval l(ei) corresponds to the half-step left of αei

and r(ei) corresponds to
the half-step right of αei

(Figure 9). The open intervals l(ei) and r(ei) are
maximal intervals without equilibrium orientation.

We use the abbreviation pα to denote the (shifted) push function defined
by

pα(φ) = p((φ+ α) mod 2π)

for all φ ∈ [0, 2π). Note that pα(φ) is the final orientation of a part in initial
orientation φ after a reorientation by α followed by a push. We can now
define a push plan.

13

Definition 3.1 A push plan is a sequence α1, . . . , αm such that pαm ◦ . . .◦
pα1(φ) = Φ for all φ ∈ [0, 2π) and some fixed Φ ∈ [0, 2π).

Goldberg [12] showed that a push plan exists for any polygonal part and
gave an O(n2) algorithm for finding the shortest such plan. Chen and Ierardi
[10] gave a different algorithm based on finding a basic pushing action that
repeatedly applies one critical pushing angle to orient the part. The critical
pushing angle depends on the length of the two largest open left half intervals
in the push function. The same is true for right intervals but, without loss of
generality, we only consider left push plans here. Let Ψ be a range of angles
defined by the difference in length of these half intervals. Any angle in Ψ will
serve as the critical pushing angle. This range can compensate for variation
in part shape.

Consider the open intervals l(ei) defined in the previous section. Let α
be the length of the longest interval in the set. We assume, without loss
of generality, that e1 in P is a stable edge with |l(e1)| = α, and we only
consider the case in which P has no second stable edge ei (i �= 1) satisfying
|l(ei)| = α. Each basic action consists of a reorientation of the jaw by an
angle of −(α − µ), with µ > 0 such that α − µ > |l(ei)| for any stable edge
ei �= e1, and a subsequent application of the jaw. (The same arguments will
apply for r(ei) with reorientation by an angle of α− µ instead of −(α− µ).)

Note that a reorientation of the jaw by −(α−µ) corresponds to a change
of the push direction by α − µ. Every basic action puts the part into a
stable equilibrium orientation. If P is a polygonal part, then the stable
equilibrium orientations occur at isolated points in [0, 2π). After each basic
action, the number of possible part orientations is finite. Let us label the m
stable edges es1 , . . . , esm in order of increasing edge index with s1 = 1. After
the first application of the jaw, the part P can be in the orientation of any
stable edge es1, . . . , esm . Chen and Ierardi show that every next basic action
eliminates the last stable edge in the sequence. So an m+ 1 step push plan
pα−µ ◦ . . . ◦ pα−µ suffices to put P into orientation αe1 .

4.2 Effect of Shape Tolerance on the Push Function

When part geometry changes, it affects the push function in two ways. First,
it will change the value of αli and αri

, that is, it will change the length of
one or more open half intervals. Second, some critical change in the value of
αli and αri

may cause a stable edge in the nominal part to become unstable.

14

Also, it may cause an unstable edge to become stable. Since the number of
steps of the push function is equal to the number of stable edges, this will
combine several half intervals into a bigger one or break one half interval
into several smaller ones. We refer to this as a topological change of the push
function.

Using Chen and Ierardi’s algorithm, we can find a push plan that is valid
for all the parts in the tolerance class ∆(P, ε) if

• for every part in ∆(P, ε), e1 is the stable edge with the largest left half
interval, and

• if each member P ′ ∈ ∆(P, ε) is characterized by a pushing angle set
Ψ′, and the intersection of all Ψ′ is nonempty.

We can state this differently. If the lower bound of |l(e′1)| for any part
P ′ ∈ ∆(P, ε) is larger than the upper bound of all other left half intervals,
then there will be a push plan which will work for all the parts in the tolerance
class.

4.3 Computing ε for Feeding

To compute the tolerance parameter ε, the algorithm takes as input the
geometry of the nominal part, computes a push angle α that defines the
push plan, and a bound on ε such that there exists a plan to feed all the
parts in ∆(P, ε).

We assume vertex vi is an equilibrium vertex and that there is no topo-
logical change in the push function within the tolerance class ∆(P, ε). Non-
equilibrium vertices and topological changes in the push function are treated
in [9].

As shown in Figure 10, let βi = π/2 − αli . To derive a lower bound
on l(ei) = αli, note that minimizing αli is equivalent to maximizing βi. As
shown in Figure 10 and by definition αli + βi = π/2. For every v′i within the
ε disk around vi, the maximum βi is achieved when e′i is tangent to the ε
disk around vi+1. So given the vertex v′i, the maximum value of α among all
P ′ ∈ ∆(P, ε) and v′i ∈ P ′ is well defined. The problem now becomes to find
the point v′i that can maximize βi. For any v′i inside the ε disk around vi,
there is a point v′′i on the ε disk around vi such that β ′′

i > βi. Thus we need
only consider points on the boundary of the circular tolerance zone.

15

c

εε

β

αli

v'
i+1

vi+1
v'
i

v''i
v
i

β'

β''
i

i

i

Figure 10: Construction for computing the tolerance parameter ε.

A point v′i on the circle around vi can be represented by a single variable
θ. v′iv

′
i+1 is tangent to the ε disk around vi+1 since this maximizes β ′

i when
we fix v′i. To derive the relationship between β ′

i and ε, we draw a straight
line v′iq parallel to vic with cq perpendicular to v′iq and v′ik parallel to vivi+1

with vi+1k perpendicular to v′ik. di is the length of ei and hi is the distance
from the center of mass to ei. Let � cv′iq = γ, � kv′ivi+1 = λ, � vi+1v

′
iv

′
i+1 = δ.

We have:
β ′

i = γ + βi + δ + λ (5)

When we only consider points on the ε disk, the relationship between
min(|l(e′i)|) and ε can be expressed [9] as

min(|l(e′i)|) = fi(ε)

= |l(ei)| − arcsin
ε√

(di − ε cos θ)2 + ε2 sin2 θ

− arcsin
ε sin(βi − θ)√

(|cvi| − ε cos(βi − θ))2 + ε2 sin2(βi − θ)

− arcsin
ε sin θ√

(di − ε cos θ)2 + ε2 sin2 θ
(6)

16

where θ is the value in [0, 2π) that minimizes the right-hand side. A
similar relationship holds for max(|l(e′i)|). For every stable edge ei, if there
is no topological change in the push function, we can express the relation-
ship between |l(e′i)| and ε using this set of nonlinear constraints. We can
compute the largest ε with a binary search in the topological range over
[0, min(0.99hi, 0.49di)i = 1 . . . n]. For each ε we search incrementally, test-
ing θ ∈ [0, 2π] to find a value that yields fi(ε). Since we can not guarantee
monotonicity of fi in θ, it may be necessary to backtrack and choose smaller
increments. Handling topological changes is discussed in [9], the overall com-
plexity for computing ε is O(n2). We implemented the algorithm and show
examples of the resulting tolerance classes in Figures 11 and 12.

(a) (b) (c)

(d) (e) (f)

Figure 11: Tolerance classes for feeding: six example parts.

17

−5 0 5

−5

0

5

10

(a)

1
2

3

4

5

67

8

−5 0 5

−5

0

5

10

(b)

1

2
3

4

5

67

8

Figure 12: Small changes in polygon shape can produce large changes in
tolerance parameters. The part on the left has a relatively large tolerance
parameter while the one on the right has a much smaller tolerance parameter.
This is due to a very small change in the position of the leftmost vertex. In
this way the algorithm can reveal tolerancing implications that may not be
obvious from visual inspection.

18

5 Conclusion

The widespread adoption of CAD/CAM for assembly has created a renewed
interest in computational tolerancing and algorithms for computing para-
metric tolerance classes. Since assembly components such as fixtures and
feeders can fail when part shape varies, it is important to formalize how part
tolerance affects their behavior.

This paper contributes by rigorously characterizing two new parametric
tolerance classes. For fixturing we give an O(1) algorithm to compute the
dimensions of rectangular tolerance zones. For feeding we give an O(n2) al-
gorithm to compute the radius of the largest allowable tolerance zone around
each vertex. For each, we give an O(n) time algorithm for testing if an n-
sided part is in the class. We implement both algorithms and illustrate with
examples.

Acknowledgements

This work was supported in part by NSF Awards IRI-9612491 and Presi-
dential Faculty Fellow Award IRI-9553197 to Prof. Goldberg and by NATO
Travel Grant CRG 951224 (joint with M. Overmars).

Work by D.H. has been supported in part by the USA-Israel Binational
Science Foundation, by the IST Programme of the EU (FET Open) Project
under Contract No IST-2000-26473 (ECG - Effective Computational Geom-
etry for Curves and Surfaces), by The Israel Science Foundation founded by
the Israel Academy of Sciences and Humanities (Center for Geometric Com-
puting and its Applications), and by the Hermann Minkowski – Minerva
Center for Geometry at Tel Aviv University.

References

[1] S. Akella. Robotic Manipulation for Parts Transfer and Orienting: Me-
chanics, Planning, and Shape Uncertainty. PhD thesis, The Robotics
Institute, Carnegie Mellon University, Dec. 1996. Robotics Institute
Technical Report CMU-RI-TR-96-38.

19

[2] S. Akella, W. Huang, K. Lynch, and M. Mason. Planar manipulation
on a conveyor by a one joint robot with and without sensing. In Second
Workshop on Algorithmic Foundations of Robotics, Toulouse, France,
July 1996.

[3] S. Akella and M. Mason. Orienting toleranced polygonal parts. Inter-
national Journal of Robotics Research, 19(12), December 2000.

[4] R. P. Berrety, K. Goldberg, M. Overmars, and F. van der Stappen.
Computing fence designs for orienting parts. Computational Geometry,
Theory, and Applications, 10(4):249–262, 1998.

[5] O. Bjorke. Computer Aided Tolerancing. ASME Press, 1989.

[6] G. Boothroyd, C. Poli, and L. E. Murch. Automatic Assembly. Marcel
Dekker, Inc., 1982.

[7] R. A. Brooks. Symbolic error analysis and robot planning. International
Journal of Robotics Research, 1(4):29–68, Winter 1982.

[8] R. C. Brost and R. R. Peters. Automatic design of 3d fixtures and
assembly pallets. In IEEE International Conference on Robotics and
Automation, 1996.

[9] J. Chen, K. Goldberg, M. Overmars, D. Halperin, K. Bohringer, and
Y. Zhuang. Shape tolerance in feeding and fixturing. In International
Workshop on Algorithmic Foundations of Robotics. 1998.

[10] Y.-B. Chen and D. Ierardi. The complexity of oblivious plans for ori-
enting and distinguishing polygonal parts. Algorithmica, 14, 1995.

[11] B. R. Donald. Error Detection and Recovery in Robotics. Springer-
Verlag, 1987.

[12] K. Goldberg. Orienting polygonal parts without sensors. Algorithmica,
10(2):201–225, August 1993. Special Issue on Computational Robotics.

[13] S. A. Hutchinson and A. C. Kak. Extending the classical ai planning
paradigm to robotic assembly planning. In IEEE International Confer-
ence on Robotics and Automation, 1990.

20

[14] L. Joskowicz, E. Sacks, and V. Srinivasan. Kinematic tolerance analysis.
In Second Workshop on Algorithmic Foundations of Robotics, Toulouse,
France, July 1996.

[15] L. Kavraki. Part orientation with programmable vector fields: Two
stable equilibria for most parts. In IEEE International Conference
on Robotics and Automation (ICRA), Albuquerque, New Mexico, Apr.
1997.

[16] F. Lamiraux and L. Kavraki. Positioning of symmetric and nonsymmet-
ric parts using radial and constant fields: computation of all equilibrium
configurations. Intl. Journal of Robotics Research, 20(8):635–59, 2001.

[17] J. C. Latombe, R. H. Wilson, and F. Cazals. Assembly sequencing
with toleranced parts. In Third Symposium on Solid Modelling and
Applications, 1995.

[18] M. T. Mason. Mechanics and planning of manipulator pushing opera-
tions. International Journal of Robotics Research, 5(3), Fall 1986.

[19] A. Neumann. The new ASME Y14.5M standard on dimensioning and
tolerancing. Manufacturing Review, 7(1), 1994.

[20] M. Overmars, C. Wentink, and F. van der Stappen. Fixture planning.
In Second Workshop on Algorithmic Foundations of Robotics, Toulouse,
France, July 1996.

[21] M. A. Peshkin and A. C. Sanderson. Planning robotic manipulation
strategies for workpieces that slide. IEEE Journal of Robotics and Au-
tomation, 4(5):524–31, October 1988.

[22] A. Rao and K. Goldberg. Manipulating algebraic parts in the plane.
IEEE Transactions on Robotics and Automation, 11(4), August 1995.

[23] A. A. G. Requicha. Toward a theory of geometric tolerancing. IJRR,
2(4), 1983.

[24] U. Roy, C. Liu, and T. Woo. Review of dimensioning and tolerancing:
Representation and processing. Computer-Aided Design, 23(7), 1991.

21

[25] F. van der Stappen, C. Wentink, and M. Overmars. Computing immo-
bilizing grasps of polygonal parts. Intl. Journal of Robotics Research,
19(5):467–79, 2000.

[26] H. Voelker. A current perspective on tolerancing and metrology. Man-
ufacturing Review, 6(4), 1993.

[27] H. Voelker. The current state of affairs in dimensional tolerancing. In-
tegrated Manufacturing Systems, 9(4), 1998.

[28] R. Walker and V. Srinivasan. Creation and evolution of the ASME
Y14.5M standard. Manufacturing Review, 7(1), 1994.

[29] Y. Wang. An optimum design approach to 3d fixture synthesis in a
point set domain. IEEE Transactions on Robotics and Automation,
16(6), December 2000.

[30] J. Wiegley, K. Goldberg, M. Peshkin, and M. Brokowski. A complete
algorithm for designing passive fences to orient parts. Assembly Au-
tomation, 17(2):129–36, August 1997.

[31] R. Wilhelm and S. C. Lu. Computer Methods for Tolerance Design.
World Scientific, 1992.

[32] C. Yap and E.-C. Chang. Geometric tolerancing: Theory, issues,
and computation. In Second Workshop on Algorithmic Foundations of
Robotics, Toulouse, France, July 1996.

22

