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Abstract. In this paper we show that the degrees of interpretability of finitely

axiomatized extensions-in-the-same-language of a finitely axiomatized sequen-
tial theory —like Elementary Arithmetic EA, IΣ1, or the Gödel-Bernays theory

of sets and classes GB— have suprema. This partially answers a question posed
by Vı́těslav Švejdar in his paper [Šve78]. The partial solution of Švejdar’s

problem follows from a stronger fact: the convexity of the degree structure

of finitely axiomatized extensions-in-the-same-language of a finitely axioma-
tized sequential theory in the degree structure of the degrees of all finitely

axiomatized sequential theories.

In the paper we also study a related question: the comparison of struc-
tures for interpretability and derivability. In how far can derivability mimic

interpretability? We provide two positive results and one negative result.

Dedicated to Dirk van Dalen on the occasion of his 80th birthday.

1. Introduction

In his paper [Šve78], Vı́těslav Švejdar asks the following question. Suppose A is
a finitely axiomatized theory that interprets Robinson’s Arithmetic Q. Let VA be
the partial ordering of the degrees of interpretability of the finitely axiomatized
theories B that are extensions1 of A. Is VA a lattice? In particular, Švejdar asks
whether VGB is a lattice.

We solve this problem affirmatively for the case where A is sequential. Švejdar’s
case of special interest GB is a sequential theory and, so, indeed, VGB is a lattice.
The suprema in VA, where A is sequential, only coincide with the suprema in the
lattice of all finitely axiomatized theories, in the trivial case where we take the
supremum of theories that are comparable in the interpretability preordering. As
we will see every lattice VA, for finitely axiomatized sequential A, is a distributive
lattice.
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We also show that VQ has suprema. In VQ the suprema always coincide with the
the suprema in the lattice of all finitely axiomatized theories.

The remaining cases are still wide open.

The existence of suprema both in the case of finitely axiomatized sequential theories
and in the case of Q follows from stronger facts. We show, in Section 6, that, for
any finitely axiomatized sequential theory A, the embedding of the structure VA
into Dseq, the degrees of finitely axiomatized sequential theories, is convex. This
means that, whenever you have two finitely axiomatized sequential theories A and
B with A�B, there is a finite extension C of A with C ≡ B. Thus, for any finitely
axiomatized sequential A, the structure VA inherits the suprema of Dseq.

Similarly, In the case of Q we show, in Section 7, that the embedding of VQ into Dall

the structure of the degrees of all finitely axiomatized theories is convex, i.e., for
any finitely axiomatized theory B, if Q�B, there is a finitely axiomatized extension
C of Q such that C ≡ B. So the identical embedding functor of VQ into Dall is an
isomorphism between VQ and the cone above Q in Dall. Since Dall has suprema, so
does VQ.

In Section 4, we treat a closely related theme. How does interpretability compare
to derivability? We will prove a number of results about embedding the degrees
of interpretability of finitely axiomatized sequential theories into certain structures
with the derivability ordering. The results of Section 6 will allow us to generalize one
of the results, to wit Theorem 4.1, of Section 4. The generalization is Theorem 6.6.
One could say that the results of Section 6 show that arbitrary finitely axiomatized
sequential theories behave more like S1

2 than one would think at first sight. This
analogy can be best seen by comparing Theorem 3.4 and Theorem 6.5.

Remark 1.1. Why study the degrees of interpretability of extensions of a given
theory? Is the point of interpretability not precisely independence of the tyranny
of signature? Certainly, obtaining a coordinate-free view of theories is one of the
applications of interpretations. However, categories of interpretations are more ad-
equate to study this idea than degree structures for interpretability. For one thing,
mutual interpretability is too crude as a plausible analysis of sameness of theo-
ries. Degrees of interpretability are more suitable to analyze the relative strength
of theories. Given some theory the strength of principles extending the theory in
the same language is of primary interest. E.g., both ZF + CH and ZF + ¬CH are
interpretable in ZF, so CH is independent of ZF but does not add strength; this in
clear distinction from large cardinal axioms.

2. Preliminaries

In this paper we will concentrate on finitely axiomatized theories of finite signature.
We will view theories as given by a signature plus a specification of a set of sentences
in the signature: the axioms.

We will assume that the finite signatures are given using a fixed finite alphabet.
Thus, all structures we consider will be sets. The results of this paper can be
reformulated for the stipulation that the finite signatures form a proper class, but
we will refrain from doing this.
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A theory is finitely axiomatized when it is given by an enumeration of finitely many
axioms of the form: B is an axiom if B = A0 or . . . , B = An−1.2 Par abus de
langage, we will use A, B, C . . . as variables ranging both over sentences and
over finitely axiomatized theories. This is pleasant since the names of the variables
suggest the analogy with sentences. It is a bit misleading since there is a clear
categorical distinction between a finitely axiomatized theory and a sentence. We
use T , U , V , . . . for arbitrary theories.

We will use modal notations 2UA and 3UA for the (arithmetization of) A is prov-
able in U and U +A is consistent.

An n-proof is a proof from axioms with Gödel number smaller or equal than n only
involving formulas of complexity smaller or equal than n. To work conveniently
with this notion, a good complexity measure ρ is needed. This should satisfy three
conditions. (i) Eliminating terms in favour of a relational formulation should raise
the complexity only by a fixed standard number. (ii) Translation of a formula via
the translation corresponding to an interpretation K should raise the complexity
of the formula by a fixed standard number depending only on K. (iii) The tower of
exponents involved in cut-elimination should be of height linear in the complexity
of the formulas involved in the proof.

Such a good measure of complexity ρ together with a verification of desideratum
(iii) —a form of nesting degree of quantifier alternations— is supplied in the work
of Philipp Gerhardy. See [Ger03] and [Ger05]. It is also provided by Samuel Buss
in his preliminary draft [Bus11]. Buss also proves that (iii) is fulfilled.

We will use 2U,nA for (the arithmetization of): A is provable from U -axioms with
Gödel numbers ≤ n, where the formulas B occurring in the proof satisfy ρ(B) ≤ n.
The formula 3U,nA means ¬2U,n¬A.

In sequential theories we can define partial satisfaction predicates for formulas with
complexity below n, for any n. The presence of these predicates has as a conse-
quence that for any sequential theory U and for any n, we can find an interpretation
N of a weak arithmetic like Buss’ S1

2 in U such that U ` 3N
U,n>. See e.g. [Vis93]

for more details.

We refer the reader e.g. to [Vis11] or [Vis12] for the definitions of interpretation
and interpretability.

We will consider degree structures VU of finite extensions of the theory U . We
will always use extension for: extension in the same language. We prefer to view
the degree structure as a preorder category with as objects the theories given as
signature plus specification of the axiom set and as morphisms arrows witness-
ing interpretability. We write the interpretability ordering as � and the induced
equivalence as ≡. So, U ≡ V iff U � V and V � U . The degrees are what one
gets by dividing out the induced equivalence. We will employ both the preorder of
theories way of viewing and the partial order of degrees way of viewing, using the
qua locution. The reason we take the preorder perspective as basic is as follows.

2So, we do not count the theory U that is given as follows as finitely axiomatized even if de
facto is has finitely many axioms: B is an axiom of U if B =

V
Q or, there is a p smaller than

the Gödelnumber of B such that proofPA(p,⊥) and B is an instance of the induction scheme. We

consider U as a perfectly legitimate theory, just not a finitely axiomatized one.
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We will consider mappings from theories A to sentences BA that do not preserve
interderivability. Thus, these constructions are intensional from the standpoint of
the degrees and even of theories-viewed-as-sets of theorems.

We will also study degree structures of the form DP . These are the degrees of all
finitely axiomatized theories having the structural property P . The two properties
of special interest are seq, the property of being sequential, and all, the property of
being any finitely axiomatized theory.

The default is that morphisms between degree structures are morphisms for the
pre-order structure. If we want to consider e.g. lattice morphisms we will say so
explicitly. We will say e.g. that two structures are isomorphic qua degree structures,
when they are equivalent qua partial preorder categories. Etc.

3. Degrees of Finitely Axiomatized Theories

In this section we provide some well-known and basic results on the degrees of
finitely axiomatized theories.

The structure of the degrees of all finitely axiomatized theories Dall is studied by
Harvey Friedman in [Fri07]. He shows that this structure is a distributive lattice,
that the degrees are dense, etc. We call the supremum of A and B in Dall: A⊕B.
We call the infimum of A and B: A⊗B. Note that here we have specific realizations
of the infimum and the supremum in mind. Thus, e.g., ⊕ maps a pair of theories
to a theory.3

Remark 3.1. We note in passing that the structure of chapters (degrees of local
interpretability of theories of arbitrary complexity and arbitrary (not necessarily
finite) signature) studied in [MPS90] is isomorphic to the structure of the filters of
Dall with ⊆.

Since the emphasis in this paper is on the sequential case we review a number of
basic facts about Dseq, the structure of the degrees of finitely axiomatized sequential
theories.

We first remind the reader of the definition of a sequential theory. An interpretation
is direct when it is unrelativized and identity preserving. A theory is sequential if
it directly interprets the theory Adjunctive Set Theory or AS.4

Adjunctive set theory AS is the following theory:

AS1. ` ∃x∀y ¬ y ∈ x,

AS2. ` ∀u, v ∃x ∀y (y ∈ x↔ (y ∈ u ∨ y = v)).

3Friedman assumes that we allow piece-wise interpretations. If we do not do that it suffices, in
order to get the results stated in his lecture, to restrict ourselves to theories that prove that there
are at least two elements, since piecewise interpretations can be simulated by more-dimensional
ones as soon as we have two elements available. We note that the existence of suprema is not

dependent on the assumption of two elements.
4We can allow more-dimensional direct interpretations. See [Vis10].
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The theory AS has a long history. See [Vis09]. For information on sequential
theories, see e.g. [Pud83], [Pud85], [MPS90], [HP91] or [Vis10].

We can map an arbitrary theory U to its minimal sequential extension SEQ(U)
as follows. We first extend the language of U by a new predicate ∆. Then, we
relativize all the quantifiers of the axioms of U to ∆, except the axioms for identity.
We add the axiom that ∆ is non-empty. Say, the resulting theory is U∆. We extend
the signature with a fresh binary predicate ∈. Finally, we add the axioms of AS
for ∈. The necessity of relativization can be seen by contemplating the example
of a theory saying that there are precisely three objects. See [Vis11] for more
information about the functor SEQ. We have:

Theorem 3.2. Suppose emb is the identical embedding functor of Dseq into Dall.5

This is simply functor that maps A to itself. Let B be sequential. We have:
SEQ(A) �seq B iff A� emb(B). Thus, SEQ is the left adjoint of emb.

The theorem tells us that we can obtain a realization A t B of the sequential
supremum by taking SEQ(A⊕B).6 Thus, we have shown that there is a supremum
in the sequential degrees. The sequential supremum A t B is only equivalent to
the Dseq-supremum A ⊕ B if A � B or B � A. This follows from the fact that
the sequential degrees are connected. This means that if some realization E of the
Dseq-supremum of the degrees of C and D is sequential, then we must have C ≡ E
or D ≡ E. The connectedness of sequential theories was proved by Pavel Pudlák
in [Pud83]. A different proof was given in [Ste89]. See also [MPS90].

The infimum A u B of the finitely axiomatized sequential theories A and B can
be taken to be the Dseq-infimum A ⊗ B. The infimum A ⊗ B of A and B can be
obtained by taking the union of the signatures of A and B and then taking the
disjunction of the conjunctions of the axioms of A resp. B.

We present a slightly different approach to the supremum in Dseq. We have the
following theorem.

Theorem 3.3. Suppose A is finitely axiomatized and sequential. We have:

A ≡ (S1
2 + 3A,ρ(A)>).

For a proof, see, [Pud85] or [HP91].

Now let A and B be finitely axiomatized and sequential. We claim that C :=
S1

2 + 3A,ρ(A)> + 3B,ρ(B)> is a realization of the sequential supremum of A and
B. Clearly C interprets both A and B, by Theorem 3.3. Suppose D � A and
D � B. Then, for some N and M we have N : D � (S1

2 + 3A,ρ(A)>) and M :
D � (S1

2 + 3B,ρ(B)>). By a theorem a Pavel Pudlák (see [Pud85]), there is an
interpretation K of S1

2 in D, such that there are definable initial embeddings of K
into both N and M . By the downwards persistence of Π1-sentences we will have
both 3A,ρ(A)> and 3B,ρ(B)> on K. So D � C.

5We state the theorem for the specific degree structures we are interested in in this paper. In
fact, the theorem extends to c.e. degrees and to arbitrary degrees.

6We note a notational awkwardness. In the order structures for relations like the subtheory

relation and interpretability, the inconsistent theory is the top element. In Boole algebras falsum
is the bottom. For this reason, e.g. the infimum u corresponds to disjunction ∨.
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By similar reasoning, we obtain the following generalization. Let A0, . . . , An−1 be
finitely axiomatized sequential theories. Then S1

2 +
∧
i<n 3Ai,ρ(Ai)> is a realization

of the sequential supremum of the Ai. It is easy to see that S1
2 +

∨
i<n 3Ai,ρ(Ai)>

is a realization of the sequential infimum of the Ai.

Thus we have shown:

Theorem 3.4. Let A0, . . . , An−1 be finitely axiomatized sequential theories. We
have:

• (S1
2 +

∧
i<n 3Ai,ρ(Ai)>) ≡

⊔
i<nAi.

• (S1
2 +

∨
i<n 3Ai,ρ(Ai)>) ≡

d
i<nAi.

The following is a fundamental result that relates interpretability to provability.

Theorem 3.5. For any Π0
1-sentences P , P ′, we have:

(S1
2 + P ) � (S1

2 + P ′) ⇔ EA ` P → P ′.

This theorem is due to Wilkie and Paris. See [WP87]. For a generalization, see:
[Vis92].7

We turn to a beautiful characterization of interpretability between finitely axiom-
atized sequential theories that is due to Harvey Friedman. See [Smo85].

Theorem 3.6. Suppose A and B are finitely axiomatized and sequential.8 We
have:

A�B ⇔ EA ` 3A,ρ(A)> → 3B,ρ(B)>.

The proof is immediate by combining Theorem 3.3 and Theorem 3.5.

We end this section with two remarks about degree structures of finite extensions
of a given theory.

Remark 3.7. We remind the reader that VW is the degree structure of finite ex-
tensions of W . Suppose U a V . What can we say about the relationship of VU
and VV ? Clearly the identical embedding from VU to VV is a pre-order homo-
morphism. However, it is not necessarily convex and it is not necessarily a lattice
homomorphism.

Consider for example Q and PA−, where we take the variant of PA− with the
subtraction axiom. We have Q a PA−. The VPA− -supremum of two incomparable
extensions A and B of PA− is sequential, but the VQ-supremum of A and B is not
sequential. See Section 7. It follows from this that the embedding is not convex.

Remark 3.8. Is there a good notion of sameness of theories that preserves the
degree structures above those theories via an effective isomorphism? We show that
the degree structures are thus preserved by sentential congruence.

7We find the theorem also formulated with Q, PA− and I∆0 + Ω1 in the role of S1
2. It is easy

to see that all these versions are equivalent.
8Inspection of the proof shows that only A needs to be sequential.
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Two theories U and V are sententially congruent if there are interpretations K :
U � V and M : V � U such that, for all C in the language of U and for all D in
the language of V , we have U ` C ↔ CKM and V ` D ↔ DMK . We note that
sentential congruence identifies more theories that e.g. bi-interpretability.9

Consider two theories U and V . The only restriction we place on U and V is that
they are of finite signature. We allow theories of arbitrary complexity. We suppose
the finite extensions of e.g. U are simply given by sentences axiomatizing them
over U . In other words, since U is the fixed background theory, we omit its axioms.
We treat extensions of V similarly.

Suppose K and M are a sentential congruence between U and V . We consider the
mappings Φ : (U + C) 7→ (V + CK) and Ψ : (V + D) 7→ (U + DM ). Par abus
de langage we confuse K and M with their extended versions between stronger
theories. We have:

K : (U+C)�(V +CK) and M : (V +CK)�(U+CKM ) and (U+CKM ) a` (U+C).

So U+C is sententially congruent with V +CK and, similarly V +D is sententially
congruent with U +DM . It follows that if (U + C) � (U + C ′), then:

Φ(U + C) = (V + CK) ≡ (U + C) � (U + C ′) ≡ (V + C ′
K) = Φ(U + C ′),

and similarly for Ψ. So Φ and Ψ are pre-order morphisms.

Finally, Ψ(Φ(U + C)) = (U + CKM ) a` (U + C), so, a fortiori, Ψ(Φ(U + C)) ≡
(U + C), and similarly for ΦΨ.

We may conclude that Φ and Ψ form an equivalence of categories between VU and
VV .

4. Derivability and Interpretability

In this section we compare the degrees of finitely axiomatized sequential theories
Dseq with structures PA of finitely axiomatized extensions of A with the derivability
ordering a, for sequential A.

The following list of properties provides a loose framework for the results of this
section. Suppose we have a map Θ from the finitely axiomatized sequential theories
to the finitely axiomatized sequential theories of signature Σ?. Suppose further we
have a, possibly partial, map Ψ on the finitely axiomatized sequential theories of
signature Σ? to the finitely axiomatized sequential theories that is at least defined
on the image of Θ. We demand:

• if A�B, then Θ(A) a Θ(B).

• if A a B, then Ψ(A) � Ψ(B), whenever A and B are in the domain of of Ψ.

• Ψ(Θ(A)) ≡ A.

• Ψ is recursive.

We consider the following properties:

I. Ψ is given by the identical mapping A 7→ A.

9In fact there is a verified separating example due to Harvey Friedman.
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II. for some k, and for all finitely axiomatized sequential A, ρ(Θ(A)) ≤ k.

III. Θ is recursive.

We will show that properties (I) and (II) are satisfiable (Theorem 4.1). We prove
that properties (II) and (III) are satisfiable (Theorem 4.4). Properties (I), (II),
(III) are not satisfiable (Theorem 4.5). I do not know whether (I) and (III) are
satisfiable.

Theorem 4.1. There is a function θ that sends finitely axiomatized sequential
theories A to ∀Πb

1-sentences such that:

• if A�B, then S1
2 + θ(A) ` S1

2 + θ(B).

• A ≡ (S1
2 + θ(A)).

The function θ is recursive in an oracle for a Σ1-complete set.

We see that (I) and (II) are fulfilled by taking Θ(A) := S1
2 + θ(A) and Ψ(A) := A.

The proof of Theorem 4.1 is an exercise in propositional logic.

Proof. Let (Ai)i∈ω be an enumeration without repetitions of the finitely axiom-
atized sequential theories. We choose our enumeration in such a way that it is
recursive.10 We define:

• Ci :=
∧
{3ρ(Aj),Aj

> | j ≤ i and Ai �Aj},

• Bk :=
∨
{C` | ` ≤ k and A` �Ak}.

We note that the definition of the Ci and Bk requires an oracle for a complete
recursively enumerable set.

Suppose Am � An. We show that Bm ` Bn. Suppose Ci is any disjunct of Bm.
We have i ≤ m and Ai �Am �An. If i ≤ n, then Ci will also be a disjunct of Bn.
Suppose i > n. We show that Ci ` Cn. For any conjunct 3Aj ,ρ(Aj)> of Cn, we
have j ≤ n and An �Aj , hence j ≤ i and Ai �Aj . So 3Aj ,ρ(Aj)> is a conjunct of
Ci. Ergo, each disjunct Ci of Bm implies a disjunct of Bn. We may conclude that
Bm ` Bn.

We find:

S1
2 + Ci = S1

2 +
∧
{3ρ(Aj),Aj

> | j ≤ i and Ai �Aj}

≡
⊔
{Aj | j ≤ i and Ai �Aj}

≡ Ai

S1
2 +Bk = S1

2 +
∨
{C` | ` ≤ k and A` �Ak}

≡
l
{S1

2 + C` | ` ≤ k and A` �Ak}

≡
l
{A` | ` ≤ k and A` �Ak}

≡ Ak

10If we choose our enumeration with repetitions θ will only be functional modulo mutual
derivability of the values, which seems to be not such a bad thing.
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We take θ(Ai) := Bi. 2

Remark 4.2. In the proof of Theorem 4.1, we could use the following alternative
definition: Ci := 3ρ(Ani

),Ani
>, where ni is chosen to be sufficiently large w.r.t. the

nj , for j < i, and the complexities of the least complex interpretations witnessing
Ai �Aj , for j < i.

Remark 4.3. Let the identical projection π : PS1
2
→ Dseq be given by π(A) := A.

Let Θ : Dseq → PS1
2

be given by Θ(A) := S1
2 +θ(A). When we think modulo induced

equivalence relations, Theorem 4.1 tells us that π is a retraction, where Θ is the
witnessing coretraction.

We consider the extensions of EA with a Π1-sentence ordered by a. Let’s call this
structure PΠ1

EA . (In the terminology of [LS08], the lattice corresponding to PΠ1
EA would

be designated by Π1/EA.)

Theorem 4.4. The degrees of interpretability of finitely axiomatized sequential
theories are recursively equivalent to the degrees of derivability of Π0

1-sentences over
EA. In other words, Dseq is recursively equivalent to PΠ1

EA.

Clearly, Theorem 4.4 tells us that conditions (II) and (III) are satisfiable. In fact
the result gives us more than that.

Proof. Let Θ : A 7→ EA + 3A,ρ(A)> and Ψ : EA + P 7→ S1
2 + P .11

By Theorem 3.6, Θ is a morphism. By Theorem 3.5, Ψ is a morphism.

We note that Ψ(Θ(A)) := S1
2 + 3A,ρ(A)>. So, by Theorem 3.3, Ψ(Θ(A)) ≡ A.

Moreover Θ(Ψ(EA + P )) = EA + 3S1
2,ρ(S

1
2+P )P . Since we have EA ` 3S1

2,ρ(S
1
2)>, we

find by standard reasoning that EA ` 3S1
2,ρ(S

1
2+P )P ↔ P . Hence, we may conclude

that Θ(Ψ(EA + P )) a` (EA + P ). 2

Theorem 4.4 together with the specification of the isomorphism can be viewed as
the proper form of the Friedman characterization. It is extremely useful. All kinds
of properties that are known for PΠ1

EA can be transferred to Dseq. For example, it is a
consequence of Theorem 3.1 of [Sha10] that the first-order theory of Dseq (qua degree
structure) is not arithmetical. The same holds for any of its non-trivial intervals.
Theorem 6.1 of this paper tells us that, for any consistent, finitely axiomatized and
sequential theory A, the structure VA is (isomorphic to) a non-trivial interval. So,
e.g. the first-order theories of VPA− and VIΣ1 and VGB (qua degree structures) are
not arithmetical. By Theorem 0.1 of [LS08], the ∀∃-theory of Dseq is decidable.

We turn to the promised negative result.

Theorem 4.5. Let Θ be a function from arbitrary finitely axiomatized sequential
theories to finitely axiomatized sequential theories of a fixed signature Σ?. The
following list of properties cannot be simultaneously fulfilled

a. if A�B, then Θ(A) ` Θ(B).

b. A ≡ Θ(A).

11Note that here our choice to consider theories as given by axioms is essential.
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c. There is a number n such that, for all finitely axiomatized sequential A, we have
ρ(Θ(A)) ≤ n.

d. Θ is recursive.

We note that (d) is equivalent to the demand that Θ is a partial recursive function
that is defined on the indices of finitely axiomatized sequential theories. This can
be seen by using the functor SEQ.

Proof. Suppose Θ satisfies (a)-(d).

Let A0 := Θ(S1
2). Clearly, A0 a Θ(A), for any finitely axiomatized sequential A.

Let n be a bound on the complexity of the Θ(A) and let f be the recursive function
implementing Θ.

We claim that there is a Σ?-formula Cx such that, for all finitely axiomatized
sequential A, Θ(A) a` CpAq. We can find an N : S1

2 � A0 such that there is a
satisfaction predicate for formulas of complexity below n which are coded in N . Let
Truen be the truth-predicate derived from Satn. Let Fxy represent the function f
in A0 w.r.t. the N -numbers. We can take:

C(x) := A0 ∧ ∃y ∈ δN (Fxy ∧ Truen(y)).

We write C(A) for C(pAq).

By the Gödel Fixed Point Lemma, we can find a sentence B such that

A0 ` B ↔ ¬C(A0 ∧B).

We have: (A0∧B) ≡ C(A0∧B) ≡ (A0∧¬B). Since both (A0∧B)� (A0∧B) and
(A0∧¬B)�(A0∧B), we find that A0�(A0∧B). It follows that C(A0) ` C(A0∧B).
We also have A0 ≡ S1

2, and hence C(A0) a` C(S1
2) = A0. Ergo A0 ` C(A0 ∧ B)

and thus A0 ` ¬B. It follows that A0 � (A0 ∧ B) ` ⊥. Hence A0 is inconsistent
and so is S1

2. Quod non. 2

Open Question 4.6. Are (I) and (III) of the list at the beginning of this section
satisfiable?

5. FGH Arguments

In this section we prove FGH-style results.12 The FGH Theorem is a superior way
to set things right even if the world is fundamentally wrong: the main conditions
are (i) that the Creatrix plays first and (ii) that She builds a consistent world. For
information about the FGH Theorem, see e.g. [Vis05].

We remind the reader of witness comparison notation. Suppose C = ∃xC0(x) and
D = ∃y D0(y). We define:

• C ≤ D :⇔ ∃x (C0(x) ∧ ∀y < x¬D0(y).

• D < C :⇔ ∃x (D0(x) ∧ ∀y ≤ x¬C0(y).

12FGH stands for Friedman-Goldfarb-Harrington. The order of names does not reflect the
temporal order of discovery, of which I am not entirely sure.
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• Suppose E = (C ≤ D), then E⊥ := (D < C).

• Suppose E = (D < C), then E⊥ := (C ≤ D).

The versions of the FGH Theorem proved in Theorem 5.1 below are quite close to
the original one, the only variation being the use of restricted provability.

Theorem 5.1. Let A be a finitely axiomatized theory. Suppose N : S1
2 �A. Let S

be any Σ1-sentence.13 Let n be bigger than or equal to the maximum of ρ(A), ρ(S),
ρ(provA(x)) + ρ(N) + 3. Then, there are Σ1-sentences R0 and R1 such that:

i. EA ` 2A,nR
N
0 ↔ (S ∨2A,n⊥).

ii. EA ` 2A,n¬RN1 ↔ (S ∨2A,n⊥).

Proof. We first prove (i). We find R0 such that:

S1
2 ` R0 ↔ S ≤ 2A,nR

N
0 .

Note that n is chosen in such a way that S ≤ 2A,nR
N
0 makes sense. We show that

EA ` 2A,nR
N
0 ↔ (S ∨2A,n⊥). Reason in EA.

Suppose 2A,nR
N
0 . It follows that R0 or R⊥0 . In the first case, we have, by the fixed

point property of R0, that S. In the second case we have, by Σ1-completeness,
2A,n(R⊥0 )N , and hence 2A,n⊥.

Conversely, suppose S. It follows that R0 or R⊥0 . In the first case it follows, by Σ1-
completeness that 2A,nR

N
0 . In the second case it follows, by fixed point property

of R⊥0 , that 2A,nR
N
0 . Finally, if we have 2A,n⊥, we immediately have 2A,nR

N
0 .

We prove (ii). We find R1 such that:

S1
2 ` R1 ↔ 2A,n¬RN1 ≤ S.

We show that EA ` 2A,n¬RN1 ↔ (S ∨2A,n⊥). Reason in EA.

Suppose 2A,n¬RN1 . It follows that R1 or R⊥1 . In the first case, we have, by Σ1-
completeness, 2A,nR

N
1 and hence 2A,n⊥. In the second place, we have by the fixed

point property of R1, that S.

Conversely, suppose S. It follows that R1 or R⊥1 . In the first case it follows, by the
fixed point property of R1, that 2A,n¬RN1 . In the second case, we have, by Σ1-
completeness, that 2A,n(R⊥1 )N , and hence 2A,n¬RN1 . Finally, if we have 2A,n⊥,
we immediately have 2A,n¬RN . 2

The proofs of Theorem 6.1 and 6.4 use only Theorem 5.1. So the reader could skip
Theorem 5.2 for the moment and first study Theorems 6.1 and 6.4.

The following theorem FGH-style theorem is a variant and refinement of a sequence
of FGH theorems proved in [Vis93], [Vis05] and [Vis12]. The first two papers prove
versions of theorems due Jan Kraj́ıček (see [Kra87]) and Harvey Friedman (see
[Smo85]). Kraj́ıček’s work is based on results from Alex Wilkie’s fundamental
paper [Wil86].

13Note that we do not need that A is sequential.
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Theorem 5.2. Let A be a finitely axiomatized sequential theory. Let k be any
number. We can find an interpretation N0 : S1

2 � A, such that, for every Σ1-
sentence S with ρ(S) ≤ k:

EA ` 2A,mS
N0 ↔ (S ∨2A,ρ(A)⊥).

Here m := max(ρ(A), k + ρ(N0)).

Proof. Let A be finitely axiomatized and sequential. Suppose N : S1
2 �A. Let k be

any number. Consider any Σ1-sentence S with ρ(S) ≤ k.

Let n := max(ρ(provA,x(y)) + 1, k + ρ(N)). Let R be chosen such that S1
2 ` R ↔

S ≤ 2A,nR
N . Note that n is large enough such that 2A,nR

N makes sense. We
note that the choice of n only depends on A, N and k. We can find a cut N0 of N
such that, in A, we have the minimum principle for ∆0(ω1)-formulas of complexity
less than or equal to k and such that A ` ∀x (provN0

A,n(x)→ Truen(x)). We have:

A ` SN0 → (R ∨R⊥)N0

→ RN ∨ (2A,nR
N )N0

→ RN

Let m be max(ρ(A), k + ρ(N0)). We have:

EA ` 2A,mS
N0 → 2A,pR

N(1)

→ 2A,nR
N(2)

→ R ∨R⊥(3)

→ S ∨ (R⊥ ∧2A,nR
N )(4)

→ S ∨2A,n⊥(5)
→ S ∨2A,ρ(A)⊥(6)

Here Step 1 uses our previous insight. The number p is a sufficiently large standard
number. Step 2 uses the fact that in EA we have cut-elimination for cuts of standard
complexity. Similarly for Step 6.

Conversely, we clearly have: EA ` (S ∨2A,ρ(A)⊥)→ 2A,nS
N0 . 2

We note that the statement of the theorem and the construction of N0 are entirely
self-reference free. It is just the proof that uses the FGH-style Rosser-construction.
This makes one wonder whether there is also a self-reference-free proof.

6. Convexity

Let A be a finitely axiomatized sequential theory. We prove the convexity of the
embedding of VA into Dseq.

We note that this is easy if A = S1
2. Suppose B is finitely axiomatized and sequen-

tial. We have, by Theorem 3.3, that, for sufficiently large n, B ≡ (S1
2 + 3B,n>).

We will prove Theorem 6.5 as an analogue of Theorem 3.4 . Theorem 6.5 has
the desired analogue of Theorem 3.3 as a direct consequence. Thus any finitely
axiomatized sequential theory A behaves in certain respects as S1

2.
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In Theorem 6.1 we will follow a more direct and simpler approach to prove the
desired convexity result.

Theorem 6.1. Let A be a finitely axiomatized and sequential. Let N : A � S1
2.

Suppose B �A. Then there is a Π1 sentence Q and a Σ1 sentence R, such that (i)
B ≡ (A+QN ) and (ii) B ≡ (A+RN ).

More precisely, we can take Q to be ∀Πb
1 and R to be ∃Σb

1.

Theorem 6.1 tells us that the identical embedding of VA, where A is finitely axiom-
atized and sequential, into Dseq is convex, and, ipso facto, a lattice homomorphism.

Proof. We assume the conditions of the theorem. Suppose n is sufficiently large. It
follows that

(7) EA ` 3B,n> → 3A,n>.
Let Q := ¬R0, where R0 is as in Theorem 5.1(i), with S := 2B,n⊥. We find:

EA ` 3A,nQ
N ↔ (3B,n> ∧3A,n>)(8)
↔ 3B,n>.(9)

Here Step 8 is just the contraposition of Theorem 5.1(i) and Step 9 is by Equation 7.
It follows that:

B ≡ S1
2 + 3B,n>(10)

≡ S1
2 + 3A,nQ

N(11)

≡ A+QN .(12)

Here Steps 10 and 12 are by Theorem 3.3 and Step 11 is by Equations 8 and 9 in
combination with Theorem 3.5.

The proof of (ii) is similar applying Theorem 5.1 with S := 2B,n⊥ and setting
R := R1. 2

Remark 6.2. It is not difficult to eliminate the use of Theorem 3.5 from the proof
of Theorem 6.1. For example let I be an S1

2-cut such that S1
2 ` ∀x ∈ I ∃y 22x

= y
and such that we have T1

2 on I. Then we can prove in a direct way, with R0 as in
the proof of Theorem 5.1(i):

S1
2 ` 2I

A,nR
N
0 → (S ∨2A,n⊥) and S1

2 ` (S ∨2A,n⊥)I → 2A,nR
N
0 .

We can plug in this last result in the reasoning of the proof of Theorem 6.1.

Thus, for a finitely axiomatized sequential A, VA is closed under suprema. More-
over, every degree contains both a Σ1- and a Π1-sentence over A w.r.t. a chosen
N .

We note that the suprema in VA are sequential and hence cannot coincide with the
suprema in Dall, since, by a result of Pavel Pudlák ([Pud83]), sequential degrees
are connected in Dall, i.e. if a sequential A is an Dseq-supremum of B and C, then
either A ≡ B or A ≡ C.

Finally we note that our result fails if we try to extend it to the computably
enumerable (c.e.) sequential case. E.g. ACA0 � PA, but for no extension U of PA
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we have ACA0 ≡ U , since such extensions are reflexive and no reflexive theory is
mutually interpretable with a finitely axiomatized theory.

Remark 6.3. We remind the reader that AS is adjunctive set theory. By Theo-
rem 6.1, we find that the identical embedding in VAS into Dseq is an isomorphism,
since AS is in the minimal sequential degree. This theorem also follows from the
result of Section 6 of [Vis08], which tells us that every sequential theory is defini-
tionally equivalent (a.k.a. synonymous) with an extension of AS. This last result
also works when we compare c.e. extensions of finite signature of AS to c.e. se-
quential theories of finite signature, and arbitrarily complex extensions of finite
signature to arbitrarily complex sequential theories of finite signature.

We can lift Theorem 6.1 partly to the local interpretability degrees of sequential
theories with no restrictions on the cardinality of the signature or on the complexity
of the axiom set.

We remind the reader that U locally interprets V or U �loc V , iff, for every finite
subtheory V0 of V , U � V0. We write ≡loc for the induced equivalence relation.

The degree of local interpretability of a theory U with no restrictions on the cardi-
nality of the signature and no restrictions on the complexity of the axioms set, is
called a chapter in [MPS90].

Theorem 6.4. Let U be any sequential theory, with no restrictions on the cardi-
nality of the signature and no restrictions on the complexity of the axioms set. Let
A be finitely axiomatized and sequential with A � U . Suppose N : S1

2 � U . Then
there are sets of Σ1-sentences S and of Π1-sentences P, such that:

U ≡loc (A+ SN ) ≡loc (A+ PN ).

More precisely we can take S to consist of ∃Πb
1-sentences and P of ∀Σb

1-sentences.

Proof. It is easily seen that there is a sequence A = A0 � A1 � A2 . . . of finitely
axiomatized sequential theories such that Ai � U and, for any finitely axiomatized
B such that B � U , there is an i such that B �Ai.

We define a sequence of Σ1-sentences as follows. Let S0 be >. Suppose we already
have that (A+SN0 , . . . , S

N
n ) ≡ An and, hence, (A+SN0 , . . . , S

N
n ) �An+1. Let Sn+1

be the sentence R provided by Theorem 6.1 with A+ SN0 , . . . , S
N
n in the role of A

in the theorem, N in the role of N in the theorem and An+1 in the role of B in the
theorem. Clearly we find (A+ SN0 , . . . , S

N
n+1) ≡ An+1. We take S := {S0, S1, . . .}.

The Π1-case is similar. 2

We see that this means that the embedding of the local degrees of arbitrary ex-
tensions of a finitely axiomatized sequential A into the local degrees of arbitrary
sequential theories is convex, and, ipso facto, a lattice homomorphism.

In Theorem 6.1 we showed that, for finitely axiomatized and sequential A and B
with A � B, we can find a sentence C in the language of A such that (A ∧ C) ≡
B. This sentence can be chosen to be a Σ1-sentence or a Π1-sentence relativized
to a fixed interpretation N of S1

2 in A. E.g. if A were GB we could take N
to be the finite von Neumann ordinals. Our construction has two disadvantages.
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First, the sentences used are metamathematical artifacts created using the FGH
variant of the Rosser construction. Secondly, the conjunction of two such relativized
sentences over A does not seem to give us the supremum. In Theorem 6.5, we repair
these defects. Our sentences in Theorem 6.5 are restricted consistency statements
relativized to a set of numbers that has a self-reference-free definition. Moreover,
we have the desired supremum-conjunction correspondence. There is one cost: we
cannot use any given interpretation N of S1

2 but are forced to employ a special one.
E.g., in the case of GB the result will not work for the finite von Neumann ordinals.

Theorem 6.5 uses Theorem 5.2 as the main technical lemma.

Theorem 6.5. Consider any finitely axiomatized sequential theory A. There is an
N0 : S1

2 �A such that, for all finitely axiomatized sequential theories B0, . . . , B`−1,
we have:

(A t
⊔
j<`

Bj) ≡ (A+ (
∧
j<`

3Bj ,ρ(Bj)>)N0).

Proof. Let A be finitely axiomatized and sequential. For any finitely axiomatized
and sequential theories B0, . . . , B`−1 , we take S :=

∨
j<` 2Bj ,ρ(Bj)⊥. Note that

there is a fixed k, such that ρ(S) ≤ k, independent of the choice of the Bj . Let N0

as given in Theorem 5.2 for A and k. We find, for m := max(ρ(A), k + ρ(N0)),

EA ` 3A,m(
∧
j<`

3Bj ,ρ(Bj)>)N0 ↔ (3A,ρ(A)> ∧
∧
j<`

3Bj ,ρ(Bj)>).

It follows, by Theorems 3.4 and 3.5, that

A t
⊔
j<`

Bj ≡ S1
2 + 3A,ρ(A)> ∧

∧
j<`

3Bj ,ρ(Bj)>

≡ S1
2 + 3A,m(

∧
j<`

3Bj ,ρ(Bj)>)N0

≡ A+ (
∧
j<`

3Bj ,ρ(Bj)>)N0

2

We note that it follows that if B �A, then B ≡ (A+ 3
N0
B,ρ(B)>).

Theorem 6.5 is clearly analogous to Theorem 3.4. The theorem shows that arbitrary
finitely axiomatized sequential theories are in some respects very much like S1

2.
Exploiting this analogy we can mimic the proof of Theorem 4.1 to obtain the
following theorem.

Theorem 6.6. Let A be finitely axiomatized and sequential. There is an N0 : S1
2�A

and a function θ that sends finitely axiomatized sequential theories B with B � A
to ∀Πb

1-sentences such that:

• if B � C �A, then A+ θ(B)N0 ` A+ θ(C)N0 .

• if B �A, then B ≡ (A+ θ(B)N0).

The function Θ is recursive in an oracle for a Σ1-complete set.
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Remark 6.7. We define Dseq,A as the degree structure of the finitely axiomatized
sequential theories B with B � A. Let the identical projection π : PA → Dseq,A be
given by π(B) := B. Let Θ : Dseq,A → PA be given by Θ(B) := A+ θ(B)N0 . When
we think modulo the induced equivalence relations a` and ≡, Theorem 6.6 tells us
that π is a retraction, where Θ is the witnessing coretraction.

Open Question 6.8. Can we find, for any finitely axiomatized sequential theory
A and for any N : S1

2 � A, a mapping B 7→ CB sending any finitely axiomatized
sequential B with A�B to an arithmetical sentence CB , such that, for any finitely
axiomatized sequential theories B0, . . . , Bn−1 with Bj �A for al j < n, we have:⊔

j<n

Bj ≡ (A+
∧
j<n

CNBj
).

If so, can we get the CB to be Π1 or Σ1?

7. The Case of Q

Let U be any theory of finite signature. We show that some extension W of Q can
function as the supremum of Q and U . We use the fact that U is bi-interpretable
and, hence, a fortiori, mutually interpretable with a theory, say V , of a binary
predicate, say R. See [Hod93, Section 5.5]. We note that Hodges uses parameters.
However these can be eliminated by raising the dimension and integrating them in
our objects. It is sufficient to prove the desired result for V .

The theory W in the language of Q is axiomatized by the following principles.

• Q

• ∃!a ∀x (x + a = a ∧ a + x = a). We call this unique a: ∞. We define
δ(x) :↔ Sx = x ∧ x 6=∞.

• V ?, where V ? is the result of relativizing the quantifiers in V to δ and
replacing R(x, y) by x+ y =∞.

Trivially we have W � Q and W � V . Suppose K : Z � Q and M : Z � V . We
construct an interpretation L : Z � W . Since J : Q � (Q + ∀x Sx 6= x) =: Q∗, for
some J , we have K ′ = K ◦ J : Z � Q∗.

We define an auxiliary theory Y as follows the domain of Y is partitioned in 40,
41 and {∞}. We have Q∗ relativized to 40, and V relativized to 41. We call
addition in our copy of Q∗: +0, etc. The interpretability of Y in Z uses standard
constructions on interpretations: how to make domains disjoint, how to conjure
new objects out of the high hat, etc.14 We sketch briefly how this works in this
specific case.

Suppose K ′ is m-dimensional and M is n-dimensional, then we take N to be
max(m,n) + 3-dimensional. Let’s assume that m < n. The case that m ≥ n is
similar. An element ~v of δK′ reappears as x, x, x, ~w,~v, where the length of ~w is
n −m. The only role of ~w is to serve as padding. The elements x, x, x, ~w,~v give

14If we allow piece-wise interpretability these constructions are matter of course. But we can

always execute them too by raising dimensions, provided that we have at least two objects in the
domain.
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us the interpretation of 40. An element ~v of δM reappears as x, x, y,~v. These
elements give us also the interpretation of 41. Finally, we define ∞ by the ele-
ments of the form x, y, x, ~z, where x 6= y. The ~z is just padding. We define e.g.:
x0, x1, x2, ~w =N y0, y1, y2, ~z iff (x0 = x1 = x2 and y0 = y1 = y2 and ~w = ~w0, ~w1

and ~z = ~z0, ~z1 and δK′(~w1) and δK′(~z1) and ~w1 =K′ ~z1) or (x0 = x1 6= x2

and y0 = y1 6= y2 and δM (~w) and δM (~z) and ~w =M ~z) or (x0 = x2 6= x1 and
y0 = y2 6= y1). We define the interpretations of the arithmetical operations and of
R in the obvious way.

We work in Y . We define arithmetical operations on the full domain, i.e. 40 ∪
41 ∪ {∞}. We take as 0 the element 00. We define: S(x) := S0(x) if x ∈ 40 and
S(x) := x, otherwise. We define addition as follows. In the diagram, n ranges over
40 and x ranges over 41. We define addition as follows.

+ n y ∞
m m+0 n y ∞
x x ∞ if R(x, y) ∞

y otherwise
∞ ∞ ∞ ∞

Here is the definition of multiplication:

× 0 1 n 6= 0, 1 y ∞
m 0 m m×0 n ∞ ∞
x 0 x ∞ if R(x, x) ∞ ∞

x otherwise
∞ 0 ∞ ∞ ∞ ∞

It is easy to see that these tables give us the desired interpretation of W .

It is clear that the above result could have been proved in many other ways. For
example we could have modified the theorem from [Hod93] in such a way that we
can assume R to be irreflexive and define x + y = y if R(x, y) and x + y = x
otherwise. In this way we can avoid the need for ∞.

The following result is immediate from the above considerations.

Theorem 7.1. The identical embedding of VQ into Dall is convex, and, ipso facto,
a lattice homomorphism.

Remark 7.2. We note that our result also works when we compare c.e. extensions
of Q of finite signature to c.e. theories of finite signature that interpret Q, and
arbitrarily complex extensions of Q of finite signature to arbitrarily complex theories
of finite signature that interpret Q.

8. List of Questions

In this section we provide a list of open problems.

1. Can we find examples of A such that VA does not have suprema, where A is
finitely axiomatized and A � Q? In other words, what about the remaining
cases of Švejdar’s question? This question is already interesting if we drop the
requirement that A� Q or if we replace A by a c.e. theory of finite signature.
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2. Is there a recursive function Θ that maps the finitely axiomatized sequential the-
ories to finitely axiomatized sequential theories of a given signature Σ?, such that
(i) if A�B, then Θ(A) a Θ(B) and (ii) Θ(A) ≡ A. This is Open Question 4.6.

3. Can we find, for any finitely axiomatized sequential theory A and for any N :
S1

2 �A, a mapping B 7→ CB sending any finitely axiomatized sequential B with
A � B to an arithmetical sentence CB , such that, for any finitely axiomatized
sequential theories B0, . . . , Bn−1 with Bj �A for all j < n, we have:⊔

j<n

Bj ≡ (A+
∧
j<n

CNBj
).

If so, can we get the CB to be Π1 or Σ1? This is Open Question 6.8.
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