
Proving distributed hylomorphisms

re�nements

Distributed Hylomorphisms

PLUM

PLUM INV

ANA PLUM CATA PLUM

HYLO PLUM

ECHO

HYLO ECHO

Tarry

HYLO Tarry DFS

HYLO DFS

T. E. J. Vos and S. D. Swierstra

Informatica Instituut, Utrecht University

e-mail: ftanja, doaitseg@cs.uu.nl

UU-CS-2001-40

December 23, 2001



Contents

1 Introduction 3

2 Preliminaries, terminology and notation 3

3 A re�nement relation 3
3.1 The formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Property preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 The communication network 4
4.1 Centralised . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 Connected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.3 Bi-directional asynchronous communication . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Distributed hylomorphisms 7
5.1 The plum algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 The echo algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3 The tarry algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.4 The dfs algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.5 A re�nement ordering on the distributed hylomorphisms . . . . . . . . . . . . . . . . . . . 10

6 The correctness of plum 11
6.1 Incremental, demand-driven construction of invariants . . . . . . . . . . . . . . . . . . . . 11
6.2 PLUM's variables and actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.3 Presenting proofs of unless and ensures properties . . . . . . . . . . . . . . . . . . . . . 12
6.4 Some more theorems, notation and assumptions . . . . . . . . . . . . . . . . . . . . . . . . 13
6.5 Re�nement and decomposition strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.6 Veri�cation of the anamorphism part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.7 Theory on rooted spanning trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.8 Veri�cation of the catamorphism part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.9 Construction of the invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Using re�nements to derive termination of ECHO 32

8 Using re�nements to derive termination of Tarry 35
8.1 Construction of a non-increasing function . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 Using re�nements to derive termination of DFS 46

10 Concluding remarks 50

11 HOL theories 50

A Preliminaries: states, actions, programs and speci�cations 52
A.1 Variables, values, states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.2 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.3 Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.4 Speci�cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B Laws of � 54

C Laws of  55

2



1 Introduction

This report presents detailed formal proofs of the correctness of distributed hylomorphisms with respect
to their termination. The main objectives of the veri�cation strategy are (a) to reduce proof e�ort and
complexity by using the re�nements framework from [VS01] and re-using as many results as possible,
and (b) to write (or represent) comprehensible proofs by incrementally constructing invariants that are
not pulled out of a hat.

2 Preliminaries, terminology and notation

Function application will be represented by a dot. In de�nitions we shall use
d
= meaning \is de�ned by".

The complement of a set W is denoted by W c.
A relation R is bitotal on A and B (denoted by bitotal:R:A:B), when for every element in A there

exists at least one element on B to which it is related, and similarly for B.
A relation � is well-founded over A, when it is not possible to construct an in�nite sequence of

decreasing values in A.
Universal quanti�cation will be written like (8x : P x : Q x) meaning for all x if P holds for x then also

Q. If P is true for all x we just write (8x :: Q x). Similar notation is used for existential quanti�cation.
When referring to a theorem or de�nition we { when convenient for the reader { include the page

number where the referred item can be found as a subscript.
Every de�nition and theorem is marked by the name it is identi�ed with in the HOL theories that

were constructed (see Section 11).
Preliminaries on states, actions, programs and speci�cations can be found in Appendix A.

3 A re�nement relation

In [VS01] a re�nement relation is formalized for UNITY programs, that de�nes P v Q to be true when
program P can be re�ned to Q using any composition of guard strengthening and superposition program
transformations. In the next two sections we will formalize this re�nement relations. For a more thorough
treatment the reader is referred to [VS01].

3.1 The formalisation

First we de�ne action re�nement. We say that action Al is re�ned by action Ar, or Ar re�nes Al, with
respect to a set of variables V and a state-predicate J (denoted by Al vV;J Ar), when:

� the conjunction of J with the guard of Ar is stronger then the guard of Al.

� the results of Al and Ar, both executed in the same state s where J:s holds, on the variables in V

are the same.

De�nition 3.1 Action Refinement A ref DEF

Let Al and Ar be two actions from the universe ACTION, J be a state predicate, and V be a set of
variables, then action re�nement is de�ned as follows:

Al vV;J Ar = 8s :: guard of:Ar :s ^ J:s) guard of:Al:s

^
8s; t; t0 :: (compile:Al:s:t ^ compile:Ar:s:t

0 ^ guard of:Ar:s ^ J:s)) t =V t0

Next, we de�ne our relation of program re�nement. P is re�ned by Q, or Q re�nes P , with respect
to some relation R and state-predicate J , (denoted by P vR;J Q), if we can decompose the actions of
program Q into aQ1 and aQ2, such that

� R is a bitotal relation on the two sets of actions aP and aQ1, i.e. for every action AP in aP there
exists at least one action in aQ1 to which aP is related by R, and similarly for every action AQ in
aQ1 there exists at least one action in aP to which AQ is related by R.
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� for all actions AP of aP and AQ of aQ1 that are related to each other by R (i.e. AP R AQ holds),
we can prove that AQ re�nes AP with respect to the write variables of P and state-predicate J .

� the actions of Q that are in aQ2 re�ne skip with respect to the write variables of P and J .

De�nition 3.2 Program Refinement P ref DEF

Let P and Q be two UNITY programs, R be a relation, and J be a state predicate, then program
re�nement is de�ned as follows:

P vR;J Q = 9aQ1; aQ2 :: aQ = aQ1 [ aQ2 ^ bitotal:R:aP:aQ1

^
8AP AQ : AP 2 aP ^ AP R AQ : AP vwP;J AQ

^
8AQ : AQ 2 aQ2 : skip vwP;J AQ

Note that P vR;J Q does not say anything about Q inheriting properties or correctness from P . Nor
does it say anything about the explicit program transformations that were (or could have been) applied
to P in order to obtain Q.

3.2 Property preservation

Safety properties p unless q and � p, where p and q do not depend on the values of any superposed
variables, are always preserved under re�nement of two UNITY programs.

Theorem 3.7 unless preservation P ref AND SUPERPOSE WRITE PRESERVES UNLESSe

P vR;J Q ^ Unity:P ^ Unity:Q ^ ( Q`�JQ) ^ (JQ ) J)
9W :: (wQ = wP [W ) ^ (p C W c) ^ (q C W c)

P` p unless q ) Q` (JQ ^ p) unless q

Theorem 3.8 � preservation P ref AND SUPERPOSE WRITE PRESERVES STABLEe

P vR;J Q ^ Unity:P ^ Unity:Q ^ ( Q`�JQ) ^ (JQ ) J)
9W :: (wQ = wP [W ) ^ (p C W c)

P`�p) Q`�(JQ ^ p)

Progress properties p� q and p q are preserved under certain veri�cation conditions stated in the
theorems in Figure 1. Theorem 3.3 is the most general theorem, the other three are corollaries. Note
that the Theorems in Figure 1 state property preservation in re�nements independently from the speci�c
program transformations that were applied. To read more about these theorems the reader is referred to
[VS01].

4 The communication network

The communication networks are assumed to be connected centralised communication networks employ-
ing bi-directional asynchronous communication.

4.1 Centralised

A centralised communication network is modelled by the tuple (P, neighs, starter), where

P is a �nite set of processes. Since we are talking about networks of processes, we assume that P at least
has two processes.

neighs is a function that given some process p 2 P, gives the set of neighbors of p. In other words, for
p 2 P, neighs.p is the set of processes that are connected to p by a bi-directional communication
link. Obviously, the function neighs should satisfy: 8p 2 P : neighs:p � P. We will only consider
communication between distinct processes and not allow self-loops, thus neighs must also satisfy:
8p 2 P; q 2 neighs:p : p 6= q. Since communication is bi-directional it holds that: 8p; q 2 P : (q 2
neighs:p) = (p 2 neighs:q).
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Let � be a well-founded relation over some set A, M 2 State!A, and P and Q be UNITY programs.

Theorem 3.3 P ref SUPERPOSE AND WF FUNC PRESERVES REACHe GEN

P ref SUPERPOSE AND WF FUNC PRESERVES CONe GEN

P vR;J Q ^ ( Q`�JP ^ JQ) ^ (JP ^ JQ ) J)

9W :: (wQ = wP [W ) ^ (JP C W c) ^ (wP �W c)

8AQ : AQ 2 aQ ^ (9AP :: (AP 2 aP ) ^ (AP R AQ)) : (guard of :AQ C wQ)
8AP : AP 2 aP : (JP ^ JQ) Q` guard of:AP � (9AQ :: (AP R AQ) ^ guard of:AQ)

9M :: (M C wQ) ^ (8k : k 2 A : Q` (JP ^ JQ ^M = k) unless (M � k))
^ 8k APAQ : k 2 A ^AP 2 aP ^AP R AQ :

Q` (JP ^ JQ ^ guard of :AQ ^M = k) unless (:(guard of :AP ) _M � k)

((JP P` p� q)) (JP ^ JQ Q` p� q)) ^ ((JP P` p q)) (JP ^ JQ Q` p q))

Theorem 3.4 P ref SUPERPOSE PRESERVES REACHe GEN

P ref SUPERPOSE PRESERVES CONe GEN

P vR;J Q ^ ( Q`�JP ^ JQ) ^ (JP ^ JQ ) J)

9W :: (wQ = wP [W ) ^ (JP C W c) ^ (wP �W c)

8AQ : AQ 2 aQ ^ (9AP :: (AP 2 aP ) ^ (AP R AQ)) : (guard of:AQ C wQ)
8AP : AP 2 aP : (JP ^ JQ) Q` guard of:AP � (9AQ :: (AP R AQ) ^ guard of:AQ)
8AP AQ : AP 2 aP ^AP R AQ : Q` (JP ^ JQ ^ guard of:AQ) unless :(guard of:AP )

((JP P` p� q)) (JP ^ JQ Q` p� q)) ^ ((JP P` p q)) (JP ^ JQ Q` p q))

Theorem 3.5 P ref SUPERPOSE AND WF FUNC PRESERVES REACHe

P ref SUPERPOSE AND WF FUNC PRESERVES CONe

P vR;J Q ^ ( Q`�JP ^ JQ) ^ (JP ^ JQ ) J)

9W :: (wQ = wP [W ) ^ (JP C W c) ^ (wP � W c)
8AP AQ : AP 2 aP ^ AP R AQ : (JP ^ JQ) Q` guard of:AP � guard of :AQ

9M :: (M C wQ) ^ (8k : k 2 A : Q` (JP ^ JQ ^M = k) unless (M � k))
^ 8k APAQ : k 2 A ^AP 2 aP ^ AP R AQ :

Q` (JP ^ JQ ^ guard of:AQ ^M = k) unless (:(guard of :AP ) _M � k)

((JP P` p� q)) (JP ^ JQ Q` p� q)) ^ ((JP P` p q)) (JP ^ JQ Q` p q))

Theorem 3.6 P ref AND SUPERPOSE WRITE PRESERVES REACHe

P ref AND SUPERPOSE WRITE PRESERVES CONe

P vR;J Q ^ ( Q`�JP ^ JQ) ^ (JP ^ JQ ) J)

9W :: (wQ = wP [W ) ^ (JP C W c) ^ (wP �W c)
8AP AQ : AP 2 aP ^ AP R AQ : (JP ^ JQ) Q` guard of :AP � guard of:AQ

8AP AQ : AP 2 aP ^ AP R AQ : Q` (JP ^ JQ ^ guard of:AQ) unless :(guard of:AP )

((JP P` p� q)) (JP ^ JQ Q` p� q)) ^ ((JP P` p q)) (JP ^ JQ Q` p q))

Figure 1: Preservation of � and  properties.
J
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starter is a process in P that distinguishes itself from all other processes (called the followers), in that it
can spontaneously start the execution of its local algorithm (e.g. because it is triggered by some
internal event). The followers can only start execution of their local algorithm after they have
received a �rst message from some neighbour.

De�nition 4.1 centralised communication network Network DEF

Network.P.neighs.starter = FINITE.P ^ card:P > 1
^ starter 2 P
^ 8p 2 P : neighs:p � P
^ 8p 2 P; q 2 neighs:p : p 6= q

^ 8p; q 2 P : (q 2 neighs:p) = (p 2 neighs:q)

4.2 Connected

A connected network is a network in which every pair of processes is connected by a path of communication
links. Let us de�ne the set of processes that are reachable from processes in a set S by following at most
one communication link:

De�nition 4.2 accumulate neighbours Neighs DEF

Neighs:neighs:S = fq j 9p :: p 2 S ^ q 2 neighs:pg [ S

If, for any p 2 P, there exists a number n such that the n-fold iterated application of the function
Neighs.neighs on fpg returns P, then we can conclude that every pair of processes in P is connected by
a path of communication links. Consequently, since starter 2 P, the following is a valid de�nition of
connected networks:

De�nition 4.3 Connected network Connected Network

Connected Network:P:neighs:starter = Network:P:neighs:starter

^9n :: P = iterate:n:(Neighs:neighs):fstarterg

Since we only consider communication networks that have at least two processes we have the following
property of connected networks:

Theorem 4.4 Connected Network IMP EXISTS neigh

Connected Network:P:neighs:starter ^ p 2 P

9q :: q 2 neighs:p

4.3 Bi-directional asynchronous communication

The type of communication employed in a communication network is assumed to be asynchronous, i.e.
send and receive operations work on bu�ered channels. To model asynchronous communication each
algorithm on a communication network Network:P:neighs:starter should have the following variables:

� nr rec:p:q that indicate the number of messages p has received from q via directed link (q; p).

� nr sent:p:q that indicate the number of messages p has sent to q via directed link (p; q).

� M:p:q that represent the bu�ers that store messages in transit from p to q.

So if nr rec, nr sent, M are functions of type 2 P!P!Var, every algorithm needs the following variables:

De�nition 4.5 ASYNC Vars

ASYNC Vars:P:neighs

= fnr rec:p:q j p 2 P^q 2 neighs:pg [ fnr sent:p:q j p 2 P^q 2 neighs:pg [ fM:p:q j p 2 P^q 2 neighs:pg

Moreover, all algorithms should incorporate the following initial condition for these variables:
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prog plum and echo

init (8p 2 P : (p = starter) 6= (idle:p)) ^ (father:starter = starter) ^ init�

assign

8q2neighs:p if idle.p ^ mit.q:p
(idle)

then receive.p:q:hmesi k father.p := q k idle:p := false

8

8q2neighs:p if : idle:p ^ mit.q:p ^ collecting�.p
(col)

then receive.p:q:hmesi
8

8q2neighs:p if : idle:p ^ can propagate:p:q ^ propagating�.p
(prop)

then send.p.q.hmesi
8

if �nished collecting and propagating:p ^ :reported to father:p

(done)
then send.p.(father.p).hmesi

Figure 2: The the local algorithm of process p 2 P for � 2 fplum, echog.
J

De�nition 4.6 initialise the communication variables ASYNC Init

ASYNC Init:P:neighs:s = 8p 2 P; q 2 neighs:p :: s:(nr rec:p:q) = 0 s:(nr sent:p:q) = 0 s:(M:p:q) = []

For this report it is suÆcient to just state the functionality of the primitives (send, receive) and some
additional operations (mit, nr sent to and nr rec from):

� send.p.q.m implements that a process p sends message m to q;

� receive.p.q.f .v makes sure that if there is a message in transit from q to p, process p receives a
message from q, and the value of the received message is assigned to variable v after function f has
been applied to it;

� mit.p.q the name is an acronym for message in transit, can be used to check for a message in transit
from p to q;

� p nr sent to q enables processes to check how many messages they have already sent to a neighbour
q (i.e. returns the value of variable nr sent:p:q)

� p nr rec from q enables processes to check how many messages they have already received from a
neighbour q (i.e. returns the value of variable nr rec:p:q)

5 Distributed hylomorphisms

The class of distributed hylomorphisms from [Vos00] consists of 4 algorithms: plum, echo, tarry and
dfs. They are displayed in Figures 2 until 4 respectively. All four algorithms build a rooted spanning
tree (using the father variable) in the connected network of processes and use this tree to let the required
information (e.g. the values of which the sum has to be computed, or the feedback of the information

7



prog tarry

init (8p 2 P : (p = starter) 6= (idle:p)) ^ (father:starter = starter)

^ 8p 2 P : (p = starter) 6= (:le rec:p)

assign

8q2neighs:p if idle.p ^ mit.q:p
(idle)

then receive.p:q:hmesi k father.p := q k idle:p := false k le rec:p := true

8

8q2neighs:p if : idle:p ^ mit.q:p ^ collecting tarry.p

(col)

then receive.p:q:hmesi k le rec:p := true

8

8q2neighs:p if : idle:p ^ can propagate:p:q ^ propagating tarry.p

(prop)

then send.p.q.hmesi k le rec:p := false

8

if �nished collecting and propagating:p ^ :reported to father:p

(done)

then send.p.(father.p).hmesi k le rec:p := false

Figure 3: The local algorithm of process p 2 P of the Tarry algorithm.
J

that has to be propagated through the network) ow from the leaves to the root of the spanning tree.
The similarities of the algorithms are captured by the characterisation of the following predicates:

rec from all neighs:p = 8q 2 neighs:p : nr rec:p:q = 1 (1)

sent to all non fathers:p = 8q 2 neighs:p : (q 6= father:p)) (nr sent:p:q = 1) (2)

can propagate:p:q = (nr sent:p:q = 0) ^ (q 6= father:p) (3)

�nished collecting and propagating:p = rec from all neighs:p ^ sent to all non fathers:p (4)

reported to father:p = (nr sent:p:(father:p) = 1) (5)

sent to all neighs:p = 8q 2 neighs:p : nr sent:p:q = 1 (6)

done:p = rec from all neighs:p ^ sent to all neighs:p (7)

The di�erences between the algorithms are in the communication protocols, i.e. when they are allowed
to collect messages and propagate them.

5.1 The plum algorithm

The plum algorithm allows a process to freely merge its propagating and collecting actions as long as it
has not yet received messages from all its neighbours, and it has not yet sent to all its neighbours that
are not its father. Consequently:

propagating plum:p = : sent to all non fathers:p (8)

collecting plum:p = : rec from all neighs:p (9)
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prog dfs

init 8p 2 P : (p = starter) 6= (idle:p) ^ (father:starter = starter)
^ 8p 2 P : (p = starter) 6= (:le rec:p)

assign

8q2neighs:p if idle.p ^ mit.q:p
(idle)

then receive.p:q:hmesi k father.p:=q k idle:p:=false k le rec:p:=true k lp rec:p:=q

8

8q2neighs:p if : idle:p ^ mit.q:p ^ collecting dfs.p

(col)

then receive.p:q:hmesi k le rec:p:=true k lp rec:p:=q

8

8q2neighs:p if : idle:p ^ can propagate:p:q ^ propagating dfs.p ^ q = lp rec:p

(prop lp rec)
then send.p.q.hmesi k le rec:p:=false

8

8q2neighs:p if : idle:p ^ can propagate:p:q ^ propagating dfs.p ^ :(can propagate:p:(lp rec:p))

(prop not lp rec)
then send.p.q.hmesi k le rec:p:=false

8

if �nished collecting and propagating:p ^ :reported to father:p

(done)
then send.p.(father.p).hmesi k le rec:p:=false

Figure 4: The local algorithm of process p 2 P of the DFS algorithm.
J

5.2 The echo algorithm

In the echo algorithm, a non-idle process p can only receive a message, after p has sent messages to
all its non-father-neighbours. So, the propagating activities must be completed before starting collecting

from non-father-neighbours. Consequently:

propagating echo:p = : sent to all non fathers:p (10)

collecting echo:p = : rec from all neighs:p ^ :propagating echo:p (11)

5.3 The tarry algorithm

In the tarry algorithm, a non-idle process p can only propagate to a neighbour if the last event of p was
a receive event; otherwise it has to wait until it receives something. So, the propagating and collecting

activities alternate. From Figure 3 we can see that a boolean-typed variable le rec.p (i.e. last event
was a receive) has been introduced for every process p. The assignments (le rec.p := true) and (le rec.p
:= false) in the then clauses of (col) and (prop) respectively, guarantee that the the value of le rec.p
indicates whether the last event of p was a receive event. Consequently, we characterise the collecting and
propagating predicates as follows:

propagating tarry:p = : sent to all non fathers:p ^ (le rec:p) (12)

collecting tarry:p = : rec from all neighs:p ^ :(le rec:p) (13)

9



8A 2 fidle, col, prop, doneg, p 2 P, q 2 neighs:p

R plum echo.(Aplum:p:q).(Aecho:p:q)
R plum tarry.(Aplum:p:q).(Atarry:p:q)
R tarry dfs.(Atarry:p:q).(Adfs:p:q)

PLUM

ECHO

Tarry

DFS

(a) (b)

Figure 5: (a) re�nement relation on plum, echo, tarry, and dfs. (b) bitotal relations
J

5.4 The dfs algorithm

The characterisation of the propagating and collecting predicates for the dfs algorithm are identical to
those of tarry. The di�erence with tarry is in the lesser freedom to choose a neighbour to send a
message to in the propagating phase (see Figure 4). More speci�cally, for a non-idle process p in its
propagating phase (i.e. there are still non-father-neighbours to which p has not yet sent) whose last event
was receiving a message from some neighbour q: if p can propagate a message back to q, i.e. q is not p's
father, and p has not yet sent to q, then p has to send a message back to this process q, otherwise it can
act like in tarry, and just pick any non-father-neighbour to which it has not yet sent a message (i.e. to
which it can propagate). In order to be able to formalise and check these conditions each process in the
dfs algorithm, remembers the identity of the sender of its last incoming message in the variable lp rec.p
(last process of which p has received a message).

propagating
dfs
:p = propagating

tarry
:p (14)

collecting dfs:p = collecting tarry:p (15)

5.5 A re�nement ordering on the distributed hylomorphisms

The algorithms in Figure 2 until 4 are ordered by our re�nement relation as is visualised with venn-
diagrams in Figure 5(a). The bitotal relations, with respect to which the di�erent re�nements are
proved, are listed in Figure 5(b). Their de�nitions are straightforward, in that they relate all idle, col,
prop and done actions of the original program to the corresponding actions in the re�nement. For the
relation between tarry and dfs this results in propTarry.p:q being related to both prop lp rec:p:q

and prop not lp rec:p:q. Although tedious, proving the bitotality of these relations and subsequently
verifying the re�nement ordering depicted in Figure 5 is reasonably easy. The resulting re�nement
theorems are listed below.

Theorem 5.1 PLUM refines ECHO

8J :: plum vR plum echo; J echo

Theorem 5.2 PLUM refines Tarry

8J :: plum vR plum tarry; J tarry

Theorem 5.3 Tarry refines DFS

8J :: tarry vR tarry dfs; J dfs

10



Theorem 6.2 Variables ignored by idle Vars IG BY IDLE

fidle:p; father:p;M:q:p; nr rec:p:q;V:pgc 8 idle:p:q

Theorem 6.3 Variables ignored by col Vars IG BY COL

fM:q:p; nr rec:p:q;V:pgc 8 col:p:q

Theorem 6.4 Variables ignored by prop Vars IG BY PROP

fM:p:q; nr sent:p:qgc 8 prop:p:q

Theorem 6.5 Variables ignored by done Vars IG BY DONE

fM:p:q; nr sent:p:qgc 8 done:p:q

Figure 6: Variables ignored by the actions from PLUM

J

Theorem 6.6 guard of IDLE

guard of:(idle:p:q) = idle:p ^mit:q:p

Theorem 6.7 guard of COL

guard of:(col:p:q) = :idle:p ^mit:q:p ^ :rec from all neighs:p

Theorem 6.8 guard of PROP

guard of:(prop:p:q)
= :(idle:p) ^ (nr sent:p:q = 0) ^ (q 6= (father:p)) ^ :sent to all non fathers:p

Theorem 6.9 guard of DONE

guard of:(done:p:q)
= �nished collecting and propagating:p ^ :reported to father:p ^ (q = (father:p))

Figure 7: Guards of the actions from PLUM

J

6 The correctness of plum

The UNITY speci�cation, stating termination of PLUM, reads:

Theorem 6.1 HYLO PLUM

Jplum plum` iniPLUM 8p : p 2 P : done:p

This speci�cation is re�ned and decomposed { using the laws of the UNITY logic from Section A.4
and Appendices B and C { until it is expressed in one-step progress (i.e. ensures ) and safety (i.e. �)
properties that can be proved directly from the actions of the PLUM algorithm (see Figure 2).

6.1 Incremental, demand-driven construction of invariants

As already stated, we shall construct our invariant Jplum incrementally in a demand driven way during the
process of re�nement and decomposition. More speci�c, at the begin of the re�nement and decomposition,
the invariant Jplum is unspeci�ed. Subsequently, at those points in the proof where an invariant is needed
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we propose a candidate cJ i
plum for part of the invariant which suÆces for that particular point in the

proof. After decomposition, we gather all the candidates we have proposed during the re�nement and
decomposition of the initial speci�cation, and from them deduce the minimal invariant Jplum that implies
all the proposed candidates. To give a clear indication when a candidate for part of the invariant is
proposed we shall mark this point by:

QPPPPPPR cJ i
plum = . . .

Once introduced it is assumed that Jplum implies the candidate, since this shall be ensured at the end
of the decomposition. Similarly, we shall assume the stability of Jplum throughout the whole process of
re�nement and decomposition. Finally, we will call a candidate that is proposed for being part of the
invariant, an invariant-candidate.

6.2 PLUM's variables and actions

During the veri�cation, we shall assume that all of PLUM's variables are distinct. That is, e.g. for the
idle variables it is assumed that:

8p; q 2 P : (idle:p = idle:q) = (p = q)

Similar properties are assumed for the V, father, nr rec, nr sent, and M variables. Moreover, we assume
that the various kinds of variables are di�erent, e.g. for the idle variables we assume:

8p; q; r 2 P : (idle:p 6= V:q) ^ (idle:p 6= father:q) ^ (idle:p 6= nr rec:q:r)
(idle:p 6= nr sent:q:r) ^ (idle:p 6= M:q:r)

Again similar properties are assumed for the V, father, nr rec, nr sent, and M variables. The exact de�-
nition capturing these properties of PLUM's is not presented here, since obviously it is very tedious and
takes up a lot of space.

Theorems 6.2 through 6.5 indicate which variables are written by the various actions of the PLUM algo-
rithm. (For the de�nition of 8 see A.553.) Since we assume the validity of distinct PLUM Vars, we know
that if, for example, (p 6= p0), then action idle:p:q does not write to the variables idle:p0, father:p0, M:q:p0,
nr rec:p0:q, and V:p0.

For ease of referring to the guards of the various actions of PLUM, Theorems 6.6 through 6.9 state them.

6.3 Presenting proofs of unless and ensures properties

During the re�nement and decomposition of the speci�cation, various one-step safety (i.e. unless) and
progress (i.e. ensures) properties have to be veri�ed. To enhance the readability of their proofs, this
section shall introduce the proof format for the veri�cation of these properties.

The proof obligations stating ensures -properties are introduced through an application of the  
Introduction (C.355) theorem. More speci�cally, applying this theorem results in proof obligations of
the form:

` (Jplum ^ x) ensures y

Rewriting with De�nitions A.853 and A.1254 gives us:

8A 2 aPLUM; s; t 2 State : Jplum:s ^ x:s ^ :y:s ^ compile:A:s:t) (Jplum:t ^ x:t) _ y:t
	
unless�part

^

9A 2 aPLUM : 8s; t 2 State : Jplum:s ^ x:s ^ :y:s ^ compile:A:s:t) y:t
	
exists� part

To prevent tedious rewriting with unless and ensures, and repeated discharging of the hypotheses at the
left hand side of the implications, we introduce the proof-format displayed in Figure 8.
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` (Jplum ^ x) ensures y

unless-part.
idle:p0:q0:s:t

the proof that is displayed here, implicitly assumes the validity of

� Jplum:s (and because of the assumed stability of Jplum (Section 6.1) also Jplum:t)
� x:s

� :y:s
� compile:(idle:p0:q0):s:t

and aims to verify that x:t _ y:t.

col:p0:q0:s:t dito, but then for col
prop:p0:q0:s:t dito, but then for prop
done:p0:q0:s:t dito, but then for done

exists-part: directly after the colon we shall write that action A that is used to reduce the existential
quanti�cation.

Then, we present a proof that { under the implicit assumptions that Jplum:s, x:s, and :y:s^compile:A:s:t
{ veri�es that the action establishes the desired progress (i.e. y:t).

Figure 8: The proof-format for the veri�cation of ensures -properties
J

Theorem 6.10 not evalb sent 2 all except f

:sent to all non fathers:p:s9q : q 2 neighs:p ^ q 6= s:(father:p) ^ s:(nr sent:p:q) 6= 1

Theorem 6.11 not evalb rec from all neighs

:rec from all neighs:p:s = 9q : q 2 neighs:p ^ s:(nr rec:p:q) 6= 1

Theorem 6.12 finished and sent 2 f IMP sent 2 all neighs

�nished collecting and propagating:p:s ^ reported to father:p:s

sent to all neighs:p:s

Figure 9: Some useful theorems for arbitrary processes p 2 P and states s 2 State

J

6.4 Some more theorems, notation and assumptions

Figure 9 displays some simple theorems that turn out to be useful during the veri�cation, they all follow
naturally from (1) through (7) on page 8.

During the whole process of veri�cation, we shall assume that we have a connected centralised commu-
nication network. i.e. Connected Network.P.neighs.starter.

Moreover, during the process of decomposition:

` abbreviates Jplum plum`.

6.5 Re�nement and decomposition strategy

The global strategy applied to decompose the speci�cation stating termination of distributed hylomor-
phisms, is inherent to the structure of distributed hylomorphisms:

let the information ow from leaves to root of the RST| {z }
cata

Æ build an RST| {z }
ana

13



Distributed hylomorphisms build an RST by ooding messages to all processes in such a way that:
� when an idle process p receives its �rst message from q, it marks q as its father and opens its
oodgate by becoming non-idle

� non-idle processes only ood (i.e. propagate) messages to non-father-neighbours.
Consequently, the shape of the rooted spanning tree is established by the father relation, once all processes
have become non-idle. The construction of the tree, however, is �nished only when
(1) every process has sent messages to all its neighbours that are not its father (i.e. it has sent messages

to all of its non-father-neighbours)
(2) all messages meant in (1) are actually received (i.e. every process has received messages from all of

its non-child-neighbours)
Requirement (1) is captured by the de�nition of sent to all non fathers (see (2) on page 8). Requirement
(2) is, for some process p 2 P, characterised by the following de�nition:

De�nition 6.13 received from all non-children rec from all non child

rec from all non children.p = 8q 2 neighs:p : (p 6= (father:q))) (nr rec:p:q = 1)

this predicate states that process p has at least received messages from those neighbours of which p is
not the father. Thus, in other words, p has at least received messages from all its non-child-neighbours.

Applying this global proof strategy to the initial speci�cation results in the following anamorphism-
and catamorphism-part:

` iniPLUM 8p : p 2 P : done:p

(( Transitivity (C.555))

` iniPLUM
 
(8p 2 P : :idle:p)
^(8p 2 P : sent to all non fathers:p)
^(8p 2 P : rec from all non children:p)

9>>>>=
>>>>;
anamorphism� part

^

` (8p 2 P : :idle:p)
^(8p 2 P : sent to all non fathers:p)
^(8p 2 P : rec from all non children:p)
 
8p : p 2 P : done:p

9>>>>=
>>>>;
catamorphism� part

6.6 Veri�cation of the anamorphism part

Decomposition of the anamorphism-part is straightforward and follows naturally from the discussion
in the previous section: �rst prove that the shape of the RST is established by proving that all processes
eventually become non-idle (ana 1); then prove that all processes end the construction of the RST by
sending messages to all their non-father-neighbours (ana 2); �nally prove that all messages sent in order
to construct the RST are eventually received (ana 3).

` iniPLUM
 
(8p 2 P : :idle:p)
^(8p 2 P : sent to all non fathers:p)
^(8p 2 P : rec from all non children:p)

9>>>>=
>>>>;
anamorphism� part

(( Accumulation (C.756), twice)

` iniPLUM
 
8p 2 P : :idle:p

9=
;ana 1
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^

` 8p 2 P : :idle:p
 
8p 2 P : sent to all non fathers:p

9=
; ana 2

^

` (8p 2 P : :idle:p) ^ (8p 2 P : sent to all non fathers:p)
 
(8p 2 P : :idle:p) ^ (8p 2 P : rec from all non children:p)

9=
;ana 3

The veri�cation of ana 1

Decomposition of ana 1 proceeds by induction on the structure of the connected network underlying the
PLUM algorithm. That is, we prove that when a process p is non-idle, then eventually all its neighbours
will become non-idle. Consequently, from the connectivity of the network it can be deduced that since
the starter is non-idle, eventually all processes will be non-idle.

` iniPLUM 8p 2 P : :idle:p g ana 1
(( Substitution (C.255), using characterisation of initial condition PLUM)

` 8p 2 fstarterg : :idle:p 8p 2 P : :idle:p
((rewrite with the de�nition of Connected Network (4.36))

` 8p 2 fstarterg : :idle:p 8p 2 iterate:n:(Neighs:neighs):starter : :idle:p
(( Iterate (C.1356))

8L � P :` 8p 2 L : :idle:p 8p 2 Neighs:neighs:L : :idle:p
(( Substitution (C.255), prepare for  Conjunction (C.1156))

8L � P :` 8p 2 L;8q 2 neighs:p : :idle:p ^ :idle:p 8p 2 L;8q 2 neighs:p : :idle:q
(( Conjunction (C.1156), three times)

8L � P; p 2 L; q 2 neighs:p : (̀ :idle:p :idle:p) ^ (̀ :idle:p :idle:q)

The �rst conjunct can be proved using Reflexivity (C.455), and the stability of :idle:p, stated below:

Theorem 6.14 STABLEe not idle

8p 2 P : plum`�:idle:p

We now proceed with the second conjunct. Since q is assumed to be an arbitrary neighbour of p, we have
to make a distinction as to whether q is p's father or not.

(( Case distinction (C.655))
8L � P; p 2 L; q 2 neighs:p :
` :idle:p ^ (q = father:p) :idle:q| {z }

ana 1.1

^ ` :idle:p ^ (q 6= father:p) :idle:q| {z }
ana 1.2

Examine the �rst conjunct ana 1.1, we need to verify that when a process p is non-idle, then eventually
its father will be non-idle. When a process p is not idle, it has received a message from its father. Hence
its father is not idle since otherwise it would not have been able to send a message to p. Therefore, the
�rst conjunct should be provable from the invariant as follows: for arbitrary p 2 P and q 2 neighs:p:

` :idle:p ^ q = father:p :idle:q
(( Introduction (C.355))

((JPLUM ^ :idle:p ^ (q = father:p))) :idle:q) ^ ` �(JPLUM ^ :idle:q)

In order to establish this proof we introduce our �rst candidate for part of the invariant JPLUM:

QPPPPPPR cJ 1

plum = 8p 2 P; q 2 neighs:p : :idle:p ^ q = father:p) :idle:q
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Obviously, when JPLUM implies cJ 1

plum, the stability of JPLUM, and the stability of (:idle:q) (stated in
Theorem 6.14) establish ana 1.1.

The second conjunct ana 1.2, states that when a process p is non-idle, then eventually its non-father
neighbours will be non-idle. Evidently, when p is non-idle, it shall eventually send a message to its
non-father neighbour q; moreover, q shall eventually receive this message and, when not already non-idle,
shall become non-idle. This is reected in the following decomposition strategy: for arbitrary p 2 P and
q 2 neighs:p:

` :idle:p ^ q 6= father:p :idle:q
(( Transitivity (C.555))

` :idle:p ^ q 6= father:p nr sent:p:q = 1| {z }
ana 1.2.1

^ ` nr sent:p:q = 1 :idle:q| {z }
ana 1.2.2

ana 1.2.1 can be proved using  Introduction (C.355), leaving us with the proof obligations:

` �(JPLUM ^ nr sent:p:q = 1)
^
` (JPLUM ^ :idle:p ^ q 6= father:p) ensures (nr sent:p:q = 1)

Stability of (nr sent:p:q = 1) can be proved separately from invariant JPLUM, since, for all p 2 P and
q 2 neighs:p, the guards of prop.p:q and done.p:q imply that nr sent:p:q = 0. The proof is straightforward
and the resulting theorem is presented below.

Theorem 6.15 STABLEe nr sent is 1

8p; q 2 P : plum`�(nr sent:p:q = 1)

Consequently,
` �(JPLUM ^ (nr sent:p:q = 1))

((�Conjunction A.1153)
` �JPLUM ^ ` �(nr sent:p:q = 1)

Which is proved by the assumed stability of JPLUM, and Theorem 6.15 from above.

The validation of the ensures -property is below:

` (JPLUM ^ :idle:p ^ q 6= father:p) ensures (nr sent:p:q = 1)

unless-part
idle:p0:q0:s:t

- if p 6= p0, then idle:p and father:p are not written by idle:p0:q0:s:t and thus s:(idle:p) = t:(idle:p)
and s:(father:p) = t:(father:p).

- if p = p0, then (s = t) since the guard of idle:p0:q0:s:t is disabled by :s:(idle:p). (see the explanation
on the implicit assumptions implied by the presentation of ensures -properties from Section 6.3).

col:p0:q0:s:t, prop:p0:q0:s:t, done:p0:q0:s:t do not write to the idle and father variables (Theorems 6.311
through 6.511).

exists-part: prop:p:q:s:t.

In order to verify that this action indeed sends a message to its neighbour q, we have to prove that its
guard is enabled in state s. More speci�c (Theorem 6.811) this comes down to verifying that:

:s:(idle:p) ^ (s:(nr sent:p:q) = 0) ^ (q 6= s:(father:p)) ^ :sent to all non fathers:p:s

The implicit assumptions of ensures -proofs (Figure 8) tell us that :s:(idle:p), (q 6= s:(father:p)), and
(s:(nr sent:p:q) 6= 1), and hence Theorem 6.1013 implies that :sent to all non fathers:p:s, the following
proof obligation remains:

s:(nr sent:p:q) = 0
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In order to prove this, we need to propose an additional candidate for part of the invariant. Since,
we have that (s:(nr sent:p:q) 6= 1), the invariant-part that suÆces here, is a predicate stating that the
number of messages a process has sent to a neighbour is always 0 or 1.

QPPPPPPR cJ 2

plum = 8p 2 P; q 2 neighs:p : nr sent:p:q = 0 _ nr sent:p:q = 1

This ends the validation of ana 1.2.1.

Using Theorem 6.1415, the assumed stability of JPLUM, � Conjunction A.1153, and  Introduction

(C.355), the proof obligation ana 1.2.2 can be reduced to:

` (JPLUM ^ nr sent:p:q = 1) ensures (:idle:q)

unless-part

idle:p0:q0:s:t, col:p0:q0:s:t do not write to the nr sent variables (Theorems 6.211 and 6.311).
prop:p0:q0:s:t

- If (p 6= p0) or (q 6= q0), the variable nr sent:p:q is not written.
- If (p = p0) and (q = q0), then s = t because the guard of prop:p0:q0:s:t is disabled by the fact that
nr sent:p0:q0 = 1 in state s.

done:p0:q0:s:t

- If (p 6= p0) or (q 6= q0) the variable nr sent:p:q is not written.
- Suppose (p = p0) and (q = q0).

- If q0 6= s:(father:p0) then the guard of done:p0:q0:s:t is disabled and hence s = t.
- Suppose q0 = s:(father:p0).

- If :�nished collecting and propagating:p:s, then, from Theorem 6.911, we can deduce that
the guard of done:p0:q0:s:t is disabled, and hence that s = t.

- If �nished collecting and propagating:p:s, then p has sent to all non fathers in state s (4)8.
Moreover, since we know that nr sent:p0:(father:p0) = 1 in state s we have that (Theorem
6.1213) sent to all neighs:p:s and thus done:p:s. Consequently, the guard of done:p0:q0:s:t
is disabled and hence s = t.

exists-part: idle:q:p:s:t

In order to verify that process q indeed receives a message from its neighbour p, and becomes non-idle
we have to prove that the guard of idle:q:p:s:t is enabled in state s. Using Theorem 6.611, and the
assumption that s:(idle:p) this comes down to verifying that:

mit:p:q:s

The implicit assumptions and the already proposed invariant-candidates cJ 1

plum
and cJ 2

plum
do not give

enough information to prove this. Consequently, we shall again have to construct some additional
invariant-candidates. Intuitively, when a message is in transit from p to q this will always mean that
(nr rec:q:p < nr sent:p:q). Moreover, when a process p is idle this means that is has not yet received any
message and hence all its nr rec variables are 0. Proposing these as candidates for part of the invariant,
enables us to prove the current exists-part. Since we have here that q is idle and s:(nr sent:p:q = 1), we
can deduce that (s:(nr rec:q:p) < s:(nr sent:p:q)) and hence mit:p:q:s.

QPPPPPPR cJ 3

plum = 8p 2 P; q 2 neighs:p : idle:p) nr rec:p:q = 0

QPPPPPPR cJ 4

plum = 8p 2 P; q 2 neighs:p : (nr rec:q:p < nr sent:p:q) = mit:p:q

This establishes the proof of ana 1.2.2, ana 1.2, and hence ana 1. For future reference the results are
summarised in Figure 10.

The veri�cation of ana 2

Proving that a non-idle process shall eventually send messages to all its non-father-neighbours can be
proved by re-using ana 1.2.1 (Theorem 6.16). The following derivation aims at bringing ana 2 into the
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Theorem 6.16 ana 1.2.1 not idle CON sent 2 neighs ex f

8p 2 P; q 2 neighs:p : Jplum plum` :idle:p ^ (q 6= father:p) nr sent:p:q = 1

Theorem 6.17 ana 1.2.2 sent to q CON not idle q

8p 2 P; q 2 neighs:p : Jplum plum` nr sent:p:q = 1 :idle:q

Theorem 6.18 ana 1.1 not idle CON idle father

8p 2 P; q 2 neighs:p : Jplum plum` :idle:p ^ (q = father:p) :idle:q

Theorem 6.19 ana 1.2 not idle CON not idle neighs

8p 2 P; q 2 neighs:p : Jplum plum` :idle:p ^ (q 6= father:p) :idle:q

Theorem 6.20 ana 1 Init CON all not idle

Jplum plum` ini(PLUM:iA:h:prop mes:done mes) 8p 2 P : :idle:p

Figure 10: Veri�cation of ana 1
J

correct form for application of ana 1.2.1. (The notes �, with which some of the derivation steps are
marked, can be ignored here. Their purpose will become clear later on.)

` 8p 2 P : :idle:p 8p 2 P : sent to all non fathers:p
	
ana 2

(( Substitution (C.255), (2)8; prepare for  Conjunction (C.1156)) (�)
` 8p 2 P; q 2 neighs:p : :idle:p
 
8p 2 P; q 2 neighs:p : (:idle:p ^ (q = father:p)) _ (nr sent:p:q = 1)

(( Conjunction (C.1156), twice) (�)
8p 2 P; q 2 neighs:p :` :idle:p (:idle:p ^ (q = father:p)) _ (nr sent:p:q = 1)

(( Case distinction (C.655))
8p 2 P; q 2 neighs:p :
` :idle:p ^ (q = father:p)  (:idle:p ^ (q = father:p)) _ (nr sent:p:q = 1)
^
` :idle:p ^ (q 6= father:p)  (:idle:p ^ (q = father:p)) _ (nr sent:p:q = 1)

(( Substitution (C.255) on the right hand side of both conjuncts)
8p 2 P; q 2 neighs:p :
` :idle:p ^ (q = father:p)  :idle:p ^ (q = father:p)
^
` :idle:p ^ (q 6= father:p)  (nr sent:p:q = 1)

((Second conjunct is proved by Theorem 6.1618)
8p 2 P; q 2 neighs:p : ` :idle:p ^ (q = father:p)  :idle:p ^ (q = father:p)

(( Reflexivity (C.455), �Conjunction A.1153, and assumed stability of JPLUM)
` �:idle:p ^ (q = father:p)

This stability predicate is straightforward to prove since a non-idle process stays non-idle (Theorem
6.1415) and does not write to its father variables.

Theorem 6.21 STABLEe not idle AND q IS f p

8p; q 2 P : plum`�:idle:p ^ (q = father:p)

For future reference we again summarise:
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Theorem 6.22 ana 2 not idle CON not propagating

Jplum plum` 8p 2 P : :idle:p 8p 2 P : sent to all non fathers:p

Theorem 6.23 not idle AND q IS f p CON REFL

8p 2 P; q 2 neighs:p : Jplum plum` :idle:p ^ (q = father:p)  :idle:p ^ (q = father:p)

Veri�cation of ana 3

Proving ana 3 comes down to verifying that when a message is sent, it shall eventually be received. In
order to derive this proof obligation, we proceed as follows:

` (8p 2 P : :idle:p) ^ (8p 2 P : sent to all non fathers:p)
 
(8p 2 P : :idle:p) ^ (8p 2 P : rec from all non children:p)

9=
;ana 3

(( Substitution (C.255), (2)8, and De�nition 6.1314)
` 8p 2 P; q 2 neighs:p : :idle:p ^ ((q 6= father:p)) (nr sent:p:q = 1))
 
8p 2 P; q 2 neighs:p : :idle:p ^ ((q 6= father:p)) (nr rec:q:p = 1))

(( Conjunction (C.1156), twice)
8p 2 P; q 2 neighs:p :
` :idle:p ^ ((q 6= father:p)) (nr sent:p:q = 1))
 
:idle:p ^ ((q 6= father:p)) (nr rec:q:p = 1))

= (logic)
8p 2 P; q 2 neighs:p :
` (:idle:p ^ (q = father:p)) _ (:idle:p ^ (nr sent:p:q = 1))
 
(:idle:p ^ (q = father:p)) _ (:idle:p ^ (nr rec:q:p = 1))

(( Disjunction (C.1056))
8p 2 P; q 2 neighs:p :
` :idle:p ^ (q = father:p) :idle:p ^ (q = father:p)
^
` :idle:p ^ (nr sent:p:q = 1) :idle:p ^ (nr rec:q:p = 1)

((First conjunct is proved by Theorem 6.2319)
8p 2 P; q 2 neighs:p :
` :idle:p ^ (nr sent:p:q = 1) :idle:p ^ (nr rec:q:p = 1)

(( Conjunction (C.1156))
8p 2 P; q 2 neighs:p :
(` :idle:p :idle:p) ^ (` nr sent:p:q = 1 nr rec:q:p = 1)

((First conjunct is proved using  Reflexivity (C.455), and Theorem 6.1415)
8p 2 P; q 2 neighs:p : ` nr sent:p:q = 1 nr rec:q:p = 1

So we have to prove that when a process p sends a message to a neighbour q, then q shall eventually
receive this message. Since nothing is known about q, there are two possibilities:

q is non-idle In this case the execution of col.q:p shall ensure that p's message is eventually received.

q is idle This case is more subtle, since it is not ensured that execution of idle.q:p shall receive p's
message. In illustration, suppose another neighbour r (r 6= p) has also sent a message to the idle
process q. If q decides to receive r's message before it receives the one from p, then q registers r
as its father and becomes non-idle. Consequently, subsequent executions of q's idle-actions will
behave like skip and therefore shall not be responsible for the receipt of p's message. In this case
q's col actions will ensure that p's message is eventually received.

This is reected in the following proof:
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8p 2 P; q 2 neighs:p : ` nr sent:p:q = 1 nr rec:q:p = 1
(( Case Distinction (C.655))

8p 2 P; q 2 neighs:p

` nr sent:p:q = 1 ^ :idle:q  nr rec:q:p = 1| {z }
ana 3.1

^
` nr sent:p:q = 1 ^ idle:q  nr rec:q:p = 1| {z }

ana 3.2

As indicated, when q is non-idle (ana 3.1) the execution of col.q:p shall ensure that p's message is even-
tually received. Consequently,  Introduction (C.355) is applied to ana 3.1 giving us: for arbitrary
p 2 P and q 2 neighs:p

` �JPLUM ^ nr rec:q:p = 1
^
` (JPLUM ^ nr sent:p:q = 1 ^ :idle:q) ensures (nr rec:q:p = 1)

Stability of (nr rec:q:p = 1) cannot be proved separately from the stability of JPLUM. The reason for
this is that { unlike the guards of prop:p:q and done:p:q that imply that (nr sent:p:q = 0) and hence
allow for the separate veri�cation of � (nr sent:p:q = 1) { the guards of idle:p:q and col:p:q actions do
not imply that (nr rec:p:q = 0). However, in combination with the proposed invariant-candidates they
do. cJ 3

plum
implies that when q is idle, nr rec:q:p = 0. Therefore, when the guard of idle.q:p (De�nition

6.611) is enabled the validity JPLUM implies nr rec:q:p = 0. cJ 4

plum, together with cJ 2

plum, implies that
when mit.q:p holds, nr rec:q:p = 0. Therefore, when the guard of col.q:p (De�nition 6.711) is enabled the
validity JPLUM implies nr rec:q:p = 0. Consequently, we have the following theorem:

Theorem 6.24 STABLEe Invariant AND nr rec is 1

8p; q 2 P : plum`�(JPLUM ^ nr rec:p:q = 1)

The validation of the ensures -property is below:

` (JPLUM ^ nr sent:p:q = 1 ^ :idle:q) ensures (nr rec:q:p = 1)

unless-part

idle:p0:q0:s:t

- if (p0 = q), then (s = t) since the guard of idle:p0:q0:s:t is disabled by :s:(idle:q).
- if (p0 6= q) the variables idle:q and nr sent:p:q are not written

col:p0:q0:s:t does not write to idle and nr sent variables (Theorem 6.311).
prop:p0:q0:s:t

- If (p 6= p0) or (q 6= q0) the variable nr sent:p:q is not written. (idle variables are not written at all
by prop)

- If (p = p0) and (q = q0), then (s = t) since the guard of prop:p0:q0:s:t is disabled by the validity of
(s:(nr sent:p0:q0) = 1).

done:p0:q0:s:t

- If (p 6= p0) or (q 6= q0) the variable nr sent:p:q is not written. (idle variables are not written at all
by done)

- Suppose (p = p0) and (q = q0).
- If q0 6= s:(father:p0) then, from Theorem 6.911, we can deduce that the guard of done:p0:q0:s:t
is disabled and hence s = t.

- Suppose q0 = s:(father:p0).
- If :�nished collecting and propagating:p:s, then, from Theorem 6.911, we can deduce that
the guard of done:p0:q0:s:t is disabled and hence s = t.

- If �nished collecting and propagating:p:s, then sent to all non fathers:p:s follows from (4)8.
Moreover, since p0 has already sent to its father (i.e. (s:(nr sent:p0:(s:(father:p0))) = 1))
we have that (Theorem 6.1213) sent to all neighs:p:s and thus done:p:s. Consequently, the
guard of done:p0:q0:s:t is disabled and hence s = t.
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exists-part: col:q:p:s:t

In order to verify that process q indeed receives a message from its neighbour p, and establishes
t:(nr rec:q:p) = 1 we have to prove that the guard of col:q:p:s:t is enabled in state s, and s:(nr rec:q:p) =
0. Since s:(nr rec:q:p) 6= 1, Theorem 6.1113 gives us :rec from all neighs:q. Using Theorem 6.711, and
the assumption that :s:(idle:p) the proof obligations that remain are:

mit:p:q:s ^ s:(nr rec:q:p) = 0
= (cJ 4

plum, and the assumption that s:(nr sent:p:q) = 1)
s:(nr rec:q:p) < 1 ^ s:(nr rec:q:p) = 0
= (arithmetic)
s:(nr rec:q:p) = 0

Again, looking at the assumptions and the already proposed invariant-candidates, we do not have enough
information to prove this. Consequently, we introduce the following candidate, which obviously suÆces
in this case.

QPPPPPPR cJ 5

plum
= 8p 2 P; q 2 neighs:p : (nr rec:p:q = 0) _ (nr rec:p:q = 1)

We hereby end the proof of ana 3.1.

Theorem 6.25 ana 3.1 not idle AND neigh has sent CON rec

8p 2 P; q 2 neighs:p : Jplum plum` nr sent:p:q = 1 ^ :idle:q  nr rec:q:p = 1

We continue with ana 3.2 using the strategy delineated earlier on page 19.

8p 2 P; q 2 neighs:p : ` nr sent:p:q = 1 ^ idle:q  nr rec:q:p = 1
(( Transitivity (C.555))

8p 2 P; q 2 neighs:p :
` nr sent:p:q = 1 ^ idle:q  nr sent:p:q = 1 ^ :idle:q ^ (9r : nr rec:q:r = 1)
^
` nr sent:p:q = 1 ^ :idle:q ^ (9r : nr rec:q:r = 1) nr rec:q:p = 1

Using  Substitution (C.255), the second conjunct can be reduced to, and hence proved by, Theorem
6.2521. The �rst conjunct is proved by  Introduction (C.355):

` �(JPLUM ^ nr sent:p:q = 1 ^ :idle:q ^ (9r : nr rec:q:r = 1))
^
` (JPLUM ^ nr sent:p:q = 1 ^ idle:q)

ensures

(nr sent:p:q = 1 ^ :idle:q ^ (9r : nr rec:q:r = 1))

The stability requirement can be proved using � Conjunction A.1153, Theorems 6.1415, 6.1516, and
6.2420. The proof of the ensures -property is similar to that of ana 3.1 on the understanding that
idle.q:p:s:t in instantiated in the exists-part instead of col.q:p:s:t.

Theorem 6.26 ana 3.2 idle AND neigh has sent CON rec

8p 2 P; q 2 neighs:p : Jplum plum` nr sent:p:q = 1 ^ idle:q  nr rec:q:p = 1

Theorem 6.27 ana 3 not propagating and not idle CON not idle rec from all non child

Jplum plum` (8p 2 P : :idle:p) ^ (8p 2 P : sent to all non fathers:p)
 
(8p 2 P : :idle:p) ^ (8p 2 P : rec from all non children:p)
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Figure 11: Rooted spanning tree; process p has depth 3.
J

6.7 Theory on rooted spanning trees

A rooted spanning tree of a connected communication network (P, neighs) (see Figure 11) is a directed
graph and consists of:

� a unique designated process r of the network which is considered to be the root of the tree, and
hence has no outgoing edges to other processes in the network.

� a subset of communication links of the network, such that for all processes p 2 P it holds that there
is a unique path from p to r in the tree.

The tree is characterised by a process r and a function f 2 P!P (see Figure 11). To formalise the fact
that the root is a process in the network, and has no outgoing edges to any other process, we de�ne

(r 2 P) ^ (f:r = r)

Consequently, since the communication links in the tree have to be a subset of those in the network, f
has to satisfy:

8p 2 P : (p 6= r)) (f:p 2 neighs:p)

For ease of reference, when q = f:p, we call q the ancestor or father of p, and similarly p the descendant
or child of q. To specify that for every process p 2 P there is a unique path from p to r in the tree, we
de�ne the depth of a process p, as follows:

De�nition 6.28 depth

depth:f:r:p:k = (r = iterate:k:f:p) ^ 8m < k : (r 6= iterate:m:f:q)

In words, process p has depth k, if the shortest path from p to r in the tree has length k. Since f is a
function, the existence of a unique path from p to r equals the existence of a shortest path from p to r in
the tree. Consequently, the requirement that for every process p 2 P there has to be a unique path from
p to r in the tree can be characterised by:

8p 2 P : 9k : depth:f:r:p:k

Summarising, we have the following de�nition of a rooted spanning tree of a connected network:

22



r

p

level 0

level 1

level 2

level 3

Figure 12: Processes categorised into levels.
J

De�nition 6.29 Rooted Spanning Tree RST

RST:f:r:P:neighs = (r 2 P) ^ (r = f:r)
8p 2 P : (p 6= r) ) (f:p 2 neighs:p)
8p 2 P : 9k : depth:f:r:p:k

Since every process in a rooted spanning tree has a unique depth, we can categorise processes into levels
by using their depths. This is depicted in Figure 12. The set of processes at level k is de�ned as follows:

Theorem 6.30 level

level:P:f:r:k = fp j p 2 P ^ depth:f:r:p:kg

When it is clear from the context which P, f, and r are used, we shall abbreviate level.P:f:r:k by level.k.
The height of a rooted spanning tree is de�ned to be the maximum of the depths of all processes in

the underlying network:

De�nition 6.31 Height of Tree height

height:P:f:r:neighs:h = (h = max:fk j p 2 P ^ depth:f:r:p:kg)

Again, when it is clear which P, f, r, and neighs are used, we abbreviate height:P:f:r:neighs:h by height.h.
The reader can check that the height of the rooted spanning tree in Figure 11 is 4. Moreover, it is not
hard to see that:

Theorem 6.32 RST has height

Connected Network:P:neighs:starter ^ RST:f:r:P:neighs

9h : height:P:f:r:neighs:h

6.8 Veri�cation of the catamorphism part

` (8p 2 P : :idle:p)
^ (8p 2 P : sent to all non fathers:p)
^ (8p 2 P : rec from all non children:p)
 
8p : p 2 P : done:p

9>>>>=
>>>>;
catamorphism� part
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First of all we need to construct the function f 2 P!P, that characterises the rooted spanning tree.
Obviously, the father variables were set as to de�ne such a function. Consequently, we start by bringing
this function f into the left hand side of  as follows. In order to avoid confusion between the type of
father and f we explicitly denote the state s in the last conjunct of the left hand side of  .

(( Substitution (C.255))
` 9f 2 P!P :

(8p 2 P : :idle:p)
^ (8p 2 P : sent to all non fathers:p)
^ (8p 2 P : rec from all non children:p)
^ (8p 2 P : (�s: f:p = (s Æ father):p))
 
8p : p 2 P : done:p

(( Disjunction (C.1056))
8f 2 P!P :
` (8p 2 P : :idle:p)

^ (8p 2 P : sent to all non fathers:p)
^ (8p 2 P : rec from all non children:p)
^ (8p 2 P : (�s: f:p = (s Æ father):p))
 
8p : p 2 P : done:p

Second, we have to prove that we have indeed built a rooted spanning tree. That is, we need to bring the
conjunct RST:P:f:starter:neighs into the left hand side of  . Using  Substitution (C.255) this means
we have to prove that:

8s 2 State : Jplum:s

^ 8p 2 P : : s:(idle:p)
^ 8p 2 P : sent to all non fathers:p:s

^ 8p 2 P : rec from all non children:p:s

^ 8p 2 P : f:p = (s Æ father):p
)
(starter = f:starter) P1

8p 2 P : (p 6= starter)) (f:p 2 neighs:p) P2

8p 2 P : 9k : depth:f:starter:p:k P3

(6:33)

Evidently, in order to be able to prove this, we shall need to invent some new candidates for part of the
invariant. The �rst invariant-candidate follows naturally from the proof obligation P1. Since, initially
the starter is de�ned to be non-idle and father:starter equals1 starter, the following is a valid (Theorem
6.2118) invariant-candidate

2:

QPPPPPPR cJ 6

plum = (�s: (s Æ father):starter = starter ^ :s:(idle:starter))

The next invariant-candidates are introduced as to establish proof obligation P2 and P3 respectively.
Since processes only receive messages from their neighbours, and once non-idle never change the value of
their father variable again, we propose:

QPPPPPPRcJ 7

plum = (�s: 8p 2 P : (p 6= starter) ^ :s:(idle:p)
) ((s Æ father):p 2 neighs:p))

QPPPPPPR cJ 8

plum = (�s: 8p 2 P : :s:(idle:p)) 9k : depth:(s Æ father):starter:p:k)

It is not hard to see that these candidates are suÆcient to prove 6.33.

Theorem 6.33 all not idle IMP RST

1Note that in order to be able to prove that this is invariant we need the initial condition: father.starter = starter.
2Again we explicitly denote the state to avoid confusion.
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For all f 2 P!P, s 2 State:

Jplum:s ^ (8p 2 P : : s:(idle:p)) ^ (8p 2 P : sent to all non fathers:p:s)
(8p 2 P : rec from all non children:p:s) ^ (8p 2 P : f:p = (s Æ father):p)

RST:P:f:starter:neighs

For arbitrary f 2 P!P, we now proceed with the catamorphism part as follows:

` (8p 2 P : :idle:p)
^ (8p 2 P : sent to all non fathers:p)
^ (8p 2 P : rec from all non children:p)
^ (8p 2 P : (�s: f:p = (s Æ father):p))
 
8p : p 2 P : done:p

(( Substitution (C.255), using Theorem 6.3324)
3

` (8p 2 P : :idle:p)
^ (8p 2 P : sent to all non fathers:p)
^ (8p 2 P : rec from all non children:p)
^ (8p 2 P : (�s: f:p = (s Æ father):p))
^ (�s: RST:P:f:starter:neighs)
 
8p : p 2 P : done:p

(( Stable Shift (C.956))

(8p 2 P : :idle:p)
^ (8p 2 P : sent to all non fathers:p)
^ (8p 2 P : rec from all non children:p)
^ (8p 2 P : (�s: f:p = (s Æ father):p))
^ (�s: RST:P:f:starter:neighs) ` true

 
8p : p 2 P : done:p

Before continuing with this proof obligation, it shall be clear that we need to do something about its
readability. For this we introduce the following de�nition, which contains all conjuncts located at the left
hand side of ` (including Jplum, which is there implicitly (Section 6.3)). We call it Jana since it refers to
properties that were established during the anamorphism part.

De�nition 6.34 Invar and ANA

Jana = Jplum
^ (8p 2 P : :idle:p)
^ (8p 2 P : sent to all non fathers:p)
^ (8p 2 P : rec from all non children:p)
^ (8p 2 P : (�s: f:p = (s Æ father):p))
^ (�s: RST:P:f:starter:neighs)

Using �Conjunction (A.1153), 6.1516, 6.2420, 6.2118, and the assumed validity of Jplum, we can derive:

Theorem 6.35 STABLe Invar and ANA

plum`�Jana

This reduces our current proof obligation to:

Jana ` true 8p 2 P : done:p

3Note that RST is not a state-predicate. We have State-lifted it by enclosing it in between (�s: : : :).
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Now we can proceed with the proof strategy presented in Section 6.5; that is prove that the required
information ows from the leaves to the root of the rooted spanning tree. In the case of proving termi-
nation this comes down to proving that when the leaves of the RST are done, then eventually all the
processes will be done. From Theorem 6.3223 we can deduce the height h of the RST, and consequently
we know that the leaves of the RST equal the processes at level h. Therefore we decompose our proof
obligation as follows:

Jana ` true 8p 2 P : done:p
(( Substitution (C.255), De�nition 6.3425, and Theorem 6.3223)

Jana ` (9h:height:P:f:starter:neighs:h) 8p 2 P : done:p
(( Disjunction (C.1056))

8h : Jana ` height:P:f:starter:neighs:h 8p 2 P : done:p
(( Transitivity (C.555))

8h : Jana ` height:P:f:starter:neighs:h 8p 2 (level:P:f:starter:h) : done:p| {z }
cata 1

^
8h : Jana ` 8p 2 (level:P:f:starter:h) : done:p 8p 2 P : done:p| {z }

cata 2

Veri�cation of cata 1

Since leaves have no descendants (i.e. children), and Jana states that:
� all processes have received messages from all their non-child-neighbours
� all processes have sent messages to all their non-father-neighbours

we can prove that the leaves (i.e. the processes at level h in a RST of height h) have �nished their
collecting and propagating phases:

Theorem 6.36 height Invar IMP leaves finished

Jana ^ height:P:f:starter:neighs:h

8p 2 (level:P:f:starter:h) : �nished collecting and propagating:p

Consequently, we can proceed with cata 1 as follows:

8h : Jana ` height:P:f:starter:neighs:h 8p 2 (level:P:f:starter:h) : done:p
(( Substitution (C.255), using Theorem 6.3626)

8h : Jana ` 8p 2 (level:P:f:starter:h) : �nished collecting and propagating:p

 
8p 2 (level:P:f:starter:h) : done:p

(( Conjunction (C.1156))
8h; p 2 (level:P:f:starter:h) :
Jana ` �nished collecting and propagating:p  done:p

Since the rec from all neighs part of the done predicate (see (7)8) was already established by the validity
of �nished collecting and propagating (see (4)8), we continue as follows:

(((7)8 and (4)8)
8h; p 2 (level:P:f:starter:h) :
Jana ` rec from all neighs:p ^ �nished collecting and propagating:p

 
rec from all neighs:p ^ sent to all neighs:p

(( Conjunction (C.1156))
8h; p 2 (level:P:f:starter:h) :
Jana ` rec from all neighs:p rec from all neighs:p

^
Jana ` �nished collecting and propagating:p sent to all neighs:p
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The �rst conjunct can easily be proved by  Reflexivity (C.455), � Conjunctivity (A.1153), and
Theorem 6.2420.

For the second conjunct, we argue as follows. When a follower process has �nished its collecting
and propagating phase, it is ready to sent its �nal message to its father after which it becomes done

and hence has sent to all neighs. However, when the starter has �nished collecting and propagating, and
hence sent to all non fathers, it has already sent to all neighs, since cJ 6

plum states that the father of the
starter is the starter itself; and the de�nition of Network (De�nition 4.16) de�nes that a process cannot
be a neighbour of itself.

Theorem 6.37 sent 2 all except f starter IMP sent 2 all neighs starter

Jplum ^ sent to all non fathers:starter

sent to all neighs:starter

Consequently, we make the following case distinction: (note that this is a case distinction on the outer-
most level, not inside ` using  Case Distinction (C.655))

8h; p 2 (level:P:f:starter:h) :
Jana ` �nished collecting and propagating:p sent to all neighs:p

(((p = starter) _ (p 6= starter))
Jana ` �nished collecting and propagating:starter sent to all neighs:starter

^
8h; p 2 (level:P:f:starter:h); p 6= starter :
Jana ` �nished collecting and propagating:p sent to all neighs:p

Evidently, the �rst conjunct can be proved by  Introduction (C.355), using Theorem 6.3727, The-
orem 6.1516, and (48). We carry on with the second conjunct by noticing that when a process has
�nished collecting and propagating, it has already sent a message to its father or not.

8h; p 2 (level:P:f:starter:h); p 6= starter :
Jana ` �nished collecting and propagating:p sent to all neighs:p

(( Case Distinction (C.655))
8h; p 2 (level:P:f:starter:h); p 6= starter :
Jana ` �nished collecting and propagating:p ^ reported to father:p

 
sent to all neighs:p

^
Jana ` �nished collecting and propagating:p ^ :reported to father:p

 
sent to all neighs:p

The �rst conjunct can again be easily proved by  Introduction (C.355), using Theorem 6.1213, and
Theorem 6.1516.

Progress stated in the second conjunct is ensured by the done action of process p. Consequently:

8h; p 2 (level:P:f:starter:h); p 6= starter :
Jana ` �nished collecting and propagating:p ^ :reported to father:p

 
sent to all neighs:p

(( Substitution (C.255), to recognise guard of done)
8h; p 2 (level:P:f:starter:h); p 6= starter :
Jana ` 9q 2 neighs:p : �nished collecting and propagating:p

^:reported to father:p ^ (q = father:p)
 
9q 2 neighs:p : sent to all neighs:p

(( Disjunction (C.1056))
8h; p 2 (level:P:f:starter:h); p 6= starter; q 2 neighs:p :
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Jana ` �nished collecting and propagating:p ^ :reported to father:p

^ (q = father:p)
 
sent to all neighs:p

(( Introduction (C.355), Theorem 6.1516)
8h; p 2 (level:P:f:starter:h); p 6= starter; q 2 neighs:p :
` Jana ^ �nished collecting and propagating:p ^ :reported to father:p

^ (q = father:p)
ensures

sent to all neighs:p
As the reader can verify, this ensures -property can be easily proved. This ends the veri�cation of:

Theorem 6.38 finished collecting and propagating CON done

8h : Jana ` 8p 2 (level:P:f:starter:h) : �nished collecting and propagating:p

 
8p 2 (level:P:f:starter:h) : done:p

and consequently, of cata 1:

Theorem 6.39 cata 1 height h CON all done at height h

8h : Jana ` height:P:f:starter:neighs:h 8p 2 (level:P:f:starter:h) : done:p

Veri�cation of cata 2

The proof of cata 2 proceeds by induction on h.

Induction Base: case 0

Jana ` 8p 2 (level:P:f:starter:0) : done:p 8p 2 P : done:p

Induction Hypothesis:

8h : Jana ` 8p 2 (level:P:f:starter:h) : done:p 8p 2 P : done:p

Induction Step: case (h+ 1)

Jana ` 8p 2 (level:P:f:starter:(h+ 1)) : done:p 8p 2 P : done:p

proof of Induction Base

Since, the only process residing at level:P:f:starter:0 is the starter, and the starter can only be done when
all other processes are done, the Induction Base can be proved by  Introduction (C.355) as follows:

Jana ` 8p 2 (level:P:f:starter:0) : done:p 8p 2 P : done:p
(( Substitution (C.255), De�nition 6.3023)

Jana ` done:starter 8p 2 P : done:p
(( Introduction (C.355))

` �(Jana ^ 8p 2 P : done:p)
^
8s 2 State:Jana:s ^ done:starter:s) 8p 2 P : done:p:s

The stability predicate can be proved by �Conjunction (A.1153), using Theorem 6.1516, Theorem 6.2420,
and 6.3525. To prove the second conjunct, assume for arbitrary states s:
A1 : Jana:s
A2 : done:starter:s
A3 : p 2 P
We prove done:p:s by contradiction, by assuming that:
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A4 : :done:p:s

and proving that :done:starter:s, which establishes false with A2.

The proof strategy will be the following. Since process p is not done, we know that is has not yet sent a
message to its father. Consequently, p's father has not yet received a message from p, and hence cannot
be done. Iterating this argument until the father of the process under consideration is the starter, will
establish the proof.

However, in order to apply this strategy, we shall have to introduce two new invariant-candidates
since, as the reader can verify, the ones introduced until now do not suÆce. We propose:

QPPPPPPR cJ 9

plum
= 8p; q 2 P : :(idle:p) ^ :done:p ^ (q = father:p)) nr sent:p:q = 0

So we can deduce that when a process p is not done, it has not yet sent a message to its father. Fur-
thermore, we propose the invariant-candidate that states that the number of messages a process q has
received from p is always less than or equal to the number of messages p has sent to q:

QPPPPPPR cJ 10

plum
= 8p; q 2 P : nr rec:q:p � nr sent:p:q

So we can deduce that when p has not yet sent a message to some neighbour q, q has not yet received a
message from p. When a process q still has neighbours p from which it has not received a message (i.e.
it holds that nr rec:q:p = 0), we can prove (using cJ 5

plum) that q has not rec from all neighs and hence is
not done. Consequently, equipped with the new invariant-candidates proposed above, we can now prove
that when p is not done, neither is its father:

Theorem 6.40 not done IMP f not done

For all states s 2 State:

Jplum:s ^ p 2 P ^ :s:(idle:p) ^ :done:p:s ^ (q = (s Æ father):p)

:done:q:s

Subsequently, by induction we can prove that:

Theorem 6.41 not done IMP iterate f not done

For all states s 2 State:

Jplum:s ^ p 2 P ^ :s:(idle:p) ^ :done:p:s

8m; q : (q = iterate:m:(s Æ father):p)) :done:q:s

Consequently, using invariant-part cJ 8

plum we can prove that:

Theorem 6.42 not done IMP starter not done

For all states s 2 State:

Jplum:s ^ p 2 P ^ :s:(idle:p) ^ :done:p:s

:done:starter:s

Assumptions A1, A3, A4, Theorem 6.4229, and the characterisation of Jana (De�nition 6.3425) now es-
tablish that :done:starter:s.

end of proof Induction Base

proof of Induction Step

Jana ` 8p 2 (level:P:f:starter:(h+ 1)) : done:p 8p 2 P : done:p
(( Transitivity (C.555), and Induction Hypothesis)

Jana ` 8p 2 (level:P:f:starter:(h+ 1)) : done:p 8p 2 (level:P:f:starter:h) : done:p

The intuitive idea behind the proof strategy for this last proof obligation is the following: because pro-
cesses at level (h+1) are done, these have sent messages to their fathers who all reside at level h; eventually
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cJ 1

plum
= 8p 2 P; q 2 neighs:p : :idle:p ^ q = father:p) :idle:q

cJ 2

plum
= 8p 2 P; q 2 neighs:p : nr sent:p:q = 0 _ nr sent:p:q = 1

cJ 3

plum = 8p 2 P; q 2 neighs:p : idle:p) nr rec:p:q = 0

cJ 4

plum
= 8p 2 P; q 2 neighs:p : (nr rec:q:p < nr sent:p:q) = mit:p:q

cJ 5

plum
= 8p 2 P; q 2 neighs:p : (nr rec:p:q = 0) _ (nr rec:p:q = 1)

cJ 6

plum
= (�s: (s Æ father):starter = starter ^ :s:(idle:starter))

cJ 7

plum = (�s: 8p 2 P : (p 6= starter) ^ :s:(idle:p)) ((s Æ father):p 2 neighs:p))

cJ 8

plum
= (�s: 8p 2 P : :s:(idle:p)) 9k : depth:(s Æ father):starter:p:k)

cJ 9

plum
= 8p; q 2 P : :(idle:p) ^ :done:p ^ (q = father:p)) nr sent:p:q = 0)

cJ 10

plum = 8p; q 2 P : nr rec:q:p � nr sent:p:q

Figure 13: Invariant-candidates proposed during re�nement and decomposition
J

all processes at level h shall receive these messages and (since already having sent to all non fathers and
rec from all non children (Jana)) will have �nished collecting and propagating; consequently, all processes
at level h will eventually send a message to their father and become done.

Jana ` 8p 2 (level:P:f:starter:(h+ 1)) : done:p 8p 2 (level:P:f:starter:h) : done:p
(( Transitivity (C.555))

Jana ` 8p 2 (level:P:f:starter:(h+ 1)) : done:p
 
8p 2 (level:P:f:starter:h) : �nished collecting and propagating:p

^
Jana ` 8p 2 (level:P:f:starter:h) : �nished collecting and propagating:p

 
8p 2 (level:P:f:starter:h) : done:p

((The second conjunct is proved by Theorem 6.3828)
Jana ` 8p 2 (level:P:f:starter:(h+ 1)) : done:p

 
8p 2 (level:P:f:starter:h) : �nished collecting and propagating:p

(( Substitution (C.255), and (4)8, (7)8, 6.3425, 6.3023)
Jana ` 8p 2 (level:P:f:starter:(h+ 1)); q 2 neighs:p : nr sent:p:q = 1 ^ :idle:q

 
8p 2 (level:P:f:starter:(h+ 1)); q 2 neighs:p : nr rec:q:p = 1

(( Conjunction (C.1156), twice)
8p 2 (level:P:f:starter:(h+ 1)); q 2 neighs:p :
Jana ` nr sent:p:q = 1 ^ :idle:q  nr rec:q:p = 1

(( Stable Strengthening (C.856), De�nition 6.3425, and Theorem 6.3525)
8p 2 (level:P:f:starter:(h+ 1)); q 2 neighs:p :
Jplum ` nr sent:p:q = 1 ^ :idle:q  nr rec:q:p = 1

Since p 2 level:P:f:starter:(h+ 1), implies p 2 P, Theorem 6.2521 establishes the Induction Step.

end of proof Induction Step
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De�nition 6.43 PLUM's invariant Invariant DEF

Jplum =

8p 2 P; q 2 neighs:p : :idle:p ^ q = father:p) :idle:q cJ 1

plum

^ 8p 2 P; q 2 neighs:p : nr sent:p:q = 0 _ nr sent:p:q = 1 cJ 2

plum

^ 8p 2 P; q 2 neighs:p : idle:p) nr rec:p:q = 0 cJ 3

plum

^ 8p 2 P; q 2 neighs:p : (nr rec:q:p < nr sent:p:q) = mit:p:q cJ 4

plum

^ father:starter = starter ^ :(idle:starter) cJ 6

plum

^ 8p 2 P : (p 6= starter) ^ :(idle:p)) (father:p 2 neighs:p) cJ 7

plum

^ (�s: 8p 2 P : :s:(idle:p)) 9k : depth:(s Æ father):starter:p:k) cJ 8

plum

^ 8p; q 2 P : :(idle:p) ^ :done:p ^ (q = father:p)) nr sent:p:q = 0 cJ 9

plum

^ 8p; q 2 P : nr rec:q:p � nr sent:p:q cJ 10

plum

^ 8p; q 2 P : M:p:q = [] _ (9x : M:p:q = [x]) cJ 11

plum

^ 8p; q 2 P : idle:p) nr sent:p:q = 0 cJ 12

plum

Theorem 6.44 STABLEe Invariant

plum`�Jplum

Theorem 6.45 INVe Invariant

plum` 2Jplum

Figure 14: PLUM's invariant
J

6.9 Construction of the invariant

As indicated in Section 6.1 the invariant Jplum is constructed such that it implies all the candidates that
were proposed during the process of re�nement and decomposition. All the proposed candidates are
collected in Figure 13. Finding the minimal invariant is now like a nice puzzle. In order to solve this
puzzle, we shall start by analysing the di�erent candidates. The �rst thing we notice is that:

cJ 2

plum ^ cJ 10

plum ) cJ 5

plum

Consequently, aiming for minimality, cJ 5

plum can be dropped. Subsequently, we shall start verifying the
stability of the conjunction of the remaining candidates. That is, we verify that:

` �cJ 1

plum ^ cJ 2

plum ^ cJ 3

plum ^ cJ 4

plum ^ cJ 6

plum ^ cJ 7

plum ^ cJ 8

plum ^ cJ 9

plum ^ cJ 10

plum

During these veri�cation activities, two more invariant-candidates had to be proposed. One, { cJ 11

plum

below { had to be introduced to prove the stability of cJ 4

plum; and another { cJ 12

plum below { was needed
in order to prove the stability of cJ 8

plum and cJ 9

plum. Since, the veri�cation activities are straightforward
we shall not describe them here, and just state the two invariant-candidates:

QPPPPPPR cJ 11

plum = 8p; q 2 P : M:p:q = [] _ (9x : M:p:q = [x])

Stating that, on every communication channel there is no message in transit , or precisely one.

QPPPPPPR cJ 12

plum = 8p; q 2 P : idle:p) nr sent:p:q = 0

Stating that idle processes have not yet sent messages to their neighbours.

Finally, we construct our invariant consisting of the conjunction of: cJ 1

plum through cJ 12

plum with the
exception of cJ 5

plum. The resulting de�nition, together with the theorems stating stability and invariance
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Theorem 7.3 guard of IDLE ECHO

guard of:(idleecho:p:q) = guard of:(idle:p:q)

Theorem 7.4 guard of COL ECHO

guard of:(colecho:p:q) = guard of:(col:p:q) ^ sent to all non fathers:p

Theorem 7.5 guard of PROP ECHO

guard of:(propecho:p:q) = guard of:(prop:p:q)

Theorem 7.6 guard of DONE ECHO

guard of:(doneecho:p:q) = guard of:(done:p:q)

Figure 15: Guards of the actions from ECHO

J

in PLUM are in Figure 1431. In the characterisation of Jplum (De�nition 6.4331), all logical operators,
except for those in cJ 8

plum
, are overloaded to denote their State-lifted versions.

7 Using re�nements to derive termination of ECHO

This section shall describe how termination of the ECHO algorithm is proved using the re�nements
framework from [VS01] summarized in Section 3, and the already proved fact that:

8J :: PLUM vR plum echo; J ECHO

The UNITY speci�cation reads:

Theorem 7.1 HYLO ECHO

Jplum ^ Jecho echo` iniECHO 8p : p 2 P : done:p

where invariant Jecho captures additional safety properties for ECHO (if any). Again, Jecho shall, if
necessary, be constructed incrementally in a demand-driven way following the conventions described in
Section 6.1.

Using �Preservation Theorem 3.84, it is straightforward to derive that Jplum is also (Theorem 6.4431)
a stable predicate in ECHO.

Theorem 7.2 STABLEe Invariant in ECHO

echo`�Jplum

The stability of: echo`� Jplum ^ Jecho will be implicitly assumed throughout the veri�cation process,
and veri�ed when the precise characterisation of Jecho has been established. For ease of reference, Figure
15 displays theorems about the guards of ECHO's actions. For readability we introduce the notational
convention that ` abbreviates Jplum ^ Jecho echo`.

Termination of ECHO is proved using the property preserving Theorem 3.65.

echo` iniECHO 8p : p 2 P : done:p

((Theorem 3.65, 6.111, 5.110)
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9W :: (wECHO = wPLUM [W ) ^ (Jplum C W c) ^ (wPLUM �W c)
^

8AP AE : AP 2 aPLUM ^ AP R plum echo AE :

echo` guard of:AP � guard of:AE

^
8AP AE : AP 2 aPLUM ^ AP R plum echo AE :

echo` (Jplum ^ Jecho ^ guard of:AE) unless :(guard of:AP )

Since no variables are superimposed on PLUM in order to construct ECHO, the �rst conjunct can be
proved by instantiation with ;. Subsequently, using:

� the characterisation of R plum echo (Figure 510)
� the Theorems from Figure 1532, stating that the guards of the idleecho, propecho, and doneecho
actions are equal to those of PLUM

� anti-reexivity of unless (Theorem A.1053)
� reexivity of� (Theorem B.454)
� the implicit assumption stating stability of (Jplum ^ Jecho)

we can reduce the second and the third conjunct to:

8p 2 P; q 2 neighs:p :

echo` guard of:col:p:q� guard of:colecho:p:q
	
reach � part

^

echo` Jplum ^ Jecho ^ guard of:colecho:p:q unless :guard of:col:p:q
	
unless� part

The unless-part is not hard to verify and will be left up to the enthusiastic reader. In order to prove it,
the current conjuncts from Jplum suÆce, and hence no additional safety properties have to be added to
Jecho.

The proof of the reach-part proceeds by rewriting with Theorem 6.711 and 7.432:

8p 2 P; q 2 neighs:p :

echo` :idle:p ^mit:q:p ^ :rec from all neighs:p

�
:idle:p ^mit:q:p ^ :rec from all neighs:p ^ sent to all non fathers:p

((� Case distinction (B.655))
8p 2 P; q 2 neighs:p :

echo` :idle:p ^mit:q:p ^ :rec from all neighs:p ^ sent to all non fathers:p

�
:idle:p ^mit:q:p ^ :rec from all neighs:p ^ sent to all non fathers:p

^
echo` :idle:p ^mit:q:p ^ :rec from all neighs:p ^ :sent to all non fathers:p

�
:idle:p ^mit:q:p ^ :rec from all neighs:p ^ sent to all non fathers:p

((� Reflexivity (B.454) proves the �rst conjunct)
8p 2 P; q 2 neighs:p :

echo` :idle:p ^mit:q:p ^ :rec from all neighs:p ^ :sent to all non fathers:p

�
:idle:p ^mit:q:p ^ :rec from all neighs:p ^ sent to all non fathers:p

((� Substitution (B.254), to bring into correct form for� PSP (B.855))
8p 2 P; q 2 neighs:p :

echo` (:idle:p ^ :sent to all non fathers:p)
^
(:idle:p ^mit:q:p ^ :rec from all neighs:p)
�
(sent to all non fathers:p ^ (:idle:p ^mit:q:p ^ :rec from all neighs:p))
_
(:idle:p ^mit:q:p ^ :rec from all neighs:p ^ sent to all non fathers:p)

((� PSP (B.855))
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8p 2 P; q 2 neighs:p :

echo` Jplum ^ Jecho
^ :idle:p ^mit:q:p ^ :rec from all neighs:p

unless

:idle:p ^mit:q:p ^ :rec from all neighs:p

^ sent to all non fathers:p

9>>>>=
>>>>;
PSP� unless

^
8p 2 P :
echo` :idle:p ^ :sent to all non fathers:p

�
sent to all non fathers:p

9=
;PSP� reach

The proof of the PSP-unless-part is not complicated, again the characterisation of Jplum suÆces, and
hence no additional safety properties have to be added to Jecho. Note, that at this point Jecho can be
substituted by true.

We shall proceed with the PSP-reach-part. If we look at it closely, we can see that it resembles ana 2,
a proof obligation we encountered during the veri�cation of termination of PLUM (see pages 15, 17).
Obviously, if we can transform the PSP-reach-part into a ana 2, we can re-use the proof-strategy used
to prove ana 2 in the context of PLUM, to prove the PSP-reach-part in the context of ECHO. Since,
ana 2's proof-strategy uses conjunctivity of (theorem C.1156), and� does not have this property, we
�rst replace� by  :

(( Convergence Implies Progress (C.155))
8p 2 P :
echo` :idle:p ^ :sent to all non fathers:p

 
sent to all non fathers:p

Then, we apply a  Substitution (C.255) step similar to the �-marked-substitution step made on page
18 to obtain:

8p 2 P :
echo` 8q 2 neighs:p : :idle:p

�
8q 2 neighs:p : (:idle:p ^ (q = father:p)) _ (nr sent:p:q = 1)

Subsequently, we apply a conjunction step similar to the �-marked-conjunction step made on page 18.
Now, our proof obligation has become equal to that of ana 2 only now in the context of ECHO:

8p 2 P; q 2 neighs:p : echo` :idle:p (:idle:p ^ (q = father:p)) _ (nr sent:p:q = 1)

Consequently, the same proof strategy applies. Inspecting ana 2's proof strategy on page 18 this comes
down to proving:

Theorem 7.7 STABLEe not idle AND q IS f p in ECHO

8p; q 2 P : echo`�(:idle:p ^ (q = father:p))

which is straightforward, using the stability preserving Theorem 3.84. Moreover, we need an ECHO

equivalent for Theorem 6.1618 (i.e. ana 1.2.1, page 16). Again, the proof-strategy of ana 1.2.1 can be
re-used. Returning to page 16, we can see this comes down to proving the following two properties. First,

Theorem 7.8 STABLEe nr sent is 1 in ECHO

8p; q 2 P : echo`�(nr sent:p:q = 1)

which again is easy using stability preserving Theorem 3.84. Second,

echo` (JPLUM ^ JECHO ^ :idle:p ^ q 6= father:p) ensures (nr sent:p:q = 1)
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This last proof obligation can be proved similarly to that of the ensures-part of ana 1.2.1 (see page 16),
and doing so, the unless-part of the ensures-part of ana 1.2.1 can be inherited by using unless-preserving
Theorem 3.74.

This ends the veri�cation of the reach-part. Since, no additional safety properties have to be proved
for ECHO, we can de�ne JECHO to be true.

De�nition 7.9 Invariant ECHO

JECHO = true

since true is trivially stable, this ends veri�cation of termination of ECHO. Although the de�nition for
JECHO might appear superuous, we decided to include it for two reasons. The �rst one being preservation
of consistency throughout this report. The second reason is that by explicitly de�ning JECHO to be true,
it immediately becomes clear that PLUM and ECHO have the same safety properties.

8 Using re�nements to derive termination of Tarry

This section shall describe how termination of the Tarry algorithm is proved using the re�nements
framework from Section 3, and the already proven fact that:

8J :: PLUM vR plum tarry; J Tarry

The UNITY speci�cation reads:

Theorem 8.1 HYLO Tarry

Jplum ^ JTarry Tarry` iniTarry 8p : p 2 P : done:p

where invariant JTarry captures additional safety properties forTarry. Again, JTarry shall be constructed
incrementally in a demand-driven way following the conventions described in Section 6.1.

Using �Preservation Theorem 3.84, it is straightforward to derive that Jplum is also (Theorem 6.4431)
a stable predicate in Tarry.

Theorem 8.2 STABLEe Invariant in Tarry

Tarry`�Jplum

The stability of: Tarry`�(Jplum ^ JTarry) will be implicitly assumed throughout the veri�cation process,
and veri�ed when the precise characterisation of JTarry has been established. For ease of reference, Fig-
ure 16 displays theorems about the guards of Tarry's actions. For readability we, again, introduce the
notational convention that ` abbreviates Jplum ^ JTarry Tarry`.

Termination of Tarry is proved using property preserving Theorem 3.55. The reason for using this
theorem is that Theorem 3.65 { which is easier and hence preferable { cannot be used since its application
results in the following, not provable, proof obligation:

Tarry` Jplum ^ JTarry ^ guard of:(proptarry:p:q) unless :guard of:(prop:p:q)

The reason why this cannot be proved is because, during the execution of Tarry, it is possible that the
guard of proptarry:p:q is falsi�ed while the guard of prop:p:q still holds. For the sake of clarity, we shall
elucidate this below. We rewrite the unless-property from above, using De�nition A.853, Theorem 6.811
and Theorem 8.536. (Note that we have omitted compile):

8A 2 aTarry; s; t 2 State :
Jplum:s ^ JTarry:s ^ :s:(idle:p) ^ :sent to all non fathers:p:s ^ can propagate:p:q:s ^ s:(le rec:p) ^ A:s:t

)
Jplum:t ^ JTarry:t ^ :t:(idle:p) ^ :sent to all non fathers:p:t ^ can propagate:p:q:t ^ t:(le rec:p))

_
t:(idle:p) _ sent to all non fathers:p:t _ :can propagate:p:q:t
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Theorem 8.3 guard of IDLE Tarry

guard of:(idleTarry:p:q) = guard of:(idle:p:q)

Theorem 8.4 guard of COL Tarry

guard of:(colTarry:p:q) = guard of:(col:p:q) ^ :le rec:p

Theorem 8.5 guard of PROP Tarry

guard of:(propTarry:p:q) = guard of:(prop:p:q) ^ le rec:p

Theorem 8.6 guard of DONE Tarry

guard of:(doneTarry:p:q) = guard of:(done:p:q)

Figure 16: Guards of the actions from Tarry

J

We have to prove this for arbitrary actions of Tarry. Consider the propagating action proptarry:p:q
0,

with (q 6= q0). Assume for arbitrary states s and t that:
A1: Jplum:s ^ JTarry:s

A2: :s:(idle:p) ^ :sent to all non fathers:p:s ^ can propagate:p:q:s ^ s:(le rec:p)
A3: proptarry:p:q

0:s:t

A4: (q 6= q0)
If p cannot propagate to q0 in state s, then s = t and there is no problem in the sense that the con-
clusion of the implication stated above can be proved. However, suppose p can propagate to q0 (i.e.
can propagate:p:q0:s). Then the guard of proptarry:p:q

0:s:t is enabled and execution of this action estab-
lishes: :t:(le rec:p). Consequently, the guard of proptarry:p:q is disabled in state t, and in order to prove
the conclusion of the implication we have to prove that the guard of prop:p:q is also disabled in state t.
That is, we have to prove one of:

t:(idle:p) _ sent to all non fathers:p:t _ :can propagate:p:q:t

However,

� t:(idle:p) cannot be proved, since from A2 we know that p is non-idle in state s, and since prop-
actions do not write to idle-variables we know that p is still non-idle in state t.

� :can propagate:p:q:t cannot be proved, since from A2 we know that, in state s, p can propagate to
q (can propagate:p:q:s), and since (q 6= q0) we know that p can still propagate to q in state t (i.e.
can propagate:p:q:t).

� sent to all non fathers:p:t is not necessarily valid. It can hold in state t, but it might as well be the
case that is does not.

Consequently, we cannot prove the unless-property from above. What we need is a function which is
non-increasing with respect to some well-founded relation, and which decreases when a message is sent.
Since then, we can ensure that this kind of premature falsi�cation of the guard of proptarry:p:q, while
the guard of prop:p:q still holds, cannot happen in�nitely often.

As an aside: The guards of idle and done actions in Tarry are equal to those of PLUM (Theorems
8.336 and 8.636). Consequently, for these actions, a unless-property similar to the one above can if
necessary be proved using unless Anti-Reflexivity A.1053.

For the col-actions, the construction of a non-increasing function is not required, since we can, if
necessary, prove that when the guard of coltarry:p:q (Theorem 8.436) is falsi�ed, then so is the
guard of col:p:q. This is because, intuitively, Tarry has the additional invariant that there is
always at most one message in transit. Therefore, if some action coltarry:p:q

0 (q 6= q0) receives the
message that is in transit from q0 to p and as a consequence falsi�es the guard of coltarry:p:q by
setting le rec.p to true, then we can prove that afterward there are no messages at all in transit and
hence that the guard of col:p:q cannot be true.
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So, since the least complicated property preservation Theorem (3.65) cannot be used to derive termi-
nation of Tarry, we move on to the second least complicated one, i.e. 3.55. Since the bitotal relation
de�ned on the actions of PLUM and Tarry is one-to-one, this one turns out to be suÆcient.

Tarry` ini(Tarry:iA:h:prop mes:done mes) 8p : p 2 P : done:p

((Theorem 3.55, 6.111, 5.210)
For some well-founded relation �:

9W :: (wTarry = wPLUM [W ) ^ (Jplum C W c) ^ (wPLUM �W c)
^

8AP AT : AP 2 aPLUM ^ AP R plum tarry AT :

Tarry` guard of:AP � guard of:AT

�
reach� part

^
9M :: (M C wTarry)
^
8k :: Tarry` (Jplum ^ JTarry ^M = k) unless (M � k)
^
8k AP AT : AP 2 aPLUM ^ AP R plum tarry AT :

Tarry` (Jplum ^ JTarry ^ guard of:AT ^M = k)
unless

(:(guard of:AP ) _M � k)

9>>>>>>>>>>=
>>>>>>>>>>;

unless� part

Since, le rec:p variables are superimposed on PLUM in order to obtain Tarry, the �rst conjunct is
instantiated with the set fle rec:p j p 2 Pg. Proving that Jplum is con�ned by the complement of this set
is tedious but straightforward, since the variables le rec do not appear in it.

Veri�cation of the unless-part involves the construction of a function over the variables of Tarry, that
is non-increasing with respect to some well-founded relation �. From the discussion above, we can deduce
that we need a function that decreases when a message is sent. However, it turns out that the veri�cation
of the reach-part involves an application of � Bounded Progress (B.1055) that needs a function that
decreases not only when a message is sent, but also when a message is received. Consequently, we shall
continue with the construction of a function over the variables of Tarry, that is non-increasing with
respect to some well-founded relation �, and that decreases when a message is sent as well as received.
Obviously, this function can then be used for both purposes.

8.1 Construction of a non-increasing function

Constructing a non-increasing function that decreases when a message is sent, and when a message is
received is not complicated. Observe the following:

� the sending of a message is always accompanied by incrementing a nr sent variable
� similarly, receiving a message is always accompanied by incrementing a nr rec variable
� from Jplum it follows that at most one message is sent over each directed communication link
� consequently, at most one message is received over each directed communication link
� consequently, the total amount of messages sent and received has an upper-bound, that equals twice
the cardinality of the set of directed communication links

From these observations a non-increasing function is constructed as follows. First, we de�ne the upper-
bound on the total amount of messages sent and received.

De�nition 8.7 MAX MAIL

MAX MAIL = 2 � card:(links:P:neighs)

Next, we de�ne the total amount of messages that a process p 2 P has sent, and respectively received, in
some state s.

De�nition 8.8 number of messages sent by processes p NR SENT

NR SENT:p:s =
X

q2neighs:p

s:(nr sent:p:q)

37



Theorem 8.12 rec from all p EQ NR REC EQ CARD p

8p 2 P; s 2 State :
Jplum:s

rec from all neighs:p = (NR REC:p:s = card:(neighs:p))

Theorem 8.13 sent 2 all p EQ NR SENT EQ CARD p

8p 2 P; s 2 State :
Jplum:s

sent to all neighs:p = (NR SENT:p:s = card:(neighs:p))

Theorem 8.14 NR REC leq CARD

8p 2 P; s 2 State :
Jplum:s

NR REC:p:s � card:(neighs:p)

Theorem 8.15 NR REC SUC NR SENT IMP not sent 2 all

8p 2 P; s 2 State :
Jplum:s ^ (NR REC:p:s = NR SENT:p:s+ 1)

:sent to all neighs:p

Theorem 8.16 sent 2 all except f IMP SUC NR SENT EQ CARD

8p 2 P; s 2 State :
Jplum:s ^ sent to all non fathers:p:s ^ :sent to all neighs:p:s

NR SENT:p:s+ 1 = card:(neighs:p)

Figure 17: Some properties of NR REC and NR SENT

J

De�nition 8.9 number of messages received by processes p NR REC

NR REC:p:s =
X

q2neighs:p

s:(nr rec:p:q)

The total amount of messages that are sent, and respectively received, in the whole network of processes
can be de�ned as follows:

De�nition 8.10 total number of messages sent in the network TOTAL NR SENT

TOTAL NR SENT:s =
X
p2P

NR SENT:p:s

De�nition 8.11 total number of messages received in the network TOTAL NR REC

TOTAL NR REC:s =
X
p2P

NR REC:p:s

Finally, we de�ne our non-increasing function as follows:

De�nition 8.17 non-increasing function over the variables of Tarry Y DEF

Y:s = MAX MAIL� (TOTAL NR SENT:s+ TOTAL NR REC:s)

The value of Y only depends on the variables nr rec and nr sent. Since these are write variables of Tarry
is it easy to verify that:

Theorem 8.18 CONF Y Write Vars Tarry

Y C wTarry

The following lemma states that whenever a message is sent or received { because the guard of one of
Tarry's actions is enabled { the value of Y decreases.
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Lemma 8.19 A DECR Y

For arbitrary processes p 2 P, q 2 neighs:p, and actions A;
A 2 fidleTarry;colTarry; propTarry;doneTarryg:

8k ::
Jplum:s ^ A:p:q:s:t ^ guard of:(A:p:q):s ^ (Y:s = k)

Y:t < k

Using this lemma, it is straightforward to prove that, during the execution of Tarry, Y is non-increasing
with respect to the well-founded relation < on numerals.

Theorem 8.20 DECREASING DECR FUNCTION

For arbitrary characterisations of JTarry:

8k :: Tarry` (Jplum ^ JTarry ^ Y = k) unless (Y < k)

Veri�cation of the unless-part

Return to page 37 for the unless-part. Instantiating this proof obligation with Y , and rewriting with
Theorems 8.1838 and 8.2039 results in the following proof obligation:

8k AP AT : AP 2 aPLUM ^ AP R plum tarry AT :

Tarry` (Jplum ^ JTarry ^ guard of:AT ^ Y = k) unless (:(guard of:AP ) _ Y < k)

Proving this is straightforward using the characterisation of R plum Tarry from Figure 510, and Lemma
8.1939. Note that, since Y is constructed as to decrease when a message is sent as well as when a message
is received, we do not have to use the proof strategy delineated in the aside on page 36 for the col
actions. Consequently, constructing a non-increasing function that decreases upon the sending as well as
upon receiving of a message is not only more eÆcient since it is re-usable in the proof of the reach-part,
it also simpli�es the veri�cation of the unless-part.

Veri�cation of the reach-part

We shall now continue with the reach-part, which is re-displayed below for convenience.

8AP AT : AP 2 aPLUM ^ AP R plum tarry AT :

Tarry` guard of:AP � guard of:AT

Subsequently, using:

� the characterisation of R plum Tarry (Figure 510)
� Theorems 8.336 and 8.636, stating that the guards of the idleTarry, and doneTarry actions are
equal to those of PLUM

� reexivity of� (Theorem B.454)
� the implicit assumption stating stability of (Jplum ^ JTarry)

we reduce the reach-part for arbitrary p 2 P and q 2 neighs:p, as follows:

Tarry` guard of:(col:p:q)� guard of:(colTarry:p:q)
	
reach � col� part

^

Tarry` guard of:(prop:p:q)� guard of:(propTarry:p:q)
	
reach � prop� part

Veri�cation of reach-col-part

Rewriting with the characterisations of the guards (Theorem 6.711 and 8.436) gives:

Tarry` :idle:p ^mit:q:p ^ :rec from all neighs:p

�
:idle:p ^mit:q:p ^ :rec from all neighs:p ^ :le rec:p
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Due to the alternating sending and receiving of messages, which is inherent to Tarry, we know that it
must be provable that there is always at most one message in transit during the execution of Tarry's
algorithm. This means that if there is a message in transit, it is the only one, and hence the event last
executed by all processes was a send-event and thus not a receive-event. Consequently, the above proof
obligation must be provable from the invariant, by using� Introduction (B.354). In order to establish
this we propose the following invariant-candidate:

QPPPPPPR cJ 1

tarry = (9p 2 P; q 2 neighs:p : mit:p:q)) (8p 2 P : :le rec:p)

which, evidently, suÆces to establish the reach-col-part.

Veri�cation of reach-prop-part

Rewriting with the characterisations of propTarry's the guard (8.536) gives:

Tarry` guard of:(prop:p:q)� guard of:(prop:p:q) ^ le rec:p

If p's last event was a receive event this is easy to prove:

((� Case Distinction (B.655), p's last event was a receive event or not)

Tarry` guard of:(prop:p:q) ^ le rec:p� guard of:(prop:p:q) ^ le rec:p

^

Tarry` guard of:(prop:p:q) ^ :le rec:p� guard of:(prop:p:q) ^ le rec:p

((� Reflexivity (B.454), proves the �rst conjunct)

Tarry` guard of:(prop:p:q) ^ :le rec:p� guard of:(prop:p:q) ^ le rec:p

To explain the proof-strategy that is used to verify the conjunct from above, we refer to Figure 1841. The
p and q in this �gure correspond to the p and q in the current proof-obligation, x, y, z, and w are arbitrary
processes. We already indicated that, during an execution of Tarry's algorithm, there is always at most
one message in transit. This message is indicated with a � in Figure 18. In Figure 18(b), this message is
in transit from w to z, and hence from invariant-candidate cJ 1

tarry we can infer that 8p 2 P : :le rec:p In
18(a) this message has just been received by x, and hence we can infer that le rec:x. In order to establish
our current proof obligation, we need to invent a proof strategy that enables us to prove that this message
shall eventually reach p such that the latter can set le rec.p to true. Suppose that guard of:(prop:p:q)
holds, and that the last event of p was not a receive event. Using Theorem 6.811):

:idle:p ^ cp:p:q ^ :sent to all non fathers:p ^ :le rec:p (.)

If the current situation is that of Figure 18(a), then x has just received the message, and hence le rec.x
holds. Since, we have assumed that :le rec:p, we know that (x 6= p). There are now two possibilities:
either propTarry:x:y or action doneTarry:x:y is enabled (y is arbitrary) and will execute. Consequently,
we know that a message will be sent and hence that Y will decrease. Since (x 6= p), we know that (.)
still holds, and subsequently, we have arrived in a situation similar to that of Figure 18(b).

If the current situation is that of Figure 18(b), then either idleTarry:z:w or action colTarry:z:w is en-
abled. If (z = p), then we know that le rec.p will become true, and hence we are ready. If (z 6= p), then
we know that, since the message will be received by z, again Y shall decrease. Since (z 6= p), we know
that (.) still holds, and subsequently, we have arrived again in a situation similar to that of Figure 18(a).

Since we have already proved that Y is a non-increasing function with respect to the well-founded relation
<, we know that we cannot in�nitely proceed from the situation in Figure 18(a) to the situation in Figure
18(b). Therefore, we shall eventually end in Figure 18(b) where (z = p), and hence le rec.p will be set to
true.

Tarry` guard of:(prop:p:q) ^ :le rec:p� guard of:(prop:p:q) ^ le rec:p

((� Bounded Progress (B.1055), using Y )
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8x 2 P : :le rec:x

9x 2 P : le rec:x

(a)

(b)

Figure 18: Possible situations when guard of:(prop:p:q) ^ :le rec:p holds
J
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Tarry` guard of:(prop:p:q) ^ :le rec:p ^ (Y = k)
�
guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

((� Case distinction (B.655): situation of Figure 18(a), or 18(b))

Tarry` guard of:(prop:p:q) ^ :le rec:p ^ (Y = k) ^ (9x 2 P : le rec:x)
�
guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

9=
;18(a)

^
Tarry` guard of:(prop:p:q) ^ :le rec:p ^ (Y = k) ^ (8p 2 P : :le rec:p)

�
guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

9=
;18(b)

Veri�cation of 18(a)

We shall proceed with proof-obligation 18(a), using the proof-strategy explained above. That is, we
shall need to decompose the proof-obligation in such a way that we can use � Introduction (B.354)
to prove that either propTarry:x:y or doneTarry:x:y will decrease Y . First, we shall identify process x
(from Figure 18(a)) in the left hand side of � as follows:

Tarry` guard of:(prop:p:q) ^ :le rec:p ^ (Y = k) ^ (9x 2 P : le rec:x)
�
guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

(
(� Substition (B.254), � Disjunction (B.955),
and (x 6= p) since (:le rec:p ^ le rec:x))

8x 2 P; (x 6= p) :

Tarry` guard of:(prop:p:q) ^ :le rec:p ^ (Y = k) ^ le rec:x

�
guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

Whether propTarry:x:y or doneTarry:x:y is the action that will decrease Y , depends on whether x has
sent to all non fathers, or not. Therefore, we proceed making the following case distinction:

((� Case Distinction (B.655))
8x 2 P; (x 6= p) :

Tarry` guard of:(prop:p:q) ^ :le rec:p ^ (Y = k)
^ le rec:x ^ :sent to all non fathers:x

�
guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

9>>=
>>;

18(a)
�prop

^
Tarry` guard of:(prop:p:q) ^ :le rec:p ^ (Y = k)

^ le rec:x ^ sent to all non fathers:x

�
guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

9>>=
>>;

18(a)
�done

Veri�cation of 18(a)-prop

The proof strategy for 18(a)-prop shall consists of using � Introduction (B.354), and proving that,
for some y, propTarry:x:y ensures that the value of Y decreases. Consequently, we have to substitute the
left hand side� in such a way that it implies the existence of an y such that the guard of propTarry:x:y
holds. In order to be able to do this it suÆces to prove that for arbitrary states s:

Jplum:s ^ JTarry:s ^ s:(le rec:x) ^ :sent to all non fathers:x:s

)
9y 2 neighs:x : :idle:x ^ cp:x:y:s ^ :sent to all non fathers:x:s ^ s:(le rec:x)

Using Theorem 6.1013, and cJ 2

plum from Jplum, it is straightforward to prove that:
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Theorem 8.21 not sent 2 all except f IMP cp

8p 2 P :
Jplum:s ^ :sent to all non fathers:p:s

9q 2 neighs:p : cp:p:q:s

Consequently, it remains to prove that x is non-idle. Since the fact that x has not sent to all non fathers

is not suÆcient to deduce this, we need a new invariant-candidate for JTarry. Evidently, the one that
suÆces here is:

QPPPPPPR cJ 2

tarry = 8p 2 P : le rec:p ) :idle:p

Subsequently, 18(a)-prop is established as follows:

((� Substitution (B.254), cJ
2

tarry
, and Theorems 8.536 and 8.2143)

8x 2 P; (x 6= p) :

Tarry` 9y 2 neighs:x :
guard of:(prop:p:q) ^ :le rec:p ^ (Y = k) ^ guard of:(propTarry:x:y)
�
guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

((� Disjunction (B.955), � Introduction (B.354))
8x 2 P; (x 6= p); y 2 neighs:x :

Tarry` Jplum ^ JTarry
^ guard of:(prop:p:q) ^ :le rec:p ^ (Y = k) ^ guard of:(propTarry:x:y)
ensures

guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

Proving this ensures-property is straightforward using Lemma 8.1939.

Veri�cation of 18(a)-done

The proof strategy for 18(a)-done is similar to that of 18(a)-prop. That is, we use � Introduction

(B.354) and prove that doneTarry:x:y ensures that the value of Y decreases. Again we have to substitute
the left hand side� in such a way that it implies the guard of doneTarry:x:y. However, since the guard
of doneTarry is never enabled for the starter, we �rst have to prove that (x 6= starter). In order to do
this we prove 18(a)-done for the case when (x = starter) and (x 6= starter).

Veri�cation of 18(a)-done when x = starter

We have to prove that, when (starter 6= p),

Tarry` guard of:(prop:p:q) ^ :le rec:p ^ (Y = k)
^ le rec:starter ^ sent to all non fathers:starter

�
guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

Since the guard of doneTarry is never enabled for the starter, the only possible way to proceed here is:
use � Introduction (B.354), and subsequently prove that the left hand side of the � in conjunction
with Jplum and JTarry evaluates to false. So assume, for some state s, it holds that:
A1 : Jplum:s ^ JTarry:s
A2 : guard of:(prop:p:q):s ^ :s:(le rec:p)
A3 : s:(le rec:starter) ^ sent to all non fathers:starter:s

We shall now try to reach a contradiction. From A2, we can, using (2)8 through (7)8 and 6.811, deduce
that:
A4: :done:p:s
As a result, from Theorem 6.4229 together with assumptions A1, A2, and A4, we can infer that:
A5: :done:starter:s
From Theorem 6.3727 and assumption A3, we can derive that:
A6: sent to all neighs:starter

Since the starter's last event was a receive event, we can argue, due to the alternating send and receive
behaviour of Tarry, that the starter has rec from all neighs, and consequently (A6 and (7)8) is done.
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Obviously, this establishes the desired contradiction with assumption A5. In order to be able to prove
that the starter is indeed done, we need to introduce a new invariant-candidate for Tarry. Since initially,
the le rec variable of the starter is set to true, we state the following candidate:

QPPPPPPRcJ 3

tarry = le rec:starter) (NR SENT:starter = NR REC:starter)
^
:le rec:starter) (NR SENT:starter = NR REC:starter+ 1)

Using 8.1238 and 8.1338, this candidate suÆces to prove { under the assumptions stated above { that the
starter is done.

Veri�cation of 18(a)-done when x 6= starter

Now we know that x is not the starter, we have to substitute the left hand side of� in such a way that
it implies the guard of doneTarry:x:y. According to Theorems 8.636, 6.911 and (4)8, it suÆces to prove
that for arbitrary states s:

Jplum:s ^ JTarry:s ^ s:(le rec:x) ^ sent to all non fathers:x:s

)
9y 2 neighs:x : rec from all neighs:x:s

^ sent to all non fathers:x:s

^ :sent to all neighs:x:s

^ (y = (father:x))

Similar to the line of reasoning above, we introduce the following invariant-candidate for this purpose:

QPPPPPPRcJ 4

tarry = 8p 2 P : le rec:p) (NR REC:p = NR SENT:p+ 1)
^
:le rec:p) (NR REC:p = NR SENT:p)

Subsequently, 18(a)-done for the case that (x 6= starter) is established as follows:

((� Substitution (B.254), cJ
4

tarry, 6.911, 8.636, 8.1238, and 8.1638)

8x 2 P; (x 6= p); (x 6= starter) :

Tarry` 9y 2 neighs:x :
guard of:(prop:p:q) ^ :le rec:p ^ (Y = k) ^ guard of:(doneTarry:x:y)
�
guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

((� Disjunction (B.254), � Introduction (B.354))

8x 2 P; (x 6= p); (x 6= starter) :

Tarry` Jplum ^ JTarry
guard of:(prop:p:q) ^ :le rec:p ^ (Y = k) ^ guard of:(doneTarry:x:y)
ensures

guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

Proving this ensures-property is straightforward using Lemma 8.1939.

Veri�cation of 18(b)

For convenience, the proof obligation tackled in in this section is re-displayed below (from page 42):

Tarry` guard of:(prop:p:q) ^ :le rec:p ^ (Y = k) ^ (8p 2 P : :le rec:p)
�
guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

Here we shall employ the proof-strategy explained on page 40. That is, we shall need to decompose the
proof-obligation in such a way that we can use � Introduction (B.354) to prove that either idleTarry
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or colTarry decreases Y or establishes le rec:p. From Figure 18(b), we know that in this situation, there
is a message in transit somewhere in the network. Moreover, using cJ 4

plum, cJ
2

plum, cJ
2

plum and (1)8, it is
not hard to prove that:

Theorem 8.22 mit IMP not rec from all neighs

8p 2 P; q 2 neighs:p :
Jplum:s ^mit:q:p:s

:rec from all neighs:p:s

Consequently, we can substitute the left hand side of � as follows: (we use the names z and w since
these correspond to Figure 18(b))

((� Substitution (B.254), cJ
1

tarry
, Theorem 8.2245)

Tarry` 9z 2 P; w 2 neighs:z :
guard of:(prop:p:q) ^ :le rec:p ^ (Y = k) ^ (8p 2 P : :le rec:p)
^ mit:w:z ^ :rec from all neighs:z

�
guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

((� Disjunction (B.955))
8z 2 P; w 2 neighs:z :

Tarry` guard of:(prop:p:q) ^ :le rec:p ^ (Y = k) ^ (8p 2 P : :le rec:p)
^ mit:w:z ^ :rec from all neighs:z

�
guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

If (z = p), the proof obligation from above can be proved using� Introduction (B.354), since execution
of colTarry:p:w will ensure that le rec:p is set to true.

Suppose (z 6= p). Whether idleTarry:z:w or colTarry:z:w is the action that will decrease Y , depends on
whether z is idle or not. Therefore, we proceed as follows:

((� Case Distinction (B.655))
8z 2 P; w 2 neighs:z; (z 6= p) :

Tarry` guard of:(prop:p:q) ^ :le rec:p ^ (Y = k) ^ (8p 2 P : :le rec:p)
^ mit:w:z ^ :rec from all neighs:z ^ idle:z

�
guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

^
Tarry` guard of:(prop:p:q) ^ :le rec:p ^ (Y = k) ^ (8p 2 P : :le rec:p)

^ mit:w:z ^ :rec from all neighs:z ^ :idle:z
�
guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

((� Substitution (B.254) on both conjuncts, using 6.611, 6.711, 8.336, 8.436)
8z 2 P; w 2 neighs:z; (z 6= p) :

Tarry` guard of:(prop:p:q) ^ :le rec:p ^ (Y = k) ^ (8p 2 P : :le rec:p)
^ guard of:(idleTarry:z:w)
�
guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

^
Tarry` guard of:(prop:p:q) ^ :le rec:p ^ (Y = k) ^ (8p 2 P : :le rec:p)

^ guard of:(colTarry:z:w)
�
guard of:(prop:p:q) ^ ((:le rec:p ^ (Y < k)) _ (le rec:p))

Both conjuncts can be proved using� Introduction (B.354), and Lemma 8.1939.

This ends the veri�cation of 18(b), and hence of the reach-prop-part (page 40), and consequently of the
termination of Tarry. The one thing that remains to be done, is constructing Tarry's additional invari-
ant. Gathering all the candidates introduced (i.e. cJ 1

tarry through cJ 4

tarry), analysing them, and verifying
the stability of their conjunction results in the need to introduce yet three more invariant-candidates.
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De�nition 8.23 Tarry's additional invariant Invariant Tarry Part

JTarry =

(9p 2 P; q 2 neighs:p : mit:p:q) = (8p 2 P : :le rec:p) cJ 1

tarry
; cJ 6

tarry

^ 8p 2 P : le rec:p ) :idle:p cJ 2

tarry

^ le rec:starter) (NR SENT:starter = NR REC:starter)

^ :le rec:starter) (NR SENT:starter = NR REC:starter+ 1) cJ 3

tarry

^
8p 2 P : le rec:p) (NR REC:p = NR SENT:p+ 1)

^ :le rec:p) (NR REC:p = NR SENT:p)
cJ 4

tarry

^ 8p; x 2 P; q 2 neighs:p; y 2 neighs:x :

mit:p:q ^mit:x:y ) (p = x) ^ (q = y) cJ 5

tarry

^ 8p; q 2 P : le rec:p ^ le rec:q ) (p = q) cJ 7

tarry

Theorem 8.24 STABLEe Invariant Tarry

Tarry`�Jplum ^ JTarry

Theorem 8.25 INVe Invariant Tarry

Tarry` 2Jplum ^ JTarry

Figure 19: Tarry's invariant
J

Again, since the veri�cation activities are not all that exciting, we shall just state the required candi-
dates. The �rst one comes as no surprise and states that, if there is a message in transit it is the only one:

QPPPPPPRcJ 5

tarry = 8p; x 2 P; q 2 neighs:p; y 2 neighs:x :
mit:p:q ^mit:x:y ) (p = x) ^ (q = y)

The second and the third one together state that if there is no message in transit, then there is exactly
one process that has received a message:

QPPPPPPR cJ 6

tarry = :(9p 2 P; q 2 neighs:p : mit:p:q)) (9p 2 P : le rec:p)

QPPPPPPR cJ 7

tarry
= 8p; q 2 P : le rec:p ^ le rec:q ) (p = q)

Since, cJ 1

tarry and cJ 6

tarry can be coalesced into one candidate using equality, we have derived a charac-
terisation of JTarry that is displayed in Figure 19.

9 Using re�nements to derive termination of DFS

This section shall describe how termination of the DFS algorithm is proved using the re�nements frame-
work from [VS01], and the already proven fact that:

8J :: Tarry vR Tarry dfs; J DFS

The UNITY speci�cation reads:

Theorem 9.1 HYLO DFS

Jplum ^ JTarry ^ Jdfs dfs` iniDFS 8p : p 2 P : done:p

where invariant Jdfs captures additional safety properties for DFS (if any). Using � Preservation

Theorem 3.84, it is straightforward to derive:
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Theorem 9.3 guard of IDLE DFS

guard of:(idledfs:p:q) = guard of:(idleTarry:p:q)

Theorem 9.4 guard of COL DFS

guard of:(coldfs:p:q) = guard of:(colTarry:p:q)

Theorem 9.5 guard of PROP lp rec DFS

guard of:(prop lp rec:p:q) = guard of:(propTarry:p:q) ^ q = lp rec:p

Theorem 9.6 guard of PROP not lp rec DFS

guard of:(prop not lp rec:p:q) = guard of:(propTarry:p:q) ^ :cp:p:(lp rec:p)

Theorem 9.7 guard of DONE DFS

guard of:(donedfs:p:q) = guard of:(doneTarry:p:q)

Figure 20: Guards of the actions from DFS

J

Theorem 9.2 STABLEe Invariant in DFS

DFS`�(Jplum ^ JTarry)

The stability of: DFS`� (Jplum ^ JTarry ^ Jdfs) will be implicitly assumed throughout the veri�cation
process. For ease of reference, Figure 20 displays theorems about the guards of DFS's actions. And again,
for readability we introduce the notational convention that: ` abbreviates Jplum ^ JTarry ^ Jdfs dfs`.

Termination of DFS is proved using property preserving Theorem 3.35. The reasons for using this
Theorem are twofold. First, since every prop action in Tarry is bitotally related to two actions in DFS
(namely prop lp rec and prop not lp rec), we need to be able to pick one of those DFS prop-
actions when proving that the guards of Tarry's prop-actions eventually implies the guards of related
DFS's prop-actions. Consequently, we cannot use preservation theorems 3.65 or 3.55. The second reason
for using 3.35 is not because 3.45 cannot be used, but because it reduces proof e�ort. As we have seen
during Tarry's veri�cation, Lemma 8.1939 was very useful when proving unless and ensures properties
that involved Y . A similar lemma can easily be proved for the actions of DFS, and hence veri�cation of
unless and ensures properties involving Y in the context of DFS will be simple too.

Lemma 9.8 A DECR Y

For arbitrary processes p 2 P, q 2 neighs:p, and actions
A 2 fidledfs;coldfs; prop lp rec; prop not lp rec;donedfsg:

8k ::
Jplum:s ^ A:p:q:s:t ^ guard of:(A:p:q):s ^ (Y:s = k)

Y:t < k

Therefore, we decided to use 3.35, although a function that is non-increasing with respect to some well-
founded relation is not needed in order to be able to prove that falsi�cation of the guards of DFS's
prop-actions go hand in hand with the falsi�cation of the guards of Tarry's prop-actions.

As a result, the initial speci�cation stating termination of DFS is decomposed as follows:

dfs` inidfs 8p : p 2 P : done:p

((Theorem 3.45, 8.135, 5.310)
For some well-founded relation �:
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9W :: (wDFS = wTarry [W ) ^ ((Jplum ^ JTarry) C W c) ^ (wTarry �W c)
^

8AD : AD 2 aDFS ^ (9AT :: AT 2 aTarry ^ (AT R Tarry dfs AD)) :
(guard of:AD C wDFS)

^
8AT AD : AT 2 aTarry

dfs` guard of:AT

�
(9AD :: (AT R Tarry dfs AD) ^ guard of:AD)

9>>=
>>; reach � part

^
9M :: (M C wDFS)
^
8k :: DFS` (Jplum ^ JTarry ^ Jdfs ^M = k) unless (M � k)
^
8k AT AD : AT 2 aTarry ^ AT R Tarry dfs AD :

dfs` (Jplum ^ JTarry ^ Jdfs ^ guard of:AD ^M = k)
unless

(:(guard of:AT ) _M � k)

9>>>>>>>>>>=
>>>>>>>>>>;

unless� part

Since, lp rec:p variables are superimposed on Tarry in order to obtain DFS, the �rst conjunct is instan-
tiated with the set flp rec:p j p 2 Pg. Proving that Jplum and JTarry are con�ned by the complement of
this set is tedious but straightforward, since the variables le rec do not appear in it. Similarly, proving
that the guards of the actions in DFS are con�ned by DFS's write variables (i.e. the second conjunct)
is not complicated.
The unless-part is now easy to prove by instantiating with Y (De�nition 8.1738):

� proving that Y is con�ned by the write variables of DFS is easy using Theorem 8.1838 and mono-
tonicity of con�nement A.252

� proving that Y is non-increasing in DFS, can be proved using unless preservation (Theorem 3.74),
and Theorem 8.2039.

� proving that falsi�cation of the guards of DFS's actions go hand in hand with the falsi�cation of
the guards of related Tarry's actions is easy using Lemma 9.847.

For the reach-part, the idle, col, and done cases can be proved using � Introduction (B.354). As
a consequence, we are left with the prop case:

dfs` guard of:(propTarry:p:q)
�
(9AD :: (propTarry:p:q R Tarry dfs AD) ^ guard of:AD)

This case states that: from a situation in which guard of:(prop:p:q) holds, we will eventually reach a
situation in which either the guard of action prop lp rec.p:q or prop not lp rec.p:q holds. To explain
the proof-strategy that is used to verify this proof obligation, we refer to Figure 21. The p and q in the
picture correspond to the p and q in the proof obligation, z is an arbitrary process. In Figure 21 we are
in the situation that the guard of propTarry:p:q holds, that is (Theorem 8.536):

guard of:(prop:p:q) ^ le rec:p

Process p has just received the message, and therefore is the only process that can do something. There
are now two possibilities:

q = lp rec:p In this case the guard of prop lp rec:p:q holds and we are done.

q 6= lp rec:p In this case the guard of prop lp rec:p:q cannot hold. Again there are two possibilities:

: cp:p:(lp rec:p) , that is p is not allowed to propagate a message to the process it has received its last
message from. In this case, p can pick any non-father-neighbour to which it has not yet sent a
message. Evidently, we can pick q, and as a consequence, the guard of prop not lp rec:p:q is
enabled.
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q
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Figure 21: Situation when guard of:(prop:p:q) ^ le rec:p holds
J

cp:p:(lp rec:p) In this case p has to send a message to the process it has received its last message from,
and since this is not q, neither the guard of prop lp rec:p:q nor prop not lp rec:p:q holds. If z
(from Figure 21) is equal to lp rec:p, then the guard of prop lp rec:p:z is enabled and consequently
p shall send a message to z. Since (z 6= q), we know that afterward the following holds:

guard of:(prop:p:q) ^ :le rec:p

Now we �nd ourself in the situation in Figure 1841(b), from which we can transfer to situation in
Figure 1841(a) or Figure 21. Again, a well-foundedness argument, using � Bounded Progress

(B.1055), shall enable us to prove that we cannot in�nitely go back and forth between these situ-
ations, and therefore that eventually the guard of prop lp rec:p:q or prop not lp rec:p:q will
be enabled.

Consequently, when we use non-increasing function Y again for this well-foundedness argument, the proof
of DFS's reach-prop-part shall resemble that of Tarry's (see page 40). Therefore we shall only present
the begin of the proof, which is slightly di�erent from Tarry.

dfs` guard of:(propTarry:p:q)
�
(9AD :: (propTarry:p:q R Tarry dfs AD) ^ guard of:AD)

((� Case Distinction (B.655))

dfs` guard of:(propTarry:p:q) ^ q = lp rec:p

�
(9AD :: (propTarry:p:q R Tarry dfs AD) ^ guard of:AD)

^
dfs` guard of:(propTarry:p:q) ^ q 6= lp rec:p

�
(9AD :: (propTarry:p:q R Tarry dfs AD) ^ guard of:AD)

((� Introduction (B.354), and 9.547 proves �rst conjunct,
� Case Distinction (B.655) on second conjunct)

dfs` guard of:(propTarry:p:q) ^ q 6= lp rec:p ^ :cp:p:(lp rec:p)
�
(9AD :: (propTarry:p:q R Tarry dfs AD) ^ guard of:AD)

^
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dfs` guard of:(propTarry:p:q) ^ q 6= lp rec:p ^ cp:p:(lp rec:p)
�
(9AD :: (propTarry:p:q R Tarry dfs AD) ^ guard of:AD)

((� Introduction (B.354), and 9.647 proves �rst conjunct,
� Transitivity (B.555) on second conjunct)

dfs` guard of:(propTarry:p:q) ^ q 6= lp rec:p ^ cp:p:(lp rec:p)
�
guard of:(prop:p:q) ^ :le rec:p

^
dfs` guard of:(prop:p:q) ^ :le rec:p

�
(9AD :: (propTarry:p:q R Tarry dfs AD) ^ guard of:AD)

((� Introduction (B.354), prop lp rec.p:(lp rec:p) establishes : le rec.p,
� Bounded Progress (B.1055) on second conjunct)

dfs` guard of:(prop:p:q) ^ :le rec:p ^ (Y = k)
�
(guard of:(prop:p:q) ^ :le rec:p ^ (Y < k))
_
(9AD :: (propTarry:p:q R Tarry dfs AD) ^ guard of:AD)

From here, the proof is similar to that of Tarry (starting at page 40), and hence is not repeated. We
end the veri�cation of DFS's termination by observing that the veri�cation of DFS did not need any
more safety properties, and thus that Jdfs can de�ned to be true.

De�nition 9.9 Invariant DFS

Jdfs = true

10 Concluding remarks

Although this is a tough report to read (as well as write), we think we have succeeded in presenting
intuitive and structured proofs of the correctness of distributed hylomorphisms with respect to their
termination. Due to the incremental, demand-driven construction of the invariant, the latter is not
\pulled out of a hat" [Cho95], and the purpose of its various conjuncts are well motivated. Moreover,
since, various property preservation theorems are necessary throughout the veri�cation process, this
report also serves as an illustration of the usage and e�ectiveness of the re�nement framework from
[VS01].

11 HOL theories

All results in this report have been veri�ed with HOL [GM93]. The approach used to verify the distributed
hylomorphisms is reected in the resulting hierarchy of HOL theories, which is depicted in Figure 22.

network is the theory about centralised and decentralised connected networks described in Section 4.

RST constitutes the theory about rooted spanning trees described in Section 6.7.

communication contains the theory about asynchronous communication from Section 4.

Distributed Hylomorphisms embodies de�nitions (1)8 through (7)8.

PLUM formalises the PLUM algorithm.

PLUM INV de�nes and proves the invariant of PLUM.
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Figure 22: Theory hierarchy
J
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ANA PLUM contains the proof of the anamorphism part of the distributed hylomorphism, i.e. the con-
struction of a rooted spanning tree.

CATA PLUM contains the proof of the catamorphism part, i.e. using the rooted spanning tree to establish
the desired result.

HYLO PLUM combines the anamorphism and catamorphism part to prove termination of PLUM.

ECHO, Tarry, DFS formalise ECHO, Tarry, and DFS respectively, and contain Theorems 5.1 through
5.3.

HYLO ECHO, HYLO Tarry, HYLO DFS prove termination of ECHO, Tarry, and DFS respectively by
using the re�nement framework.

The resulting theories can be obtained by sending an email to one of the authors.

A Preliminaries: states, actions, programs and speci�cations

A.1 Variables, values, states

We assume we have a universe Var of program variables and a universe Val of values that these variables
can take. Program states will be modelled as functions that are elements of Var!Val, and the set of
all program states will be denoted by State. A state-predicate is an element of State!bool. We say
that a state-predicate p is con�ned by a set of variables V � Var if p does not restrict the value of any
variable outside V . Let us write s =V t, if all variables in V have the same values in state s and t (i.e.
8v : v 2 V : s:v = t:v). Now we can formally de�ne predicate con�nement as follows:

De�nition A.1 Confinement CONF DEF

p C V
d
= 8s; t : s =V t : p:s = p:t

The con�nement operator is monotonic in its second argument.

Theorem A.2 C Monotonicity CONF MONO

8f :: V �W ^ (f C V )) (f C W )

A.2 Actions

Actions can be (multiple) assignments or guarded (if-then) actions. Simultaneous execution of assignments
is modelled by the operator k. For example, x; y := 1; 2 kw; z := 3; 4 equals x; y; z; w := 1; 2; 3; 4.

All actions is this report are assumed to be well-formed, meaning that their guard is a state-predicate,
and the amount of variables at the left hand side of the := is equal to the amount of values at the right
hand side.

We will assume a deep embedding of actions, i.e. the abstract syntax of actions is de�ned by a
recursive data type ACTION, and their semantics is de�ned by a recursive function, e.g. compile, of type
ACTION!(State!State!Bool). As a consequence, we are able to obtain and reason about various
components of actions. For example, we assume that we have functions guard of and assign vars that
given an action returns its guard and the set of variables it assigns to respectively. Examples of these
functions:

guard of(if x > 0 ^ y < 10 then x := x+ 1 k y := y � 1) = x > 0 ^ y < 10
assign vars(if x > 0 ^ y < 10 then x := x+ 1 k y := y � 1) = fx; yg

Moreover, we have functions is assign and is guard that enable us to check the type of an action.
An action that is always ready to make a transition is called always enabled.

De�nition A.3 Always Enabled Action ALWAYS ENABLED

2EnA
d
= 8s :: (9t :: compile:A:s:t)

Multiple assignments and guarded if-then actions are always enabled. Note that this means that a guarded
action with a false guard behaves like skip, i.e. the action that does not change the value of any variable.
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Theorem A.10 Anti-Reflexivity UNLESS ANTI REFL

P` p unless :p

Theorem A.11 �Conjunction

P` (�p) ^ P` (�q)

P`�(p ^ q)

Figure 23: Some theorems about unless and �
J

De�nition A.4 skip action SKIP DEF

For any action A; skip
d
= if false then A

A set of variables is V ignored-by an action A, denoted by V 8 A, if executing A's executable in any
state does not change the values of these variables. Variables in V c may however be written by A.

De�nition A.5 variables Ignored-by action dIG BY DEF

V 8 A
d
= 8s; t : compile:A:s:t : s =V t

A set of variables V is said to be invisible-to an action A, denoted by V 9 A, if the values of the variables
in V do not inuence the result of A's executable, hence A only depends on the variables outside V .

De�nition A.6 variables Invisible-to action dINVI DEF

V 9 A
d
= 8s; t; s0; t0 : s =V c s0 ^ t =V c t0 ^ s0 =V t0 ^ compile:A:s:t : compile:A:s0:t0

A.3 Programs

UNITY programs P are modelled by a quadruple (aP , iniP , rP , wP ); aP , is the set of actions separated
by the symbol 8; iniP is the initial condition of the program; rP is the set of read variables; and wP the
set of write variables.

A program execution of such a program is in�nite, in each step an action is selected nondeterministi-
cally and executed. Selection is weakly fair, meaning that every action is selected in�nitely often.

A.4 Speci�cations

As usual, reasoning about actions is done by means of Hoare triples [Hoa69]. If p and q are state-
predicates, and A is an action, then fpg A fqg means that if A is executed in any state satisfying p, it
will end in a state satisfying q:

De�nition A.7 Hoare Triple HOAe DEF

fpg A fqg
d
= 8s; t : p:s ^ compile:A:s:t : q:t

To reason about programs we will use the UNITY speci�cation and proof logic from [CM89] augmented
by [Pra95]. Safety properties can be speci�ed by the following operators:

De�nition A.8 Unless (Safety Property) UNLESSe

P` p unless q
d
= 8A : A 2 aP : fp ^ :qg A fp _ qg

De�nition A.9 Stable Predicate STABLEe

P`�p
d
= P` p unless false

In Figure 23 some theorems about unless and � are listed that we will need later in this report.
One-step progress properties are speci�ed by:

53



De�nition A.12 Ensures (Progress Property) ENSURESe

P` p ensures q
d
= (P` p unless q) ^ (9A : A 2 aP : fp ^ :qg A fqg)

To specify general progress properties we will use Prasetya's [Pra95] reach (�) and convergence ( )
operators. The �-operator is de�ned as the least disjunctive and transitive closure of ensures:

De�nition A.13 Reach Operator REACHe

(�p; q: J P` p� q) is de�ned as the smallest relation! satisfying:

Lifting
p C wP ^ q C wP ^ (P`�J) ^ (P` J ^ p ensures q)

p! q

Transitivity
p! q ^ q! r

p! r

Disjunctivity
8i :W:i : pi ! q

(9i :W:i : pi)! q

where W 2 �!Val characterises a non-empty set.

Many properties about � can be found in [Pra95], the properties we need in this report are listed in
Appendix B.

The  -operator de�nes a restricted form of self-stabilisation, a notion �rst introduced by Dijkstra
in [Dij74]. Roughly speaking, a self-stabilising program is a program which is capable of recovering
from arbitrary transient failures of the environment in which the program is executing. Obviously such
programs are very useful, although the requirement to allow arbitrary failures may be too strong. A more
restricted form of self-stabilisation, called convergence, allows a program to recover only from certain
failures. In [Pra95], a convergence operator is de�ned in terms of�:

De�nition A.14 Convergence CONe

J P` p q , q C wP ^ (9q0 :: (J P` p� q0 ^ q) ^ (P`�(J ^ q
0 ^ q)))

Again some properties taken from [Pra95] are listed in Appendix C. Most properties are analogous
to those of �. There is, however, one property that is satis�ed by  but not by � nor 7!, viz.
Conjunctivity.

B Laws of �

Theorem B.1 � Stable Background and Confinement REACHe IMP STABLE

REACHe IMP CONF

P :
J ` p� q

�J ^ p; q C wP

Theorem B.2 � Substitution REACHe SUBST

P; J :
p; s C wP ^ [J ^ p) q] ^ (q� r) ^ [J ^ r ) s]

p� s

Theorem B.3 � Introduction REACHe ENS LIFT,REACHe IMP LIFT

P; J :
p; q C wP ^ (�J) ^ ([J ^ p) q] _ (J ^ p ensures q))

p� q

Theorem B.4 � Reflexivity REACHe REFL

P; J :
p C wP ^ (�J)

p� p
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Theorem B.5 � Transitivity REACHe TRANS

P; J :
(p� q) ^ (q� r)

p� r

Theorem B.6 � Case distinction REACHe DISJ CASES

P; J :
(p ^ :r� q) ^ (p ^ r� q)

p� q

Theorem B.7 � Cancellation REACHe CANCEL

P; J :
q C wP ^ (p� q _ r) ^ (r� s)

p� q _ s

Theorem B.8 � Progress Safety Progress (PSP) REACHe PSP

P; J :
r; s C wP ^ (r ^ J unless s) ^ (p� q)

p ^ r� (q ^ r) _ s

Theorem B.9 � Disjunction REACHe GEN DISJe

P; J :
(8i : i 2W : p:i� q:i)

(9i : i 2W : p:i)� (9i : i 2W : q:i)
if W 6= ;

Theorem B.10 � Bounded Progress REACHe WF INDUCT

For a well-founded relation � over some set W , and metric M 2 State!W :

P; J :
q C wP ^ (8m 2 W : p ^ (M = m)� (p ^ (M � m)) _ q)

p� q

C Laws of  

Theorem C.1 Convergence Implies Progress CONe IMP REACHe

P; J :
p q

p� q

Theorem C.2  Substitution CONe SUBST

P; J :
p; s C wP ^ [J ^ p) q] ^ (q  r) ^ [J ^ r ) s]

p s

Theorem C.3  Introduction CONe ENSURES LIFT, CONe IMP LIFT

P; J :
p; q C wP ^ (�J) ^ (�(J ^ q)) ^ ([J ^ p) q] _ (p ^ J ensures q))

p q

Theorem C.4  Reflexivity CONe REFL

P; J :
p C wP ^ (�J) ^ (�(J ^ p))

p p

Theorem C.5  Transitivity CONe TRANS

P; J :
(p q) ^ (q  r)

p r

Theorem C.6  Case distinction CONe DISJ CASES

P; J :
(p ^ :r  q) ^ (p ^ r  q)

p q
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Theorem C.7 Accumulation CON SPIRAL

P; J :
(p q) ^ (q  r)

p q ^ r

Theorem C.8  Stable Strengthening CONe STAB MONO GEN

P :
q C wP ^ (�(J1 ^ J2)) ^ J1 ` p q

(J1 ^ J2) ` p q

Theorem C.9  Stable Shift CONe STABLE SHIFT

P :
p0 C wP ^ (�J) ^ (J ^ p0 ` p q)

J ` p0 ^ p q

Theorem C.10  Disjunction CONe GEN DISJ

P; J :
(8i : i 2W : p:i q:i)

(9i : i 2W : p:i) (9i : i 2 W : q:i)
if W 6= ;

Theorem C.11  Conjunction CONe CONJ

For all non-empty and �nite sets W :

P; J :
(8i : i 2W : p:i q:i)

(8i : i 2W : p:i) (8i : i 2 W : q:i)

Theorem C.12  Bounded Progress CONe WF INDUCT

For a well-founded relation � over some set A, and metric M 2 State!A:

P; J :
(q  q) ^ (8m 2 A : p ^ (M = m) (p ^ (M � m)) _ q)

p q

Theorem C.13  Iteration Iterate thm CONe

For arbitrary sets W ,

P; J; L :

(�((8x : x 2 L : Q:x) ^ J)) ^ (8x : x 2 L : Q:x C wP )
L �W ) ((f:L) �W ^ (8x : x 2 L : Q:x) (8x : x 2 f:L : Q:x))

8n L : L �W ) (8x : x 2 L : Q:x) (8x : x 2 iterate:n:f:L : Q:x)
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