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In this paper we study the electrostatic properties of “Janus” spheres with unequal charge densities
on both hemispheres. We introduce a method to compare primitive-model Monte Carlo simulations
of the ionic double layer with predictions of (mean-field) nonlinear Poisson-Boltzmann theory. We
also derive practical Derjaguin Landau Verwey Overbeek (DLVO)-like expressions that describe the
Janus-particle pair interactions by mean-field theory. Using a large set of parameters, we are able to
probe the range of validity of the Poisson-Boltzmann approximation, and thus of DLVO-like theories,
for such particles. For homogeneously charged spheres this range corresponds well to the range that
was predicted by field-theoretical studies of homogeneously charged flat surfaces. Moreover, we
find similar ranges for colloids with a Janus-type charge distribution. The techniques and parameters
we introduce show promise for future studies of an even wider class of charged-patterned particles.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4751482]

I. INTRODUCTION

Electrostatic interactions in suspensions of charged col-
loids are of paramount importance to the structure and phase
behaviour of such systems.'~!? The Derjaguin Landau Verwey
Overbeek (DLVO)'>'* theory is the most well-known the-
ory by which the pair interactions between screened charged
particles can be described. However, DLVO theory only
describes the interactions between homogeneously charged
spherical particles and is therefore a monopole theory. The
rapidly growing zoo'>!® of new colloidal particles demands
similar theories that are equipped to deal with anisotropy in
shape and size.

For classical, spherically charged, particles, DLVO the-
ory has proven to be a powerful means to describe the elec-
trostatic properties of systems; mostly for high-polarity sol-
vents, low surface charge, and high ionic strength. The non-
linear Poisson-Boltzmann (PB) approach!’~!” extends this
range, although analytic results are only possible for a lim-
ited number of systems. PB theory is based on a mean-field
approximation that ignores ion-ion correlations, which is jus-
tified only for sufficiently high temperatures, not too apo-
lar media, and monovalent ions at reasonable concentrations.
In regimes where ion-ion correlations are important strong-
coupling (SC) theory?*2> may be applied. Several modifica-
tions to PB theory exist,®?3-3" including modifications of the
traditional PB theory that account for finite-size ions.

In the computational field, both Monte Carlo (MC)
and molecular dynamics (MD) techniques have been de-
veloped to analyse charged particles suspended in an elec-
trolyte. In primitive-model simulations, ions are taken into
account explicitly, whilst the solvent is modelled as a dielec-
tric continuum.>' % Ewald Sums®’ usually provide the ba-
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sis for calculating the long-ranged Coulomb contribution to
the total energy of a system with periodic boundary condi-
tions. However, employing Ewald Sums is computationally
expensive and the systems that can be studied in the primitive
model are therefore typically small. When studying charged
colloids suspended in an electrolyte it is desirable to coarse-
grain the system and use the much shorter ranged effective
interactions between the particles instead of accounting for
the ions explicitly. Most simulation studies therefore con-
sider systems where the interactions between the colloids can
be modelled by a DLVO pair potential.'>3*! We note that
faster Ewald-Sums implementations exist, e.g., mesh-based
approaches,*>* but these cannot outperform a course-grained
method that does not take the ions into account at all in a sys-
tem of charged colloidal particles.

In this paper we investigate the range of applicability
for nonlinear PB theory to accurately describe the behaviour
of the ion density around charged heterogeneous particles.
This allows us to quantify the parameter regime for which a
(multipole-expanded) DLVO approximation may be applied
to describe pair interactions in coarse-grained simulations,
since (the electrostatic part of) such DLVO theories can be
derived using PB approximations. Charge-patterned particles
have already been studied using the DLVO approximation by
partitioning the surface charge over a finite number of point-
Yukawa charges with different prefactors** to obtain effective
pair interactions. For charge-patterned particles this approx-
imation still generally results in an expensive calculation of
the pair interaction as a function of the separation and orien-
tation. Moreover, the point-Yukawa description inadequately
accounts for the hard core of the particle, i.e., it implicitly
assumes that ions can penetrate the colloid.* In this paper a
correct, simple, and therefore computationally far more effi-
cient DLVO-multipole approximation is derived for the ef-
fective interaction between two charge-patterned particles.
The multipole-based effective interactions have an enormous

© 2012 American Institute of Physics
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potential for use in simulation studies to explore the phase
behaviour of previously inaccessible systems.

For this study we focus on particles with a Janus-type
charge pattern. The term Janus refers to the two-faced Ro-
man god of doors and was introduced to describe colloid
properties in 1988.46 A Janus particle*™? consists of two op-
posing parts (usually hemispheres) with different properties
for the wetting, charge, chemical functionality, etc. The past
decade has seen a marked increase in the ability to synthesize
such Janus colloids**~>3 and their use in self-assembly exper-
iments. Many interesting structures have been found**> and
questions have been raised on how to approach simulations
of such systems. With our study we aim to address some of
these questions for charged Janus particles in an electrolyte, in
much the same way as the pioneering simulation studies that
probed the applicability of the common DLVO/PB approxi-
mation for homogeneously charged particles.?!3

In Sec. II we introduce the methods by which we com-
pute the ion density around charged Janus particles: primitive-
model MC simulations (Sec. II A) and nonlinear PB theory
(Sec. II B). We discuss the results of our investigation in
Sec. III, which is divided into four parts. In Sec. III A we
introduce the method, based on Fourier-Legendre mode de-
composition, by which we compare the MC and PB results.
This method is applied for a homogeneously charged parti-
cle in Sec. III B, where we also investigate the relation to the
field-theoretical results of Refs. 57 and 58 for homogeneously
charged flat surfaces. In Sec. III C we extend our results to
a Janus dipole and show that there is remarkable correspon-
dence with the results for a homogeneously charged sphere.
We consider a particle with a single charged hemisphere in
Sec. III D. Throughout these sections we give explicit recipes
for calculating the pair interactions between such particles
within the PB approximation that we are testing. The inter-
ested reader is referred to the Appendix for a derivation of
these pair interactions. We discuss our findings, comment on
the potential synergy between simulation methods and theo-
retical results, and present an outlook in Sec. I'V.

Il. SIMULATIONS AND THEORY

In the following we consider a system of spherical
charge-patterned colloids with radius a suspended in an elec-
trolyte. The colloid volume fraction is denoted by n. We stud-
ied three types of charge distribution for the colloids. (i) A
homogeneous surface charge of Ze, with Z > 0 the number
of charges and e the elementary charge. (ii) A perfectly anti-
symmetric surface charge, with charges Ze/2 and —Ze/2 ho-
mogeneously distributed over the particle’s upper and lower
hemisphere, respectively. (iii) A homogeneously charged up-
per hemisphere with charge Ze and a completely uncharged
lower hemisphere. Unless stated otherwise Z = 100 through-
out this paper. We assume that there is a perfect dielectric
match between the colloid, the ions, and the medium to avoid
any dielectric boundary effects.

A. Ewald sums and Monte Carlo simulations

To study the systems described above by MC simulations
we turn to the primitive model, for which the ions are rep-
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resented by charged spheres and the solvent is treated as a
dielectric continuum. To simplify the calculations we study
only one of these particles, which we locate at the centre of a
volume V¢ = 4ma’/(3n). We apply periodic boundary con-
ditions to this volume to account for the fact that we are in
principle interested in a system which contains many colloids.
The particle’s (heterogeneous) surface charge is specified by
100 charge sites distributed over this surface, which can be
positively or negatively charged, or which do not have charge.
These charge sites on the colloid are chosen according to the
optimal packing of 100 points on a sphere®® to ensure that
they are spaced as homogeneously as possible.

The number of free monovalent ions NN in the volume Vg
is fixed, i.e., we are interested in an average ion concentration
N/ Ve for the system that we approximate by our one-colloid
calculation. We only consider systems for which a monova-
lent salt has been added to enhance the screening effected by
the counter ions to the particle’s charge. The balance between
the number of positive N, and negative N_ ions (N = N,
+ N_) is such that the volume, and thereby the entire system,
is charge neutral. For the monopole and charged hemisphere
we require Z + Ny — N_ = 0 and for the Janus dipole
N + = N —.

To sample phase space Monte Carlo simulations are per-
formed in the isothermal-isochoric (canonical, NV T') ensem-
ble. We consider a cubic simulation box of length L = 50d
(n = (4m/3)(a/L)?, Ve = L?), for which we employ peri-
odic boundary conditions. Here d is the ion diameter and we
assume all ions to be the same size. The spherical colloidal
particle is located at the centre of the box (the origin). The
particle’s rotational symmetry axis is chosen parallel to one
of the boxes’ ribs for the Janus-type charge distributions.

The ion-ion pair potential is a combination of a Coulomb
and a hard-core interaction part:

2
qiq;e 1
Un(r;, ;) = .
(T, ;) 4ege |r; — ;]
oo, | —r;|=d,
+{ 0, Iri—r;l>d, M

with r; and r; the position of ions i and j with respect to the
colloid’s centre, respectively. The function |- | gives the Eu-
clidean norm of a vector, g; = %1 the sign of the ith ion’s
charge, €( the permittivity of vacuum, and € the relative di-
electric constant of the medium, ions, and particle. The in-
teraction between a charge g;e on the particle located at r;,
with |r;| = a — d/2, and an ion with charge g;e located at r;
is given by

2
qiqje 1
Usi(r, rj) = S E—
si(Ti, 1) dree |t — 1l
00, |[rj|<a+d/2,
+{ 0. |rjl>a+dj2 )

The coupling between periodicity and the (long-range)
Coulomb interactions, Egs. (1) and (2), is taken into account
using Ewald Sums with conductive boundary conditions.?”-%
The total electrostatic energy Uc of a particular configuration
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may be written as

dmepe
2

Uc
e

2

k
L3Z |k|2 Zq,exp (ik-r;)| exp <_W>

[Z 2+ Zq,q,erfc QI’; )’ 3)

t#/

where summation is over both the ions and the charge sites,
i.e., N is the total number of charges in the system, both free
and fixed; k = (2w /L)l is a Fourier space vector, with1 € VAR
y is the Ewald convergence parameter;*° and erfc(-) is the
complementary error function. One can safely ignore the site-
site interactions in Eq. (3), because this gives a constant con-
tribution to the electrostatic energy Uc. The self-energy term
also drops out of the energy difference, on which the accep-
tance criterion for the MC trial moves is based.®

For our simulations we employ the following parame-
ters. (i) Each run consists of 100 000 MC equilibration cy-
cles, where 1 MC cycle is understood to be one trial (trans-
lation) move per free ion. (ii) This equilibration is followed
by a production run of 250 000 MC cycles to determine the
ensemble-averaged ion density profiles p.(r), with r the po-
sition with respect to the centre of the colloid. (iii) The step
size for the ion translational moves is in the range [0, 5d] and
it is adjusted to yield an acceptance ratio of 0.25. (iv) For the
Ewald Sums the real space cut-off radius for the third term in
Eq. (3) is set to L/2.5, and we use y = 0.03 and || < 6. This
choice of Ewald parameters gives a reasonable approximation
to the value of the electrostatic interaction energy. Doubling
and halving the number of cycles for several runs showed that
the MC parameters give sufficiently equilibrated results for
most systems. A possible exception to the perceived equili-
bration is deep inside the strong-coupling regime, where ion-
ion correlations play an important role, as we will explain in
Sec. IIT A.

B. The Poisson-Boltzmann approach

The spherical particle of radius a in a cubic box (L x L
x L) models a system with colloid volume fraction
n = (4n/3)(a/L)®. The equivalent system in PB theory
is described using a spherical Wigner-Seitz (WS) cell
model,'%%'-6% where the radius of the WS cell is given by

303\ -
() e

and the colloid is located at the centre of the cell. The choice
of R ensures that the volumes, and therefore the average den-
sity of colloids/ions is the same as in the cubic box of the MC
simulations. PB theory is applied, in accordance with the pro-
cedure outlined in Refs. 64—66, to determine the dimension-
less electrostatic potential ¢(r) and the associated ion density
profiles p.(r) around the colloid.
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In our MC simulations the hard-core interaction between
the ions and the colloid prevent the ions from approaching the
colloid’s centre closer than a distance of a + d/2. We therefore
assume the same spherical hard-core exclusion volume for the
point ions in PB theory. The colloid’s surface charge density
is given by ¢(r), which is only nonzero when |r| = a; the spa-
tial integral over g(r) gives the total colloid charge. The PB
equation for this system may now be written as

0 Ir| <a+d/2,

2 —
VZp(r) = 4mrpq(r) + {KZ sinh(¢(r)) |r| > a+d/2,

®)

where k% = 87 ip ps (such that x~1 is the Debye screening
length), with p; the (yet unknown) bulk ion density and Ag
the Bjerrum length

62

Ap = ———, 6

BT 4n eockpT ©

with kg Boltzmann’s constant and 7 the temperature. We im-
pose the following boundary condition:

Vo(r) - 7l,_p =0, @)

with 7# =r/|r|, on the edge of the spherical cell to ensure
that the normal component of the electric field vanishes at the
boundary, i.e., the WS cell is charge neutral.

To solve Eq. (5) with the above boundary conditions the
charge density ¢ (r) and the electrostatic potential ¢(r) are ex-
panded into a complete set of Legendre polynomials as

q(r) =Y or8(r — a)Py(x), ®)
14

$(r) =Y Gu(r)Py(x), ©)
L

with o and ¢,(r) the surface-charge and potential modes, re-
spectively. Here r = |r| and x = r - Z, with Z the orientation
of the colloid’s rotational symmetry axis. The P,(-) are £th
order Legendre polynomials, i.e.,

Py(x) =1, (10)

Pi(x) = x, (11)
[P

Py(x) = 5(3)( —1), (12)
13

P;(x) = E(Sx — 3x), (13)

¢ A==
Pg(x)zzﬂzxk<k)< ; ) (14)
k=0

where the expressions between brackets in Eq. (14) denote
binomial coefficients. The nonlinear PB equation [Eq. (5)] is
likewise expanded using Fourier-Legendre mode decompo-
sition and Taylor expansion of the sinh(-) term around the
monopole potential ¢o(r). The higher order expansion coeffi-
cients contain products of Legendre polynomials which effect
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couplings between the various modes. These products must be
rewritten as a sum of single Legendre polynomials®’ to solve
for the separate modes using an iterative procedure. The cou-
pling between the different modes necessitates the analysis
of a significant number of multipoles in order to determine a
single mode; for instance, if only the dipole mode is of in-
terest the monopole, quadrupole, and other modes may need
to be taken into consideration. References 45 and 68 can be
consulted for more information on the procedure of mode ex-
pansion to solve the PB equation for heterogeneously charged
colloids.

It is important to note that the PB theory treats the screen-
ing ions in the grand-canonical (uVT) ensemble. The MC
simulations were however performed in the canonical ensem-
ble, where the number of ions is fixed, to allow for faster ex-
ploration of phase space. We fit the bulk ion concentration p;
in PB theory to ensure that the number of positive and nega-
tive ions in the WS cell corresponds to the number of ions in
the MC simulation box. We consider this condition, coupled
with the fact that we study the same colloid volume fraction
n in both approaches, sufficient to justify comparison of the
results in the two ensembles. The bulk ion concentration is
fitted according to the criterion:

Ny = Nipp = /dl',oi,PB(l'), (15)

where the integration is over the region |r| € [a + d/2, R].
One of the two equations is redundant, since solving for N,
is equivalent to solving for N_. The appropriate bulk ion con-
centration p,, which comes into the right-hand side of Eq. (15)
via the dependence of py pp(r) = ps exp(F¢(r)) on this con-
centration, is established using an iterative procedure. All PB
results presented in this paper were obtained on an equidistant
radial grid of 2 000 points for |r| € [a + d/2, R] by 5th order
Taylor expansion of sinh (- ) using 6 multipole modes.

lll. IONIC SCREENING OF JANUS PARTICLES

In this section we describe our results for the comparison
of ion density profiles obtained by MC simulations and by PB
theory. A total of 99 systems are considered for each of the
three charge-patterned colloids. We use three particle radii a
= 5d, 10d, and 15d. For every particle radius a, three salt con-
centrations are studied: 125, 250, and 375 monovalent cations
and anions, respectively, are added to the counter ions already
present in the system. This gives Ny = 175, 300, and 425 for
the Janus dipole. For the homogeneously and hemispherically
charged particle N. = 125, 250, and 375, when N_ = 225,
350, and 475, respectively. We consider 11 Bjerrum lengths
As/d = 0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, and
10.0 for each a and N4 combination.

The results for the different surface-charge patterns are
given in Secs. III B-III D. For each type of charge pattern, we
consider the range where PB theory accurately describes the
system. We also give a multipole-expanded DLVO description
for the effective pair potential between two such objects (for
the Janus dipole and charged hemisphere), which may be used
in this range to model the pair interactions in coarse-grained
simulations.

J. Chem. Phys. 137, 104910 (2012)
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FIG. 1. A comparison between MC and PB results showing the ion densities
around a Janus dipole for Ny = 300, Ap = d, and @ = 10Ap. (a) The contour
plot shows the net charge density p4(r) — p_(r): the MC result (left) and
the nonlinear PB solution (right). (b) The same data are represented using a
Fourier-Legendre mode expansion of the charge density p+ ¢(r), for £ = 0,
1, 2, and 3. Note that the negative modes in (b) can in this case be mapped
onto the positive modes by multiplication with (— 1)¢.

A. Method of comparison

Figure 1 shows an example of our results for a typical
set of parameters: a = 10d, Az = d, and 250 added anions
and cations, respectively. The azimuthal average of the net
ionic charge [p4(r) — p—(r)] is shown for the Janus dipole
(Fig. 1(a)) to give insight into the shape of the density profiles.
The multipole-expanded cation-density profiles (Fig. 1(b);
P+, ¢(r) for 0 < € < 3) further illustrate the level of correspon-
dence between the MC and PB result for this system. Due to
the antisymmetry of the problem combined with the fact that
Py(x) = (— 1)“Py(— x) the anion densities follow as p_ ¢(r)
= p4 ¢(r)(— 1)* for the Janus dipole. The system is in the suf-
ficiently dilute and weak-coupling regime for the ion-ion in-
teractions (« ~ 0.06), which explains the good agreement be-
tween both methods. Here we use the association-parameter
a € [0, 1] introduced in Ref. 36, which gives the equilib-
rium fraction of the available ions in the electrolyte that have
formed pairs, to quantify the extent to which strong-coupling
effects occur. The definition of « in terms of our variables
reads

! (v1+4Kps — 1), (16)

2K ps

b A 2 2)\.3
K=— drriexp| — ), (17)
2 d r

where the fitted value for p, is used. Here K is the equilibrium
constant for the formation of Bjerrum pairs: dipole-like clus-
ters of two oppositely charged ions that are closely bound due
to the strong interaction energy.*>3¢ In Ref. 36 it was shown
that o < 0.5 implies that strong-coupling effects are not rele-
vant, i.e., the lower the value of « the lower the concentration
of Bjerrum pairs (for « = 1 all ions have formed pairs and
higher order clusters).

The local dimensionless charge density for an equiv-
alent, homogeneously charged colloid is y = Zig/(xa?)
=4molg/k =~ 5.2 for the parameters of Fig. 1. The pa-
rameter y can be used to estimate the level of nonlinear-
ity in the system and since y &~ 5.2 exceeds unity, mode

a=1-




104910-5 de Graaf et al.

coupling occurs.*>»% We will come back to this parameter in
the context of heterogeneous surface charges later. For the
Janus dipole of Fig. 1 we can clearly observe a nonlinear
effect, namely, lim, .04 o(r) # ps, despite the fact that the
charge on the colloid has no intrinsic monopole component.
Nonvanishing quadrupole (¢ = 2) modes are also induced by
mode coupling (nonlinearity).*>

In order to quantify the difference between results ob-
tained by MC simulations and by PB theory we compare the
difference in the distribution of ions in the double layer di-
rectly for each mode. To that end we introduce the so-called
difference functions f;, which can be applied to a general
Janus particle with Qy unit charges on the upper hemisphere
and Q. unit charges on the lower hemisphere, respectively, as

47 L2

R — dr 72| pemc(r) — pep()], (18)
1001 + 100 Jurass “Me o

fe

where the ionic charge modes are defined by p(r) = p+ ¢(r)
— p—,¢(r) and where we use the labels MC and PB to indi-
cate the origin of the respective profiles. Equation (18) has the
property that all f; are O when the two profiles are exactly the
same and that at least one f; > 0 when they are not. Because
we compare results for the cubic geometry of the simulation
box to the spherical geometry of the WS cell in PB theory, the
upper integration boundary is set to L/2 < R. In principle the
difference in shape and associated boundary conditions imply
that we compare a simple-cubic crystal of colloids with a lig-
uid of colloids at the same volume fraction. However, due to
the separation of the particles and the level of ionic screening
the results are virtually independent of the shape of the vol-
ume when we compare up to r = L/2. This is the reason why
we only consider systems with added salt.

In Eq. (18) the functions f; are “normalized” by
|Qu| + |QL| such that for a homogeneously charged particle
fo =2, for the worst-case scenario of full discrepancy between
the MC and PB results. Because the counter charge in the dou-
ble layer should compensate for the net charge on a colloid,
each | po(r)| separately contributes at most |Quy| + |Qr|, which
explains the normalization. An example of a significant mis-
match between the MC and PB results is found deep in the
strong-coupling regime where the MC method predicts a total
condensation of counter ions in a very small region close to
the surface, whilst PB theory predicts that the counter charge
is located in a diffuse layer around the colloid of significant
width. For higher order modes the value of f; is bounded, but
the range is not necessarily [0, 2]. To get a feeling for the order
of magnitude of f; in the case of a good agreement between
PB and MC results, we mention that fy ~ 0.003, f; ~ 0.073,
f =~ 0.006, and f; ~ 0.057 for the parameter set shown
in Fig. 1, whilst Fig. 2(d) shows profiles with f =~ 0.99,
f1 = 0.027, f, = 0.034, and f3 =~ 0.031. Note that although
fo in Fig. 2(d) confirms the huge mismatch between PB and
MC results for the £ = 0 mode, the f; with £ > 0 are still
small. This suggests that the spherical symmetry of the prob-
lem is only slightly broken within MC simulations and thus
that strong coupling does not induce significant multipolar
charge distributions inside the screening cloud of a homoge-
neously charged particle.

J. Chem. Phys. 137, 104910 (2012)
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FIG. 2. A comparison of the data obtained by PB theory and by MC simula-
tions of homogeneously charged spheres according to the difference function
fo of Eq. (18), which quantifies the deviation in the distribution of charge
in the ionic double layer. We show f; as a function of ku, the ratio of the
Gouy-Chapman and the Debye length, and E, the strong-coupling param-
eter, for several of the systems we studied. The field-theoretical prediction
of Refs. 57 and 58 for homogeneously charged flat surfaces partitions pa-
rameter space into three regimes, as is indicated by the continuous and the
dashed line. The Debye-Hiickel (DH), Poisson-Boltzmann (PB), and Strong-
Coupling (SC) approximations should be used to obtain acceptable results in
the respective domains. The value of the PB-SC divide is denoted by E* ~
10. (b)—(d) Three samples of the ion profiles that are obtained by PB theory
(full curves) and MC simulations (dashed curves), showing cation and anion
densities. Here fy = 0.03, 0.39, and 0.99. The discontinuity in the first deriva-
tive of the MC p. o profile in (d) is caused by the positive ions condensing
on the surface of the colloid in combination with the binning procedure we
applied to average the ion densities. A similar discontinuity is present in the
p—, o results, although this is not visible on the scale of this plot.

B. Homogeneously charged spherical particles

To prove that the difference functions introduced in
Eq. (18) give a useful description of the deviation between
the MC and PB results, we investigate the monopole devi-
ation f; for homogeneously charged spherical particles, in
Fig. 2(a). We compare the behaviour of f; to field-theoretical
predictions,””>3% which are also aimed at establishing a range
of validity for PB theory, and show that there is a good corre-
spondence between the two ranges.

In Refs. 57 and 58 the parameter regimes are investigated,
for which various theoretical approximations give trustwor-
thy results for the effective ion distribution of a homoge-
neously charged flat surface. For these flat surfaces parameter
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space is partitioned into three pieces, see Fig. 2(a). (I) A re-
gion where the Debye-Hiickel (DH) approximation®® can be
used, the screening is linear. (II) A region where the charge of
the surfaces becomes higher, the nonlinear PB equation'®!”
has to be solved in order to determine the effective electro-
static interactions. (II) A region in which the ion-ion correla-
tions close to the surface require the use of Strong-Coupling
(SC) theory.?>?? In Fig. 2 the parameters Kk = 2/y and &
= (Y/2)xAp represent parameter space in a “field-theoretical
language” (see Ref. 58), with y “our” local dimensionless
charge density [as defined just below Eq. (17)] and p the
Gouy-Chapman length. The Gouy-Chapman length must not
to be confused with the ionic chemical potential, which is also
usually denoted by w. E is a measure for the particle’s surface
charge, expressed in terms of the Bjerrum length. PB theory
produces satisfactory results for 2 < E*, with E* a cut-off
value: Ref. 58 sets the value of E* ~ 10 for the transition be-
tween the PB and SC regimes. The value of «u is of minor
importance when E < E* as PB theory can be straightfor-
wardly applied to the DH region in the low-charge limit.

By comparing the MC and PB ion profiles for the 99
systems containing a homogeneously charged sphere that we
have investigated, we found f; = 0.1 to be a good bound-
ary value for the regime (fp < f;) in which PB-theory ac-
curately describes the ion density profiles. Figures 2(b)-2(d)
show three example ion profiles to illustrate the possible level
of deviation corresponding to a particular fy value: fo = 0.05,
0.39, and 0.99, respectively. Note that our choice of f; = 0.1
is meant to imply that below this value PB theory gives a good
description. For fy > f; PB theory may give a reasonably ac-
curate description (see Fig. 2(c)), but this is not a given and
SC theory may be required to give a good description. Using
our fi values as a function of y and E, see Fig. 2(a), we lo-
cate the PB-SC divide at E* &~ 1. Minor changes in the value
of fi do not significantly change the location of the PB-SC
transition in parameter space. However, since what is consid-
ered an unacceptable level of the discrepancy between PB and
MC results is dependent on the quantities/behaviour we are
interested in, there is a degree of arbitrariness to our result.
Nevertheless, our approach to this problem and our choice
for fi appears justified since we obtain a similar partition-
ing of parameter space as was found in Ref. 58. This was to
be expected for a homogeneously charged sphere, since there
is only a geometrical difference with respect to a homoge-
neously charged plate, which for sufficiently large spheres can
be considered small close to the sphere’s surface. Our results
show that even for relatively small spheres (compared to the
size of the ions) there is qualitative agreement.

For completeness we comment on the accuracy of our
MC result deep inside the strong-coupling regime. The MC
results show that a layer of oppositely charged ions can form
on the surface of the charged particle. The interaction between
the charges (sites and ions) is such that the free ions effec-
tively condense on the particle, see Refs. 8, 26, and 70-73 for
a more comprehensive account of this phenomenology. The
ions in the electrolyte experience similarly strong interactions
and form Bjerrum pairs. Since we only consider single parti-
cle MC trial moves, the formation of Bjerrum pairs interferes
with the exploration of phase space in the strong-coupling
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limit. The clusters hardly move, because most single parti-
cle moves that would break up a cluster are rejected based
on the energy difference. This results in an ill-converged en-
semble average, when the Bjerrum-pair concentration is high
(o 2 0.5).3¢ The problem can be overcome by introducing
cluster and association-dissociation moves for the Bjerrum
pairs to obtain a more efficient sampling.*>3° However, we
do not believe that ion condensation and Bjerrum-pair forma-
tion will influence our result with regard to the location of E*,
since these effects only start to play a role for E > E*, since
then o > 0.5.

C. Janus-dipole charge distributions

1. Comparison of the Monte Carlo and
Poisson-Boltzmann results

In order to investigate the range of applicability of
the (nonlinear) Poisson-Boltzmann approximation, we apply
our method of comparison from Sec. III A to higher or-
der Fourier-Legendre modes of the ion density for the case
of a Janus dipole. Figure 3 shows the deviation parameter
fe for £ = 1, 3 and the large set of parameters we stud-
ied. Note that the Janus dipole bears no even multipole mo-
ments [p_ ¢(r) = py o((— 1)] due to its antisymmetric

] y
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| (=1 g e
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= g <
> E *1%
102 E soo 7 00 100.00<£<0.03
oo 0 ]20.03<£<0.05
JE 0 C we 0.05 < fi<0.10
10 _ooo o000 | | o (.10< 1)
1 Ll 1llll 1 Ll 1illl 1 [T
E 1 IIIIII? 1 IIIIIII| 1 LILILBLALI
102 - octopole _ R
E f = 3 UI:EEdEuun uuu: :
100 — R 2 I“ooo
E E 0o 000
210-2 F wo 2% @0 |6 (0.00< fi<0.03
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, E > . 0.05 << 0.10
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FIG. 3. The deviation f; in the double layer, determined using the MC simu-
lations and PB theory, for a Janus dipole as a function of the modified charge
density Yy and the modified strong-coupling parameter Ex. The subgraphs
show the results for the first two odd FL modes (¢ = 1, 3), corresponding to
the dipole and octupole terms, respectively.
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charge distribution. To apply a representation similar to the
one used in Ref. 57 for Janus particles, we introduce the
following modified dimensionless parameters: Yy = 2/(k ix)
= (|Qul| + |QLDr/(ka?) and Ex = (Y5 /2)kAg. The sum of
the absolute value of the charge on each hemisphere is used,
rather than the total charge (which would be zero in the case of
a Janus dipole). For pure monopoles Yy and Ex reduce to the
original parameters y and E. We prefer to express our results
in terms of the dimensionless (absolute) local charge density
yy rather than in terms of ku = 2/yy, since the former is a
more natural quantity for PB theory of colloid systems. The
use of ku in Fig. 2 was to illustrate the correspondence be-
tween our results and the partitioning given in Ref. 58.

For the dipole term (¢ = 1) we observe trends in the value
of fi (Fig. 3) as a function of y and E similar to those ob-
served for the value of f; of a homogeneously charged sphere
(Fig. 2(a)). The onset of a strong difference in the correspon-
dence between the two results for the dipole mode occurs at

1~ 0.1. For the octupole (¢ = 3) term, the crossover value
S+ for an appreciable level of deviation appears to be slightly
larger than 0.1, but on the strength of our results it is difficult
to state this with certainty.

Based on Fig. 3, a regime can be distinguished for the
leading dipole term where PB theory yields accurate re-
sults for the charge profiles in the electric double layer (Ex
< E% & 1). For the £ = 1 through £ = 5 modes (£ = 5 not
shown here) the correspondence between MC and PB results
is also sufficient when E5 < EY. The modified parameter
Eyx therefore appears useful to describe parameter space for
dipolar Janus particles with regards to quantifying the region
where PB theory can be used to describe the system.

2. Multipole-expanded DLVO approximation for the
Janus dipole

Equations describing the electrostatic pair-interaction of
(spherical) colloidal particles with a substantial dipolar con-
tribution to the surface charge are derived in the Appendix.
This derivation is performed within the Poisson-Boltzmann
approximation, and the resulting equations can therefore be
considered as an extension of DLVO theory towards in-
homogeneously charged particles. The monopole-monopole,
monopole-dipole, and dipole-dipole interactions are given, re-
spectively, by

—kR;;
B V}}({M(RU) — )\BMZ,-YZ;(, (19a)
ij
ﬁV}fD(RU)
exp(—kR;;) A N
= SPCRD (xR 7Y (o} R)2). (190)
ij
IBV;'?D(Rij)
exp(—k R;;)
= a2 (14 cRy)(p) - pY)
ij

—(3 + 3KRij + (KRij)z)(piY . R,j)(ij . R,‘j)), (19C)
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with R;; the distance vector between particle i and j, R;;
= |R;j|, and R;; = R;;/R;;. We also introduce the “Yukawa-
monopoles” ZiY and “Yukawa-dipoles” plY, which, for Janus
spheres of radius a, are given by

exp(ka)
14+«a’

Z' =(Qu+ Qu) (20a)

3a exp(ka)fy;
42 + €. /o)1 + ka) + (ka)?’

p’ =(Qu—0u) (20b)
with f; is the particle’s symmetry axis, which points to the
northern hemisphere, Qy the total charge on the upper hemi-
sphere, Oy the total charge on the lower hemisphere, and €./e
the ratio between the relative dielectric constant of the col-
loidal particle and that of the surrounding medium, which we
choose 1 unless stated differently. However, Egs. (19) and (20)
are, as is typical for DLVO theory, only valid for sufficiently
small charges, since linearised PB theory (Debye-Hiickel ap-
proximation) was employed in the derivation of these equa-
tions. Fortunately, charge renormalisation has proven to be a
useful tool in broadening the range of applicability towards
particles with a higher charge.'®?* This renormalisation pro-
cedure was extended towards dipoles and higher multipoles
in Ref. 45.

D. Hemispherical charge distributions

1. Comparison of the Monte Carlo and
Poisson-Boltzmann results

For the hemispherical charge distribution, we also com-
pared PB results with those of MC simulations, in order to
determine the regime of validity of the PB-multipole expan-
sion. We again considered 99 systems and found that for the
even modes the level of deviation f;* ~ 0.1 sets a rough upper
bound to the applicability of PB theory. For the odd modes
the correspondence between the MC and PB results seems
to hold for slightly higher values of the deviation parameter:

"~ 0.25. Using these two values of f* we can roughly lo-
cate the range of validity of the PB result in the region Eyx
< 1. The effects of strong coupling are however far more ap-
parent for our hemispherical charge distribution than for the
other two distributions we considered. This is because in the
MC simulations we used 50 divalent charge sites on the upper
hemisphere instead of monovalent sites. Our results for the
hemisphere are therefore less convincing than for the other
two charge distributions, but our preliminary indication is that
the range in which the PB approximation is valid is roughly
the same as that for the monopole and Janus dipole.

2. Multipole-expanded DLVO approximation for the
hemispherical charge distribution

As mentioned in Sec. II B, one cannot always resort to
standard DLVO theory for particles with an anisotropic sur-
face charge, because dipole, quadrupole, or higher order mul-
tipole charge distributions are relevant. Consequently, two-
body interactions of the form monopole-dipole, dipole-dipole,
monopole-quadrupole, etc., should be considered as well.
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FIG. 4. (a) A sketch of two interacting particles with radius a, both having
charge on only one hemisphere. To eliminate the dipole moment we relo-
cate the centre of the charge distribution at a distance b (along the particle’s
rotational symmetry axis) from the geometrical (hard core) centre of the par-
ticle. This choice results in a distance R;; between the charge distributions.
Graphs (b) and (c) show the suggested value of b and the Yukawa weight
factor C(ka), respectively, as a function of the colloid radius a in terms of the
Debye screening length ¥ !, for a wide range in €/e, the ratio between the
relative dielectric constant of the particle and that of the surrounding medium.
In (c), we indicate C = 1, which is the weight in case of the regular DLVO
equation, using a dashed line.

Figure 4(a) shows two spherical particles with a positive
hemispherical charge distribution, i.e., one side is charged and
the other is uncharged. Instead of choosing the centre of the
charge distribution to coincide with the geometrical centre of
a spherical particle one is free to place this point anywhere
inside the particle. The most natural location is the point for
which the (Yukawa-)dipole moment vanishes and thereby all
dipole interactions. With this choice the electrostatic two-
body interaction in terms of only a monopole-monopole term,
is expected to be maximally accurate. This point is located on
the rotational symmetry axis of the hemispherically charged
colloid. For sufficiently large interparticle distances we obtain
the following interaction potential for the shifted-monopole
approximation:

Ka

exp(—KR,-j) (21)

2
BVij(Rij) = (Z C(Ka)> AB

1+ «ka i

with R;; the shifted centre-to-centre distance, Z the particle
charge, and C(xa) a renormalisation factor. This renormalisa-
tion factor depends on the ratio of the particle radius a and the
Debye screening length « ~! only and C = 1 in case of regular
DLVO theory. We can numerically determine the distance b
from the particle’s geometrical centre, where we should place
the shifted monopole such that the dipole term vanishes. Fig-
ure 4(b) shows the ratio b/a as a function «a for several val-
ues of €./e. Note that b/a goes to 1/2 for small «a, which is
the (Coulomb) result that is obtained for unscreened particles.
We show the corresponding renormalisation factors C(xa) in
Fig. 4(c). We find C(xa) < 1, because the charge is located
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closer to the (new) centre of the charge distribution than for
homogeneously charged particles. Note that the interaction
potential is independent of the orientation of the particles,
when rotated around the shifted (monopole-charge) centre.
The monopole-monopole approximation therefore does not
capture the full interaction between the two hemispherically
charged colloids. To capture the orientational dependence
higher order modes (octopole and higher) are required. How-
ever, for a monopole-monopole only approximation Eq. (21)
is maximally accurate by design. In the Appendix we ex-
plain how to calculate and, thereby, also how to minimize the
Yukawa dipole moment for any type of charge distribution
and hard-core shape.

IV. CONCLUSION AND OUTLOOK

In this paper we studied the range in parameter space
for which the nonlinear Poisson-Boltzmann theory accu-
rately describes the behaviour of the ions around a Janus
charge-patterned spherical colloid in a 1:1 electrolyte. We
used primitive-model Monte Carlo simulations to establish
the ion density around such a charged particle for a huge
set of parameters. By also computing the ion density for the
same parameters and comparing the two results, we were
able to establish a regime in which this PB theory gives a
good approximation for the ion distribution. This comparison
is based on Fourier-Legendre decomposition of the MC ion
density to determine the contribution of the monopole, dipole,
quadrupole, ... charge terms. The theoretical approach also
relies on FL. decomposition and this enables us to quantify
the differences on a mode-by-mode basis.

For a homogeneously charged sphere we compared our
range of validity for PB theory to the range found in Refs. 57
and 58 for a system of homogeneously charged flat plates in
an electrolyte. There is a remarkable correspondence between
the two ranges, especially considering the small size of the
colloids that we studied in relation to the size of the ions. For
such small spheres a greater deviation with respect to the re-
sults of a flat-plate calculation could reasonably be expected.
We were also able to show that the range in which the PB
results accurately describe the ion density around a spherical
Janus-dipole is similar to that found for the homogeneously
charged sphere. For particles with only one (homogeneously)
charged hemisphere, there is an indication that the regime in
which PB theory can be applied matches the regime found for
the two other particles.

In the PB-regime that we obtained, we can use simple
(multipole-expanded) DLVO-like equations, which we de-
rived in this paper, to describe the interactions between two
particles with a Janus-type charge. We gave explicit expres-
sions for the monopole and dipole interactions, since these
terms are typically dominant for Janus particles. These elec-
trostatic interactions resemble well-known Yukawa interac-
tions, and reduce to these in the homogeneous charge limit.
For the Janus-dipole obtaining the (multipole-expanded)
DLVO expression is relatively simple. To accurately model
a hemispherical charge distribution using only a monopole-
term is a little more complicated. The key step proved to be
shifting the centre of the charge distribution from the centre of
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the particle towards the charged hemisphere in order to elim-
inate the Yukawa-dipole contribution.

Our analysis forms a basis of a good understanding of
the range in parameter space for which the PB approximation
can be applied to describe the behaviour of heterogeneously
charged colloids. This is, for instance, relevant to the study
of such particles using simulations, where PB-theory-based
effective interactions can be used to study the phase be-
haviour of such particles in the right regime. Note that
we only considered equilibrium ion density profiles of
stationary colloids. The rotational movement of mobile
charge-patterned colloids can occur on time scales that would
lead to an out-of-equilibrium double layer. What effect the
out-of-equilibrium ion density would have on the screening
of the particle and how such effects should be incorporated
into effective interaction potentials used in simulations, is left
for future investigation.
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APPENDIX: JANUS PARTICLES AND THE
DEBYE-HUCKEL APPROXIMATION - DLVO THEORY
FOR PATCHY COLLOIDS

In this appendix we derive the (multipole-expanded)
DLVO-like equations for general charge distributions and we
show how this leads to Eqgs. (19) and (20). Before that we set
the stage by first examining the quality of the dipole-only ap-
proximation for a Janus-type charge distribution.

We have shown that the mode expansion up to £ = 6 gives
good agreement between MC simulations and PB theory re-
garding the ion profiles in a well-defined regime of parame-
ters. For Janus particles in general the most dominant mul-
tipoles are the monopole and/or the dipole; note, however,
that for “pure” Janus dipoles the monopole term vanishes.
To show this Fig. 5 plots the PB result for the local ionic
charge densities around such a purely dipolar Janus particle,
using a smaller charge (Z = 10) than elsewhere in this paper.
The number of ions added to the system, N1 = 425, corre-
sponds to ka ~ 2.8. We find that yy, = 0.36 and Ey = 0.05
for this system, which implies that we are within the regime
where PB-theory is applicable according to our analysis. We
are aware that a multipole expansion of Yukawa-like interac-
tion potentials does not necessarily converge in general.”*”>
In this particular case, however, we catch most of the physics
of the interacting Janus particles, by treating the particle as
a “pure” dipole (without higher order modes). To illustrate
this, the left side of Fig. 5 shows the ion charge density up to
£ = 6, which we proved to be sufficient for good correspon-
dence with MC results in the regime where PB-theory is ap-
plicable. The right side shows the dipole (¢ = 1) mode only.
The differences are therefore due to the missing £ = 3 and
¢ = 5 terms. The dipole approximation overestimates the
electrostatic potential in the axial direction, whilst it un-
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FIG. 5. A contour plot of the net charge density p4(r) — p—(r) around an
antisymmetric Janus particle for the parameters Z = 10, N1 = 425, Agp = d,

and a = 10Ag, showing the profile that follows from a mode expansion up to
£ = 6 on the left, on the right only the dipole mode is plotted.

o

derestimates the electrostatic potential in the perpendicular
direction.

With this in mind we explain the way to extend the ap-
plicability of DLVO theory to anisotropically charged parti-
cles. The result of setting up this theory allows us to find
explicit equations for the monopole-dipole and dipole-dipole
interaction potential between Janus particles as a function of
their orientation. These expressions are similar to the well-
known expressions for the interaction of unscreened dipoles.
We begin by considering the effective electrostatic energy of
an extended charge configuration eg(r) in a 1:1 electrolyte
with bulk concentration 2p,—we do not incorporate hard-
core effects at present. By using the electrostatic energy from
Coulomb’s law combined with the ideal-gas entropy for the
monovalent ions, we find that the grand potential of the charge
configuration inside a two-component monovalent ion mix-
ture inside a solvent is given by

BH = /erpi(r) (pi(r) —2)
a==+ S

I

1
+5 / dr(p4(r) — p—(r) + g(r)¢(r), (Al

where p. (r) are the ion densities and where the dimensionless
electrostatic potential is

o) — / P = () +q()

Ir —r|

(A2)

Note that we applied the Debye-Hiickel approximation; the
“usual” entropic term of the ions is linearised via pi(r)
(10g(p+(r)/py) — 1) ~ po(X)(p+(r)/ps —2), implying that
we assume the ion densities not to vary much from the bulk
value p,. For a more detailed derivation of Eq. (A1) see, for
example, Ref. 66.

We consider a system that consists of a collection of M
(fixed) charges located at r.;, with i = 1, ..., M an index.
These charges should not be considered as point charges, but
rather as localized charge distributions g; (r) inside associated
volumes V;, which are non-overlapping and centred at r;, as
is sketched in Fig. 6. Each ¢;(r) is only nonzero inside V;,
and the total (non-ionic) charge density is hence written as

q@®) =11, gi(r).
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FIG. 6. A sketch of two interacting charge distributions (grey) g;(r) and
q(r), inside the enclosing volumes V; and V/, respectively. These volumes
are rod-like in this particular example to resemble rods with one charged
“head” and have boundaries that are indicated by dashed instead of solid lines
since we do not consider hard cores whilst calculating the ion densities con-
nected to these charge distributions. The centres of the charge distributions
can be chosen arbitrarily and are indicated by r; and r;.

Since we have not included any hard cores yet, the
ion densities follow immediately from setting the func-
tional derivative of Eq. (A1) w.r.t. the ion densities to zero,
§H /8p+(r) = 0, yielding pu(r) = p,(1 F Y1, ¢i(r), with

exp(—«r’ —r|)

¢i(r) = Ap / dr'q;(r') ; (A3)
V;

" —r|

where k2 = 8mApp,. By assuming that the charges g;(r)
within the volumes V; have a fixed position, Eq. (A1) can be
written, up to a self-energy constant, as

, ,exp(—«lr' —r])
BH =y Z[/ dr dr q,»(r)qj(r)plr/—r'.
Vi, Vj -

i<j

(A4)

Equations (A3)and (A4) were derived using the Taylor-
expanded (quadratic) Hamiltonian (A1) and therefore give ap-
propriate results only in case the dimensionless electrostatic
potential ¢(r) remains sufficiently small w.r.t. unity.

We will now use the result of Eq. (A4) to obtain an analo-
gous theory for charge distributions with associated hard-core
volumes. This is done by “freezing” the ionic charge profiles
inside the volumes V; and adding these to the charge con-
figurations g;(r), such that the new charge distributions §;(r)
are found. Effectively we compensate for the fact that ions in
the Yukawa approximation can penetrate the hard particle. We
thus consider a new combined charge distribution g;(r) that is
exactly the distribution we are interested in, by compensating
the fixed charge for the ion profiles it induces.

Starting with the obtained ion densities for the system
without hard cores, we split the entire system volume V into
Vout, consisting of all points r outside the volumes V; for all
i, and the volume Vi, of points that are inside one of these
volumes. Note that Vi, is the complement of V. The ion
densities are also split into p3"(r) and p(r) such that p$"(r)
+ pi‘(r) = p4(r) and p$"(r) =0 for all r inside Vi, and
p(r) = 0 for all r inside Voy. Equation (A1) may therefore
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be rewritten as

out

ﬂH — dI‘ Z piut(r) (lo:l: (r) _ 2)
Vout po— Ps

+/ ey o) <p2(r) _ 2)
Vi a==% Ps

1
+/<h?ﬁmwm@m+ﬂmau(M>

with

out(w/\ __ Hout(y/ ~
¢(r)=AB/dr,p+ (r') |rp:£/r|)+q(r)7 (A6)

and the “new” colloidal charge distributions

g(r) = q(r) + pX'(r) — p"(r)

M
= G, (A7)
i=1

for which g;(r) = ¢;(r) + pif(r) — p"(r) when r inside V;.

Within the DLVO-approximation, the net ionic charge
density pi"(r) — p(r) in volume V; is only induced by the
fixed charges g;(r) in that volume itself (large inter-particle
distances). One therefore finds for r in V; that

gi(r) = qi(r) — 2ps¢;(r)

/ / exp(—/c|r’ - r|)
= qi(r) = 2Agps | drgi(r)———— (A8)
% ' —r|

The second line in Eq. (A5) becomes a constant that may re-
garded as a self-energy term and therefore can be ignored to
yield

ﬂH:

dr Z p+(T) ('Oj;(r) — 2)

Vout a=%+ S
1
+iﬁmMm—wm+mmwm<M>

with the restriction that o1 (r) = 0 if r is inside Vj,. Compar-
ing Eq. (A1) with Eq. (A9), the effective interaction Hamilto-
nian between hard particles with charge densities g;(r) can be
recognized in the latter. The effective interaction energy for
such a system can thus be obtained from Eq. (A4) with g;(r)
the solution of Eq. (A8), with g;(r) the actual charge density
of interest. For particles with hard-core volume V; and cor-
responding charge densities §;(r) it is necessary to first solve
qi(r) from Eq. (A8). By finding ¢; (r) we obtain the charge dis-
tribution that compensates for the self-induced ion densities,
since these are required in to determine the effective interac-
tion in Eq. (A4).

At this point we have found a procedure to calculate the
electrostatic interactions between inhomogeneously charged
colloidal particles with hard cores, within the DLVO approx-
imation that we discussed earlier. In order to isolate spe-
cific multipole interactions between colloids, Eq. (A4) is
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FIG. 7. A sketch of two interacting charge distributions g; and g; with
hard-core volumes V; and V;, respectively, separated by a distance R;;. We
also show the vectors s; and s;, which have their origins at r,; and r;,
respectively.

rewritten as

BH = 1p fo ds;ds; {qi(rci +5)9;(re; +5))
Vi,V

i<j

.exp(—K|R,~_,~ +s; — sil)} (A10)

IRij +s; — s

with R;; =r.; — r; the colloid-colloid distance and s; =r
— r; the coordinate relative to r;. Both are shown in Fig. 7.
The Yukawa interaction can then be expanded into spherical
harmonics around these centres,’® which are r; and r. ;. For
this we must assume that the distance from any point in V;
to its centre r.; is less than the distance to any other centre
r.;. This however automatically holds for equisized spherical
volumes if one chooses the centres r; exactly in the middle
of the spheres.

Here, the monopole and dipole terms are of main interest.
Equation (A10) can therefore be written, up to a monopole-
monopole, monopole-dipole, and dipole-dipole interaction
term as

H = V™R +VI°R;j) + VPR;).  (All)

i<j

The resulting interaction terms are given by Eq. (19), in which
the “Yukawa monopole” and “Yukawa dipole” are now (for
the general charge distribution)

sinh «'s;
Z;‘Y:/ ds; gi(re; +s;) -
|72 KS

i

(A12a)

v coshks; — % sinh « s;
p;, = 3/ ds; gi(re; +s;) = Si,
Vi

(Ksi)?
(A12b)

with s; = |s;|. Note that Egs. (A12a) and (A12b) reduce to the
well-known expressions for Coulomb monopole and dipole
in the limit ka | 0, see Ref. 77. Also the interaction terms
(19) give the well-known result for pure Coulomb systems
in this limit. Finally, the electrostatic potential around charge
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distribution i can be expanded as

@i(re; +8;) = Z[Y)»BM
EXp(—KS;
%(1 + ki)

1

+ (sz : §i))»B

+ 0 = 2), (A13)

in which quadrupole and higher order multipoles are not
included.

As an example we show that the interaction between par-
ticles with a homogeneous charge distribution is in agreement
with DLVO theory. By considering a spherical colloid with a
hard core radius a and a charge Z distributed homogeneously
over its surface and choosing r.; = 0 for convenience, the
charge distribution is given by §; = Z/(4ma®)8(s; — a). It can
be shown that Eq. (A8) is solved by

Z 8(5,’ —Cl)+ ZAB2ps

4ma? a(l+ka) ifs; < a,

qi(si) = (Al4)

ifs; > a.
Note that the “added” charge density inside the colloids has
the same sign as the surface charge and exactly cancels the
ionic charge due screening. From Eq. (Al12a) one obtains
Zl.Y = Zexp(ka)/(1 + ka) and this gives the DLVO result as
Eq. (19a) shows.

The Yukawa monopole and the Yukawa dipole can also
be extracted from the solution for the electrostatic potential
outside a spherical particle, using Eq. (A13), without calcu-
lating the charge density ¢;(r) explicitly. Namely, we can of-
ten solve the (linearised) Poisson-Boltzmann equation around
a single particle mode-by-mode, and then read the multipole
moments from the mode amplitudes in the final solution. As
an example we consider spherical particles with a fixed sur-
face charge distribution that is rotationally symmetric around
the unit vector fi;, e.g., a Janus particle. The electrostatic po-
tential in the vicinity of the single particle can be expanded
as ¢(si, xi) = Yo Pe(s:) Pe(x), with x; = §; - fy, and Py (x)
the ¢th order Legendre polynomial.®® Now ¢ = 0 and
£ =1 correspond to the monopole and the dipole contribu-
tion to the electrostatic potential, respectively. The multipole
mode functions, which solve the linearised PB equation, be-
have as ¢¢(s;) ~ s¢ for r < a and ¢ (s;) ~ ki(ks;) for r > a,
with k; the ith modified spherical Bessel function. By apply-
ing the boundary condition

liin @' (si, xi) = 1i%n ¢'(si, xi) — dmago(x;),  (AlS)
with the prime (") denoting the radial derivative (w.r.t. s;), and
o (x;) the surface-charge density, a solution to the electrostatic
potential in terms of a multipole expansion is obtained. Since
the modified spherical Bessel functions can also be recog-
nized in Eq. (A13), one is able to derive that the monopole
and the dipole moment should relate to the expansion of the
surface-charge density, o (x;) = Zf:o o¢ Pe(x;), by

zY = 4na’oy exp(/ca)’
1+ «ka

(Al6)

5 exp(ka) .

Y_4 — 1. Al7
P Tao 3+ 3ka + (ka)? (AL7)
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In the case of Janus particles with charge densities
ou = Qul(4ma?) and o, = Q1 /(4 a*) on the upper and lower
hemisphere, respectively, one finds oy = %(O’U + or) and
o1 = 3(oy — o).

Throughout this paper we assumed that the dielectric
constant of the particles matched the dielectric constant of the
solvent. However, Eq. (A17) can easily be extended to parti-
cles that have a dielectric mismatch with the solvent. We mod-
ify Eq. (A17) by including a dielectric jump in the boundary
condition [Eq. (A15)], such that the Yukawa multipoles for
these particles can be obtained as well. As is known from
the DLVO equation, we find that the Yukawa monopole is
unaffected by the value of the dielectric constant inside the
particle, whilst the Yukawa dipole changes. Equation (A17)
becomes

exp(ka) A
n;, (Al8)
2+ e/e)1 + ka) + (ka)?
with e./e the ratio of the relative dielectric constant inside and
outside the particles. Note that the dipole moment becomes
very small if the interior of the colloid is very polar w.r.t. the
surrounding medium, e.g., (Pickering) emulsions of water in
oil. Consequently the monopole-dipole and dipole-dipole in-
teractions will be negligible for these systems, even in case of
an asymmetric charge distribution. However, if the dielectric
constant of the colloid is comparable or smaller than the di-
electric constant of the solvent a significant dipolar interaction
may arise.

p’ = dra’o
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