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We consider coupled spin and heat transport in a two-component atomic Bose gas in the noncondensed

state. We find that the transport coefficients show a temperature dependence reflecting the bosonic

enhancement of scattering and discuss experimental signatures of the spin-heat coupling in spin

accumulation, spin separation, and total dissipation. Close to the critical temperature for Bose-Einstein

condensation, we find that the spin-heat coupling is strongly reduced, which is also reflected in the spin

caloritronics figure of merit that determines the thermodynamic efficiency of spin-heat conversion.
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The Seebeck and Peltier effects are thermoelectric phe-
nomena that are well understood for ordinary conductors.
Besides being theoretically interesting, these effects have
many commercial applications ranging from wine coolers
to thermoelectric generators. Recent developments in spin-
tronics have led to the nascent field of spin caloritronics [1]
that introduces a spin-dependent generalization of these
phenomena. In solid-state systems, the spin-Seebeck and
spin-dependent Seebeck effects have recently been mea-
sured [2,3], while their theoretical explanations are still
under active debate [4].

Cold-atom systems provide a perfectly clean environ-
ment to study spin caloritronics, without many of the
factors that can make the interpretation of solid-state ex-
periments difficult. In addition, cold atoms are advanta-
geous in the study of spin and spin-resolved heat transport
because one can experimentally realize systems where spin
is conserved, apply different temperatures for different
atomic species, and measure their distribution functions
separately. While equilibrium properties of these systems
have been thoroughly studied, recent research has started
to focus on nonequilibrium behavior such as spin dynamics
[5], heat transport [6], and spin drag [7,8]. The spin drag
relaxation rate has been measured in Fermi gases [8], and
experiments to measure the spin drag conductivity in Bose
gases have recently been performed [9]. However, the
concomitant thermospin phenomena remain largely
unexplored.

In this Letter, we study the coupling of spin and heat
transport in a cold atomic Bose mixture of two spin species
and calculate the spin and heat transport coefficients in the
noncondensed state. In particular, we show that the bosonic
nature of the particles leads to qualitatively different tem-
perature dependence of these coefficients as compared to
electronic systems. Furthermore, we introduce a spin cal-
oritronic figure of merit for this system called ‘‘ZsT,’’
analogous to the ‘‘ZT’’ figure of merit that determines
the efficiency of devices based on the usual solid-state
thermoelectric effect. We compute the temperature depen-
dence of ZsT and find a downturn on approach to the

critical temperature of Bose-Einstein condensation. Our
theoretical results also have implications for thermospin
phenomena in other systems where the transport is medi-
ated by degenerate bosons, such as a quasiequilibrium
magnon gas [10].
We begin by considering a cold boson system above the

critical temperature Tc of Bose-Einstein condensation,
composed of two different spin states selected from a
larger integer-spin multiplet, which we will label ‘‘spin-
up’’ ( " ) and ‘‘spin-down’’ ( # ). We apply forces and
temperature gradients which are equal and opposite for
the two spin species, i.e., F" ¼ �F# and rT" ¼ �rT#
[11]. In response to the ‘‘spin force’’ and ‘‘spin temperature
gradients’’ defined by Fs � F" � F# and rTs �
rT" � rT#, there will be a spin current and spin-heat

current, js ¼ j" � j# and qs ¼ q" � q#, respectively. We

define the linear-response coefficients by (shown schemati-
cally in Fig. 1) :

js

qs

 !
¼ �s �sSs

�sPs �0
s

 !
Fs

�rTs

 !
: (1)

FIG. 1 (color online). Schematic illustration of the coupled
spin and heat transport. Spin-dependent forces or temperature
gradients, labeled by F";#, rT";#, generate both spin and spin-heat

currents proportional to the coefficients �s and Ps in the former
and �s and Ss in the latter case, as illustrated in the figure.
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In the above, �s is the spin conductivity, �
0
s is the spin-heat

conductivity at zero Fs, and Ss and Ps are the spin-Seebeck
and spin-Peltier coefficients, respectively, which are re-
lated by the Onsager reciprocity principle, Ps ¼ SsT, T
being the temperature. Although we have written the re-
sponse matrix in a form analogous to the thermoelectric
coefficients defined in metals, here the microscopic mecha-
nisms for the coupling between spin and heat flows are
different from those in metals because there are no disorder
and lattice phonons in the Bose gas. The spin-heat coupling
studied here is akin to the thermodiffusion effect in multi-
component classical gases [12]. The spin conductivity is, to
the leading order, determined by the viscosity between up
and down atoms that arises from interspin scattering,
which is called spin drag. In contrast, the spin-heat con-
ductivity, which has dependence on intraspin scattering, is
finite even in the absence of interspin scattering.

Using the Boltzmann equation for a two-component
Bose gas, we have computed �s, �

0
s, and Ss as a function

of n�3, with n the equilibrium particle density per spin
state that is assumed to be equal for both spin species and

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�@2=mkBT

p
the thermal de Broglie wavelength,

where m is the particle mass, @ is the Planck’s constant,
and kB the Boltzmann constant. The results are shown in
Figs. 2 (inset) and 3. The order of magnitude of the
Seebeck coefficient is Ss ��0:01kB ��1 �eV=K, com-
parable to what is found in ferromagnetic materials [3].
Notable is the sharp decrease of all transport coefficients as
one approaches the critical value n�3 ’ 2:61. This effect is
due to bosonic enhancement of scattering into occupied
states, which dramatically increases as one approaches the

critical temperature Tc ¼ 2�@2=mkB�
2
c, where �c ’

ð2:61=nÞ1=3. This effect is illustrated in Fig. 4, where
we plot the effective relative momentum distribution frel,

defined so that the interspin collision rate is given by
1=�inter ¼ �inter

R
p2
rdprvrfrelðprÞ=ð2�@Þ3, where �inter ¼

4�a2 is the interspin scattering cross section and vr the
relative velocity. As shown in the figure, this distribution
increases sharply as one approaches the critical tempera-
ture. This is in contrast to spin drag in degenerate Fermi
gases, where due to Pauli blocking, below the Fermi tem-
perature the spin conductivity increases as the temperature
is lowered [13].
Next we outline the calculation of the transport

coefficients. We start with the two-component, static
Boltzmann equation for the semiclassical distribution
function np�ðrÞ under spin-dependent external forces f�,

ðvp � rþ f� � rpÞnp� ¼ Cp�½n"; n#�; (2)

where vp ¼ p=m is the particle velocity, � ¼"; # the

(pseudo)spin of the two-component Bose gas, and the
collision integrals C� are given by

Cp1�½n"; n#� ¼ �
Z dp2

ð2�@Þ3 jvp1
� vp2

j
Z

d�0
r

X
�¼";#

d���

d�0
r

� ½n1�n2�ð1þ n3�Þð1þ n4�Þ
� n3�n4�ð1þ n1�Þð1þ n2�Þ�: (3)

The collision integral describes the 2-body elastic scatter-
ing of particles labeled by ðp1�;p2�Þ ! ðp3�;p4�Þ, and
�0 is the solid angle between ingoing and outgoing relative
momenta pr ¼ ðp1 � p2Þ=2 and p0

r ¼ ðp3 � p4Þ=2, re-
spectively. We take the interspin differential cross section
to be d�"#=d�inter ¼ a2, where a is the scattering length,

and take the intraspin terms to be d�""=d� ¼ d�##=d� ¼
2a2 on account of Bose statistics [14]. We parametrize the
nonequilibrium, steady state distribution by

np�ðrÞ ¼ fp�ðrÞ � @�f
0
p�p�ðrÞ; (4)

FIG. 2 (color online). Spin diffusivity [normalized by ðh=mÞ�
ð�2=a2Þ] as a function of the degeneracy parameter n�3.
Inset: A plot of the spin conductivity �s relative to the classical

value (left axes) �ðclÞ
s ¼ ð3=64 ffiffiffi

2
p

�Þð�=a2@Þ and a plot of the
spin-heat conductivity at zero spin current, �s, normalized by
k2BT�=a2@ (right axis).

FIG. 3 (color online). Spin-Seebeck coefficient in units of kB
(right axis) and the dimensionless figure of merit ZsT (left axis).
The plots here are outside the critical region, where the absolute
magnitude of both coefficients decreases with temperature on the
approach to the critical point (note that the values of Ss are
negative).
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where f0p ¼ ðexp½ð�p ��Þ=kBT� � 1Þ�1 is the equilib-

rium Bose distribution, � is the chemical potential,
fp�ðr; tÞ ¼ ðexp½�p ���ðrÞ=kBT�ðrÞ� � 1Þ�1 is the local

equilibrium distribution, @�f
0
p ¼ �f0pð1þ f0pÞ=kBT, and

�p� describes the response to the spatial inhomogeneities

in fp� and contains all dissipative effects. This parametri-

zation represents an expansion in the ratio of the mean-free
path to spatial gradients [15].

Linearizing the Boltzmann equationswith respect to�p�

and gradients in fp�ðrÞ, we find that, for our choice of

scattering lengths, the equation for the spin distribution
n" � n# decouples from the equation for the total distribu-

tion n" þ n#. We consider the linear response of the spin

distribution to spin forces fs, gradients in the spin chemical
potential �s, and spin temperature Ts independently from
the response to the average forces; i.e., we consider the spin-
dependent forces f� ¼ �fs=2 and rT� ¼ �rTs=2. The
linearized drift terms in the left-hand side of Eq. (2) are
proportional to rTs and r�s, but they are not independent
thermodynamic forces because the chemical potential has
dependence on the density and temperature, �� ¼
��ðn�; T�Þ. We therefore transform the drift terms using
theGibbs-Duhem relation, d�s ¼ �sdTs þ ð1=nÞdps, and
the thermodynamic identity w ¼ �þ Ts, where s is the
equilibrium entropy per particle, w is the enthalpy per
particle, ps ¼ p" � p# is the spin pressure, and we consider
the response to the total thermodynamic force Fs ¼ fs �
rps=n and rTs. Writing the linear-response solution as

�ps � �FðpÞ � Fs þ kB�TðpÞ � ð�rTsÞ; (5)

the linearized collision integral in the spin equation can be
written as Cpsð�sÞ � Cpð�FÞ � Fs þ Cpð�TÞ � ð�rTsÞ.
The linearized Boltzmann equation for the spin distribution
requires that �F;�T satisfy

@�f
0
pvp ¼ Cpð�FÞ; @�f

0
p

�
�p �w

kBT

�
vp ¼ Cpð�TÞ: (6)

Using the solution to Eq. (6), the spin and spin-heat
currents are given by

j s ¼ �
Z d3p

ð2�@Þ3 @�f
0
pvp�ps

qs ¼ �
Z d3p

ð2�@Þ3 @�f
0
pð�p � wÞvp�ps:

(7)

To solve Eq. (6), we expand the solutions in a power series,
�F ¼ P

n¼0anð�; TÞð�p=kBTÞnp, �T ¼ P
n¼0bnð�; TÞ�

ð�p=kBTÞnp, and take moments of the Boltzmann equation

by multiplying Eq. (6) by ð�p=kBTÞnp and integrating over

p, resulting in a series of equations of an; bn, which we
truncate and solve at the second order. The transport co-
efficients are readily expressed in terms of the expansion
coefficients and the temperature dependence was com-
puted numerically. The Bose enhancement of the spin
drag rate in the absence of spin-heat currents, calculated
in Refs. [16,17], was computed using the leading-order
solution which describes local Bose distributions for the
spin-up and -down particles rigidly shifted apart, resulting
in a spin current. The second-order solution which we have
determined here represents a distortion of the local Bose
distribution and is necessary to capture coupled spin and
heat flows [18].
We note that �s, which determines the spin current

driven by external forces, is related to the spin diffusivity
Ds, which determines the spin current driven by diffusive
forces induced by spin density gradients via js ¼
�Dsrns, where ns ¼ n" � n# is the spin density. This

diffusive current tends to return the system to homogene-
ous equilibrium and must satisfy the Einstein relation,
Ds ¼ �s=�s, where �s ¼ @ns=@�s is the static spin sus-
ceptibility and �s ¼ �" ��# is the spin accumulation.

We plot the spin diffusivity in Fig. 2 using the noninteract-
ing spin susceptibility. The diffusivity also determines the
spin density gradient induced by a spin temperature gra-
dient in the absence of a spin current. For example, for a
typical density of n ¼ 1012 cm�3 at a temperature of T ¼
1:5 �K (n�3 ¼ 2:41), we find jrns=rTsj ¼ �sSs �
1011 �K�1 cm�3. For a typical temperature gradient of
10 �K=cm and for a cloud size of 1 mm [6], we find a
spin density accumulation of 	ns ¼ 1011 cm�3 , which
gives a sizable experimental signal of a 	ns=n ¼ 10%.
Similarly, the heat current driven by rTs tends to reduce

unequal distributions of energy between spin-up and -down
particles. The total dissipation is given by

T@tS ¼ �s

2
F2
s þ �0

s

2T
ðrTsÞ2 þ �sSsFs � rTs; (8)

where S is the total (spin-summed) entropy. It is thus
possible to measure �0

s and Ss by measuring the heating.
Furthermore, the last term, analogous to Thompson
heating, is sensitive to the relative signs of Fs and rTs,

FIG. 4 (color online). A plot of an effective relative momen-
tum occupation, frelðprelÞ, for three values of the parameter n�3.
The figure clearly shows a sharp increase in frel as one ap-
proaches the critical temperature. The Feynman diagram indi-
cates that the interspin scattering rate is increased by the Bose
enhancement factors, ð1þ f0"Þð1þ f0#Þ, for the outgoing states.
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and allows one to clearly distinguish experimentally the
heating contribution coming from the spin-Seebeck cou-
pling. It is important to note that typically experiments are
done in the presence of a trapping potential, which intro-
duces spatial dependence in the transport coefficients. The
measured values of the transport coefficients should be
compared with the trap-averaged values, which differ
slightly from the results presented here, but may readily
be computed using the Boltzmann formalism. We also note
that a spin-dependent temperature gradient can only be
established when the intraspin scattering is much stronger
than interspin scattering. This can be realized in practice by
tuning the spin-dependent scattering lengths using
Feshbach resonances.

It is also possible to separate the spin-up and -down atom
clouds in an atomic trap by the application of a spin tem-
perature gradient rTs. This results effectively in a spin-
dependent force which can be estimated as F";# � �SsrTs,

which must balance the restoring force from the trapping
potential, resulting in a separation in the center of mass to
the atomic clouds by a distance of xs ’ SsrTs=m!2, where
! is the trapping frequency. For an estimate, we take
m ¼ 1:66� 10�27 kg and ! ¼ 2� Hz and find xs’1mm,
which is within experimental resolution.

For ordinary conductors, one defines a dimensionless
figure of merit ZT ¼ �S2T=�, with � the conductivity, �
the heat conductivity in the absence of current, and S the
thermoelectric Seebeck coefficient, which determines the
efficiency of engines based on thermoelectric effects [19].
Analogously, we define ZsT ¼ �sS

2
sT=�s, where �s ¼

�0
s � �sS

2
sT is the spin-heat conductivity at zero spin

current, which is plotted in the inset of Fig. 2 [20]. We
plot ZsT as a function of n�3 in Fig. 3 and observe an
initial decrease as one approaches Bose-Einstein conden-
sation. The quantity ZsT measures the ratio between the
magnitude of the spin-heat coupling and total dissipation;
thus, the downturn observed occurs because the spin-heat
coupling decreases faster than the total dissipation as one
approaches Bose-Einstein condensation.

Our results based on the semiclassical Boltzmann equa-
tion are valid outside the critical region of Bose-Einstein
condensation. It is known from the theory of dynamical
critical phenomena that transport coefficients show anoma-
lous scaling behavior in the critical region [21] which is
small but experimentally accessible [22]. To capture the
critical fluctuations at the phase transition, one can use the
Kubo formula to compute the transport coefficients using

the Hamiltonian density H ¼ P
�c

y
�½� @

2

2mr2 �
��c � þ 1

2

P
��T��c

y
�c

y
�c �c �, where c � are the bo-

sonic field operators and the strength of the contact inter-
action is given by the two-body T-matrix element:
T�� ¼ 4�@2a��=m. The calculation for the spin
conductivity, neglecting the vertex corrections in the
Kubo formula, was done in Ref. [23], where it was
found that the conductivity scales approximately as

�sd � 
� ðT � TcÞ��, where 
 is the correlation length
and � � 0:67 [22]. The same approximation applied to the
spin-heat transport coefficients would result in an enhance-
ment in the figure of merit which scale as ZsT � 
.
However, whether vertex corrections will significantly
change this scaling behavior remains an open question,
and warrants further study.
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