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1 Introduction

Dimensional reduction plays an important role in the study of many aspects of supergravity

and string theory. Usually the reduction is performed in the context of supersymmetric

on-shell field configurations. For theories with a large number of supercharges this is

unavoidable, as off-shell representations are usually not available. For theories based on

off-shell representations there has been little effort so far to define a suitable dimensional

reduction scheme, because the extra auxiliary fields contained in the off-shell configuration

can be ignored upon solving their corresponding (algebraic) field equations. However, in

the presence of higher-derivative couplings, these field equations are no longer algebraic. In

their on-shell form these couplings will therefore take the form of an iterative expansion in

increasing powers of space-time derivatives, which obscures the structure of the underlying

off-shell invariants.

Dimensional reduction of off-shell configurations is based on a corresponding reduction

of the off-shell supersymmetry algebra. It can therefore be performed systematically on

separate multiplets. To accomplish this one maps a supermultiplet in higher dimension on

a corresponding, not necessarily irreducible, supermultiplet in lower dimension, possibly

in a certain supergravity background. When considering the supersymmetry algebra in

the context of a lower-dimensional space-time, the dimension of the automorphism group
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of the algebra (the R-symmetry group) usually increases, and this has to be taken into

account when casting the resulting supermultiplet in its standard form. The fact that irre-

ducible multiplets in higher dimension can become reducible in lower dimensions, further

complicates the reduction procedure.

In this paper we study the off-shell dimensional reduction of 5D N = 1 superconformal

multiplets to the corresponding N = 2 superconformal multiplets in four dimensions. On-

shell dimensional reduction of these theories has been considered in the past for a variety

of reasons, but mainly in the context of actions that are at most quadratic in space-time

derivatives. For some earlier work we refer to [1–4]. We choose the superconformal setting

because this enables us to work in the context of the superconformal multiplet calculus,

which has been developed in both four and five dimensions.1 It may seem that conformal

invariance will be an impediment to dimensional reduction, because conformal symmetry

depends strongly on the actual space-time dimension. However, it turns out that this is

not problematic at all, because the conformal transformations are formulated in a way

that is independent on the four- or five-dimensional space-time manifold (which is subject

to general diffeomorphisms) whereas the scale transformations and conformal boosts are

defined in the tangent space. We will not elaborate on this aspect in further detail as it

will be rather explicit in the construction that we are about to present. The construc-

tion is somewhat facilitated by the fact that the spinor dimension is the same in five and

in four dimensions: in four dimensions we are dealing with a doublet of four-component

independent Majorana spinors, and in five dimensions we have a four-component spinor,

which can be treated either as a Dirac spinor or as a symplectic Majorana spinor. Both

these spinors share a common SU(2) factor in the R-symmetry group. We will exhibit in

detail how the additional U(1) factor will emerge in four dimensions. Here we recall that

in conformal supergravity, R-symmetry is realized as a local symmetry.

The whole reduction scheme is subtle, especially in view of the fact that the 5D Weyl

multiplet decomposes into a 4D Weyl multiplet and an additional vector multiplet. In

spite of this, both in five and in four dimensions, the matter multiplets are defined in

a superconformal background consisting only of the 5D or the 4D Weyl multiplet fields,

respectively. To fully establish this fact requires to also consider the transformation rules

beyond the linearized approximation. As an aside we mention that a corresponding re-

duction from four to three dimensions will involve a further extension of the R-symmetry

group. Namely, SU(2)×U(1) will then be elevated to the group SU(2)× SU(2).

The central result of this paper will be to express the 5D off-shell fields in terms of

the 4D ones. We then verify that the 5D supersymmetric actions with terms quadratic in

derivatives will yield the 4D ones, at least for the bosonic fields. Subsequently we consider

the 5D action with terms quartic in derivatives [6] and evaluate a number of characteris-

1In [5], off-shell dimensional reduction in 6D was used to determine the superconformal transformations

in 5D.
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tic terms in the reduction to four dimensions to properly identify the 4D invariants that

emerge. As it turns out the result decomposes into at least three different invariants with

higher derivatives. One of them is the invariant based on a chiral superspace integral (the

so-called ‘F-term’) [7, 8], another one the invariant based on a full superspace integral

(the so-called ‘D-term’) [9], and finally a (not necessarily irreducible) invariant emerges

that involves the square of the Ricci tensor, which could in principle appear as an N = 2

supercovariantization of the Gauss-Bonnet term.

These results enable us to address a number of issues that arose from previous work on

spinning BPS black holes in five dimensions and their possible relation to four-dimensional

black holes [10–13]. In this discussion the invariants with higher-derivative couplings play

a major role. Using a simplified model we find further support for the results presented

in [13] and explain the subtle issues for spinning black holes associated with the mixed

gauge-gravitational Chern-Simons term.

This paper is organized as follows. Section 2 presents the off-shell reduction to four

space-time dimensions of the five-dimensional Weyl multiplet, and section 3 presents the

corresponding results for the vector multiplet and the hypermultiplet. Section 4 takes into

account the conversion of 5D symplectic Majorana spinors to the 4D chiral spinor to obtain

the explicit relations between 4D and 5D fields. Subsequently these results are applied to

supersymmetric actions, leading to the precise decomposition of the 5D Lagrangians into

4D supersymmetric Lagrangians. Section 5 addresses the situation regarding BPS black

holes, where differences were noted in the attractor equations for the electric charges in the

presence of higher-derivative couplings. There are three appendices. Appendix A discusses

the relation between 5D and 4D Riemann curvatures, the conversion of 5D spinors to 4D

chiral spinors is presented in appendix B, and some 4D supersymmetry transformations

are collected in appendix C.

2 Off-shell dimensional reduction; the Weyl multiplet

Starting from the superconformal transformations for 5D supermultiplets we will reduce

the space-time dimension to 4D and reinterpret the results in terms of the known super-

conformal transformations in 4D dimensions. The first multiplet to consider is the Weyl

multiplet, because it acts as a background for other supermultiplets, such as the vector mul-

tiplet and the hypermultiplet. A second reason why the Weyl multiplet deserves priority,

is that it becomes reducible upon the reduction, unlike the other (matter) supermultiplets.

The Weyl multiplet in D = 5 comprises 32 + 32 bosonic and fermionic degrees of freedom,

which, in the reduction to D = 4 dimensions decomposes into the Weyl multiplet compris-

ing 24+24 degrees of freedom, and a vector multiplet comprising 8+8 degrees of freedom.

As we shall see, this decomposition takes a subtle form off-shell.

The independent fields of the Weyl multiplet of five-dimensional N = 1 conformal

supergravity consist of the fünfbein eM
A, the gravitino fields ψM

i, the dilatational gauge
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field bM , the R-symmetry gauge fields VMi
j (which is an anti-hermitean, traceless matrix

in the SU(2) indices i, j) and a tensor field TAB, a scalar field D and a spinor field χi. All

spinor fields are symplectic Majorana spinors. Our conventions are as in [13] apart from

the supersymmetry parameters ǫi which have been rescaled by a factor of two to bring the

normalization of the 5D supersymmetry algebra in line with the 4D algebra. The three

gauge fields ωM
AB, fM

A and φM
i, associated with local Lorentz transformations, confor-

mal boosts and S-supersymmetry, respectively, are not independent as will be discussed

later. The infinitesimal Q, S and K transformations of the independent fields, parametrized

by spinors ǫi and ηi and a vector ΛK
A, respectively, are as follows,2

δeM
A = ǭiγ

AψM
i ,

δψM
i =2DM ǫ

i +
1

2
iTAB(3 γ

ABγM − γMγ
AB)ǫi − iγMη

i ,

δVMi
j =6iǭiφM

j − 16ǭiγMχ
j − 3iη̄iψM

j + δij

[

− 3iǭkφM
k + 8ǭkγMχ

k +
3

2
iη̄kψM

k

]

,

δbM = iǭiφM
i − 4ǭiγMχ

i +
1

2
iη̄iψM

i + 2ΛK
AeMA ,

δTAB =
4

3
iǭiγABχ

i − 1

4
iǭiRAB

i(Q) ,

δχi =
1

2
ǫiD +

1

64
RMNj

i(V )γMN ǫj +
3

64
i(3 γAB /D + /DγAB)TAB ǫ

i

− 3

16
TABTCDγ

ABCDǫi +
3

16
TABγ

ABηi ,

δD =2ǭi /Dχ
i − 2iǭiTABγ

ABχi − iη̄iχ
i . (2.1)

Under local scale transformations the various fields and transformation parameters trans-

form as indicated in table 1. The derivatives DM are covariant with respect to all the

bosonic gauge symmetries with the exception of the conformal boosts. In particular we note

DM ǫ
i =

(

∂M − 1

4
ωM

CD γCD +
1

2
bM

)

ǫi +
1

2
VMj

i ǫj , (2.2)

where the gauge fields transform under their respective gauge transformations according

to δωM
AB = DMλ

AB, δbM = DMΛD and δVMi
j = DMΛi

j , with (Λi
j)∗ ≡ Λij = −Λj

i. The

derivatives DM are covariant with respect to all the superconformal symmetries.

The above supersymmetry variations and also the conventional constraints that we

have to deal with in due time, depend on a number of supercovariant curvature tensors,

which take the following form,

R(P )MN
A =2D[MeN ]

A − 1

2
ψ̄Miγ

AψN
i ,

R(M)MN
AB =2 ∂[MωN ]

AB − 2ω[M
ACωN ]C

B − 8 e[M
[AfN ]

B] + iψ̄[Miγ
ABφN ]

i

2In five dimensions we consistently use world indices M,N, . . . and tangent space indices A,B, . . .. For

fields that do not carry such indices the distinction between 5D and 4D fields may not always be manifest,

but it will be specified in the text whenever necessary.
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Weyl multiplet parameters

field eM
A ψM

i bM VM i
j TAB χi D ωM

AB fM
A φM

i ǫi ηi

w −1 −1
2 0 0 1 3

2 2 0 1 1
2 −1

2
1
2

Table 1. Weyl weights w of the Weyl multiplet component fields and the supersymmetry transfor-

mation parameters.

− 1

4
iTCD ψ̄[Mi

(

6γ[AγCDγ
B] − γABγCD − γCDγ

AB
)

ψN ]
i

− 1

2
ψ̄[Mi(γN ]R

ABi(Q) + 2 γ[ARN ]
B]i(Q)) + 8 e[M

[A ψ̄N ]iγ
B]χi ,

R(D)MN =2 ∂[MbN ] − 4 f[M
AeN ]A − iψ̄[MiφN ]

i + 4 ψ̄[MiγN ]χ
i .

R(V )MNi
j =2 ∂[MVN ]i

j − V[Mi
kVN ]k

j

− 6i ψ̄[MiφN ]
j + 16ψ̄[MiγN ]χ

j + δi
j
[

3i ψ̄[MkφN ]
k − 8ψ̄[MkγN ]χ

k
]

,

R(Q)MN
i =2D[MψN ]

i − 2i γ[MφN ]
i +

1

2
iTAB

(

3 γABγ[M − γ[Mγ
AB

)

ψN ]
i . (2.3)

The curvature tensor RMN
A(K) associated with the conformal boosts has not been defined

and is not needed henceforth. The curvature tensor RMN
i(S) will be discussed shortly.

The conventional constraints are as follows,

R(P )MN
A =0 ,

γMR(Q)MN
i =0 ,

eA
M R(M)MN

AB =0 . (2.4)

These conditions determine the gauge fields ωM
AB, fM

A and φM
i. The conventional con-

straints lead to additional constraints on the curvatures when combined with the Bianchi

identities. In this way one derives R(M)[ABC]D = 0 = R(D)AB and the pair-exchange

property R(M)ABCD = R(M)CDAB from the first and the third constraint. The second

constraint, which implies also that γ[MNR(Q)PQ]
i = 0, determines the curvature R(S)MN

i,

which we refrained from defining previously. It turns out to be proportional to R(Q)MN
i

and derivatives thereof,

R(S)MN
i = − i /DR(Q)MN

i − iγ[MD
PR(Q)N ]P

i − 4 γMNT
PQR(Q)PQ

i

+ 18TPQγQγ[MR(Q)N ]P
i − 5TPQγPQR(Q)MN

i − 12TP [MR(Q)N ]P
i . (2.5)

The reduction to four space-time dimensions is effected by first carrying out the stan-

dard Kaluza-Klein decompositions on the various fields, to guarantee that the resulting 4D

fields will transform consistently under four-dimensional diffeomorphisms. The space-time

coordinates are decomposed into xM → (xµ, x5), where x5 denotes the fifth coordinate that

will be suppressed in the reduction. Subsequently the vielbein field and the dilatational
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gauge field are then written in special form, by means of an appropriate local Lorentz

transformation and a conformal boost, respectively. In obvious notation,

eM
A =







eµ
a Bµφ

−1

0 φ−1






, eA

M =







ea
µ −eaνBν

0 φ






, bM =







bµ

0






. (2.6)

On the right-hand side of these decompositions, we exclusively used four-dimensional nota-

tion, with world and tangent-space indices, µ, ν, . . . and a, b, . . ., taking four values. Observe

that the scaling weights for eM
A and eµ

a are equal to w = −1, while for φ we have w = 1.

The fields bM and bµ have weight w = 0. The above formulae suffice to express the 5D

Riemann curvature tensor in terms of the 4D Riemann tensor and the fields φ and Bµ.

The corresponding equations are collected in appendix A and will be needed later on.

We now turn to the supersymmetry transformations. Since we have imposed gauge

choices on the vielbein field and the dilatational gauge field, one has to include compensat-

ing Lorentz and special conformal transformations when deriving the 4D Q-supersymmetry

transformations to ensure that the gauge conditions are preserved. Only the parameter of

the Lorentz transformation is relevant, and it is given by,

εa5 = −ε5a = −φ ǭiγaψi , (2.7)

where we assumed the standard Kaluza-Klein decomposition on the gravitino fields,

ψM
i =







ψµ
i +Bµψ

i

ψi






, (2.8)

which ensures that ψµ
i on the right-hand side transforms as a 4D vector. Upon including

this extra term, one can write down the Q- and S-supersymmetry transformations on the

4D fields defined above. As a result of this, the 4D and 5D supersymmetry transformation

will be different. For instance, the supersymmetry transformations of the 4D fields eµ
a, φ

and Bµ read,

δeµ
a = ǭiγ

aψµ
i ,

δφ = − φ2 ǭiγ
5ψi ,

δBµ =φ2 ǭiγµψ
i + φ ǭiγ

5ψµ
i , (2.9)

where the first term in δBµ originates from the compensating transformation (2.7). Conse-

quently the supercovariant field strength of Bµ contains a term that is not contained in the

supercovariant five-dimensional curvature R(P )MN
A. Therefore the 5D spin-connection

components are not supercovariant with respect to 4D supersymmetry, as is shown below,

ωM
ab =







ωµ
ab

0






+

1

2
φ−2F̂ (B)ab







Bµ

1






,
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ωM
a5 = − 1

2







φ−1F̂ (B)µ
a + φ ψ̄µiγ

aψi

0






− φ−2Daφ







Bµ

1






. (2.10)

Here we introduced the supercovariant field strength and derivative (with respect to 4D

supersymmetry),

F̂ (B)µν =2 ∂[µBν] − φ2 ψ̄[µiγν]ψ
i − 1

2
φ ψ̄µiψν

i ,

Dµφ =(∂µ − bµ)φ+
1

2
φ2 ψ̄µiγ5ψ

i . (2.11)

Subsequently we write down corresponding Kaluza-Klein decompositions for some of

the other fields of the Weyl multiplet, which do not require special gauge choices,

VMi
j =







Vµi
j +BµVi

j

Vi
j






, φM

i =







φµ
i +Bµφ

i

φi






TAB =







Tab

Ta5 ≡ −1
6Aa






. (2.12)

For the fermions there is yet no need to introduce new notation, because the spinors have

an equal number of components in five and four space-time dimensions. Eventually we will

convert to standard four-dimensional chiral spinors.

Hence we are now ready to consider the supersymmetry transformations of the spinor

fields originating from the 5D gravitino fields. Up to possible higher-order spinor terms,

one derives from (2.1),

δψi = − 1

2
φ−2

[

F̂ (B)ab − iγ5φ(3Tab −
1

4
iφ−1F̂ (B)abγ5)

]

γabǫi

+ φ−2
[

/Dφγ5 − i /Aφ
]

ǫi − V i
jǫ
j

− iγ5φ
−1

[

ηi +
1

3
/Aγ5ǫ

i +
1

8
iγ5φ

−1(F (B)ab − 4iφTabγ5)γ
abǫi

]

,

δψµ
i =2

(

∂µ −
1

4
ωµ

abγab +
1

2
bµ +

1

2
ieµ

aAaγ5

)

ǫi + Vµj
iǫj

+
1

2
i

[

3Tab −
1

4
iφ−1F̂ (B)abγ5

]

γabγµǫ
i

− iγµ

[

ηi +
1

3
/Aγ5ǫ

i +
1

8
iγ5φ

−1(F̂ (B)ab − 4iφTabγ5)γ
abǫi

]

. (2.13)

Although this result is not yet complete, it already exhibits some of the systematic fea-

tures that will turn out to be universal. Therefore let us have a brief perusal of these initial

results.

The fields whose transformations we have determined will belong to two 4D supermul-

tiplets, namely the Weyl and the Kaluza-Klein vector multiplet. Clearly, the fields eµ
a and

ψµ
i belong to the Weyl multiplet, whereas φ, Bµ and ψi belong to the vector multiplet.

Their transformations shown in (2.9) and (2.13) have many features in common with the
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standard 4D transformations of a Weyl and a vector multiplet. An obvious puzzle is the

fact that we have identified only one real scalar, whereas the D = 4 vector multiplet con-

tains a complex scalar. Furthermore, we note that the field Aa seems to play the role of a

U(1) gauge field, because it appears to covariantize the derivatives on φ and ǫi in (2.13),

in spite of the fact that it is actually an auxiliary field in D = 5. As we shall see in due

course, the resolution of these two problems is related.

Another observation is that a particular linear combination of the 5D tensor com-

ponents Tab and the supercovariant field strength F̂ (B)ab appears in the transforma-

tions (2.13) in precisely the same form as the 4D auxiliary tensor Tab, suggesting that

the latter is not just proportional to the corresponding 5D tensor field components. The

same combination will also appear in other transformation rules, as we shall see in, for in-

stance, section 3. Finally, S-supersymmetry transformations are accompanied by another

universal combination of Tab and F̂ (B)ab. Obviously such a field-dependent component in

the S-supersymmetry transformation can be dropped provided that it appears universally

for all other fields, as it can be absorbed into ηi.

As it turns out this pattern becomes more complicated when including terms of higher

order in the fermions. Apart from new contributions to the expressions noted above, it

turns out that also R-symmetry will appear on the right-hand side with parameters that

involve the spinors ψi. Again this R-symmetry transformation acts universally on all the

fields. Hence the conclusion is that the 5D supersymmetries decompose under the reduc-

tion into the 4D supersymmetries up to 4D field-dependents S-supersymmetries and SU(2)

R-symmetries. This property explains why only a careful analysis can reveal how the off-

shell supermultiplets reduce to lower dimension, as precise knowledge of this decomposition

is required before one can reliably extract the 4D transformations. These transformations

will then subsequently identify the 4D fields in terms of the 5D ones (up to straightfor-

ward calibrations). After verifying that the decomposition is universally realized these

extra symmetries with field-dependent coefficients can be dropped.

However, there is yet another surprise, as we will discover the presence of a chiral

U(1) transformation in the supersymmetry variations with a universal coefficient. Since

chiral U(1) does not constitute a symmetry of the 5D theory, the contribution from this

transformation cannot be dropped and should be kept until the end. We will discuss its

fate in due time. Obviously these transformations will play a crucial role in extending the

R-symmetry to SU(2)×U(1).

Summarizing, we intend to first establish that the dimensional reduction of the 5D su-

persymmetry variations, according to the procedure sketched above, takes the form of the

4D supersymmetry variations combined with a field-dependent S-supersymmetry transfor-

mation, a field-dependent SU(2) R-symmetry transformation, and a field-dependent U(1)

chiral transformation,

δQ(ǫ)
∣

∣

reduced

5D
Φ = δQ(ǫ)

∣

∣

4D
Φ+ δS(η̃)

∣

∣

4D
Φ+ δSU(2)(Λ̃)

∣

∣

4D
Φ+ δU(1)(Λ̃

0)
∣

∣

4D
Φ . (2.14)
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To give a meaning to the right-hand side one has to identify fields Φ that transform covari-

antly in the 4D setting, so that all transformations in the above decomposition are clearly

defined. The identification of these fields is done iteratively. Here one has to realize that

the 5D transformations for the Weyl multiplet are defined in a background consisting of the

5D Weyl multiplet, whereas the 4D transformations of the matter multiplets are defined

in the 4D background. But the field-dependent parameters in (2.14) are not restricted and

still depend on a variety of the 5D Weyl multiplet fields. These parameters, η̃i, Λ̃ and Λ̃0,

are defined as follows (consistent with the lowest-order contributions that we have already

exhibited in (2.13)),

η̃i =
1

3
/Aγ5ǫi +

1

8
iγ5φ−1(F̂ (B)ab − 4iφTabγ5)γ

abǫi

+
1

4
iφ2

(

ψ̄jγ
5ψi γ5 − ψ̄jψ

i + ψ̄jγ
aψi γa +

1

2
ψ̄kγ

5γaψk γ5γa δj
i

)

ǫj ,

Λ̃i
j =φ

(

ǭkγ
5ψl εilε

jk − 1

2
ǭkγ

5ψk δi
j

)

,

Λ̃0 = iφ ǭiψ
i . (2.15)

Let us briefly discuss the non-linear corrections to (2.13), whose contributions were

already included in (2.15). They originate from three sources, namely the compensating

Lorentz transformation (2.7), the non-supercovariant term in the spin connection ωµ
a5,

and the non-linearity in the definition of the 4D gravitini ψµ
i in terms of the 5D fields

(c.f. (2.8)). Concentrating on variations that explicitly contain ψµ
i, one easily notes that

they no longer satisfy the standard supercovariance properties (which are manifest in four

and five dimensions). In principle it is possible to absorb some of the unwanted terms

in some of the bosonic fields appearing on the right-hand side of (2.13) or in the field-

dependent S-transformations. The only fields, however, that can accommodate terms pro-

portional to the bare (i.e. not contained in covariant objects) gravitini, are the R-symmetry

gauge fields Vµi
j . However, in that case the supersymmetry variation of these gauge fields

will acquire terms proportional to derivatives on the supersymmetry parameter ǫi, which

can only be interpreted as an extra field-dependent SU(2) R-symmetry transformations, as

is already indicated in (2.14). However, there are also higher-order variations proportional

to ψi, so the situation becomes considerably more involved. In deciding how to deal with

all these terms, some guidance can be obtained from reducing, at the same time, the matter

multiplets. But for the sake of clarity, we prefer not to mix the presentation of the Weyl

multiplet reduction with the presentation of the reduction of the matter multiplets. The

latter will therefore be postponed to section 3. At this point we will simply take note this

extra evidence and restrict our discussion here to the Weyl multiplet reduction.
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The result of the reduction motivates the following redefinitions of the various fields,

Âµ =Aa eµ
a − 1

2
iφ ψ̄jψµ

j − 1

4
iφ2 ψ̄jγ

5γµψ
j ,

T̂ab =24Tab + iφ−1 εabcd F̂ (B)cd − iφ2ψ̄iγabψ
i ,

V̂j
i =φ2

(

Vj
i − 3

2
φ ψ̄j γ

5ψi
)

,

V̂µj
i =Vµj

i − φ

(

ψ̄µjγ
5ψi − 1

2
δj
i ψ̄µkγ

5ψk
)

− 1

2
φ2 ψ̄jγµψ

i . (2.16)

These are the linear combinations that emerge in the 4D supersymmetry transformations.

Their S-supersymmetry transformations turn out to be relevant and we note the follow-

ing result,

δÂµ =
1

2
ψ̄µjγ

5ηj ,

δT̂ab =0 ,

δV̂j
i =0 ,

δV̂µj
i = − 2i

(

ψ̄µj η
i − 1

2
δj
i ψ̄µk η

k

)

. (2.17)

In particular, note that the factor in the variation of V̂µi
j has now changed as compared

to the factor that appears in the corresponding 5D S-variation given in (2.1). Further-

more, note that Âµ is not supercovariant; its Q-supersymmetry variation contains a term

proportional to the derivative of the supersymmetry parameter. Eventually Âµ will be

related to a gauge field associated with the 4D U(1) R-symmetry. This is consistent with

the fact that Âµ transforms into the gravitino fields under S-supersymmetry, in agreement

with 4D results.

With these notational changes we repeat the Q-supersymmetry transformations of (2.9)

and (2.13), including also the higher-order contributions. First we consider those associated

with the Kaluza-Klein vector multiplet,

δφ = − φ2 ǭiγ
5ψi ,

δBµ =φ2 ǭiγµψ
i + φ ǭiγ

5ψµ
i ,

δ
(

φ2ψi
)

= − 1

2

[

F̂ (B)ab −
1

8
iγ5φ T̂ab

]

γabǫi

−
[

(∂µ − bµ)φ γ
5 +

1

2
φ2(ψ̄µjγ

5ψj γ5 + ψ̄µjψ
j) + iφ Âµ

]

γµǫi

+ V̂j
iǫj − 1

2
iΛ̃0φ2γ5ψi − iφγ5ηi , (2.18)

where here and henceforth we suppress the S-supersymmetry and R-symmetry transforma-

tions proportional to the field-dependent parameters η̃i and Λ̃i
j . However, we did include
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the U(1) transformation with parameter Λ̃0, just as in the next formula. Apart from some

minor details, these variations show the same structure as the 4D transformation rules of

vector multiplet, except that we have been unable to identify the second scalar field. The

field V̂j
i is obviously related to the auxiliary field of this vector multiplet.

The Q-supersymmetry transformations of the Weyl multiplet fields are as follows,

δeµ
a = ǭiγ

aψµ
i ,

δψµ
i =2

(

∂µ −
1

4
ωµ

abγab +
1

2
bµ +

1

2
iÂµγ5

)

ǫi + V̂µj
iǫj

+
1

16
iT̂abγ

abγµǫ
i − 1

2
iΛ̃0 γ5ψµ

i − iγµη
i , (2.19)

Also in this case the variations show a close resemblance to the 4D transformation rules of

the 4D Weyl multiplet fields, with V̂µj
i playing the role of the SU(2) gauge fields. In both

the above results Âµ seems to play the role of the U(1) chiral gauge field, and T̂ab is the

4D tensor field.

We now return to the issue of the missing spinless field in the Kaluza-Klein vector

multiplet. The crucial observation is that the expressions obtained so far are consistent

with the assumption that we are dealing with a gauge-fixed version of the theory. So we

simply have to introduce a phase for the vector multiplet scalar which transforms locally

under U(1) transformations. This is achieved by introducing the following R-covariant

spinors, transforming under local SU(2)×U(1) R-symmetry transformations,

ǫi|Rcov = exp

[

− 1

2
iϕγ5

]

ǫi ,

ηi|Rcov = exp

[

1

2
iϕγ5

]

ηi ,

ψµ
i|Rcov = exp

[

− 1

2
iϕγ5

]

ψµ
i ,

ψi|Rcov = exp

[

− 1

2
iϕγ5

]

ψi (2.20)

and assume that the phase factor ϕ transforms under supersymmetry and under a new

local U(1) group according to

δϕ = Λ0 − iφ ǭiψ
i , (2.21)

where Λ0 is now an arbitrary space-time dependent function. Imposing a U(1) gauge choice

ϕ = 0 then generates a compensating U(1) component in the Q-variations, so that these

terms re-emerge in the supersymmetry transformations for the fermions. The R-covariant

spinors are not yet converted to the standard chiral 4D spinors, but possess already all the

necessary features

The variations (2.18) can now be rewritten in terms of R-covariant spinors. Here and

henceforth we will suppress the superscript Rcov. Furthermore we employ chiral spinors

– 11 –



J
H
E
P
0
3
(
2
0
1
2
)
0
6
1

defined by γ5ψ± = ±ψ±. The result takes the form,

δ
(

e∓iϕ φ
)

= ∓ 2φ2 ǭiψ
i
± ,

δBµ = ǭi
[

γµ φ
2ψi− + φ eiϕψµ

i
+

]

+ ǭi
[

γµ φ
2ψi+ − φ e−iϕ ψµ

i
−

]

,

δ
(

φ2ψi±
)

= − 1

2

[

F̂ (B)ab ∓
1

8
iφ T̂ab

]

γabǫi±

∓ /̂D(φ e∓iϕ) ǫi∓ + V̂j
iǫj± ∓ iφ e∓iϕηi± , (2.22)

where D̂µ(φ e
∓iϕ) is a supercovariant and U(1) covariant derivative, defined by

D̂µ(φ e
∓iϕ) = (∂µ − bµ)(φ e

∓iϕ)± φ2ψ̄µiψ
i
± ± iAµ(φ e

∓iϕ) . (2.23)

Here the U(1) connection equals

Aµ = Âµ + ∂µϕ . (2.24)

Hence the R-symmetry group has now been extended to SU(2) × U(1). Observe that

Aµ transforms covariantly under supersymmetry. The definition (2.24) can be written in

supercovariant form,

D̂µϕ = −6Ta5 eµ
a +

1

4
φ2ψ̄iγ

5γµψ
i . (2.25)

The same manipulations can be applied to the fields of the Weyl multiplet, and

we give the result for the vielbein and gravitino fields, the latter again written with R-

covariant spinors,

δeµ
a = ǭiγ

aψµ
i
+ + ǭiγ

aψµ
i
− ,

δψµ
i
± =2

(

∂µ −
1

4
ωµ

abγab +
1

2
bµ ±

1

2
iAµ

)

ǫi± + V̂µj
iǫj±

+
1

16
ie∓iϕT̂abγ

abγµǫ
i
∓ − iγµη

i
∓ , (2.26)

Apart from different spinor conventions and normalizations the supersymmetry varia-

tions take the same form as the corresponding ones in four dimensions. There is a subtlety,

which is that the 4D tensor field can be split in selfdual and anti-selfdual components and

should be identified with e±iϕ T̂ab
±, where the superscript ± on the tensor indicates its

duality phase. After this identification the correspondence between the U(1) and the chi-

rality/duality assignments is precisely as in the four-dimensional theory. The Kaluza-Klein

multiplet transforms as a proper vector supermultiplet in a 4D superconformal background.

Its auxiliary field V̂i
j is indeed an SU(2) vector. As a check we have verified that its trans-

formations take the form expected from the 4D transformation.

For the Weyl multiplet, we established that the vielbein and the gravitino transforma-

tions are also in line with the 4D transformations. We have already obtained the correct

expressions of the R-symmetry gauge fields. The transformations of these fields will lead to
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rather complicated expressions that include also the constrained gauge fields. However, the

constraints have a different form in four and in five dimensions which is related to certain

field redefinitions, and this must be taken into account when comparing. As we have men-

tioned above, we have already identified the 4D auxiliary tensor field, and likewise we can

deduce the expressions for the 5D fields χi and D from the explicit variations in terms of

the 4D fields. The corresponding formulae will be presented in (4.5). Some of these results

are convenient when comparing 4D and 5D actions related by dimensional reduction.

The final result of this section is that the off-shell dimensional reduction of 5D multi-

plets in a superconformal background can be carried out systematically. The transforma-

tions originating from the 5D multiplets are identical to those in 4D up to field-dependent

S-supersymmetry and R-symmetry transformations. This makes the actual identification

of the proper 4D fields non-trivial. The resulting 4D theory can understood as a gauge-

fixed version of the standard theory. The gauge-fixing is related to the extra R-symmetry

that arises in lower dimensions. Both these features are generic.

3 Off-shell dimensional reduction; matter multiplets

In this section we repeat the same analysis as in the previous section, but now applied to

the vector multiplet and the hypermultiplet. We refrain from presenting similar results for

tensor multiplets. They can be derived by the same method, or, alternatively, they can be

found by considering a composite tensor multiplet constructed from the square of a vector

multiplet.

In five space-time dimensions the vector supermultiplet consists of a real scalar σ, a

gauge field Wµ, a triplet of (auxiliary) fields Y ij , and a fermion field Ωi. Under Q- and

S-supersymmetry these fields transform as follows,

δσ = iǭiΩ
i ,

δΩi = − 1

2
(F̂AB − 4σTAB)γ

ABǫi − i /Dσǫi − 2εjk Y
ijǫk + σ ηi ,

δWM = ǭiγMΩi − iσ ǭiψM
i ,

δY ij = εk(i ǭk /DΩj) + 2iεk(i ǭk

(

− 1

4
TABγ

ABΩj) + 4σχj)
)

− 1

2
iεk(i η̄kΩ

j) . (3.1)

where (Y ij)∗ ≡ Yij = εikεjlY
kl, and the supercovariant field strength is defined as,

F̂MN (W ) = 2 ∂[MWN ] − Ω̄iγ[MψN ]
i +

1

2
iσ ψ̄[MiψN ]

i . (3.2)

The fields behave under local scale transformations according to the weights shown in

table 2.

The reduction proceeds in the same way as before, except that we have now the ad-

vantage that we have already identified some of the 4D fields belonging to the 4D Weyl
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vector multiplet hypermultiplet

field σ Wµ Ωi Yij Ai
α ζα

w 1 0 3
2 2 3

2 2

Table 2. Weyl weights w of the vector multiplet and the hypermultiplet component fields in five

space-time dimensions.

multiplet. We decompose the 5D gauge field WM into a four-dimensional gauge field Wµ

and a scalar W = W5 by using the standard Kaluza-Klein ansatz, and write the Q- and

S-transformation rules, including the compensating Lorentz transformation (2.7). Just as

in (2.20) we introduce an R-covariant spinor field field Ωi by

(Ωi − φ2W ψi)
∣

∣

Rcov
= exp

[

− 1

2
iϕγ5

]

(Ωi − φ2W ψi) , (3.3)

which transforms under U(1). In terms of the R-covariant spinor fields, we derive the

following transformation rules,

δ
[

e∓iϕ(σ ± iφW )
]

=2iǭi
(

Ωi − φ2W ψi
)

±
,

δWµ = ǭi
[

γµ(Ω
i − φ2W ψi)− − i(σ − iφW )eiϕψµ

i
+

]

+ ǭi
[

γµ(Ω
i − φ2W ψi)+ − i(σ + iφW )e−iϕψµ

i
−

]

,

δ
(

Ωi − φ2W ψi
)

±
= − 1

2

[

F̂ (W )ab −
1

8
(σ ∓ iφW ) T̂ab

]

γabǫi±

− i /̂D
[

(σ ± iφW )e∓iϕ
]

ǫi∓ − 2Ŷ ikεkj ǫ
j
±

+ (σ ± iφW )e∓iϕ ηi± , (3.4)

where Ŷ ij is defined by

Ŷ ij = Y ij +
1

2
W V̂k

i εjk +
1

2
φ

(

Ω̄kγ
5 − 1

2
iσφ ψ̄k

)

ψ(i εj)k . (3.5)

Note that in (3.4), we have again suppressed the field-dependent S-supersymmetry and

SU(2) R-symmetry transformations.

Hypermultiplets are associated with target spaces of dimension 4r that are hyperkähler

cones [14]. The supersymmetry transformations are most conveniently written in terms of

the sections Ai
α(φ), where α = 1, 2, . . . , 2r,

δAi
α =2i ǭiζ

α ,

δζα = − i /DAi
αǫi +

3

2
Ai

αηi . (3.6)

The Ai
α are the local sections of an Sp(r) × Sp(1) bundle. We also note the existence of

a covariantly constant skew-symmetric tensor Ωαβ (and its complex conjugate Ωαβ satis-

fying ΩαγΩ
βγ = −δαβ), and the symplectic Majorana condition for the spinors reads as
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vector multiplet hypermultiplet

field X Wµ Ωi Y ij Ai
α ζα

w 1 0 3
2 2 1 3

2

c −1 0 −1
2 0 0 −1

2

γ5 + −

Table 3. Weyl and chiral weights (w and c) and fermion chirality (γ5) of the vector multiplet and

the hypermultiplet component fields in four space-time dimensions.

C−1ζ̄α
T = Ωαβ ζ

β . Covariant derivatives contain the Sp(r) connection ΓA
α
β , associated

with rotations of the fermions. The sections Ai
α are pseudo-real, i.e. they are subject to

the constraint, Ai
αεijΩαβ = Ajβ ≡ (Aj

β)∗. The information on the target-space metric

is contained in the so-called hyperkähler potential. For our purpose the geometry of the

hyperkähler cone is not relevant. Hence we assume that the cone is flat, so that the target-

space connections and curvatures will vanish. The extension to non-trivial hyperkähler

cone geometries is straightforward.

For the local scale transformations we refer again to the weights shown in table 2. The

hypermultiplet is not realized as an off-shell supermultiplet. Closure of the superconformal

transformations is only realized upon using fermionic field equations, but this fact does

not represent a serious problem in what follows. The 4D fields have, however, different

Weyl weights as is shown in table 3. This has been taken into account in the reduction, by

scaling Ai
α by a factor φ−1/2, as can be seen below. Furthermore we define an R-covariant

spinor combination,

(

φ−1/2ζα − 1

2
φ1/2Aj

αγ5ψj
)

∣

∣

Rcov
= exp

[

1

2
iϕγ5

]

(φ−1/2ζα − 1

2
φ1/2Aj

αγ5ψj) . (3.7)

The 5D Q- and S-supersymmetry variations take the following form, again in terms of

R-covariant chiral spinors,

δ(φ−1/2Ai
α) = 2i ǭi

(

φ−1/2ζα − 1

2
iφ1/2Aj

αγ5ψj
)

+

+ 2i ǭi

(

φ−1/2ζα − 1

2
iφ1/2Aj

αγ5ψj
)

−

,

δ

(

φ−1/2ζα − 1

2
iφ1/2Aj

αγ5ψj
)

±

= − i /̂D(φ−1/2Ai
α) ǫi∓ + φ−1/2Ai

αηi± , (3.8)

where, as before, we suppressed the S-supersymmetry and R-symmetry transformations

with field-dependent parameters as specified by (2.15). Note that the proportionality fac-

tor in front of the 4D S-supersymmetry variation has changed as compared to the 5D

result (3.6).
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4 Five and four-dimensional fields and invariant Lagrangians

After expressing the 5D spinors into chiral 4D spinors according to the procedure explained

in appendix B, we can identify the 4D fields in terms of the 5D ones. Note that for matter

fields the overall normalization of the components is only determined up to a real constant.

For the vector multiplet we choose the normalization such that the vector gauge field

remains the same. This has the advantage that we can easily compare the corresponding

charges in four and five dimensions. Phase factors can be changed according to the chiral

U(1) transformations which constitute an invariance of the theory, but they should be

applied uniformly. Our four-dimensional transformations coincide with those given in [9].

For the convenience of the reader we have also included a summary in appendix C.

We thus express the 4D fields in terms of the 5D fields and the field ϕ for each multi-

plet separately. First we present the Kaluza-Klein and the matter vector multiplets, then

the hypermultiplet, and finally we turn to the Weyl multiplet.

The Kaluza-Klein vector multiplet:

X0 = − 1

2
φ e−iϕ ,

Ωi
0 = − εij φ

2 e−
1

2
iϕ ψj+ , Ωi 0 = iφ2 e

1

2
iϕ ψi− ,

Wµ
0 =Bµ ,

Y ij 0 = V̂k
i εjk , (4.1)

The matter vector multiplet:

X = − 1

2
i(σ + iφW ) e−iϕ ,

Ωi = − εij e
− 1

2
iϕ(Ωj − φ2Wψj)+ , Ωi = ie

1

2
iϕ (Ωi − φ2Wψi)− ,

Wµ =Wµ ,

Y ij = − 2 Ŷ ij , (4.2)

The hypermultiplet:

Ai
α =φ−1/2Ai

α ,

ζα =e−
1

2
iϕ

(

φ−1/2ζα − 1

2
φ1/2Aj

αγ5ψj
)

−

,

ζα = − iΩαβ e
1

2
iϕ

(

φ−1/2ζβ − 1

2
φ1/2Aj

βγ5ψj
)

+

. (4.3)

The Weyl multiplet:

eµ
a = eµ

a ,

ψµ
i =e−

1

2
iϕ ψµ

i
+ , ψµi = iεij e

1

2
iϕ ψµ

j
− ,
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Tab
ij = − 1

2
ie−iϕ T̂−

ab ε
ij ,

Vµij = V̂µj
i , bµ = bµ , Aµ = Âµ + ∂µϕ . (4.4)

The remaining fermion fields of the 5D Weyl multiplet, φM
i and χi, follow from the 5D

Q-supersymmetry transformations of bM and VMi
j . Likewise the remaining fermions of

the 4D Weyl multiplet, φµ
i and χi, follow from the Q-supersymmetry variations of bµ or

Vµji, and Aµ. To disentangle the two sets of fermion fields one makes use of the conven-

tional constraints. The relevant 5D constraint was given in (2.4) and the corresponding 4D

constraints are given in (C.3). The same comment applies to the composite gauge fields

fM
A and fµ

a corresponding to the 5D and 4D conformal boosts, respectively. Finally one

determines the scalar field D from considering the variation of the field χi. We summarize

some of the relevant results below, suppressing terms of higher order in the fermion fields,

fa
a|4D = fa

a|5D − 1

2
D|4D − 1

16
φ−2 F (B)abF (B)ab ,

φµ
i
∣

∣

4D
=2iφµ

i
∣

∣

5D
+ 4γµχ

i +

(

eaµ −
3

8
γµγ

a

)

γ5Daψ
i +

3

32
F (B)ab

(

γµγab − 2 γabγµ
)

ψi ,

− 3

8
iφT abγ5

(

γµγab − 2 γabγµ
)

ψi − 3

8
iφTa5

(

10 eµ
a − γaγµ

)

ψi

− 1

2

(

/Dφ γµ +
3

2
γµ /Dφ

)

γ5ψi − 1

4
φ2V ijγµψj ,

χi
∣

∣

4D
=8χi +

1

48
γabF (B)abψ

i − 3

4
iφTabγ

5γabψi ,

+
1

4
φ−1 γ5 /D(φ2ψi)− 1

2
φ2V ijψj −

9

4
iφTa5γ

aψi ,

D
∣

∣

4D
=4D

∣

∣

5D
+

1

4
φ−1

(

DaDa +
1

6
R

)

φ+
3

32
φ−2 F (B)abF (B)ab

+
3

2
T abTab + 3T a5Ta5 +

1

4
φ2 Vi

j Vj
i , (4.5)

where DaDaφ = (DaDa+
1
6R)φ equals the 4D conformally invariant D’Alembertian with R

the 4D Ricci scalar. One can proceed and rewrite the covariant derivatives on the spinors

in terms of 4D fields, to verify that the supersymmetry variations of the fields above are

indeed identical to the ones in four dimensions, but this is not necessary here. The only

result we will need in the remainder of this section is the last expression for the field D.

Suppressing the higher-order fermionic contributions we now express the 5D bosonic

fields into the 4D ones. We assume that φ is positive so that we are considering compacti-

fication of a space-like coordinate. The 5D components of the metric are already specified

in (2.6). The remaining expressions are,

φ =2 |X0| ,

Bµ =Wµ
0 ,
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VMi
j =

{

Vµi
j =Vµji − 1

4εik Y
kj 0 |X0|−2Wµ

0 ,

V5i
j =−1

4εik Y
kj 0 |X0|−2 ,

σ = − i|X0| (t− t̄) ,

WM =

{

Wµ =Wµ − 1
2(t+ t̄)Wµ

0 ,

W5 =−1
2(t+ t̄) ,

Y ij = − 1

2
Y ij +

1

4
(t+ t̄)Y ij 0 ,

Ta5 =
1

12
i ea

µ

(DµX
0

X0
− DµX̄

0

X̄0

)

,

Tab = − i

24 |X0|
(

εijTab
ij X̄0 − F−

ab
0
)

+ h.c. , (4.6)

where DµX
0 = (∂µ − bµ + iAµ)X

0 and t = X/X0, and all the fields on the right-hand side

refer to 4D fields.

In the remainder of this section we evaluate the reduction of 5D supersymmetric actions

to four dimensions. We concentrate on actions for vector multiplets and for hypermulti-

plets, both at most quadratic in derivatives, and on a third action that contains terms

proportional to the square of the Riemann tensor accompanied by other terms quartic in

derivatives. In four dimensions, four different invariant actions are expected to be gener-

ated, related to the fact that there exist a second class of actions with higher-derivative

couplings associated with the vector multiplets (see, e.g. [9] and references quoted therein).

However, what we will establish below, is that there exists yet another higher-derivative

action that involves terms quadratic in the Ricci tensor. This action has not appeared in

the literature so far.

The 5D bosonic Lagrangian for hypermultiplets reads

8πLhyper = −1

2
E Ωαβ ε

ij

{

DMAi
αDMAj

β −Ai
αAj

β

[

3

16
R+ 2D +

3

4
TABTAB

]}

. (4.7)

Upon reduction to four dimensions, the first term becomes

−1

2
E Ωαβ ε

ij DMAi
αDMAj

β = − 1

2
eΩαβ ε

ij

{

DMAi
αDMAj

β (4.8)

+Ai
αAj

β

[

− 1

2
Dµ[φ−1Dµφ]+

1

4
φ−2[Dµφ]

2− 1

8
φ2 Vk

lVl
k

]}

,

where we suppressed a total derivative. Next we turn to the second term in (4.7). Making

use of (A.3), which relates the 5D and 4D Ricci scalars, and the relation between the 4D

and 5D D-fields, the combination of the two terms readily combines into

8π2 e−1Lhyper = − 1

2
φ−1Ωαβ ε

ij

{

DµAi
αDµAj

β −Ai
αAj

β

(

1

2
D +

1

6
R

)}

, (4.9)
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which agrees with the well-known expression for the supersymmetric 4D Lagrangian [15].

Observe that the Kaluza-Klein vector multiplet decouples from the hypermultiplets, as it

should.

Subsequently we turn to the 5D bosonic Lagrangian for vector multiplets,whose eval-

uation is somewhat more cumbersome,

8π2Lvvv =3E CABC σ
A

[

1

2
DMσ

B DMσC+
1

4
FMN

BFMNC−YijBY ijC − 3σBFMN
CTMN

]

− 1

8
iCABCε

MNPPQRWM
AFNP

BFQR
C

− E CABCσ
AσBσC

[

1

8
R− 4D − 39

2
TABTAB

]

, (4.10)

The first term is rewritten as,

3E CABC σ
A

[

1

2
DMσ

B DMσC+
1

4
FMN

BFMNC−YijBY ijC−3σBFMN
CTMN

]

=

− 3 ie|X0|2CABC(t− t̄)ADµtB Dµt̄
C

+
3

4
ieCABC(t− t̄)A(t− t̄)B(t− t̄)C (Dµ|X0|)2

− 3

2
ieCABC(t− t̄)A(t− t̄)B

(

X̄0Dµt̄C DµX
0 −X0DµtC DµX̄

0
)

− 3

8
ieCABC(t− t̄)A

[

Fab
B F abC−FabB F ab0(t+ t̄)C+

1

4
(Fab

0)2 (t+ t̄)B(t+ t̄)C
]

+
3

8
ieCABC(t− t̄)A

[

Yij
BY ijC − (t+ t̄)BYij

CY ij0 +
1

4
(t+ t̄)B(t+ t̄)C |Yij0|2

]

− 3

16
ieCABC(t− t̄)A(t− t̄)B

[(

Fab
C− 1

2
(t+ t̄)CFab

0

)

(

εijT
abijX̄0−F−ab0

)

−h.c.

]

,

(4.11)

where we employed special coordinates tA = XA/X0. The 5D Chern-Simons term can be

rewritten as follows,

− 1

8
iCABC ε

MNPQRWM
AFNP

BFQR
C =

1

64
iCABC ε

µνρσ
[

12(t+ t̄)AFµν
BFρσ

C

− 6(t+ t̄)A(t+ t̄)BFµν
CFρσ

0 + (t+ t̄)A(t+ t̄)B(t+ t̄)CFµν
0Fρσ

0
]

, (4.12)

and finally the last term is rewritten as,

− E CABCσ
AσBσC

[

1

8
R− 4D − 39

2
TABTAB

]

= −1

2
ieCABC(t− t̄)A(t− t̄)B(t− t̄)C

×
[(

1

6
R−D

)

|X0|2 − 1

16
Yij

0 Y ij0 − |DµX
0|2 + 3

2

(

Dµ|X0|
)2

+
1

32
Fab

0F ab0

+
1

32

[(

εijTab
ijX̄0 − F−

ab
0
)2

+ h.c.
]

]

. (4.13)
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The resulting Lagrangian can be expressed in terms of the following homogeneous and

holomorphic function of degree two [16],

F (X) = −1

2

CABCX
AXBXC

X0
, (4.14)

which encodes the bosonic terms of the Lagrangian according to

e−1Lbosonic = − i
(

DµX
I DµF̄I −DµX̄

I DµF I
)

+ i(XI F̄I − X̄IFI)

(

1

6
R−D

)

+
1

4
i
[

FIJ F
− I
µν F

−µνJ − F̄IJ F
+ I
µν F

+µνJ
]

+

[

1

8
X̄INIJF

−abI Tab
ijεij −

1

64
X̄INIJX̄

J
(

Tµν
ijεij

)2
+ h.c.

]

+NIJ Yij
IY ijJ . (4.15)

where NIJ = −iFIJ + iF̄IJ

Finally, we turn to the reduction of the four-derivative coupling involving the vector

multiplets and the Weyl multiplet, first introduced in [6]. Here, we refrain from giving full

details of the invariants in both five and four dimensions, concentrating on the identifica-

tion of the relevant functions arising under dimensional reduction. We use the conventions

of [13] and concentrate on the following terms,3

8π2 Lvww =
1

4
E cAYij

A TCDRCDk
j(V ) εki

+ E cAσ
A

[

1

64
RCD

EF (M)REF
CD(M) +

1

96
RMNj

i(V )RMN
i
j(V )

]

− 1

128
iεMNPQR cAWM

A

[

RNP
CD(M)RQRCD(M) +

1

3
RNPj

i(V )RQRi
j(V )

]

+
3

16
E cA

(

10σATBC − FBC
A
)

R(M)DE
BC TDE + · · · , (4.16)

where R(M)MN
CD coincides with the 5D Weyl tensor, up to certain additions implied

by supersymmetry. Upon reduction of (4.16) to four dimensions one obtains a 4D su-

persymmetric Lagrangian with higher-derivative couplings. For our purpose, it suffices

to concentrate on the terms that involve the tensors R(M)ab
cd and/or R(V)abij . As it

turns out these terms can be decomposed into three sets that exhibit a mutually different

structure. Subsequently we will try and identify these sets in terms of independent 4D

supersymmetric Lagrangians.

The first set of terms is given by,

8π2 Lvww → − 1

64
icAt

A
[

2R(M)−cdab R(M)−abcd +R(V)−iab j R(V)−abji
]

3Here we use the index A to label the 5D vector multiplets and the indices B,C, . . . to indicate 5D

tangent-space indices.
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− 1

512
iεmnT

abmn (X0)−1cA
(

Y ijA − tAY ij0
)

R(V)−kab j εki

+
1

256
icA (X0)−1εijT

cdij R(M)abcd
(

F−A
ab − tAF−0

ab

)

+ h.c. , (4.17)

which, as we shall see, belongs to a 4D supersymmetric invariant based on a chiral super-

space integral [7, 8]. Here R(M)ab
cd denotes the 4D Weyl tensor.

The second set of terms involves expressions that cannot be readily associated with a

known N = 2 supersymmetric invariant,

8π2 Lvww → − 1

384
icAt

A

[

2

3
RabRab +R(V)+iab j R(V)+abji

]

− 1

768
icA(t

A − t̄A) (X0)−1εijT
cdij R(M)abcd F

−0
ab

+ h.c. . (4.18)

A conspicuous feature of this term is its dependence on the Ricci tensor Rab. It is rather

obvious that this term is not related to a chiral superspace invariant. The same comment

applies to the third set of terms, given by,

8π2 Lvww → 1

384
icAR(V)+abkj εki |X0|−2

[

F+A
ab Y ij0 − F+0

ab Y
ijA + (t− t̄)AF+0

ab Y
ij0

]

+
1

1536
iεmnT abmn (X̄

0)−1cA
(

Y ijA − (2tA − t̄A)Y ij0
)

R(V)+kab j εki

+ h.c. . (4.19)

We have now completely determined the terms that depend on R(V)abij , as well as the
terms in (4.16) that depend explicitly on R(M)ab

cd. However, (4.16) also contains a term

with a double derivative proportional to TAB DCDATBC which can in principle give rise to

additional curvature terms upon reordering derivatives combined with partial integrations.

The evaluation of some of these terms remains therefore a little ambiguous at this stage,

also because the final result may be subject to the similar rearrangements. Nevertheless

the results determined above are sufficient to discuss the structure of the resulting 4D

Lagrangians.

As was mentioned above, the terms (4.17) exhibit an underlying holomorphic structure

that is characteristic for an invariant based on a chiral superspace integral (sometimes

referred to as an ‘F-term’). Such an invariant is well known and it can again be encoded

into a holomorphic function. This function can be included into the function (4.14) by

introducing a dependence on an extra complex field, Â, which is equal to Â = (Tab
ijεij)

2.

In the case at hand, the dependence on Â is linear, but for a general 4D Lagrangian the

function has to be holomorphic and homogeneous of second degree [7, 8]. As it turns out,

the modified function F (X, Â) that correctly encodes the sum of (4.15) and (4.17), equals,

F (X, Â) = −1

2

CABCX
AXBXC

X0
− 1

2048

cAX
A

X0
Â , (4.20)
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where the higher-order derivative Lagrangian encoded in this function reads as [8],

e−1 L = − 4iFÂI T
cdlmεlm

[

2R(M)cd
ab

(

F−I
ab − 1

4
X̄ITab

ijεij

)

− εkiR(V)cdkj Y ijI

]

+ 16iFÂ

[

2R(M)−cdabR(M)−cdab +R(V)−ab kl R(V)−ablk
]

+ · · ·

+ h.c. . (4.21)

Here we only give the terms relevant for the comparison with (4.17).

The interpretation of (4.18) is, however, less clear, as terms of this type have never

been written down explicitly in N = 2 supergravity. Supersymmetric invariants that con-

tain the square of the Ricci tensor have been written down in N = 1 supergravity, often

in the context of a supersymmetrization of the Gauss-Bonnet term [17–20]. The latter is a

topological invariant whose integral is proportional to the Euler characteristic of the corre-

sponding manifold. The emergence of this new supersymmetric coupling in the reduction

from (4.16) constitutes a new result. A brief perusal of the various terms arising in this

reduction shows that it will involve quite a variety of new couplings. It is obviously of

importance to understand the structure of this invariant and its possible implications for

4D black hole entropy, also in view of the recent discussion in [21].

Finally we come to the invariant that contains the terms (4.19). On closer inspection

it turns out the the dimensional reduction of (4.16) involves also terms quartic in the field

strengths. These couplings belong to the class of invariants constructed in [9]. One of these

invariants is indeed quartic in the field strengths and it contains the following characteristic

terms,

e−1L =
1

4
HIJK̄L̄

(

F−
ab
I F−ab J − 1

2
Yij

I Y ijJ

)(

F+
ab
K F+abL − 1

2
Y ijK Yij

L

)

−
{

HIJK̄

(

F−ab I F− J
ab − 1

2
Y I
ij Y

Jij

)(

�cX
K +

1

8
F−K
ab T abklεkl

)

+ h.c.

}

+HIJ̄

[

4

(

�cX̄
I +

1

8
F+ I
ab T abijε

ij

)(

�cX
J +

1

8
F− J
ab T abijεij

)

+ 8DaF
− abI DcF

+c
b
J −DaYij

I DaY ij J

+ 8Rµν DµX
I DνX̄

J

−
[

εik Yij
I

(

F+ab J − 1

4
XJT ablmε

lm

)

R(V)abjk + [h.c.; I ↔ J ]

]]

+ · · · , (4.22)

where H(X, X̄) is a real homogeneous function of degree zero. These invariants, often

called ‘D-terms’, are based on a full superspace integral and they are obviously not en-

coded in terms of holomorphic functions. In this particular case the invariant depends only

on the mixed multiple derivatives of H(X, X̄), so that one is dealing with an underlying
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Kähler equivalence,

H(X, X̄) → H(X, X̄) + Λ(X) + Λ̄(X̄) . (4.23)

which is based on the fact that a chiral superfield vanishes when integrated over the full

superspace. Obviously the mixed derivative HIJ̄ can be regarded as a Kähler metric.

It is now straightforward to show that (4.22) generates the terms in (4.19) provided

that,

H0Ā = − 1

384
icA |X0|−2 ,

H00̄ = − 1

384
icA

(

tA − t̄A
)

|X0|−2 , (4.24)

so that (up to a Kähler transformation),

H(X, X̄) =
1

384
icA

(

tA ln X̄0 − t̄A lnX0
)

. (4.25)

5 The 4D/5D connection and the BPS spinning black hole

In this section we return to some open questions that arose in the calculation of the en-

tropy of spinning BPS black holes based on 5D supersymmetric Lagrangians with higher-

derivative couplings. Since the entropy must be expressed in terms of the charges and the

angular momentum of the black hole, these quantities will have to be determined as well.

The first calculations were carried out in [10, 11], where both the near-horizon attractor

geometry and the field equations leading to the global solution were studied. The main

results were that the reduced 5D field equations were inconsistent with the known 4D

equations, and that the 5D and 4D electric charges differ by a constant shift induced by

the higher-order derivative couplings. Another study was undertaken in [13]. It was aimed

at demonstrating that all the information on charges, angular momentum and entropy can

be obtained from the near-horizon data, and at providing an independent verification of

the results of [10, 11]. As it turns out the results of the two studies did not entirely agree.

The precise results for the electric charges were different in the case of non-zero angular

momentum, and furthermore the expressions for the angular momentum were different.

This could have been interpreted as evidence that the relevant data cannot be determined

from the near-horizon analysis alone. However, this seems unlikely in view of the fact that

the same study in [13] did lead to a full determination of the entropy, electric charges and

angular momenta for BPS black rings, confirming many independent results based on field

theoretic solutions and on microstate counting [22–27].

In both of these studies the results were compared to the corresponding results for

four-dimensional black holes, although it is questionable whether the results should a pri-

ori be the same after straightforward dimensional reduction. Indeed, for black rings it was

noted there are subtle differences between the four- and five-dimensional charges, and the
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electric charges are not additively conserved in five dimensions as a result of the Chern-

Simons terms. It seems likely that the differences between results obtained from theories

that are related by dimensional reduction originate from topological subtleties related to

Chern-Simons terms, which do not carry over to the lower dimension. Calculations of

supergravity solutions are notoriously difficult in the presence of higher-derivative interac-

tions, but the results of the present paper will enable us to confirm once more that this

expectation is indeed correct, as we will demonstrate below in a relatively simple model.

Subsequently we will discuss the topological features related with the Chern-Simons con-

tributions in more detail.

To examine how the results of these calculations based on the 5D supergravity relate

to those based on the 4D supergravity, we consider a simple model action,4

8π2S =

∫

d5x

{

− E

(

1

2
R+

1

4
FMN

2

)

+
ζ

128
εMNPQRWMRNP

ABRQRAB

}

, (5.1)

where ζ is the strength of the higher-derivative mixed gauge-gravitational Chern-Simons

term and FMN = 2 ∂[MWN ].

Let us assume that this theory has an extremal black hole solution, whose near-horizon

geometry is a fibration of AdS2 × S2,

ds2 = υ1
(

− r2dt2 + r−2dr2
)

+ υ2
(

dθ2 + sin2 θ dϕ2
)

+ φ−2(dψ +B)2 ,

B = e0 r dt+ p0 cos θ dϕ ,

W =W 4 + χ(dψ +B) ,

W 4 = e r dt+ p cos θ dϕ , (5.2)

Note that B specifies a value for the Kaluza-Klein gauge field. The gauge field WM , de-

composed according to the standard Kaluza-Klein ansatz with its fifth component denoted

by χ, leads to the field strengths,

Ftr = −(e+ χ e0) , Fθϕ = −(p+ χp0) sin θ . (5.3)

In what follows we further restrict the background by choosing,

p = 0 , υ1 = υ2 = υ2 , (e0)2 + (p0)2 = υ2φ2 . (5.4)

In that case we are more in line with the BPS near-horizon horizon geometry in the full

5D supergravity used in [13], and furthermore the gauge field WM will be globally defined,

which is important for what follows. With these assumptions the line element can then be

written as,

ds2 = − φ−2 ρ4
(

p0 dt− e0

ρ2

(

cos θ dϕ+
1

p0
dψ

))2

+
4 υ2

ρ2

(

dρ2 +
ρ2

4

(

dθ2 + dϕ2 +
1

(p0)2
dψ2 +

2

p0
cos θ dϕ dψ

))

, (5.5)

4Unlike in the other sections we do not use Pauli-Källén conventions, but conventions with signature

(−,+,+,+,+) and ε01234 = −1. This leaves our final results unchanged.
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where we used the definition ρ =
√
r. To make p0 unambiguous we fix the periodicity

interval for ψ to 4π. The second term of the line element then corresponds to a flat

metric, up to an overall warp factor 4 υ2ρ−2. Clearly for |p0| = 1 we cover the whole four-

dimensional space R
4. For |p0| 6= 1 we have a conical singularity at the origin. In all cases

the three-dimensional horizon is located at r = 0 and its cross-sectional area is equal to

A3 =

∫

Σhor

= 16π2υ2φ−1 . (5.6)

The bi-normal εMN that characterizes the null surface at the horizon equals εtr = −εrt =
υ2.

Subsequently we determine the electric charge associated with the gauge field WM ,

q(5) = − 4
(

e+ χe0
)

φ−1 − ζ

128π2
QCS

= − 4
(

e+ χe0
)

φ−1 − 3 ζ

16

p0 (e0)2

[(p0)2 + (e0)2]2
, (5.7)

where we used the expression for the integrated Chern-Simons term on the horizon,

QCS =

∫

Σhor

dθ dϕ dψ
εMN

2 v2
εMNPQR ΓPS

T

(

∂QΓRT
S − 2

3
ΓQT

U ΓRU
S

)

=24π2
p0 (e0)2

[(p0)2 + (e0)2]2
. (5.8)

In what follows this last result will play a crucial role, because the Chern-Simons term

does not transform as a density under diffeomorphisms. This implies that one may obtain

a different answer upon writing the metric in different coordinates. To ensure that the

coordinate singularity at r = 0 is not causing complications, we also evaluated the horizon

area (5.6) and the Chern-Simons charge (5.8) in a regular near-horizon metric by converting

to new coordinates, which gave rise to identical results. Nevertheless, we have also found

examples of different metrics which did indeed give rise to different results for the integrated

Chern-Simons term. For the moment we will proceed, assuming that (5.8) represents the

correct result. At the end of the section we will reconsider this issue from a topological

perspective, which will lend further support to the correctness of the above result.

We also determine the angular momentum, which, according to (5.2), will vanish when

e0 = χ = 0. One first evaluates the Noether potential for diffeomorphisms parametrized in

terms of a vector ξM (the relevant formulae can be obtained from [13]),

8π2QMN (ξ) =∇[MξN ] + FMN WP ξ
P − ζ

64
E−1

[

2 εMNPQRWP RQR
ST ∇SξT

− 2 εPQRS[MFPQRRS
N ]T ξT + εPQRSTFPQRRS

MN ξT

]

, (5.9)

where the Riemann tensor can be written as,

RMN
PQ =− 1

2
φ−2

(

tMN t
PQ + tM

[P tN
Q]

+ 2 δ[M
[P tN ]Rt

Q]R − 1

2
δP[Mδ

Q
N ] tRT t

RT

)

, (5.10)
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with the non-vanishing components of the anti-symmetric tensor tMN given by

ttr = p0 , tθϕ = −e0 sin θ . (5.11)

Subsequently one considers the periodic Killing vector ∂/∂ψ associated with rotations.

In this case we have ξM dxM = φ−2
(

dψ + e0r dt + p0 cos θ dϕ
)

, so that the nonvanishing

derivatives of ξM equal,

∇[tξr] = −1

2
e0 φ−2 , ∇[θξϕ] = −1

2
p0 φ−2 . (5.12)

Substituting the above results into (5.9) and integrating over the horizon leads to the

following expression for the angular momentum,

Jψ ≡
∫

Σhor

εMN QMN (ξψ)

= − 4φ−1

[

χe+

(

χ2 +
1

2
φ−2

)

e0
]

− ζ

16

p0[2 e e0 + 3χ(3 (e0)2 − (p0)2)]

[(e0)2 + (p0)2]2
. (5.13)

We would like to briefly compare these results to the results based on the 4D action

that one obtains upon dimensional reduction of the 5D action (5.1). The corresponding

Lagrangian reads,

2πL = −
√

|g|φ−1

{

1

2
R+

1

8
(φ−2 + 2χ2)F 0

µν
2 +

1

4
Fµν

2 +
1

2
χF 0

µν F
µν

}

+
1

128
ζ εµνρσ

{

χRµν
λτ Rρσλτ + χφ−2Rµν

λτ
[

F 0
ρλ F

0
στ + F 0

ρσ F
0
λτ

]

+
1

4
χφ−4F 0

µν

[

2F 0
ρλ F

0
στF

0λτ + F 0
ρσ F

0
λτ

2
]

+
1

2
χφ−2DλF

0
µν DλF 0

ρσ

+ Fµν

[

φ−2Rρσ
λτ F 0

λτ +
1

4
φ−4

[

F 0
λτ

2F 0
ρσ + 2F 0λτF 0

ρλ F
0
στ

]

]}

, (5.14)

where F 0
µν = 2 ∂[µBν]. Eventually we assume constant values for v, φ and χ, and therefore

we have suppressed above the contributions from space-time derivatives of these fields.

Furthermore, we have absorbed an overall factor of 4π to account for the length of the

interval of the extra 5D coordinate ψ.

The 4D line element follows from (5.5),

ds2 = υ2
(

− r2dt2 + r−2dr2 + dθ2 + sin2 θ dϕ2
)

. (5.15)

Therefore the near-horizon geometry equals AdS2×S2 and the Riemann tensor decomposes

into the Riemann tensors associated with each of the two maximally symmetric factors. In

addition we have the field strengths,

F 0
tr = −e0 , F 0

θϕ = −p0 sin θ , Ftr = −e , Fθϕ = 0 . (5.16)
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Making use of this fact we determine the value of the 4D electric charges associated with

the 4D gauge fields Bµ and Wµ,

q(4) = − 4φ−1
(

e+ χe0
)

− ζ

16

p0
(

5 (e0)2 + 2 (p0)2
)

[(e0)2 + (p0)2]2
,

q0 = − 4φ−1

[

χe+

(

χ2 +
1

2
φ−2

)

e0
]

− ζ

16

p0[2 e e0 + 3χ(3 (e0)2 − (p0)2)]

[(e0)2 + (p0)2]2
. (5.17)

Comparing these charges to the results for the five-dimensional charge and angular mo-

mentum, specified by (5.7) and (5.13), respectively, we find,

q(4) = q(5) − ζ

8

p0

(e0)2 + (p0)2
,

q0 = Jψ . (5.18)

The value of the four-dimensional charge q0, associated with the Kaluza-Klein gauge field,

coincides exactly with the five-dimensional angular momentum of the spinning black hole.

On the other hand, the five-dimensional charge associated with the vector multiplet, q(5),

differs from the four-dimensional charge q(4) which is obtained after the straightforward

reduction of the Lagrangian. And furthermore this difference is directly related to the

Chern-Simons term. These conclusions are consistent with the results derived in [13].

In [11] it was also found that the five- and four-dimensional charges are not the same and

are related by a shift. However, as it turns out, the latter shift is different from the one

above, because it does not depend on e0.

In the remainder of this section we explain how this last phenomenon can be under-

stood in terms of the topology associated with the Chern-Simons term. The latter arises

from the defining condition,

dTr

[

C ∧ dC − 2

3
C ∧ C ∧ C

]

=
1

4
Tr

[

R ∧R
]

, (5.19)

where C is an appropriate matrix-valued connection equal to the Christoffel or to the spin

connection. If there is a non-trivial flux of R∧R along a 4-cycle, it is not possible to define

the Chern-Simons term globally, but only on patches connected by an appropriate closed,

non-exact, gauge transformation. Here we may regard the Chern-Simons term as a com-

posite 3-form potential constructed from the metric, rather than as a fundamental gauge

field. The gauge transformation between the patches is thus induced by certain diffeomor-

phisms, where we assume that any additional ambiguity associated with the underlying

diffeomorphisms will have no cohomological consequences.

In four dimensions, the flux of R ∧ R is a topological invariant, so that the Chern-

Simons term cannot be defined as a gauge potential, as it would carry no degrees of free-

dom. However, when the Chern-Simons term is viewed as a 3-form gauge potential in five

space-time dimensions, one finds that its magnetic dual is a scalar field. The situation is
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thus analogous to that of a magnetic monopole located at some point in a three-dimensional

Euclidean space, except that here we are dealing with a point in a five-dimensional space-

time. Likewise, from that point in space-time there will be a Dirac string emanating from

it, extending to infinity. Obviously this extension to infinity has to be compatible with the

fact that we are dealing with stationary solutions. We recall that the choice for the string is

associated with a certain regular gauge patch and the transition functions between different

patches are provided by gauge transformations (in this case induced by diffeomorphisms).

The strings associated with two different patches are connected by a corresponding two-

dimensional surface which encodes the corresponding gauge transformation.

We are interested in computing the integral of the Chern-Simons term in (5.19) over

a spatial 3-dimensional surface, as a contribution to the electric charge. In the analogous

situation of the monopole in three spatial dimensions, this integral is a Wilson line whose

value may differ on each patch depending on whether it encircles the Dirac string or not.

The difference is given by the gauge transformation between the patches and is proportional

to the flux of the corresponding field strength given by R ∧R.
Without loss of generality, we may employ two patches and impose that the corre-

sponding Dirac strings are timelike and intersect at most once with each spatial slice.5

The question is then how precisely the string will extend through space-time. In the con-

text of a black hole background, there are only two acceptable choices, namely, that the

string will move to spatial infinity at large time, or that the string will remain behind the

black hole horizon, so that the unphysical string singularity is not observable.

It follows that the surface connecting the strings associated with two different sections

define a semi-infinite plane along the time and radial directions. The closed but non-exact

gauge transformation, β0, which connects the two patches, is given by the normal form β0

of this plane [28–30]. For the metric above, this reads

β0 =
p0

(e0)2 + (p0)2
sin θ dθ ∧ dϕ ∧ dψ . (5.20)

Here, the factor p0 is implied by the induced metric on the S3 defined by constant values

of t and r, and the overall normalisation is fixed by demanding that in the static limit the

integral over β0 is equal to 2/p0, i.e. equal to the flux of Tr [R∧R] for a Gibbons-Hawking

base space. Therefore, the value of the Chern-Simons term in the patch that contains the

Dirac string singularity, is related to the value in the regular patch, where the singularity

is located at infinity, by

Tr

[

C[µ∂νCρ] −
2

3
C[µCν Cρ]

]

∣

∣

∣

sing
=Tr

[

C[µ∂νCρ] −
2

3
C[µCν Cρ]

]

∣

∣

∣

reg
+ β0µνρ . (5.21)

The gauge transformation in (5.21) changes the position of the intersection of the Dirac

string within a given spatial slice. We conclude that the integral of the above Chern-Simons

5This condition can be relaxed by introducing more than two patches.
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term over a 3-surface can take two distinct values depending whether the intersection point

is contained or not in that 3-surface. Therefore, the electric charges of BPS spinning black

holes in a five-dimensional theory containing a mixed gauge/gravitational Chern-Simons

term can also take two different values, depending on how the patches are chosen.

In an asymptotically flat five-dimensional setting one can impose regularity in the bulk

of the solution, pushing the Dirac brane to infinity. The connection used to evaluate the

integrated Chern-Simons term in (5.8) in consistent with this requirement, in line with the

general view that a non-trivial Taub-NUT charge is not considered to be part of the black

hole in the center, so that no singularity associated to R∧R should appear. This parallels

the approach used in the microscopic counting, where the large-charge limit is taken for

the electric charges but not for the Taub-NUT charge.

One can now also consider the corresponding four-dimensional solution based on (5.14).

In that setting, it is not acceptable to have a gauge-dependent singularity present near

spatial infinity. However, a physical solution can still be obtained if the singularity is

hidden behind the horizon, which amounts to a change of patch as in (5.21). From a

four-dimensional perspective, this corresponds to the addition of a delta source singularity

interpreted as a magnetic monopole associated with the Kaluza-Klein gauge field.

The results above are in agreement with the results from the near-horizon analysis

for spinning five-dimensional BPS black holes given in [13], where it was found that the

difference between the four- and five-dimensional charges differ by a shift that depends

both on p0 and on e0. In that case the angular momentum is proportional to e0, so that

the shift will depend on the angular momentum. This result differs from that in [11], in

spite of the fact that there the singularity associated with the Taub-NUT charge has also

been moved to spatial infinity. However, for reasons that are not clear to us, the coefficient

of that singularity depended only on p0, so that the difference between the four- and five-

dimensional electric charges was constant and did not depend on the angular momentum.

6 Concluding remarks

In this paper we studied the off-shell dimensional reduction of five-dimensional N = 1

conformal supergravity to four space-time dimensions. We obtained the full dictionary ex-

pressing the 5D fields in terms of the 4D fields and showed in some detail how to connect

to the standard N = 2 superconformal Lagrangians in four dimensions. The advantage

of performing the reduction off-shell is that it allows one to make a precise comparison of

the two theories beyond the usual two-derivative actions, by connecting the four-derivative

invariants on both sides.

Somewhat unexpectedly, we found that upon reduction of the four-derivative super-

symmetric action in five dimensions, which contains terms quadratic in the Riemann tensor,

one finds terms that are not compatible with the two four-derivative N = 2 supersymmet-

ric invariants known in four dimensions. In this way we deduce the presence of at least
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one new four-dimensional invariant that is quadratic in the Ricci tensor, whose complete

structure remains to be uncovered. Terms like these will be required when considering the

N = 2 supersymmetric extension of the Gauss-Bonnet invariant.

As a further application of our reduction scheme, we studied the effect of the mixed

gauge/gravitational Chern-Simons term, contained in the five-dimensional four-derivative

action, on the definition of the electric charge for spinning supersymmetric black holes.

Consistent with previous results on five-dimensional BPS black holes [13], we find a shift

in the charges upon dimensional reduction to four dimensions, whose value depends on the

angular momentum. Similar examples of this phenomenon have been discovered at the

two-derivative level for black rings. Just as in that case, the subtleties can be understood

from the presence of Dirac branes and the associated sections.

The off-shell approach to dimensional reduction developed in this paper is not specific

to five dimensions and can be applied to other situations. One interesting example would

be the reduction from four to three dimensions, especially in connection to the c-map.
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A Relations between 5D and 4D Riemann curvatures

Based on (2.6) one can evaluate the relation between 5D and 4D curvature components. In

the equations below, derivatives Da are covariant with respect to 4D local Lorentz trans-

formations and dilatations. The results are as follows (in this appendix the 5D curvature

components are consistently denoted by R̂),

R̂µν
ab =Rµν

ab +
1

2
φ−2

[

F (B)µ
[a F (B)ν

b] + F (B)µνF (B)ab
]

−B[µ

[

2φ−3F (B)ν]
[aDb]φ+Dν][φ

−2F (B)ab]
]

,
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R̂µν
a5 = −D[µ[φ

−1F (B)ν]
a]− φ−2DaφF (B)µν

+B[µ

[

2Dν][φ
−2Daφ] +

1

2
φ−3 F (B)ν]b F (B)ab

]

,

R̂µ5̂
ab =

1

2
Dµ[φ

−2F (B)ab] + φ−3F (B)µ
[aDb]φ ,

R̂µ5̂
a5 = −Dµ[φ

−2Daφ]− 1

4
φ−3 F (B)µbF (B)ab . (A.1)

With tangent-space indices, R̂CD
AB takes the form,

R̂cd
ab =Rcd

ab +
1

2
φ−2

[

F (B)c
[a F (B)d

b] + F (B)cdF (B)ab
]

,

R̂cd
a5 =

1

2
φ−1DaF (B)cd − φ−2

[

DaφF (B)cd − F (B)a[cDd]φ
]

,

R̂c5
ab =

1

2
φ−1DcF (B)ab − φ−2

[

F (B)abDcφ− F (B)c
[aDb]φ

]

,

R̂c5
a5 = − φDc(ω)[φ

−2Daφ]− 1

4
φ−2 F (B)cbF (B)ab . (A.2)

Note that these components satisfy the pair-exchange property of the Riemann tensor.

Contracted versions of the Riemann tensor take the form,

R̂cB
aB =Rcb

ab +
1

2
φ−2F (B)cbF (B)ab − φDc[φ

−2Daφ] ,

R̂A5
Ab =

1

2
φ−1DaF (B)ab − 3

2
φ−2 F (B)abDaφ ,

R̂A5
A5 = − φDa(ω)[φ

−2Daφ]− 1

4
φ−2 F (B)abF (B)ab ,

R̂AB
AB =Rab

ab − 2φDa[φ
−2Daφ] +

1

4
φ−2 F (B)abF (B)ab . (A.3)

Furthermore one may consider components of R̂[AB
EF R̂CD]EF , which are required for the

dimensional reduction of the 5D mixed Chern-Simons term,

R̂[ab
EF R̂cd]EF =R[ab

ef Rcd]ef + φ−2Rab
ef
[

F (B)ceF (B)df + F (B)cdF (B)ef
]

+
1

4
φ−4F (B)ab

[

2F (B)ceF (B)dfF (B)ef + F (B)cdF (B)2
]

+
1

2
φ−2DeF (B)abDeF (B)cd

+ 2φ−1DeF (B)ab
[

F (B)ceDdφ
−1 + F (B)cdDeφ

−1
]

+ 2Fab(B)
[

Fcd(B) (Deφ
−1)2 + 2F (B)ceDeφ−1Ddφ

−1
]

∣

∣

∣

[abcd]
,

R̂5̂[a
EF R̂cd]EF = − φD[a

[

1

2
φ−2Rcd]

efF (B)ef

+
1

8
φ−4

[

F (B)2F (B)cd] + 2F (B)efF (B)ceF (B)df
]

− 2φ−1F (B)c
eDd](Deφ

−1) + F (B)cd](Dφ−1)2
]

. (A.4)

where we made use of the Bianchi identity on F (B) on the 4D Riemann tensor.
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B Conversion of 5D symplectic Majorana spinors into 4D chiral spinors

In this paper we have to convert 5D symplectic Majorana spinors into 4D chiral spinors,

so as to obtain the dimensionally reduced supersymmetry transformations in 4D notation.

We explain this here using Pauli-Källén notation where all gamma matrices are hermitian.

As it turns out, one can use the same 4 × 4 charge-conjugation matrix C in four and in

five dimensions, satisfying

CT = −C , C† = C−1 . (B.1)

The 4D gamma matrices are subject to,

CγaC
−1 = − γa

T , γ5 =
1

24
εabcdγaγbγcγd , (B.2)

where the indices a, b, . . . take four values. As is obvious, γ5 satisfies Cγ5C
−1 = γ5

T.

Majorana spinors ψ have chiral components satisfying,

C−1
(

ψ̄∓

)T
= ψ± . (B.3)

where ψ± are eigenspinors of γ5 with eigenvalue ±1. Since we will always be dealing with

R-symmetry doublets of spinors labeled by an index i, j, . . . = 1, 2, one uses the convention

that the position of the index denotes at the same time the chirality. For reasons of con-

venience this is not done in a uniform way, so that the relation between the chirality and

the position of the index differs from spinor to spinor.

In five dimensions, the charge conjugation properties of the gamma matrices γ̂A are,

Cγ̂AC
−1 = γ̂A

T , γ̂ABCDE = 1 εABCDE , (B.4)

where the indices A,B, . . . take five values. Note that the last equation defines γ5 as a

product of the remaining four gamma matrices. However, these gamma matrices are not

identical to the 4D ones, in view of the sign difference between the first equations of (B.2)

and (B.4). Nevertheless, as we shall see below, the matrix γ5 will remain the same as the

4D one, defined in the second equation of (B.2).

It is easy to construct the remaining 5D gamma matrices from the 4D ones. Namely,

one may assume that,

γ̂a = iγaγ5 , (B.5)

since the matrices on the right-hand side are symmetric with respect to charge conjugation,

they anti-commute with γ5, and the product of two gamma matrices satisfies, γ̂aγ̂b = γaγb.

Because the gamma matrices are different, also the definition of the Dirac conjugate will

differ for 4D and 5D spinors, according to the relation,

ψ̄
∣

∣

D=5
= ψ̄

∣

∣

D=4
iγ5 . (B.6)

This fact will be relevant for the action when reducing to four dimensions, but also when

relating the 5D symplectic Majorana condition to the 4D Majorana condition.
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The 5D symplectic Majorana condition for spinors ψi read,

C−1
(

ψ̄i
)T

= εij ψ
j . (B.7)

Upon replacing the 5D Dirac conjugate to the 4D one, one obtains,

C−1
(

ψ̄i∓
)T

= ∓iεij ψ
j
± , (B.8)

where we have adopted chiral spinor components. Now let us assume that the 4D spinor

with upper index i is ofpositive chirality, so that we identify it with the 5D field ψi+. In the

4D context we know from (B.3), that the Dirac conjugate is then equal to the corresponding

field of negative chirality, which we write with a lower SU(2) index. In this way we derive

from (B.8) that the 5D field can be decomposed in 4D chiral spinors according to

ψi
∣

∣

5D
= ψi+ + iεijψj− , (B.9)

where ψi and ψi appearing on the right-hand side are the positive- and negative-chirality

components of a 4D Majorana spinor doublet.

In case the four-dimensional negative-chirality spinor carries an upper SU(2) index,

then the above relation changes into,

ψi
∣

∣

5D
= ψi− − iεijψj+ . (B.10)

After this conversion defined by (B.9) and (B.10) it remains possible to redefine the

4D Majorana spinors by a chiral U(1) and a scale transformation without affecting the

Majorana condition.

C Supersymmetry transformations in four dimension

In four space-time dimensions we follow the notation used e.g. in [8, 9]. Space-time and

Lorentz indices are denoted by µ, ν, . . ., and a, b, . . ., respectively; SU(2)-indices are denoted

by i, j, . . .. Furthermore, (anti-)symmetrizations are always defined with unit strength.

For the convenience of the reader we summarize the 4D transformation rules of the

superconformal fields and their relation to the superconformal algebra, as well as their

covariant quantities contained in the so-called Weyl supermultiplet. The superconformal

algebra comprises the generators of the general-coordinate, local Lorentz, dilatation, spe-

cial conformal, chiral SU(2) and U(1), supersymmetry (Q) and special supersymmetry

(S) transformations. The gauge fields associated with general-coordinate transformations

(eµ
a), dilatations (bµ), chiral symmetry (Vµij and Aµ) and Q-supersymmetry (ψµ

i) are

independent fields. The remaining gauge fields associated with the Lorentz (ωµ
ab), special

conformal (fµ
a) and S-supersymmetry transformations (φµ

i) are dependent fields. They

are composite objects, which depend on the independent fields of the multiplet [31]. The
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Weyl multiplet parameters

field eµ
a ψµ

i bµ Aµ Vµij Tab
ij χi D ωabµ fµ

a φµ
i ǫi ηi

w −1 −1
2 0 0 0 1 3

2 2 0 1 1
2 −1

2
1
2

c 0 −1
2 0 0 0 −1 −1

2 0 0 0 −1
2 −1

2 −1
2

γ5 + + − + −

Table 4. Weyl and chiral weights (w and c) and fermion chirality (γ5) of the Weyl multiplet

component fields and the supersymmetry transformation parameters.

corresponding supercovariant curvatures and covariant fields are contained in a tensor chi-

ral multiplet, which comprises 24 + 24 off-shell degrees of freedom. In addition to the

independent superconformal gauge fields, it contains three other fields: a Majorana spinor

doublet χi, a scalar D, and a selfdual Lorentz tensor Tabij , which is anti-symmetric in [ab]

and [ij]. The Weyl and chiral weights have been collected in table 4.

Under Q-supersymmetry, S-supersymmetry and special conformal transformations the

independent fields of the Weyl multiplet transform as follows,

δeµ
a = ǭi γaψµi + ǭi γ

aψµ
i ,

δψµ
i =2Dµǫ

i − 1

8
Tab

ijγabγµǫj − γµη
i

δbµ =
1

2
ǭiφµi −

3

4
ǭiγµχi −

1

2
η̄iψµi + h.c. + ΛaKeµa ,

δAµ =
1

2
iǭiφµi +

3

4
iǭiγµ χi +

1

2
iη̄iψµi + h.c. ,

δVµij =2 ǭjφµ
i − 3ǭjγµ χ

i + 2η̄j ψµ
i − (h.c. ; traceless) ,

δTab
ij =8 ǭ[iR(Q)ab

j] ,

δχi = − 1

12
γab /DTab

ij ǫj +
1

6
R(V)µνijγµνǫj −

1

3
iRµν(A)γ

µνǫi +Dǫi +
1

12
γabT

abijηj ,

δD = ǭi /Dχi + ǭi /Dχ
i . (C.1)

Here ǫi and ǫi denote the spinorial parameters of Q-supersymmetry, ηi and ηi those of S-

supersymmetry, and ΛK
a is the transformation parameter for special conformal boosts. The

full superconformally covariant derivative is denoted by Dµ, while Dµ denotes a covariant

derivative with respect to Lorentz, dilatation, chiral U(1), and SU(2) transformations,

Dµǫ
i =

(

∂µ −
1

4
ωµ

cd γcd +
1

2
bµ +

1

2
iAµ

)

ǫi +
1

2
Vµij ǫj . (C.2)

Just as in five dimensions the gauge fields associated with local Lorentz transforma-

tions, S-supersymmetry and special conformal boosts, ωµ
ab, φµ

i and fµ
a, respectively, are

composite and determined by conventional constraints. In this case these constraints are
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S-supersymmetry invariant and they take the following form,

R(P )µν
a = 0 ,

γµR(Q)µν
i +

3

2
γνχ

i = 0 ,

eνbR(M)µνa
b − iR̃(A)µa +

1

8
TabijTµ

bij − 3

2
D eµa = 0 . (C.3)

The curvatures appearing in (C.3) take the following form,

R(P )µν
a =2 ∂[µ eν]

a + 2 b[µ eν]
a − 2ω[µ

ab eν]b −
1

2
(ψ̄[µ

iγaψν]i + h.c.) ,

R(Q)µν
i =2D[µψν]

i − γ[µφν]
i − 1

8
T abij γab γ[µψν]j ,

R(M)µν
ab = 2 ∂[µων]

ab − 2ω[µ
acων]c

b − 4f[µ
[aeν]

b] +
1

2
(ψ̄[µ

i γab φν]i + h.c.)

+

(

1

4
ψ̄µ

i ψν
j T abij −

3

4
ψ̄[µ

i γν] γ
abχi − ψ̄[µ

i γν]R(Q)abi + h.c.

)

. (C.4)

Chiral multiplets can be consistently reduced by imposing a reality constraint, which

requires specific values for the Weyl and chiral weights. The two cases that are relevant

are the vector multiplet, which arises upon reduction from a scalar chiral multiplet, and

the Weyl multiplet, which is a reduced anti-selfdual chiral tensor multiplet. Both reduced

multiplets require weight w = 1.

The vector multiplet contains a complex scalar X, a chiral spinor Ωi and a gauge field

Wµ, which transform under Q- and S-supersymmetry transformations as follows,

δX = ǭiΩi ,

δΩi =2 /DXǫi +
1

2
εijF

−
µνγ

µνǫj + Yijǫ
j + 2Xηi ,

δWµ = εij ǭi(γµΩj + 2ψµjX) + εij ǭ
i(γµΩ

j + 2ψµ
jX̄) ,

δYij =2 ǭ(i /DΩj) + 2 εikεjl ǭ
(k /DΩl) , (C.5)

Here F−
µν denotes the anti-selfdual component associated with the field strength of Wµ,

F−
ab =

(

δab
cd − 1

2
εab

cd

)

ec
µed

ν ∂[µWν]

+
1

4

[

ψ̄ρ
iγabγ

ρΩj + X̄ ψ̄ρ
iγρσγabψσ

j − X̄ Tab
ij
]

εij , (C.6)

The Weyl multiplet was already discussed at the beginning of this appendix. The Weyl

and chiral weights for the vector multiplet, the hypermultiplet and the Weyl multiplet in

four dimensions has been summarized in tables 3 and 4.
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