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   ABSTRACT. Methods for affinity prediction do not perform well in the case of peptide-
protein binding. Here we investigate the cause for this failure. We conclude that the affinity 
of a small set of complexes can be described well by sidechain steric interactions and the 
number of buried polar groups, but only if outliers are removed. In the PLS models, 
particularly the hydrogen bonding of the peptide backbone plays an anomalous role, 
explaining the inability of general scoring methods to predict peptide-protein binding. 
 

 

Although structural biology has helped tremendously in understanding and 

rationalising drug action, it should be noted that the realm of molecular structure is still far 

removed from in vitro pharmacology and even further from in vivo experiments. We would 

like to predict the affinity of a drug for a receptor solely based on the structure of its 

complex. Such a prediction of affinity is hampered by the fact that we tend to look at single 

ligands complexed to single targets. We neglect the events before and after this 

complexation. We typically neglect multimolecule effects, solvent, hydrophobicity, induced 

fit, entropy and differences between the crystal and physiological state.  

 

 Unfortunately scoring is the Achilles heel of modelling. The development of reliable 

and efficient general-purpose scoring methods shows few signs of imminent breakthrough, a 

situation unchanged from that described in the review of Ajay and Murcko.1 Techniques 

based rigorously on the principles of statistical thermodynamics,2 such as Free Energy 

Perturbation,3 require intractably long-running simulations even for relatively simple 

  
 



 

 

 

systems. A search for less computationally demanding methods has led to a number of 

approaches relying on use of static properties of the ligand-receptor complex, rather than 

ensemble averages derived from simulations. The relationship between these properties and 

affinity is described either by regression techniques or a master-equation which is intended 

to include terms for the most important contributions to the net free energy change upon 

binding. 

 

 The SCORE method of Böhm4,5 is a general purpose regression-based technique. 

Noteworthy characteristics are terms which are intended to account for entropic 

contributions to affinity due to loss of degrees of freedom on binding, and hydrophobic 

effects. Expressions of a similar form are used in some master equation approaches,6 while 

further approaches rely on the analysis of interaction energies derived from molecular 

mechanics calculations.7 Despite efforts in this direction as seen in SCORE, most of these 

techniques appear to be inadequate in their treatment of entropic effects, and more 

specifically solvation and molecular flexibility. Nevertheless, there are some notable 

successes, at least for protein-protein interaction8 and ligand-protein binding.9 

 

 Many processes in biology and immunology are based on the interaction of peptides 

with proteins. These interactions often play a role in infectious and chronic diseases. 

Peptides, however, are not normally used for therapy, because of their instability. 

Peptidomimetic compounds have been successfully introduced as their more stable 

counterparts. All five HIV-1 protease inhibitors currently registered (at the end of 1999) are 

peptidomimetics. Despite their obvious importance, affinity prediction of peptides and 

peptidomimetic compounds is difficult. Peptide behaviour is not simply intermediate 

between small compounds (molecular weight below 500) and proteins (polypeptides of more 

than 20 amino acids). Small compounds and proteins have well defined conformations. 

Peptides however, may have too many polar groups and rotatable bonds to be described 

sucessfully by regular scoring functions. Furthermore, a scoring function that performs well 

for a variety of compounds differing enormously in binding affinity, may not be able to 

simply order a series of analogous peptides. 

 

 We will investigate the usefulness of some popular scoring methods in peptide-

protein interaction. We accept in advance the fact that a general scoring function for small 

  
 



 

 

 

ligands, peptide-like ligands and protein ligands is not feasible with our current 

understanding of molecular recognition. Our aim is not to find a generally applicable scoring 

function, but rather to find out why peptides are so badly predicted. To do this, we selected 

some peptide(mimetic) protein complexes from the Protein Data Bank (PDB),10 in which 

we have a scientific interest. We will investigate five peptides that bind to a Major 

Histocompatibility Complex (MHC) class I HLA-A2 molecule and 15 peptidomimetics that 

bind to Human Immunodeficiency Virus (HIV) 1 protease. This data set may not be 

sufficient for development of a general scoring function. However, this set might enable us 

to investigate: 

- peptides as well as peptidomimetics 

- binding to a groove on the outside as well as on the inside of a protein 

- binding to a transport protein as well as to a proteolytic enzyme 

- high and moderate affinity binding 

- binding with and without a structural water molecule 

 

We will compute energetic parameters with molecular mechanics and continuum 

electrostatics, and we will tabulate descriptive parameters or properties that could favour or 

disfavour interaction. We will also decompose the interaction in sidechain and backbone 

effects. Many of the procedures have been described before, as reviewed by Oprea11 and 

Knegtel and Grootenhuis.12 We will add an energy decomposition to ligand sidechain and 

backbone atoms and an enumeration of buried and exposed polar groups. 

 

 

Results 

 

 The most important step is the data preparation. The most subjective step is the 

neutralisation of Asp B25 of the HIV protease molecules for all complexes. It is quite well 

possible that some ligands have induced other pKa shifts in the protease, leading to other 

protonation states. The coordinate minimisation consists of a stage where the newly added 

hydrogen atoms were minimised and a stage where the entire ligand as well as all sidechains 

of nearby protein residues were minimised. Using the energies from the latter complexes led 

to slightly better regression models than the energies from the hydrogen_only minimised 

models.  

 

  
 



 

 

 

Table 1. Experimental (Kcal/mol) and predicted affinities of the complexes 

PDB-code Ligand ΔGexp ΔGpred1 ΔGpred2 Ludi 

1hhg13 GP-9 -8.906 -11.19 -10.14 1472 

1hhh13 HBV-10 -11.606 -7.53 -10.47 1617 

1hhi13 FLU-9 -11.206 -11.13 -10.89 1478 

1hhj13 RT-9 -9.006 -9.12 -9.17 1985 

1hhk13 TAX-9 -10.906 -11.78 -11.87 1370 

4hvp14 MVT101 -8.3315 -10.29  1297 

5hvp16 Ace-Pep -10.5015 -10.20 -11.24 1388 

7hvp17 JG365 -13.1215 -10.61 -12.04 1274 

8hvp18 U85548e -11.6119 -9.34 -10.82 1049 

9hvp20 A74704 -11.3815 -12.82 -13.34 1185 

1aaq21 PSI -11.4515 -8.58 -11.63 1196 

1hbv22 SB203238 -8.6815 -13.50  907 

1hpv23 VX478 -12.5715 -11.84 -12.34 923 

1htf24 GR126045 -11.0415 -12.22 -10.88 1069 

1htg24 GR137615 -13.1915 -13.13 -12.89 1175 

1hvi25 A77003 -13.7415 -13.12 -13.72 1343 

1hvj25 A78791 -14.2615 -12.83 -13.25 1348 

1hvk25 A79928 -13.7915 -13.00 -13.42 1412 

1hvl25 A76889 -12.2715 -13.05 -13.49 1280 

1hvr26 XK263 -12.9715 -14.86 -13.66 1034 

 

 The starting point of this study was the fact that established scoring methods performed 

badly. Table 1 lists the 20 complexes studied. The log Ki values were rewritten as ΔGexp-

values (third column) and relate to the Ludi Score (sixth column) with the following 

statistics: r2=0.039, n=20, s=1.79, F=0.74 without obvious outliers. It is clear that the most 

established method and score function does not predict well for this data set. 

 

 Table 2 lists the energy and property parameters used in this study. Leave-one-out PLS 

analyses were performed on different training sets of 18 compounds and the resulting model 

was used to predict the 2 complexes that were left out entirely, as explained in the methods 

section. These externally predicted values are also listed in Table 1 in the fourth column as 

ΔGpred1.The statistical data of these 10 runs are listed in Table 3. A differing number of latent  

 

Table 2 Explanatory energies and properties tested in the PLS models 

Parameter Explanation Program 
Ei_c_s sidechain Coulomb interaction energy Insight/Discover(MSI) 
Ei_v_s sidechain van der Waals interaction energy Insight/Discover 

  
 



 

 

 

Ei_s sidechain non-bonded interaction energy Insight/Discover 
Ei_c Coulomb interaction energy Insight/Discover 
Ei_v van der Waals interaction energy Insight/Discover 
Ei non-bonded interaction energy Insight/Discover 
Ei_l ligand bonded energy Insight/Discover 
Eh_hb intermolecular hydrogen bond energy HINT(EduSoft) 
Eh_ab intermolecular acid/base energy HINT 
Eh_hf intermolecular hydrophobic energy HINT 
Eh_bb intermolecular base/base energy HINT 
Eh_hp intermolecular hydrophobic/polar energy HINT 
Eh intermolecular energy HINT 
Ed_c Coulombic energy Delphi27 
Ed_crf corrected reaction field energy (solvation) Delphi 
Ed summed energy manually 
L_hb Ludi hydrogen bridge score Insight/Ludi(MSI) 
L_li Ludi lipophilic contact score Insight/Ludi 
L_sb Ludi salt bridge score Insight/Ludi 
L_ro Ludi rotatable groups score Insight/Ludi 
Ludi Ludi score Insight/Ludi 
MS total buried surface area MS28 
HB_pos number of possible ligand hydrogen bonds manually 
HB_sat number of hydrogen bonds formed Insight/Ludi 
HB_bur number of buried polar groups Whatif29 
HB_exp number of exposed ligand polar groups manually 
MW ligand molecular weight Sybyl(Tripos) 
Nat number of ligand atoms Sybyl 
RES resolution of X-ray structure PDB 
Random random numbers Sybyl 

 

variables, the optimum number of components in column 6, seems to point at an instable 

overall model, since the model depends on which compounds are left out. Comparing the 

ΔGexp to the predictions leads to a relation with r2=0.138, n=20, s=1.69, F=2.88. There are 

two notable outliers, complexes 4hvp and 1hbv.  

 

Table 3 Statistical parameters of the PLS analyses on all complexes 

Run Omitted # of xv #  comp. q2 Optim. # comp. r2 s F 
1 1hhg,1aaq 18 10 0.44 4 0.94 0.50 49.32 
2 1hhh,1hbv 18 10 0.68 6 0.99 0.23 160.47 
3 1hhi,1hpv 18 10 0.26 2 0.66 1.16 14.51 
4 1hhj,1htf 18 10 0.18 1 0.54 1.23 18.98 
5 1hhk,1htg 18 10 0.24 2 0.65 1.15 13.97 
6 4hvp,1hvi 18 10 0.17 2 0.64 1.04 13.35 
7 5hvp,1hvj 18 10 0.19 2 0.64 1.12 13.08 
8 7hvp,1hvk 18 10 0.28 2 0.66 1.08 14.52 
9 8hvp,1hvl 18 10 0.34 2 0.71 1.07 18.48 
10 9hvp,1hvr 18 10 0.36 2 0.71 1.07 17.94 

 

Table 4 Statistical parameters of the PLS analyses after outlier removal 

Run Omitted # of xv #  comp. q2 Optim. # comp. r2 s F 
1 1hhg,1aaq 16 10 0.61 3 0.88 0.54 30.01 
2 1hhh,1hpv 16 10 0.73 3 0.91 0.53 41.85 

  
 



 

 

 

3 1hhi,1htf 16 10 0.61 3 0.89 0.61 30.69 
4 1hhj,1htg 16 10 0.56 3 0.86 0.58 25.13 
5 1hhk,1hvi 16 10 0.66 3 0.89 0.56 33.00 
6 5hvp,1hvj 16 10 0.63 3 0.88 0.57 28.55 
7 7hvp,1hvk 16 10 0.60 3 0.90 0.54 33.93 
8 8hvp,1hvl 16 10 0.71 3 0.93 0.48 52.99 
9 9hvp,1hvr 16 10 0.84 3 0.95 0.41 70.80 

 

 After removal of these outliers, the entire procedure was re-done. The predicted values 

of these runs are listed in the fifth column in Table 1 as ΔGpred2. The correlation of ΔGexp 

with these predicted values is acceptable with r2=0.674, n=18, s=0.90 and F=33.09. The 

statistical results for these last PLS runs are listed in Table 4. All runs now point at an 

optimum number of 3 latent variables.  
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Figure 1 The mean (% times 10) of the fractional contributions of the energy 

parameters. Nine PLS models were derived for 18 compounds, as shown in 

Table 4. Sixteen out of thirty parameters in the models are related to energy 

and are shown in this Figure. If all would contribute equally to the model, a 

mean value of 0.33% (or 33 in this Figure) would result, as seen for e.g. the 

random numbers. 

  
 



 

 

 

 In order to investigate which parameters principally determine the PLS model, the mean 

(expressed as per thousand) of their contributions in the 9 PLS runs is shown in Figures 1 

and 2, for the energies and properties, respectively.  
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Figure 2 The mean (% times 10) of the fractional contributions of the property 

parameters. Nine PLS models were derived for 18 compounds, as shown in 

Table 4. Thirteen out of thirty parameters in the models are related to 

properties and are shown in this Figure. If all would contribute equally to the 

model, a mean value of 0.33% (or 33 in this Figure) would result, as seen for 

e.g. the random numbers. 

 

 Only four properties outperform the random numbers: Ludi lipophilic and salt bridge 

scores, the number of buried polar groups and the X-ray structure resolution. On the other 

hand, 10 energy parameters contribute more to the model than random numbers: four non-

bonded interaction energies, four HINT intermolecular energies and the energies from the 

continuum electrostatics. 

  
 



 

 

 

 There is extensive intercorrelation between some of these variables, however, as can be 

seen in Figure 3. Figure 3 shows the (varimax) rotated loadings of the variables that 

outperform the random variable, plotted with the first two principal components.  
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Figure 3 Varimax rotated loadings of PC1 and PC2. Fourteen principal components 

were extracted to replace the highly intercorrelated fourteen parameters that 

outperformed the random numbers in the PLS analyses (Figures 1 and 2). In 

order to help in interpreting these principal components, their axes have been 

rotated to increase correlation with the original parameters. The loadings 

resemble correlation coefficients; a value of 0.99 means that PC1 is correlated 

strongly to the Delphi solvation energy Ed_crf.    

  
 



 

 

 

 The first principal component (44% of the total variance) relates to electrostatic effects 

like the Coulombic interaction energy, the HINT hydrogen bond energy and the Delphi 

Coulombic and solvation energy. The second component (24% of the total variance) relates 

to steric effects like the van der Waals interaction energy between ligand and protein as well 

as between ligand sidechains and protein and the entire non-bonded interaction energy 

between the ligand sidechains and the protein atoms. The third significant component (12% 

of the total variance) is related mainly to the HINT hydrophobic intermolecular energy 

Eh_hf. PCA elegantly recognises the three basic interaction types, well-known in Hansch 

analysis. It is especially noteworthy that the HINT hydrophobic energy does not score in 

PC1 and PC2 and renders unique information to the data set. A similar finding was reported 

by Wei et al.30 

 

 

Discussion 

 

 The Ludi Score routine fails to predict the affinities of the peptides and peptidomimetic 

compounds for their proteins. Especially the MHC binding peptides are predicted to bind 

better than they actually do. The Ludi Score equals 100 times the estimated log Ka, so the 

RT-9 peptide is predicted to bind to HLA-A2 with an association constant of almost 1020, as 

can be seen in Table 1. An enormous number of hydrogen bonds and lipophilic contacts are 

responsible for this. Morgan et al.31 postulated in the case of thermolysin inhibitors that 

polar groups that hydrogen bond with solvent before binding, and with a protein after 

binding, do not have a net contribution to the affinity. The observation that hydrogen bonds 

do not contribute to our PLS models, may indicate that for peptides and peptidomimetic 

compounds most hydrogen bonds do not contribute to affinity due to desolvation penalties. 

The number of buried polar groups, however, is the most important parameter in our models, 

as can be seen in Figure 2. This again points to a considerable desolvation cost for the 

peptide polar groups. We postulate that empirical scoring techniques that enumerate 

hydrogen bonds will fail to give good predictions for peptide binding, which is related to the 

avoidance of unfulfilled hydrogen bonds. 

 

 Another scoring method using a master equation and continuum electrostatics6 failed to 

order the MHC binding peptides. In our results we observe that the Discover Coulombic 

interaction energy, the Delphi Coulombic energy and the Delphi solvation energy are almost 

  
 



 

 

 

completely correlated. We observe, as did Froloff,6 that the sum of Coulombic energy and 

solvation energy, i.e. the total electrostatic energy, opposes binding. Here, the Coulombic 

interaction energy, has negative (attracting) values, but contributes to the PLS equation with 

a negative slope. This implies that Coulombic interactions decrease binding. This may be an 

explanation for failures in predicting peptide binding with molecular mechanics energies, 

which are not decomposed. Coulombic and van der Waals contributions should be 

considered separately. Like Knegtel and Grootenhuis12 we scaled down the electrostatics 

using a distance dependent dielectric constant. Holloway32 uses a constant dielectric 

constant of 1 and came to the conclusion that a subdivision of the molecular mechanics 

energy in Coulomb and van der Waals effects did not improve their relationships. We think, 

however, that this subdivision is needed for peptides. We do not see any contribution of the 

sidechain Coulombic interaction energy (meaning the Coulombic interaction energy of the 

sidechains of the ligand and the entire protein), suggesting that the adverse relation is mainly 

determined by the peptide backbone atoms. This may be an artifact of the minimisation, 

where almost all possible hydrogen bonds are optimised, leading to Coulombic interaction 

energies, that suggest interaction. The negative sign in the PLS equation, however, indicates 

that these optimised hydrogen bonds are not as stable as when they were fully solvated. 

Holloway32 was able to use the total interaction energy as a sole indicator of the Ki values 

of HIV protease inhibitors. Despite differences in force field and dielectric masking, we 

believe that it is the difference in data sets, and especially our inclusion of the MHC binding 

peptides, which underlies this apparent discrepancy. 

 

 The latent variables and PLS models became consistent only after removal of two 

outliers. Removing two out of the already modest 20 compounds, may seem unwise. Given 

the uncertainty in their X-ray structures and affinity data, we believe that this removal is 

essential. The crystals of MVT-101 and HIV protease (4hvp) have been re-analysed which 

led to quite a different set of coordinates,33 that have not yet been deposited at the PDB. The 

other outlier (1hbv), the complex of HIV protease with the reduced amide peptidomimetic 

SB203238, cannot be as easily explained. It is possible that the reduced amide induces a 

different protonation at the catalytic aspartates of HIV protease. So, we neutralised both 

aspartic acids and re-computed the energies. The complex remained an outlier, and it now 

was the only compound with positive Coulombic energy as computed with Delphi. We are 

currently trying to predict pKa values in this complex, based on continuum electrostatics. In 

  
 



 

 

 

their study of 13 HIV-protease complexes, Bardi et al.34 predicted the same 1hbv complex 

worst using another scoring method. If 10% of the current small data set is such an obvious 

outlier, we are warned against the use of fully automated procedures on large data sets for 

scoring method development. All complexes should be manually inspected, and completed 

for missing atoms where necessary. We feel that no scoring methods can be compared if 

different starting structures, atom types and charges are used. An annotated database of 

protonated complexes with association constants, pertinent to the crystallisation conditions, 

would be most welcome. Such a database would indeed allow a comparison between scoring 

methods, as long as it is representative and non-redundant. 

 

 In the PLS models the van der Waals interactions between the ligand sidechain and the 

protein, and the number of buried polar groups dominate. Interestingly, these parameters are 

not encountered in published scoring functions. Despite the fact that we tested 30 

parameters, we are likely to have missed some important phenomena. As our understanding 

of molecular recognition increases, we accept that buried hydrogen bonds contribute more to 

binding than the hydrogen bonds that are solvent exposed. We also see an increasing number 

of reports stating that amino-aromatic, aromatic-aromatic and the polar CH-pi interactions 

and CH hydrogen bonds should not be neglected. Umezawa et al.35 conclude for the same 

HLA-A2 peptide complexes as studied here, that there are many CH-pi interactions. We are 

also currently investigating CH pi interactions in peptide protein interactions. It is possible 

that polar effects can explain thermodynamic differences between seemingly similar 

hydrophobic sidechains, as reported recently by Davies et al.36 Gilmer et al.37 reported that 

by replacing isoleucine by leucine in the Ace-pYEEIE phosphopeptide the affinity for the 

GST Src SH3-SH2 domain dropped 3-fold. It is known that this residue resides in a 

hydrophobic pocket in the SH2 domain. The parameters we have used in this analysis would 

not be able to predict such a difference between these seemingly identical residues. An in-

depth analysis of the polar component of interactions that were formerly believed to be 

purely hydrophobic, is in order. 

 

 Another feature that we did not fully include is the induced fit of ligand and protein. 

Since it is impossible to completely search the conformational space of large peptides, we 

have decided not to compute a ligand free energy, despite a report by Nicklaus et al.,38 

showing high conformational strain for protein bound ligands. Recent work by Boström et 

  
 



 

 

 

al.39 suggested that ligand minimisation in vacuum and in solvation models can lead to 

electrostatic collapse, in the case of relatively polar ligands. We could expect the same thing 

to happen in our peptide data set and decided to only use the bonded (internal) energy of the 

ligand, minimised in the complex, as a measure of conformational strain. Such an absolute 

energy is of course dependent on the force field. This conformational strain did not 

contribute to the PLS models. The fate of a ligand before complex formation remains a blind 

spot in structural biology. 

 

 Concluding, we have observed that peptides and their mimetics are indeed hard to score 

with general partitioning methods, like the empirical regression methods5 and the master 

equation methods.6 Especially the hydrogen bonds of the peptide backbone show anomalous 

behaviour, compared to hydrogen bonds between small ligands and proteins. Furthermore, 

we have observed that it is almost impossible to determine the protonation and charge of the 

complexes, in a manner which reflects the experimental conditions of the affinity 

measurement with any certainty. Discrepancies in X-ray coordinates and discrepancies in the 

measurement of association constants introduces a standard deviation that may well be as 

large as the standard error of 1 log unit that seems to be the current asymptotic barrier for 

most scoring methods (see e.g. Knegtel and Grootenhuis).12 Ofcourse, the X-ray structure 

resolution is a limiting factor. Our observation that the resolution participates significantly to 

the PLS models might be a chance factor or the result of the fact that the MHC complex 

structures are in general of lower resolution than the HIV protease complex structures, so 

that the resolution discriminates between both types of proteins.  

 

 A complete conformational analysis of peptides is impossible. Scoring the generated 

conformations in peptide-protein complexes is difficult, as long as we do not understand, for 

example, the difference in behaviour between leucine and isoleucine. We must conclude that 

at this moment, we can not reliably score (nor dock) peptides and peptidomimetics to 

proteins without user bias. Even non-partitioning methods, like free energy perturbation 

molecular dynamics, do not include polarisation terms and polar effects of hydrophobic 

groups, and they compute the conformational ensemble of one molecular complex only, not 

allowing for partial protonation, oligomerization or allosteric influences. Still, experimental 

uncertainties may outweigh our current computational inadequacies. 

Methods 

  
 



 

 

 

 

Data collection 

 The coordinates from the following complexes were downloaded from the PDB:10 

1hhg, 1hhh, 1hhi, 1hhj, 1hhk, 4hvp, 5hvp, 7hvp, 8hvp, 9hvp, 1aaq, 1hbv, 1hpv, 1htf, 1htg, 

1hvi, 1hvj, 1hvk, 1hvl, 1hvr. Ki values were taken from Froloff et al.6 for the five MHC 

peptide complexes, and from Eldridge et al.15 for the HVP complexes, and checked against 

the original references. The Ki value of 8hvp was reported by Lin et al.19 All values were 

rewritten as ΔGexp=-RTlnKi in Kcal/mol at a temperature of 298 K. 

 

Data preparation 

 The complexes were prepared in InsightII 98.0 (MSI, San Diego, USA). Water 

molecules were removed (except for the groove water in 14 HIV protease complexes) and 

missing sidechains and hydrogen atoms were added, consistent with the dominant state at a 

pH value of 6. Asp B25 was protonated in all HIV protease complexes. The chains were 

capped with charged ends. With Discover 98.0 (MSI, San Diego, USA), the CFF91 

forcefield, and conjugate gradients optimisation to below a gradient of 0.01 Kcal/mol, first 

the hydrogen positions were optimised and then the entire ligand together with the 

sidechains of all amino acids with an atom within 5 Å of the ligand. The cell multipole 

method and a distance dependent dielectric constant (1*r) were used for the non-bonded 

interactions.  

 

Molecular mechanics energies 

 An analysis of the non-bonded interaction energy between ligand and protein was 

performed on the minimised complex with a cut-off radius of 99 Å and a distance dependent 

dielectric of (4*r) to reduce the electrostatic dominance in vacuum. We extracted the 

interaction energy of the entire ligand with the entire protein and of only the ligand 

sidechains with the entire protein (the sidechain atoms were defined manually in the case of 

peptidomimetic ligands). As a measure of ligand conformational strain, we extracted the 

internal bonded energy of the ligand after complex minimisation. Hint 2.27I40,41 was used 

to compute hydrophobic and polar interactions using the intermolecular HintTable and a cut-

off radius of 6.00 Å and a van der Waals limit of 0.90 Å. A 1 Å grid was computed with a 

border space of 5 Å and an exponential hydropathic function of exp(-1r). No steric term was 

added because the minimised complex was used. The amino acids were partitioned by 

  
 



 

 

 

dictionary, with only polar hydrogen atoms and inferred solvent conditions. The 

heteroatomic ligands of HIV proteases were partitioned by calculation with a 

polar_proximity via_bonds. 

 

Continuum electrostatics energies 

 The complexes were converted to PDB-type files and CFF91 charges and PARSE342 

sizes were given to all atoms. With qdiffxs (Delphi 3.027) and a grid size of 65, the 

Coulomb and solvation (corrected reaction field) energies were computed of the ligand, the 

protein and the complex. The dielectric constants were 2 within solute and 80 outside. The 

energy of the complex minus the energies of the ligand and the protein were used in the 

statistical analyses after conversion from kt to Kcal/mol. 

 

Property collection and calculation 

 With the MS programme28 from the QCPE (nr. 429) and the autoMS script (part of the 

Dock 4 suite of programmes),43 we computed the buried surface area (TOTAL AREA in the 

output file). With the Ludi programme (MSI, San Diego, USA) we computed the Ludi score 

(the SCORE programme of 1994 was used),4 which consists of contributions from hydrogen 

bridges and salt bridges, as well as from the lipophilic contact area and the number of 

rotatable groups in the ligand. We manually counted the maximum number of possible 

hydrogen bonds a ligand could make. The number of hydrogen bonds that were actually 

made was generated by Ludi in the previous stage. With Whatif,29 version 19970813-1517, 

we computed the hydrogen bond network (HNQCHK command)44 for the complex and the 

protein_only and thus obtained the buried polar groups of both protein and ligand. We 

manually computed the exposed polar groups of the ligand, which could be neutralised by 

surrounding solvent (this is the maximum number of hydrogen bonds that a ligand could 

make minus the hydrogen bonds that it does make and the buried polar atoms of the ligand). 

Further simple properties are the resolution of the X-ray structure, the number of ligand 

atoms and the molecular weight as well as a random number (generated with Sybyl). 

 

Statistical analysis 

 The statistical analyses were performed with Sybyl 6.5 (Tripos, St. Louis, USA) and 

SPSS 6.5. We performed the following strategy, since it was immediately obvious that the 

models depended heavily on the selection of test set and training set. We selected all 

  
 



 

 

 

compounds minus number 1 and 11 for a PLS run with 10 components and 18 

crossvalidations. We then computed a model with the optimum number of components and 

without crossvalidations. We predicted compounds 1 and 11 with this model. Then, we 

selected all compounds minus number 2 and 20 and performed the same procedure to predict 

them. Then we performed a linear regression of the ΔGexp-values and the predictions. After 

removing two obvious outliers (see Results and Discussion) we performed the same strategy, 

selecting all compounds minus 1 and 10, 2 and 11, 3 and 12 etc… again on a leave-one-out 

basis. So, the internal validation is leave-one-out. The external validation is leave-two-out. A 

principal component analysis was also performed with Sybyl 6.5 using factor analysis with 

all components and Varimax rotation. 
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