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Abstract

Given a set of compact sites on a sphere, we show that their spherical Voronoi diagram

can be computed by computing two planar Voronoi diagrams of suitably transformed sites in

the plane. We also show that a planar furthest-site Voronoi diagram can always be obtained

as a portion of a nearest-site Voronoi diagram of a set of transformed sites. Two immediate

applications are an O(n logn) algorithm for the spherical Voronoi diagram of a set of circular

arcs on the sphere, and an O(n logn) algorithm for the furthest-site Voronoi diagram for a

set of circular arcs in the plane.

1 Introduction

Voronoi diagrams belong to the computational geometer's favorite structures. They arise in nature

and have applications in many �elds of science [3, 15].

While Voronoi diagrams in the plane have been studied extensively, using di�erent notions of

sites and metrics, little is known for other geometric spaces. We are interested in the Voronoi

diagram SV(U) of a set of sites U on a sphere S, with the Euclidean distance on the surface of the

sphere. This is a rather natural setting, considering that we are living on the surface of a large

sphere. (Sugihara [15] gives a military motivation: the dominance regions of the various air bases

in the world.) Note that for a �xed radius sphere S, the geodesic distance of two points on S is

a strictly monotone function of their Euclidean distance, and so the Voronoi diagram on S is in

fact the intersection of the 3-dimensional Voronoi diagram of U with S. Alternatively, we can use

a stereographic projection to map S to a plane. The projection induces a metric on the plane,

where the distance of two points is the geodesic distance of the corresponding points on S. The

Voronoi diagram of U can be obtained as a planar Voronoi diagram under this induced metric.

Unfortunately, these two observations do not help us to compute SV(U) eÆciently. The 3-

dimensional Voronoi diagram can have quadratic complexity even for point sets, and no algorithm

appears to be known for the planar diagram under the metric induced by the stereographic projec-

tion. The diÆculty is that the bisector of two sites under this metric is a closed curve. Very little

is known about Voronoi diagrams under metrics with closed bisectors. The most general approach

to the computation of planar Voronoi diagrams, the abstract Voronoi diagram by Klein [11, 12],

requires that bisectors partition the plane into two unbounded regions. Algorithms that do work

for sites with closed bisectors (such as the Voronoi diagram algorithm for curves by Alt and

�The authors wish to acknowledge the �nancial support of the Korea Research Foundation made in the program
year of 1998, and the support of the Hong Kong Research Grant Council. Part of this research was done when O.
Cheong was at Hong Kong University of Science & Technology, during a visit of H.-S. Na supported by the HKRGC.

yDepartment of Mathematics, Pohang University of Science and Technology, E-mail: hsnaa@postech.ac.kr,

cnlee@postech.ac.kr
zInstitute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, the

Netherlands. E-mail: otfried@cs.uu.nl.

1



Schwarzkopf [1]) carefully work around the problem by cutting sites and adding point sites at the

cuts.

However, computing the Voronoi diagram SV(U) of a set U of points on the sphere turns out to

be surprisingly easy. One of the very �rst works in the then newly appearing �eld of computational

geometry was Brown's dissertational thesis [4]. Brown showed that the combinatorial structure of

SV(U) is identical to the structure of the convex hull of U . More precisely, a facet of the convex

hull of U corresponds to an empty circle on the sphere, and therefore to a Voronoi vertex of SV(U).

This immediately results in an O(n logn) time algorithm for the Voronoi diagram of points on the

sphere.

Brown also considered the medial axis for a convex spherical region whose boundary is a simple

closed curve consisting of geodesic arcs [4]. Another incremental algorithm for constructing the

Voronoi diagram on the sphere was proposed by Augenbaum [2]. Recently, we developed an

algorithm [14] to construct the Voronoi diagram of circular arcs (not necessarily geodesic) on the

sphere, as a spherical analog of the method by Alt and Schwarzkopf [1].

Brown's most important discovery, however, is arguably the connection between 3-dimensional

convex hulls and planar Voronoi diagrams [4, 5]. Let U be a set of points on the sphere, and

consider a stereographic projection mapping the sphere to a plane. Let W be the resulting set of

points in the plane. Brown showed that the Voronoi diagram of W (in the plane) has the same

combinatorial structure as that part of the convex hull of U that is not visible from the projection

center. This observation allowed Brown to compute the Voronoi diagram of a set of n points in

the plane in time O(n logn).

The insight that Voronoi diagrams are so closely related to convex hulls considerably advanced

our understanding of Voronoi diagrams at a time when computational geometry was in its infancy.

Brown's transformation itself, however, never got much publicity. The lifting transformation,

which uses a paraboloid instead of a sphere, quickly replaced it in the computational geometer's

toolbox [17]. We will show in this paper that Brown's transformation is still a useful tool in

computational geometry, and deserves not to be forgotten.

Brown used a stereographic projection to transform the (then) unfamiliar planar Voronoi dia-

gram to a familiar convex hull in three dimensions. We employ it in the opposite direction, but

with a similar goal: we transform the unfamiliar spherical Voronoi diagram of a set of sites on the

sphere to (by now) familiar planar Voronoi diagrams of sites in the plane. We take advantage of

the considerable work that has been done on the computation of planar Voronoi diagrams exactly

and approximatively, not only in computational geometry, but also in CAGD [1, 6, 18]. We show

that the spherical Voronoi diagram can be computed by computing two planar Voronoi diagrams

and a little bit of glueing. We extend Brown's idea by using two stereographic projections (or

inversions) with di�erent projection centers on the sphere.

As a second result, we establish a surprising connection between planar furthest-site and

nearest-site Voronoi diagrams. We show that a planar furthest-site Voronoi diagram can always

be obtained as a portion of a nearest-site Voronoi diagram of a set of transformed sites.

As an immediate application of our transformations, we obtain an O(n logn) algorithm for

computing the spherical Voronoi diagram of a set of circular arcs on the sphere, and for computing

the planar furthest-site Voronoi diagram of a set of circular arcs in the plane.

2 Inversions and Voronoi diagrams

Let E3 be the 3-dimensional Euclidean vector space with the Euclidean norm j � j. Inversion with

the inversion center at the origin o is de�ned by �o(v) = v=jvj
2 [8]. More generally, the inversion
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with inversion center at � 2 E
3 is de�ned by ��(v) =

v-�
jv-�j2

+ �. This transformation has the

following properties:

(1) The direction of the vector ��(v) - � is the same as that of the vector v- �, and the length

of the vector ��(v) - � is the inverse of the length of the vector v - �.

(2) Inversion is involutory|application of inversion twice yields the original vector. We say that

v and ��(v) are inversive images of each other.

(3) The inversion �� maps a sphere not containing � to a sphere not containing �, a sphere

containing � to a plane not containing �, and a plane containing � to itself. If we consider

planes to be spheres of in�nite radius, we can say that �� maps spheres to spheres.

Fig. 1 shows two examples of inversion. The inversion in Fig. 1(b) maps the unit-diameter

sphere S to the plane T and vice versa. Its restriction to S is known as the stereographic projection

from the origin o. In the following, S will be a unit-diameter sphere, � will be a point on S, and

T will be the plane tangent to S in the point opposite to �. Therefore, T and S are inversive

images of each other under ��. In Fig. 1(b), � = (0; 0; 0).
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(b) three-dimensional example: sphere S

and plane T is an inversive pair.

Figure 1: Examples of inversions.

Let a site be a compact subset of T . We de�ne the near-type distance dn and the far-type

distance df from a point x to a site w as follows:

dn(x;w) := infy2w d(x; y);

df(x;w) := supy2w d(x; y):

Let w be a site in T . Since w is compact, for each x 2 T there exist z1; z2 2 w such that

dn(x;w) = d(x; z1) and df(x;w) = d(x; z2). In particular, if w is a point, then dn(x;w) =

df(x;w) = d(x;w). Furthermore, dn(�; w); df(�; w) are continuous functions de�ned in T .

We denote the interior, the boundary, the closure, and the interior of the complement of a

set A by intA, @A, clA, and extA, respectively.
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De�nition 1 Let W be a set of n > 3 disjoint sites in T .

For w 2 W , the nearest-site Voronoi region VR(w;W) and the furthest-site Voronoi region

VRf(w;W) are de�ned as follows:

VR(w;W) := fx 2 T j dn(x;w) = minw 02W dn(x;w
0)g;

VRf(w;W) := fx 2 T j df(x;w) = maxw 02W df(x;w
0)g:

The (nearest-site) Voronoi diagram V(W) is the tessellation VR(w;W)w2W , the furthest-site

Voronoi diagram Vf(W) is the tessellation VRf(w;W)w2W .

The reader will be familiar with the near-type distance function dn and the nearest-site Voronoi

diagram it de�nes, but may wonder about the de�nition of the far-type distance df. The far-type

distance is indeed the natural distance for de�ning furthest-site Voronoi diagrams, as we will see

below.

The nearest-site Voronoi diagram de�ned above has been studied exhaustively in the literature,

while the furthest-site diagram of sites (as opposed to points) does not seem to have received at-

tention. We therefore now show that the furthest-site diagram is indeed a well-behaved tessellation

of T . In the following,W will always denote a set of n > 3 sites in T .

Lemma 1 Vf(W) is a tessellation of T satisfying

(a)
S
w2W VRf(w;W) = T ; and

(b) VRf(w;W) \VRf(w
0;W) = @VRf(w;W) \ @VRf(w

0;W) for w;w 0 2 W .

Proof. Let W be the union of all sites in W .

(a) Let x 2 T . Since W is compact and d(x; �) is a continuous function, there exists a point

z 2 W such that d(x; z) = maxy2W d(x; y). Let w be the site containing z. Then d(x; z) =

df(x;w) = maxw 02W df(x;w
0). Hence x 2 VRf(w;W).

(b) For each w;w 0 2 W (w 6= w 0), de�ne H(w;w 0) = fy 2 T j df(y;w) > df(y;w
0)g.

Since df(�; w) and df(�; w
0) are continuous, H(w;w 0) is a closed subset of T . Since VRf(w;W) =T

w 02WnfwgH(w;w
0), VRf(w;W) is a closed set. This implies that @VRf(w;W)\@VRf(w

0;W) �

VRf(w;W) \ VRf(w
0;W). If x 2 VRf(w;W) \ VRf(w

0;W) for distinct w;w 0, then there ex-

ists a disc D centered at x such that D contains W and its boundary passes through two points

z 2 w; z 0 2 w 0. Consider a line l determined by x and z. Choose any point x0 2 l, suÆciently close

to x and lying in the opposite side of z as seen from x. Then z is the unique furthest point of W

from x0. Hence x0 62 VRf(w
0;W) and thus x 62 intVRf(w

0;W). Analogously we can prove that

x 62 intVRf(w;W). This shows that VRf(w;W)\VRf(w
0;W) � @VRf(w;W)\@VRf(w

0;W).

For both diagrams, a Voronoi vertex v is a point which lies on the boundary of the Voronoi

regions of at least three sites of W , and a Voronoi edge e is a maximal connected subset of points

lying on the boundary of the Voronoi regions for exactly two sites of W .

In complete analogy to the above discussion, we can de�ne sets U of n sites on the sphere S, the

near-type and far-type distance functions, Voronoi regions, and Voronoi diagrams. For clarity, we

will call these the spherical (nearest-site) Voronoi diagram and and the spherical furthest-site

Voronoi diagram, and denote them by SV(U) and SVf(U).

Note that we can use either the geodesic distance on S or the Euclidean distance in 3 dimensions

as the underlying distance of the near-type and far-type distance function. Both result in identical

Voronoi diagrams.
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(a) (b)

Figure 2: Largest empty discs (a) and smallest enclosing disc (b)

For a point x 2 T , we let D(x) denote the largest empty disc with center x. It is the set

of points y 2 T such that d(x; y) 6 minw2W dn(x;w). Note that D(x) contains no point of a

site of W in its interior, but at least one point of a site on its boundary. Analogously, we let

Df(x) denote the smallest enclosing disc with center x. It is the set of points y 2 T such that

d(x; y) 6 maxw2W df(x;w). Note that Df(x) contains all sites of W , and at least one point of a

site lies on its boundary. See Fig. 2.

Note that a point x is a vertex of V(W) if and only if D(x) contains points of three or more

di�erent sites, and lies on an edge of V(W) if and only if D(x) contains points of exactly two

distinct sites. Analogously, x is a vertex of Vf(W) if and only if Df(x) has points of three or more

di�erent sites on its boundary, and lies on an edge of Vf(W) if and only if Df(x) has points of

exactly two distinct sites on its boundary. This fundamental property relies on our de�nition of

the far-type distance function | it would not be true if we had de�ned the furthest-site diagram

using the near-type distance function.

We de�ne the spherical largest empty disc SD(x) and the spherical smallest enclosing disc

SDf(x) analogously.

The following lemma shows that the spherical furthest-site Voronoi diagram is in fact also

a spherical (nearest-site) Voronoi diagram. We denote the antipode (the diametrically opposite

point) of a point y 2 S by y�, and the antipode of a site u � S by u� := fy� j y 2 ug.

Lemma 2 (Brown [4]) Let U be a set of sites on S. Then SVf(U) = SV(U�), where U� = fu� j

u 2 Ug.

Proof. For points x; y 2 S we have d(x; y) = �=2- d(x; y�). It follows that for a site u � S, we

have df(x; u) = �=2 - dn(x; u
�). Therefore, x 2 VRf(u;U) if and only if x 2 VR(u�;U�). The

lemma follows.

3 Convex hulls and Voronoi diagrams

Brown [4] observed that for a set U of n points on S, the spherical Voronoi diagram SV(U) has

the same combinatorial structure as the convex hull of U . In fact, recall that a point x 2 S is a

vertex of SV(U) if and only if SD(x) has three or more points on its boundary. Since SD(x) is

the intersection of S with a half-space, this implies the existence of an empy half-space containing
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three points of U on its boundary. We thus have a one-to-one correspondence between Voronoi

vertices and convex hull facets, and the same correspondence holds between Voronoi edges and

convex hull edges.

Since the convex hull of n points in three dimensions can be computed in O(n logn) time, this

allowed him to compute the spherical Voronoi diagram (and therefore also the spherical furthest-

site Voronoi diagram) of a set of points within the same time bound.

Brown observed a second correspondence. Let U be a set of n points on S n f�g, and let

W := ��(U) be its inversive image on T . Consider a point x 2 S. Its largest empty disc SD(x)

contains a subset U � U of one or more points of U on its boundary.

If SD(x) does not contain �, then the inversive image C := ��(SD(x)) is a disc in T not

containing any point of W . The points in ��(U) do lie on the boundary of C, and so C is the

largest empty disc D(y) of some point y 2 T (note that in general y 6= ��(x)). It follows that x is

a vertex of SV(U) if and only if y is a vertex of V(W), and x lies on an edge of SV(U) if and only

if y lies on an edge of V(W).

If SD(x) contains � in its interior, then the inversive image ��(SD(x)) is the complement of

an open disc C in T , where C contains all the points of W . Again the points in ��(U) lie on the

boundary of C, and so C is the smallest enclosing disc Df(y) of some point y 2 T . It follows that

x is a vertex of SV(U) if and only if y is a vertex of Vf(W), and x lies on an edge of SV(U) if and

only if y lies on an edge of Vf(W).
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Figure 3: Illustration of the relation between a face f of convex hull of U and the planar Voronoi

diagrams of W = ��(U).

This observation, which precedes the well-known lifting transformation mapping the plane to

a paraboloid, allowed Brown to compute the Voronoi diagram of a set of n points in the plane in

time O(n logn). He transformed the points to the sphere by stereographic projection, computed

their convex hull, and identi�ed the facets pointing away from the origin.

We will go in the opposite direction. We wish to compute the spherical Voronoi diagram of a

set of sites on the sphere. Reviving and generalizing Brown's results, we transform the spherical

problem into a planar one, obtaining the spherical Voronoi diagram by piecing together two planar

ones.
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Note that while there is certainly again a relationship with the 3-dimensional convex hull of

the sites, this does not appear to help us solve the problem, as little work has been done on the

computation of convex hulls of curved objects in space.

4 Spherical and planar Voronoi diagrams

In the following, we assume again a set U of n sites on S, and let W := ��(U) be its inversive

image on the plane T . Generalizing Brown's result, we will show that part of SV(U) is isomorphic

to V(W), while the other part is isomorphic to Vf(W).

The partition of SV(U) into two parts can be obtained by cutting the sphere S with a closed

curve, which we obtain as follows. Let

ZS(�;U) = fx 2 S j d(x; �) 6 dn(x; u) for all u 2 Ug:

So ZS(�;U) is in fact the Voronoi region of �, if � was added to the set U as a point site.

We now partition the sphere S into three disjoint regions:

R+� := extZS(�;U) = fx 2 S j � 2 ext SD(x)g;

R-� := intZS(�;U) = fx 2 S j � 2 intSD(x)g;

R� := @ZS(�;U) = fx 2 S j � 2 @SD(x)g:

The region R-� is star-shaped from �, and so R� is a closed Jordan curve separating R+� and R-� .

We now de�ne two functions as follows:

�� : R+� 7! T ��(x) := y 2 T such that D(y) = ��(SD(x))

 � : R-� 7! T  �(x) := y 2 T such that extDf(y) = int ��(SD(x))

Figs. 4 and 5 illustrate the two de�nitions. Note that both functions depend on the set U .
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Figure 4: The de�nition of ��.

Lemma 3 The functions �� and  � are well-de�ned, bijective, and bicontinuous.

Proof. Let x 2 R+� . Then the inversive image ��(SD(x)) is a closed disc whose interior does not

intersectW , and so there is a unique point y 2 T with D(y) = ��(SD(x)). On the other hand, for

any point y 2 T , the inversive image ��(D(y)) is an empty spherical disc not containing � and so

there is x 2 R+� with ��(SD(x)) = D(y). It follows that �� is a bijective function. Bicontinuity

follows from the continuity of dn(�; w).

Let now x 2 R-� . Then the inversive image ��(SD(x)) is the exterior of an open disc, and so

there is y 2 T with extDf(y) = int ��(SD(x)). For any y 2 T , the inversive image ��(extDf(y)) is
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a spherical disc containing � in its interior, and so there is x 2 R-� with int ��(SD(x)) = extDf(y).

So  � is bijective, and bicontinuity follows from the continuity of dn(�; u) and df(�; w).

Lemma 4 Let x 2 R+� and u 2 U . Then u intersects @SD(x) if and only if ��(u) intersects

@D(��(x)).

Let x 2 R-� and u 2 U . Then u intersects @SD(x) if and only if ��(u) intersects @Df( �(x)).

Proof. Let x 2 R+� . We have

@D(��(x)) \ ��(u) = ��(@SD(x)) \ ��(u) = ��(@SD(x) \ u):

For x 2 R-� we have

@Df( �(x)) \ ��(u) = ��(@SD(x)) \ ��(u) = ��(@SD(x) \ u):

The lemma follows.

Corollary 1 A point x 2 R+� is a vertex, lies on an edge, or lies in a cell of SV(U) if and only if

��(x) is a vertex, lies on an edge, or lies in a cell of V(W).

A point x 2 R-� is a vertex, lies on an edge, or lies in a cell of SV(U) if and only if  �(x) is a

vertex, lies on an edge, or lies in a cell of Vf(W).

In other words, the part of SV(U) lying in R+� is the continuous image of V(W), while the part

of SV(U) lying in R-� is the continuous image of Vf(W).

To summarize, the spherical Voronoi diagram SV(U) is partitioned by the curve R�. The

two regions R+� and R-� can be identi�ed with the plane T , and the parts of SV(U) in the two

regions are homeomorphic to V(W) and Vf(W). The curve R� itself corresponds to the \points

at in�nity" in both planes. We study the intersection of SV(U) with R� in a bit more detail.

Lemma 5 An edge of SV(U) intersects R� in at most two points. It follows that the intersection

of SV(U) with R� is a set of O(n) isolated points, where n = jU j.

Proof. Assume there were three points x1, x2, x3, all in R�, and all on the same edge of SV(U)

separating the Voronoi regions of u; u 0 2 U . Consider the empty discs SD(xi), i = 1; 2; 3. We

have o 2
T
i SD(xi), and

�
int

S
i SD(xi)

�
\ (u [ u 0) = ;. On the other hand, there are points

ui 2 u\@SD(xi) and u
0
i 2 u

0\@SD(xi), for i = 1; 2; 3. We can now construct a planar embedding

of the complete bipartite graph K3;3: The nodes on one side are x1; x2; x3, the nodes on the other

side are o, u, u 0. Graph edges are the segments xio, xiui, and xiu
0
i. Since K3;3 is not planar, we
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obtain a contradiction proving the lemma.

This leads to the following procedure to compute SV(U): Compute the inversive image W of

U , and the planar Voronoi diagrams V(W) and Vf(W). Map these diagrams back to the sphere

using �-1� and  -1� , and identify the O(n) endpoints of edges in both diagrams lying on R�

(these are the \endpoints at in�nity" of the semi-in�nite edges of the two planar diagrams). Sort

these endpoints along R�, and merge identical ones from the two parts of the diagram, resulting

in SV(U).

The only problem with this approach is that it assumes that we know how to compute Vf(W).

While nearest-site Voronoi diagrams in the plane have been studied in much detail, this is not

true for furthest-site diagrams. In the next section we therefore give a method to compute SV(U)

using only nearest-site planar diagrams.

5 Two inversions suÆce

We will compute the spherical Voronoi diagram of a set of n sites U on S, assuming that we have

a suitable algorithm A for computing planar Voronoi diagrams. We will not consider the meaning

of \suitable" here in more detail|it depends on the nature of the sites U . If, for instance, U is a

set of circular arcs on S, then A needs to be able to compute the planar Voronoi diagram of a set

of circular arcs in the plane.

We have seen in the previous section that the portion of SV(U) lying inR-� corresponds directly

to the planar Voronoi diagram V(��(U)). To compute SV(U), we still need to �ll in the part of

SV(U) lying inR-� . Our key idea is to apply a second inversion, using a di�erent inversion center.

Lemma 6 Let U be a set of n > 3 sites on S, and let W := ��(U) be its inversive image on T .

There is a point � 2 S not in any site of U , such that ��(�) lies in the interior of the convex

hull of W . We have

clR-� � R+� :

Proof. Since n > 3, there must be a point q 2 T in the interior of the convex hull of W not

contained in any site of W . Let � := ��(q).

Consider now a point x 2 clR-� = R-� [ R�. Then � 2 SD(x), and so the inversive image

��(SD(x)) is the complement of an open circle or open half-plane containingW . Since q = ��(�) is

contained in the interior of the convex hull ofW , ��(�) 62 ��(SD(x)), and so � 62 SD(x). Therefore

x 2 R+� .

We will use a second inversion �� with inversion center �, where � is as in Lemma 6. It maps

the sphere S to the plane T 0 tangent to S in the antipode of �. Let W 0 be the inversive image of

U under ��, and let � 0 := ��(�).

Lemma 7 The function �� is de�ned for all points in clR-� , and we have

��(clR
-

� ) = ZT 0(� 0;W 0):

Proof. By Lemma 6 we have clR-� � R+� and so �� is de�ned for all points in clR-� . Let now

x 2 R+� . We have ��(SD(x)) = D(��(x)) (this is an empty disc on T 0), and so the following
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statements are all equivalent:

� 2 SD(x)

� 0 = ��(�) 2 ��(SD(x)) = D(��(x))

��(x) 2 ZT 0(� 0;W 0);

which proves the lemma.

Lemma 8 The portion of SV(U) contained in R-� is homeomorphic to the portion of V(W 0)

contained in ZT 0(� 0;W 0).

Proof. By Lemma 6, R-� is contained in R+� . The portion of SV(U) contained in R+� is home-

omorphic under �� to V(W 0) in T 0 by Cor. 1. By Lemma 7, �� maps R-� to ZT 0(� 0;W 0), so

the portion of SV(U) contained in R-� is homeomorphic to the portion of V(W 0) contained in

ZT 0(� 0;W 0).

We now give our algorithm to compute the spherical Voronoi diagram SV(U) of a set of n > 3

sites U . We �rst choose a point � 2 S such that it does not lie in any site. We compute the inversive

image W := ��(U) of U , apply a planar Voronoi diagram algorithm, and obtain V(W). We now

pick a point q in the interior of the convex hull of W and not in any site of W . Let � := ��(q) be

its inversive image, and let �� be the inversion with inversion center �. Let W 0 := ��(U) be the

inversive image of U . We apply again a planar Voronoi diagram algorithm to compute V(W 0) (a

Voronoi diagram on T 0). We identify the portion of V(W 0) lying in ZT 0(��(�);W
0). This can be

done by traversing the diagram and testing the distance of each vertex or edge to ��(�).

Finally, we map V(W) and the portion of V(W 0) to S through �-1� and �-1� . We identify the

O(n) endpoints on R�. These are the \endpoints at in�nity" of V(W), and the points of V(W 0)

lying on the boundary of ZT 0(��(�);W
0). We sort these endpoints along R�, and merge identical

ones, resulting in SV(U).

Theorem 1 Given an algorithm A to compute the Euclidean Voronoi diagram of a set of sites in

the plane, we can compute the Voronoi diagram of a set of n sites on the sphere by two applications

ofA to sets of n transformed sites, andO(n logn) extra computation involving primitive operations

on sites.

Using Fortune's [10] or Alt and Schwarzkopf's [1] algorithm for the Voronoi diagram of circular

arcs in the plane, we have the following corollary.

Corollary 2 The spherical Voronoi diagram of n circular arcs (not necessarily geodesic) on the

sphere can be computed in O(n logn) time.

6 Computing the furthest-site Voronoi diagram

By Lemma 2 the spherical furthest-site Voronoi diagram of a set of sites is nothing else but the

nearest-site Voronoi diagram of the sites' antipodes. We now show, a little surprising, that a planar

furthest-site Voronoi diagram can also be obtained using an algorithm for nearest-site diagrams.

Given a set W of n sites in the plane T , let S be tangent to T , and � the inversion center

that maps T to S and vice versa. We pick a point q in the interior of the convex hull of W but

not in any site. Let U := ��(W) be the inversive image of W , let � := ��(q) be the inversive
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image of q, let �� be the inversion with inversion center �, and let W 0 := ��(U) = ��(��(W)). By

Lemma 4, Vf(W) is homeomorphic under  � to the portion of SV(U) contained in R-� . On the

other hand, this portion of SV(U) is homeomorphic under �� to the portion of V(W 0) contained

in ZT 0(��(�);W
0).

We can therefore compute Vf(W) by computingW 0 through two inversions, computing V(W 0),

identifying the portion contained in ZT 0(��(�);W
0), and mapping this portion back to T through

�-1� and  �.

Theorem 2 Given an algorithm A to compute the Euclidean Voronoi diagram of a set of sites

in the plane, we can compute the furthest-point Voronoi diagram of a set of n sites in the plane

by one application of A on a set of n transformed sites, and O(n) extra computation involving

primitive operations on sites.

Again we formulate a speci�c result for circular arcs.

Corollary 3 The furthest-site Voronoi diagram of n circular arcs in the plane can be computed

in O(n logn) time.
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