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The cutwidth of a graph G is defined to be the smallest integer k such that
the vertices of G can be arranged in a vertex ordering [v1,...,v,] in a way
that, for every ¢ = 1,... ,n—1, there are at most k edges with the one endpoint
in {v1,...,v;} and the other in {vj41,...,vn}. We examine the problem of
computing in polynomial time the cutwidth of a partial w-tree with bounded
degree. In particular, we show how to construct an algorithm that, in no(“’2d)
steps, computes the cutwidth of any partial w-tree with vertices of degree
bounded by a fixed constant d. Our algorithm is constructive in the sense
that it can be adapted to output the corresponding optimal vertex ordering.
Also, it is the main subroutine of an algorithm computing the pathwidth of a

bounded degree partial w-tree in no((“’d)2) steps.
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1. INTRODUCTION
A wide variety of optimization problems can be formulated as layout or vertex order-

ing problems. In many cases, such a problem asks for the optimal value of some function

* The work of all the authors was supported by the IST Program of the EU under contract number
IST-99-14186 (ALCOM-FT). The work of the first author was partially supported by the Ministry of
Education and Culture of Spain, Grant number MEC-DGES SB98 0K148809.

1



defined over all the linear orderings of the vertices or the edges of a graph (for a survey,
see [21]). One of the most known problems of this type is the problem to compute the
cutwidth of a graph. It is also known as the MINIMUM CUT LINEAR ARRANGEMENT
problem and has several applications such as VLSI design [2, 3, 35, 33], network relia-
bility [30], automatic graph drawing [44, 38], and information retrieval [15]. Cutwidth
has been extensively examined [17, 24, 25, 31, 35, 37, 49] and it appears to be closely
related with other graph parameters like pathwidth, linear-width, bandwidth, and modi-
fied bandwidth [17, 18, 31, 34, 35]. Briefly, the cutwidth of a graph G = (|[V(G)|, |E(G)|)
is equal to the minimum k for which there exists a vertex ordering of G such that for any
‘gap’ (place between two successive vertices) of the ordering, there are at most k edges
crossing the gap. Computing cutwidth is an NP-complete problem [26, 27] and it remains
NP-complete even if the input is restricted to planar graphs with maximum degree 3 [37]
(see also [34, 20]). There is a polynomial time approximation algorithm with a ratio of
O(log |V (G)|loglog |[V(G)|) [23] and there is a polynomial time approximation scheme
if E(G) = 0(|[V(G)|?) [4]. Relatively few work has been done on detecting special graph
classes where computing cutwidth can be done in polynomial time. In [19], an algorithm
was given that computes the cutwidth of any tree with maximum degree bounded by d
in O(n(logn)?2) time. This result was improved in 1983 by Yannakakis [49], who pre-
sented an O(n logn) algorithm computing the cutwidth of any tree. Since then, the only
polynomial algorithms reported for the cutwidth of graph classes different than trees,
concerned special cases such as hypercubes [29] and b-dimensional c-ary cliques [39]. In
this paper, we move one step further presenting an polynomial time algorithm for the
cutwidth of bounded degree graphs with small treewidth.

The notions of treewidth and pathwidth appear to play a central role in many areas
of graph theory. Roughly, a graph has small treewidth if it can be constructed by
assembling small graphs together in a tree structure, namely a tree decomposition of
small width (graphs with treewidth at most w are alternatively called partial w-trees— see
section 2 for the formal definitions). A big variety of graph classes appear to have small
treewidth, such as trees, outerplanar graphs, series parallel graphs, and Halin graphs
(for a detailed survey of classes with bounded treewidth, see [9]). The pathwidth of a
graph is defined similarly to treewidth, but not the the tree in its definition is required
to be a simple line (path). That way, treewidth can be seen as a “tree”-generalization

of pathwidth. Pathwidth and treewidth were introduced by Robertson and Seymour



in [41, 42] and served as some of the cornerstones of their lengthy proof of the Wagner
conjecture, known now as the Graph Minors Theorem (for a survey see [43]). Treewidth
appears to have interesting applications in algorithmic graph theory. In particular,
a wide range of otherwise intractable combinatorial problems are polynomially, even
linearly, solvable when restricted to graphs with bounded treewidth or pathwidth. In
this direction, numerous techniques have been developed in order to construct dynamic
programming algorithms making use of the “tree” or “line” structure of the input graph
(see e.g. [8]). The results of this paper show how these techniques can be used for
constructing a polynomial time algorithm for the cutwidth of partial w-trees with vertices
of degrees bounded by fixed constants. Our algorithm is an non trivial extension of
the linear time algorithm in [22] concerning the parameterized version of the cutwidth
problem.

The parameterized version of the cutwidth problem asks whether the cutwidth of a
graph is at most k, where k is a fixed small constant. This problem is known to be
solvable in polynomial time. In particular, the first polynomial algorithm for k fixed
was given by Makedon and Sudborough in [35] where a O(nF~!) dynamic programming
algorithm is described (see also [16] for the case k = 3). This time complexity has
been considerably improved by Fellows and Langston in [25] where, among others, they
prove that, for any fixed k, an O(n?®) algorithm can be constructed checking whether a
graph has cutwidth at most k. Furthermore, a technique introduced in [24] (see also [6])
further reduced the bound to O(n?), while in [1] a general method is given to construct
a linear time algorithm that decides whether a given graph has cutwidth at most k, for
k constant. Finally, in [22], an explicit constructive linear time algorithm was presented
able to output the optimal vertex ordering in case of a positive answer. This algorithm
is based on the fact that graphs with small cutwidth have also small pathwidth and
develops further the techniques in [12, 13, 14] in order to use a bounded-width path
decomposition for computing the cutwidth of G.

This paper extends the algorithm in [22] in the sense that it uses all of its subroutines
and it solves the problem of [22] for graphs with bounded treewidth. Although this
extension is not really useful for the parameterized version of cutwidth, it appears that
it is useful for solving the general cutwidth problem for partial w-trees of bounded degree.
This is possible due to the observation that the “hidden constants” of all the subroutines

of our algorithm remain polynomial even when we ask whether G has cutwidth at most



O(dk) - logn. As this upper bound for cutwidth is indeed satisfied (see Corollary 2.1),
our algorithm is able to compute in n°(@*®) steps the cutwidth of bounded degree partial
w-trees.

A main technical contribution of this paper is is Algorithm Join-Node in Section 3.
This algorithm uses the “small treewidth” property of the input graph. It is used as an
important subroutine in the algorithm for the main result. Section 2, contains the main
definitions and lemmata supporting the operation of Join-Node as well as the proof of
its correctness. Subsections 2.1 and 2.2 contain the definitions of treewidth, pathwidth
and cutwidth. Most of the preliminary results of Subsection 2.3, concern operations on
sequences of integers and the definitions of the most elementary of them was introduced
in [22] and [12] (see also [13, 14]). Also, the main tool for exploiting the small treewidth
of the input graph is the notion of the characteristic of a vertex ordering, introduced
in [22] and defined in Subsection 2.5 of this paper. For the above reasons, we use notation
compatible with the one used in [22].

Algorithm Join-Node only helps to compute the cutwidth of a bounded degree partial
w-tree G but not to construct the corresponding vertex ordering. In section 4, we de-
scribe how to transform this algorithm to a constructive one in the sense that we now
can output a linear arrangement of G with optimal cutwidth. This uses the analogous
constructions of [22] and the procedures Join-Orderings and Construct-Join-Orderings de-
scribed in Section 3.

An interesting consequence of our result is that the pathwidth of bounded degree

O((wd)*) steps. We mention that the existence of

partial w-trees can be computed in n
a polynomial time algorithm for this problem, without the degree restriction, has been
proved in [12]. However, the time complexity of the involved algorithm appears to be
very large and has not been reported. Our technique, described in Section 5, reduces the
computation of pathwidth to the problem of computing the cutwidth on hypergraphs.
Then the pathwidth is computed using a generalization of our algorithm for hypergraphs
with bounded treewidth. That way, we report more reasonable time bounds, provided
that the input graph has bounded degree.

In the description of our main algorithm we will use the two main subroutines of [22].

Towards making the paper self-contained, we present them in the Appendix along with

the theorems supporting their correctness, proved in [22].



2. DEFINITIONS AND PRELIMINARY RESULTS

All the graphs of this paper are finite, undirected, and without loops or multiple edges
(our results can be straightforwardly generalized to the case where the last restriction
is altered). We denote the vertex (edge) set of a graph G by V(G) (E(G)). A linear
ordering of the vertices of G is a bijection, mapping V(G) to the integers in {1,...,n}.
We denote such a vertex ordering by the sequence [vy,. .. ,v,].

We proceed with a number of definitions and notations, dealing with finite sequences
(i-e., ordered sets) of a given finite set O (most of the notation in this paper is taken
from [22] and [12]). For our purposes, O can be a set of numbers, sequences of numbers,
vertices, or vertex sets. The set of sequences of elements of O is denoted O*. Let w be
a sequence of elements from O. We use the notation [wy, ... ,w,] to represent w and we
define wli, j] as the subsequence [w;, ... ,w;] of w (in case j < i, the result is the empty
subsequence [ ]). We also denote as w(i) the element of w indexed by i.

Given a set S containing elements of O, and a sequence w, we denote by w[S] the

subsequence of w that contains only those elements of w that are in S. Given two

sequences w',w? from O*, where w* = [w},... ,w} ],i = 1,2 we define the concatenation
of wy and wy as w' Gw? = [w], ... ,w} ,wi, ... ,wZ]. Unless mentioned otherwise, we will

always consider that the first element of a sequence w is indexed by 1, i.e. w = w[1, |w[].

Let G be a graph and S C V(G). We call the graph (S, E(G)N{{z,y} | z,y € S}) the
subgraph of G induced by S and we denote it by G[S]. We denote by Eg(S) the set of
edges of G that have an endpoint in S; we also set Eg(v) = Eg({v}) for any vertex v. If
E C E(G) then we denote as Vg (E) the set of all the endpoints of the edges in F i.e. we
set Vg (E) = Ueere. The neighborhood of a vertex v in graph G is the set of vertices in
G that are adjacent to v in G and we denote it as Ng(v), i.e. Ng(v) = Vg(Eg(v))—{v}.
If | is a sequence of vertices, we denote the set of its vertices as V(). If S C V(I) then
we define I[S] as the subsequence of I containing only the vertices of S. If [ is a sequence
of all the vertices of G without repetitions, then we will call it an vertex ordering of G.
If I is a vertex ordering of G, the rank of a vertex u € V (I) is its position in the ordering,

and we denote it by rank(u).

2.1. Treewidth — Pathwidth

A tree decomposition of a graph G is a pair (X,U) where U is a tree whose vertices
we will call nodes and X = ({X; | i € V(U)}) is a collection of subsets of V(G) such
that



L. Uz’EV(U) X; =V(G),
2. for each edge {v,w} € E(G), there is an i € V(I) such that v,w € X;, and

3. for each v € V(@) the set of nodes {i | v € X;} forms a subtree of U.

The width of a tree decomposition ({X; | i € V(U)},U) equals max;ey (1) {|Xi| — 1}
The treewidth of a graph G is the minimum width over all tree decompositions of G.

A rooted tree decomposition is a triple D = (X, U,r) in which U is a tree rooted at r
and (X,U) is a tree decomposition.

Let D = (X, U,r) be a rooted tree decomposition of a graph G where X = {X; | i €

V(U)}. D is called a nice tree decomposition if the following are satisfied

1. Every node of U has at most two children,

2. if a node ¢ has two children j, h then X; = X; = X,

3. if a node 4 has one child, then either | X;| = |X;|+1 and X; C X; or |X;| = |X;|—1
and X; C Xj.

Notice that a nice tree decomposition is always a rooted tree decomposition. For the

following, see e.g. [12].

LEMMA 2.1. For any constant k > 1, given a tree decomposition of a graph G of width
< k and O(|V(G)|) nodes, there exists an algorithm that, in O(|V (GQ)|) steps, constructs

a nice tree decomposition of G of width < k and with at most 4|V (G)| nodes.

We now observe that a nice tree decomposition ({X; | ¢ € V(U)},U) contains nodes of
the following four possible types. A node ¢ € V(U) is called “start” if i € A(U), “join”
if 4 has two children, “forget” if ¢ has only one child j and |X;| < |Xj|, “introduce” if
i has only one child j and |X;| > |X;|. We may also assume that if i is a start node
then |X;| = 1: the effect of start nodes with |X;| > 1 can be obtained by using a start
node with a set containing 1 vertex, and then |X;| — 1 introduce nodes, which add all
the other vertices.

Let D = (X,U,r) be a nice tree decomposition of a graph G. For each node i of U,
let U; be the subtree of U, rooted at node i. For any i € V/(U), we set V; = Uycy ;) Xo-
Also, for any p € V(U) we define G, in a top down fashion as follows. If p is the root,
then G = G. If p has as parent an introduce node g, then G, = G[V (G,) —{X,— X, }].
If p has as parent a forget node ¢ then G, = G,. If p has as parent a join node ¢

whose other child is p’ then we set G, = (V(Gy), E(Gy)) and G = (V(Gy),0) (in
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fact, any partition of E(G4[X,]) for the edges induced by G,[X,] and Gp[Xp] would
be suitable for the purposes of this paper). In this construction, we have V(Gp) =V,
for any p € V(U) and we guarantee that if ¢ is a join node with children p and p’ then
V(Gp) =V(Gy) =V(Gy), E(Gp) NE(p') =0, and E(G,) UE(Gy) = E(G,). Notice
that if r is the root of U, then G, = G. We call G; the subgraph of G rooted at i. We
finally set, for any i € V(U), D; = (X%, U;,4) where X! = {X,, | v € V(U;)}. Observe
that for each node ¢ € V(U), D; is a tree decomposition of G;.

A tree decomposition (X, U) is a path decomposition, if U is a path (i.e., tree U has no
nodes of degree more than two.) The pathwidth of a graph G is defined as the minimum
width of a path decomposition of G.

We will need the following result given in [11].

LEMMA 2.2. For any graph G, treewidth(G) < pathwidth(G) < (treewidth(G) + 1) -
log(|V(G)]).

2.2. Cutwidth

The cutwidth of a graph G with n vertices is defined as follows. Let [ = [v1,... ,vp]
be a vertex ordering of V(G). For i = 1,... ,n — 1, we define 6;,¢(i) = Eg([1,i]) N
Eq(l[i +1,n]) (i-e. 6;,c(3) is the set of edges of G that have one endpoint in I[1,4] and
one in {[i + 1,n]). The cutwidth of an ordering ! of V(G) is maxi<i<n—1{|61,¢(¢)|}. The
cutwidth of a graph is the minimum cutwidth over all the orderings of V(G). It is easy

to see the following (see also [35]).

LEMMA 2.3. For any graph G, with vertices of degree bounded by d, pathwidth(G) <
cutwidth(G) < d - pathwidth(G)).

We will use the notation introduced in [22] (see also [13, 14]).

If ] = [v1,...,v,] is a vertex ordering of a graph G, we set

Qg = [[0], [10r,c(D]],-- -, [|61,(n — D], [0]]-

We also assume that the indices of the elements of Qg start from 0 and finish on n, i.e.
Q¢ = Qg,.[0,n]. Clearly, Qg, is a sequence of sequences of numbers each containing
only one element. For an example, see Figure 3.

The following is a direct consequence of Lemmata 2.2 and 2.3.
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COROLLARY 2.1. Any graph G with treewidth ot most w and mazximum degree at most

d, has cutwidth bounded by (w + 1)dlog|V(G)|.

2.3. Sequences of integers
In this (lengthy) section, we give a number of preliminary results on sequences of
integers.
We denote the set of all sequences of non-negative integers by S. For any sequence
A =a1,...,a4] € S and any integer t > 0 we set A+t = [a1 +1,...,a.4 +t]. If
A,B € Sand A= [ay,...,a ], wesay that A C B if B is a subsequence of A obtained

after applying a number of times (possibly none) the following operations.

(i) If for some 3, 1 < i < |A| — 1 a; = a;41, then set A + A[1,i] ® A[i + 2,|A4]].

(ii) If the sequence contains two elements a; and a; such that j—i > 2 and V;<x<; a; <

ar < aj or Yick<j @i > ar > aj, then set A + A(1,i) & A(j, |4]).

We define the compression 7(A) of a sequence A € S, as the unique minimum length ele-
ment of {B | B C A}. For example, 7([5,5,6,7,7,7,4,4,3,5,4,6,8,2,9,3,4.6,7,2,7,5,4,4,6,4]) =
[5,7,3,8,2,9,2,74].

We call a sequence A typical if A € S and 7(4) = A.

The following results have been proved in [12] (Lemmata 3.3 and 3.5 respectively).

LEMMA 2.4. If A€ S and max A < k, then 7(A) contains at most 2k — 1 elements.

LEMMA 2.5. The number of different typical sequences consisting of integers in {0,1,... ,n}

is at most §22".

Notice that B = 7(A) is a subsequence [a;, , - .. ,a;, | of A= [a1,...,a4/] such that
for any j, 1 < j < |B| =1 either a;; < aj;41 < - < a,,—1 < @y, OF @; > Q41 >
o= > @i, -1 > Gi;,,- We can now define a function 84 : {1,...,|7(4)|} = {1,...,|A]}
where $4(j) = i; is one of the possible original positions in A of the j-th element in

7(A). Consider the sequence of the previous example

A = [57 5767 77 77 77 7747 47 37 5747 67 87 2797 37 47 67 77 27 77 5747 47 67 4]7
8



then we have

Ba(l) =1, Ba(2) =6 (ordor50r7), [Ba(3)=10,
Ba(4) =14,  [a(5) =15, Ba(6) = 16,
Ba(7) =21,  Ba(8) =22, Ba(9) = 27.

The following lemma is a direct consequence of the definition of 5.

LEMMA 2.6. Let A be any sequence inS. Then for anyi,1 < i < |7(4)|, 7(A[Ba(?), Ba(i+
D)) = [A(Ba(4)), A(Ba(i + 1))]

Analogously, we define the function 8, : {1,...,|A]} = {1,...,7(A4)} such that
B7'(4) is the unique 7 such that there exists a function 4 where B4(i) = j.

For any A € S, we define a(A) in the same way as 7(A) with the difference that
only operation (i) is considered, i.e., we remove repetitions of a number on successive

positions in the sequence. If now A is a typical sequence, we define the set of extensions

of A as
E(A)={deS|a(A) = A}

We call a sequence A dense if A € £(7(A)). If A is dense then all the sequences in
E(A) are dense. Finally, notice also that if A is dense and B C A then B € £(7(A)).

Notice that for any typical sequence A, if B € £(A), B(i) # B(i+1), and 85" (i) = 5,
then the subsequence Bl[i,i + 1] represents the j-th number change in B.

The results in the following two lemmata are direct consequences of the definitions of

B and 871
LEMMA 2.7. Let A be a sequence in S, and B € £(1(A)) then, for anyi,1 <i < |B]|,

1.A(Ba(B5" (7)) = B()),
2.B(j) #B(+1) = B5'(G+1) =85 () + 1, and
3.B(j) = B(j +1) = B5'(j + 1) = B5" ()

Let A = [a1,...,ar,] and B = [by,...,by,] be two sequences in S. We say that
A < Bifr, =ry and Vicicr, a; < b;. In general, we say that A < B if there exist

extensions A € £(A), and B € £(B) such that A < B. For example if A = [1,7,2,6,4]
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and B = [5,7,3,8] then A < B because B = [5,7,7,7,4,8,8,8,8] is an extension of B,
A= [1,7,2,6,4,4,4,4,4] is an extension of A4, and A<B.

The following lemma corresponds to Corollary 3.11 of [12]

LEMMA 2.8. If A and B are two sequences then A < B if and only if T(A) < 7(B).

Suppose now that A = [Ay,...,4;] and B = [By,...,B,|] are two sequences of
typical sequences. We say that A < B if Vi<i<, A; < B;. For any integer ¢ we set
A+t=1[A+1,...,A +1t] and max(A) = max;<;<ja|{max 4;}. Finally, for any

sequence of typical sequences A we set 7(A) = 7(A(1) ®---® A(JA|)). As an example,

T([[s’ 27 87 1]’ [47 9’ 3]’ [3]7 [3’ 97 2’ 5’ 3]]) = T([55 27 85 17 45 97 35 3) 3) 97 25 57 3])

=[5,2,8,1,9,2,5,3].

2.4. Interleavings of sequences
Let two equal-size sequences A, B of S where A = [a4,... ,a,],B = [b1,...,b]. We
define A+ B =[a; +b1,... ,a, +b,] and we say that A ~ B iff Vi<;r a; # aj11 & b; =

bi+1 (and, therefore, b; # b;y1 < a; = a;+1). As an example, we mention that
[1,1,8,5,5,6,7] ~ [3,6,6,6,9,9,9].

The interleaving A ® B of two typical sequences A and B is a set of typical sequences

defined as follows
A®B={r(A+B)| Ac&(A),B€&(B) and, A ~ B}.

We stress out that the above definition of interleaving is an important ingredient for the
algorithm and the proofs of this paper (a similar, but simpler, definition of “interleaving”
was used in [12]). Notice that the length of the resulting sequences is at most |A|+|B|—1.
For an example for the case where A =1,2,1,3] and B = [4, 3,6, 3], see Figure 1.
A useful geometrical interpretation of the operation A® B where p = |A| and ¢ = |B|,

can be given by the labeled (p x ¢)-grid
Fpq={(,4)11<i<p, 1< <q},{((,5),(,5") i<, i <ji' —i+j' —j=1})

whose vertex (i, 7) is labeled by the sum A(¢) + B(j). Notice that there exists a one to

one correspondence between the labels of the paths connecting vertices (1,1) and (p, ¢) in
10



A®B={r([1,1,1,1,2,1,3] +[4,3,6,3,3,3,3]),7([1,1,1,2,2,1,3] + [4, 3,6,6, 3,3,3]), 7([1,1,1,2,1,1, 3] + [4, 3,6, 6,6, 3,3]),
T([1,1,1,2,1,3,3] +[4,3,6,6,6,6,3]),7([1,1,2,2,2,1,3] + [4,3,3,6,3,3,3]),7([1,1,2,2,1,1,3] + [4, 3,3,6,6, 3,3]),
7([1,1,2,2,1,3,3] +[4,3,3,6,6,6,3]),7([1,1,2,1,1,1,3] + [4,3,3,3,6,3,3]),7([1,1,2,1,1,3,3] + [4, 3,3, 3,6,6,3]),
7([1,1,2,1,3,3,3] +[4,3,3,3,3,6,3]),7([1,2,2,2,2,1,3] + [4,4,3,6,3,3,3]),7([1,2,2,2,1,1,3] + [4,4, 3, 6,6, 3,3]),

7([1,2,2,2,1,3,3] +[4,4,3,6,6,6,3]),7([1,2,2,1,1,1,3] + [4,4,3,3,6,3,3]),7([1,2,2,1,1,3,3] + [4,4,3,3,6,6,3]),

7([1,2,2,1,3,3,3] +[4,4,3,3,3,6,3]), 7([1,2,1,1,1,1,3] + [4,4,4,3,6,3,3]),7([1,2,1,1,1,3,3] + [4,4,4, 3,6, 6, 3]),

7([1,2,1,1,3,3,3] +[4,4,4,3,3,6,3]),7([1,2,1,3,3,3,3] + [4,4,4,4,3,6,3]) }
={r([5,4,7,4,5,4,6]),7([5,4,7,8,5,4,6]),7([5,4,7,8,7,4,6]),7([5,4,7,8,7,9,6]),7([5,4,5,8,5,4,6]),7([5,4,5,8,7,4, 6]),

7([5,4,5,8,7,9,6]),7([5,4,5,4,7,4,6]),7([5,4,5,5,7,9,6]),7([5,4,5,4,6,9,6]), 7([5, 6,5, 8,5, 4,6]),7([5,6, 5, 8,7, 4, 6]),

]
]
7([5,6,5,8,7,9,6]),7([5,6,5,4,7,4,6]),7([5,6,5,4,7,9,6]),7([5,6,5,4,7,4,6]), 7([5,6,5,4,7,4,6]), 7([5,6,5,4,7,9, 6]),
7([5,5,6,4,6,9,6]),7([5,6,5,7,6,9,6])}

={[5,4,7,4,6],[5,4,8,4,6],[5,4,9,6],[5,8,4, 6], [5,9,6],[5,6,4,7,4,6],[5,6,4,9,6],[5,6,4,9,6], [5,6,5,9,6] }

FIG. 1. An example of the interleaving of the typical sequences A = [1,2,1,3] and B = [4, 3,6, 3].

(1,1) — (2,1) — (2,1) — (4,1) 1+4=[5]=>2+4=6—>1+4=5—>3+4=7
(1,2) — (2,2) — (3,2) — (4,2) 1+3=4—>2483=5—>143=4—>343=6
3
(1,3) — (2,3) — (3,3) — (4,3) 146=7—>246=[8]=>1+6=7T—>3+6=9
y
vs=[g]

(1,4) — (2,4) — (3,4) — (4,4) 143=4—>2+3=5=>1+3=[4]=>3
7

FIG. 2. An example of Fy 4 and its labeling when A = [1,2,1, 3] and B = [4,3,6,3]. The double-

lined arrows define the two paths in G4,4 that can generate the typical sequence [5, 8,4, 6].

F, , and the sums A+ B where A € £(A), B € £(B) and, A ~ B. For an example, if A =
[1,2,1,3] and B = [4,3,6,3], then the sum A + B where A =[1,2,2,2,2,1,3] and B =
[4,4,3,6,3,3,3] corresponds to the path ((1,1),(2,1),(2,2),(2,3),(2,4),(3,4), (4,4))
(see Figure 2).

If a is a positive integer, we call a directed acyclic graph G a-layered if there exists an

ordered partition (Vi,...,V;) of its vertices such that
1. Vi = {v} and V. = {u}.
2. For each edge (z,y) there exists a 4,1 <7 < r such that z € V; and y € V4.
3. For each i,1 <i<r, |Vj| <a.

4. Any vertex w € V(G), belongs to a path connecting v and w.

The following lemma is an easy exercise.
11



LEMMA 2.9. Let G be an edge-weighted a-layered directed acyclic graph. If each of
the paths of G has total cost < b, then the total cost of the edges of G is < a’b.

LEMMA 2.10. One can construct an algorithm that for any typical sequences A, B,C,

where max A ® B < k, checks whether C € A® B in O(k*) steps.

Proof. Let A = [a1,...,ap], B=[b1,...,bq] and C = [c1,... ,¢;]. We can further
assume that ¢; = a1 + by and ¢, = a,, + by (otherwise, C ¢ A ® B).

We construct a directed graph G = (V, E) applying three steps as follows:
Step 1.

L Vi ={(1,1}
2. Forl=2,...,rdo

(1) W,l-ﬁ-l = {(7’7.7) | 1 S 1 Sp71 S] S q7a1+b] :Cl}
(il) B, = {((5,4), (@', 5") | (4,5) € Vim0, (i',5") € Vigga,i <d',5 < j'}

3.Set V= %,2 U--- ;Vr,r—i-l and E = ELQ Uu-- 'ET—I,T-

Notice that the same number cannot appear more than two times in a typical sequence.
Therefore, for each i < p the vertices (i, j) of V for which a; + b; is the same number of
C, are at most 2. We get that, for [=1,... ,r — 1 |V 41| < 2p <4k — 1 (Lemma 2.4).
Observe now that the edges of G connecting vertices in V; and Vj;; are at most 16k2.
As maxC < 2k, Lemma 2.4 implies that r < 4k — 1. We conclude that |E| < 64k3.
Therefore, G can be constructed in O(k?) steps.

From the manner in which the edges of G are constructed, we have that G is a directed
acyclic graph. We further transform G as follows.

Step 2. For any (i,j) € V, if there is not at path connecting (1,1) and (¢,5) in G or
there is not a path connecting (4, 7) and (p, ¢) then set G = G[V — {(i,4)}].

Notice that the identification of all the vertices that should be be removed, can be
done in O(E(GQ)) = O(k?) steps (e.g. applying backwards and forwards a breadth first
search of G, starting from (p,q) and (1,1) respectively). Step 2 results in a directed
acyclic graph where any vertex in G is on a path connecting (1, 1) with (p, ¢). It is now

easy to observe that G is 2k-layered.
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Let ((¢,7),(',4")) be any edge of G. We set frin = min{a; + bj, ay + b} and fnax =
max{a; + b;,a; +bj }. We associate with ((4, j), (', j')) the graph F; ; i 5 = F[V; ;i i]
where

Vigg =1{(8:1) |1 < s <d',j <t <j' fomin < a5 + by < frnax}
Notice that F; j i+ contains O(|i' —i| - |j' — j|) edges and vertices and its construction
can be accomplished in the same time.

Now apply a last transformation on G.

Step 3. Remove from G any edge ((i,7), (¢,7')) for which there does not exist a path
connecting (i,7) and (i', j') in Fj ;4 jr.

The existence of such a path can be checked in O(E(F; ;. ;7)) = O(|i" —i| - [5' — j|)
steps. In order to determine the total number of steps required by step 3, we assign to
each of the O(k?) edges of G the time cost of this check. We observe that in the directed
acyclic graph G, the sum of the costs of the edges of any path P of G is O(k?). In order
to see this one has to verify that none of the edge sets of graphs F; ;» j, Fi, j, i j,
corresponding to any different edges ((,7), (¢',5"), ((i«,J«), (i%, ji)) of P can overlap.
Therefore, their total size, determining the total number of steps corresponding to this
path, is O(E(F)) = O(k?). As now V(G) is 2k-layered, with all the paths of costs O(k?),
Lemma 2.9 implies that the total cost of all the edges of G is O(k*).

From the analysis above, it follows that all the steps of the construction of G can be
computed in O(k*) steps. As an example, we mention that the graph G for checking
whether C € A® B when A = [4,3,6,3] and B =[5, 8,4, 6], is the one induced by the
dotted arrows in Figure 2. Now, a depth first search of G can report whether C = A® B
in O(|E(G)|) = O(k®) steps and this is correct because of the following claim.

Claim: C € A® B iff (1,1) and (p, q) are connected by a path in G.

Proof of Claim. Suppose that such a path indeed exists. Notice that any edge ((4, j)(#',5"))
of this path corresponds to some path P ;)¢ ,;/) of F' whose non-internal correspond
to two consecutive elements ¢, ,c,41 of C' (0 < r). The union of all these paths is a
path P of F connecting (1,1) and (p,q). Recall that such a path, corresponds to some
sum C = A + B for some A € £(A),B € £(B) and, A ~ B. Moreover, the existence
of edge ((i,4)(#,')) implies that all the elements of C' between ¢4 ,co11 should be re-
moved during the compression of C. Applying this argument for any o < 7 we have

that C € A® B.
13



We now have to show that if C € A ® B, a path described by the above algorithm
will exists. Notice that C' is the compression of a sequence C' equal to the sum of two
sequences corresponding to a path P in F' connecting (1,1) and (p,q). The surviv-
ing elements of this sequence are vertices of F' that will remain vertices of G during
its construction. Notice also that any to vertices (¢,5),(i',j') corresponding to con-
secutive numbers ¢,,c,41 in C (0 < r) define a part of P whose vertices, in turn,
correspond to the numbers of C between ¢, and cy+1 that should be removed dur-
ing its compression. This assures that the Fj;; ;; contains a path connecting (i, j)

and (i',7") and thus (4,5),(¢',j') are adjacent in G. Applying the same argument

for any o < r we derive the existence of a path in G connecting (4, j) and (¢, 5'). |

The interleaving of two sequences of typical sequence A = [4,...,4,] and B =

[Bi,...,By] where w = |A| = |B| is defined as follows:
ARXB = {[Cl, ,Cw] | C,eA;®B;,i=1,... ,w}.

LEMMA 2.11. Let A and B be two sequences of sequences of integers in {0, ... ,k},
with |A| = |B| = w. Then |[AQB| < §2*“* and AQB can be computed in O(k*24*)

steps.

Proof. We denote as Sor the set containing all the typical sequences that have
numbers in {0, ... ,2k}. From Lemma 2.5, |So| < 32%%. A straightforward enumeration
of the elements of 3219 can be done in O(k) steps for each element. Therefore, Szk can be
generated in O(k - |Sax|) steps. We will denote as A, B any pair of sequences belonging
to A and B with the same indice. Notice that, for the upper bound, it is sufficient to
prove that |[A ® B| < %24". Notice that all the sequences in A ® B are typical and
contain integers in {0,...,2k}, therefore we have that A ® B C S and the upper
bound follows. In order now to compute AQB we have to show how compute A ® B.

For this, we will need a method to check whether an element C' of S belongs to A® B

or not. From Lemma 2.10, this can be done in O(k*) steps and the result follows. |

Given two sequences By and By where By ~ By we define function vg, g, : {1,... ,|B1|—
1} = {1,2}, vp,,B,(j) = 1if B1(j) # B1(j + 1) and v(j) = 2 if B1(j) = B1(j + 1)
(vB,,B,(j) indicates which one of By, By changes value between indexes j and j + 1).

When the sequences B; and B, are obvious, we simply denote vp, g, by v.
14



As an example, we consider B; =[6,6,9,9,9,1,1,1] and B, =[1,8,8,2,7,7,3,5]. We

have

The following lemma is a direct consequences of the definitions.
LEMMA 2.12. Let A;, B;,i = 1,2 such that A; C B;,i = 1,2. Then,

1.A1 @Ag E Bl @Bz, and

ng |A1| = |A2| then T(Al +A2) = T(Bl +B2).

The following lemma follows directly from Lemma 2.8 and Lemma 3.13 of [12].

LEMMA 2.13. Let A and B be two integer sequences where |A| = |B| and let Y =
A+ B. Let Ag < A and By < B. Then there exists two sequences A§ € E(Ap) and
B} € £(By) where T(A§ + BS) < 7(Y).

The following lemma will be useful in order to adapt some auxiliary results of [12] to

our definition of A ® B.

LEMMA 2.14. For any two dense sequences Ay and As of equal length there exists a

typical sequence S € T(A1) ® T(Az) such that S < 7(A4; + As).

Proof. In other words, we have to prove that there exist two sequences A; € £(7(A41))
and A, € E(7(As3)) such that Ay ~ Ay, and T(Al +f~12) < 7(A1+A42). Weset C = A1+ A,
and 7 = |44]|. Fori = 1,2, we set up a function ¢; : {1,...,r—1} — {0, 1} such that, for
J=1,...,r=1t(j) =i—1if A (j) + A2(j +1) < A1 (j+ 1)+ Ax(j) and ¢;(j) =2 —
otherwise. Notice that, j = 1,...,7 — 1, t1(j) + t2(j) = 1. For ¢ = 1,2, we construct
a sequence Af from A; by setting A¥(2j — 1) = A;(j) and A} (25) = A;(j + t:(4)),j =
1,...,]A|. Notice that the density of A; and the construction of A} implies that A}
is also dense for ¢ = 1,2. Moreover, A; C Af,i = 1,2, hence 7(A}) = 7(4;),i = 1,2.

Let C* = A} + A3 and notice that, by the construction of A} we have that for any
15



j=1,...,r—1,

C*(2j) = min{A1(j) + A2(j + 1), A1(j + 1) + A2(j)}
= min{A7(2j — 1) + A5(2j + 1), A](2j + 1) + A3(2j — 1)}
< max{A](2j — 1)+ A3(2j — 1), A[(2j + 1) + A3(2j + 1)}
= max{A;(j) + 42(j), A1(J + 1) + 42(j + 1)}

= max{C(j),C(j + 1)} (1)

We now define C** = [¢1,¢],¢2,¢h,...,¢r1,Cn_q, ;] Where Vj1<j<,r ¢; = A1(j) +
Ay(j) = C(j) = C*(2j— 1) and V;1<j<r ¢ = max{c;,cj1}. Notice that C E C** and,
from (1), C®** < C*. Therefore C* < C and thus, 7(C*) < 7(C). Notice also that

Vici2 Vicjer A7(5) Z A7 +1) = A3,0) #A3,0+1). (2)

Apply now the following operation on A} and A% as long as this is possible: if for some
J 1< < JAT], A7() = A7 (G+1),i = 1,2 then set A7 « Af(1,5) ® Af(j+2,7),i = 1,2
(in other words, we apply operation (i) in parallel as long as it removes elements of the
same ranks in A} and AJ). Clearly, (2) is invariant under this operation. Moreover,
it returns two sequences A;,i = 1,2 where |A;| = |A;| and the inverse of (2) holds as
well. Therefore A; ~ A,. Clearly, A; C A%,i = 1,2 and as A¥ is dense we get A; =
E(T(AF)),i = 1,2. Recall that 7(A*) = 7(4;) and therefore 4; € £(7(4;)),i = 1,2. No-
tice now that A, + A, C A* + A5. We conclude that S = 7(A; +As) = 7(C*) and the re-

sult follows. |

LeEmMMA 2.15. Let A, B be two typical sequence and C a sequence such that C € AQB.
Suppose also that A', B' are two typical sequence such that A < A" and B < B'. Then
there exists a sequence C' € A' ® B' such that C' < C.

Proof. As C € A® B, there exist three integer sequences of equal length Y, A* and
B* such that C = 7(Y), A* = £(A),B* = £(B),Y = A*+ B* and A* ~ B*. From A* =
E(A), we have that 7(4*) = 7(A) and, as A’ < A, Lemma 2.8 implies that A’ < A*. Sim-
ilarly, we get that B’ < B*. From Lemma, 2.13 we have that there exist sequences A”™* €

E(A") and B"™* € £(B') such that 7(A"™ + B™) < 7(Y) = C. We set C' = 7(A"™ + B™).
16



Notice now that A™ and B'"* are both dense. Therefore, Lemma 2.14 can be applied and
if C'" = 7(A™ + B') there exists an S € 7(A"™) ® 7(B"*) = 7(A") ® 7(B’) such that
<SS 1

The following lemma is just a special case of Lemma 3.14 in [12].

LEMMA 2.16. Let A and B be two integer sequences with the same length. Then
there ezists two equal length integer sequences A' € £(T(A)), and B' € E(7(B)), where
A'+B' <A+ B.

LEMMA 2.17. Let A, B,C be sequences such that |A| = |B| and C = A+ B. Then
there ezists a sequence C' € 7(A) @ 7(B) such that 7(C') < 7(C).

Proof. From Lemmata 2.16 and 2.8 there exist two equal length integer sequences
A" € E(T(A)) and B' € £(7(B)) such that 7(A' + B') < 7(4 + B) = 7(C). Notice now

that A’ and B’ are dense, and, from Lemma 2.14, there exists a typical sequence C' €

7(A") ® 7(B') such that C' < 7(A’ + B') and the result follows. |

2.5. Characteristic pairs

We now define the notion of the characteristic of a vertex ordering of a graph with
respect to a small subset of its vertices. Characteristics will serve as key-tools for
our algorithm and their definition is the same as in [22]. Several other versions of
characteristics have been used for the computation of other parameters like pathwidth
and treewidth in [12], linear-width in [13], and branchwidth in [14]. In a few words,
a characteristic serves to filter the main data structure of a parameter to its essential
part, a part that is able to be constructed from node to node of a tree decomposition.
Moreover, as we will see, the information encoded by a characteristic depends on the
width of the tree decomposition and, therefore, it is constant for partial w-trees.

A characteristic pair is any pair (A, A) where ) is a sequence over a set O and A
is a sequence of typical sequences such that |A| = |A| + 1. Notice that for any graph
G and any order [ of V(G) the pair (I,Qg,) is a characteristic pair. The width of a
characteristic pair (A, A), is defined to be max(A).

The following procedure defines the compression of a characteristic pair relative to a

subset of O.
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Procedure Com(/,R, S).
Input: A characteristic pair (I, R) and a set S.
Output: A characteristic pair (A, A).

We assume the notations I = [vy,... v ] and A = [vi,, iy, ... ,v3,].

1: A« [[9].
2: A« [t7(R[0,i1 — 1)), 7(R[i1,i2 — 1]),... , T(R[ip—1,ip — 1]), T(R[ip, [I]])]-
3: Output (A, A).
4: End.
The pair ([a, b, ¢,d, €], [[0,3],[4],[3,7,2],[3],[8,1, 3], [3, 8,4, 6]]) is an example of a char-
acteristic pair. The compression of this characteristic pair to the set S = {a,c} is the
characteristic pair ([a, c], [[0,3],[4,7,2],[3,8,1,8,4,6]]).

We need the following lemma, that is a direct consequence of Lemma, 2.15.

LEMMA 2.18. Let A,B be two sequences of typical sequences where A = B and C
a sequence of typical sequences such that C € AQB. Suppose also that A',B' are
two typical sequence such that A < A' and B < B'. Then there erists a sequence
C' € A' @ B’ such that C < C'.

Given a graph G with n vertices, a vertex ordering [ of G and S C V(G), the S-
characteristic of lis Cs(G,1) = Com(l, Qg,i, S). Notice that, from the definition of the S-
characteristic of a vertex ordering [ of a graph G we have that the V (G)-characteristic of [
isequal to (I, Qg,1), i-e. Cv(g)(G,1) = (I, Qa,) (clearly, Com(l, Qg 1, V(G)) = (I,Qa,1))-
We will simply use the term characteristic when there is no confusion on the choice of
S and .

Given the S-characteristics (A, A?),i = 1,2, of two different vertex orderings of G we
say that (A, Al) < (A2, A2) when \! = A% and A! < A2

Given a graph G and a vertex subset S, we say that a characteristic pair (), A) is
an S-characteristic when (A\;A) = Cg(l,G) for some ordering [ of the vertices of G.
Notice that for any S C V(G), [ is a vertex ordering of G with width at most k iff
the width of Cs(l,G) is at most k. For an example of an S characteristic, we consider
the graph G and its vertex ordering ! as shown in Figure 3. If S = {e, f,h}, then
Cs(1,G) = ([e, £,h],[]0,10],[8],[6],[4,0]]) and if S = {a,b,c,d,g,i}, then Cs(l,G) =

([a,b,¢,d, g,1],[[0], [4], 6], [8], [10, 6], 6, 4], [0]])-
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FIG. 3. A graph G and a vertex ordering ! of G.

The following result, [22, Lemma 3.2], bounds the number of characteristics of a vertex

ordering.

LEMMA 2.19. Let G be a graph and let (X,U) be a nice tree decomposition of G with
width at most w. Let X;, ¢ € V(U) be some node of (X,U). The number of different X;-

characteristics of all possible verter orderings of G; with cutwidth at most k, is bounded

by w! - (§ 22k)wtl,

Assume from now on that we have a graph G and that (X, U) is a nice tree decompo-
sition of G, with width at most w. A set F'S(i) of X;-characteristics of vertex orderings
of the graph G; with cutwidth at most k is called a full set of characteristics for node i if
for each vertex ordering [ of G; with cutwidth at most &, there is a vertex ordering I’ of
G; such that Cx, (G;,1l') < Cx,(G;,1) and Cx, (G;,1') € FS(i), i.e. the X;-characteristic

of I' is in F'S(i). The following lemma can be derived directly from the definitions.

LEMMA 2.20. A full set of characteristics for a node i is non-empty if and only if the
cutwidth of G; is at most k. If some full set of characteristics for i is non-empty, then

any full set of characteristics for i G; is non-empty.

Lemma 2.19 along with Corollary 2.1 give the following.

COROLLARY 2.2. Let G be graph with n vertices of degree bounded by d and let (X,U)
be a nice tree decomposition of G with width at most w. Then for any node i € V(U),

|FS@i)| < w! (B)wt! p2dwt)?,
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3. A DECISION ALGORITHM FOR CUTWIDTH

In this section, we give for any pair of integer constants k, w, an algorithm that, given
a graph G with maximum degree d and a nice tree decomposition (X,U) of width at
most w, decides whether G has cutwidth at most k.

An important consequence of Lemma 2.20 is that the cutwidth of G is at most k, if
and only if any full set of characteristics for the root r is non-empty (recall that G, = G).
In [22] there are given algorithms able to construct a full set of characteristics for an
insert or a forget node when a full set of characteristics for the unique child of i is given.
These algorithms, as well as a full set of characteristics for a start node, can be found in
the Appendix. In what follows, we will show how to compute a full set of characteristics
for a join node ¢ when two full set of characteristics for its children j;, jo are given.

We will now consider the case that node i is a join node and ji,h = 1,2 are the two
children of ¢ in U. We observe that V(G;,) NV (G,,) = X;, G, UGj, = G; and we recall
that E(Gj,)NE(Gj,) = 0. Given a full set of characteristics F'S(j;) for j; and a full set
of characteristics Fj, for ja, the following algorithm computes a full set of characteristics
FS(3) for i.

Algorithm Join-Node

Input: A full set of characteristics F.S(j;) for j; and a full set of characteristics F'S(j2) for ja.
Output: A full set of characteristics F'S(¢) for 4.

Initialize FS(i) = 0.
For any pair of X;,-characteristics (A, Ay) € FS(jn),h =1,2, do
For any A € A;QA», do
If max(\, A) < k, set F'S(p) + FS(p)U {(A,A)}.
Output FS(p).
End.

A R A A v

We need the following lemma.

LEMMA 3.1. Let G,G1 and G2 be graphs where G1 UGy = G and G1 N G2 = (5, 0).

Let also 11,15 be vertex orderings of G1 and G2 respectively where 11[S] = I2[S] = A. If
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(Cs(Gi, ;) = N\, Ay),i = 1,2 then, for any A € A;Q Ao, there exists a vertex ordering
l of G where l[V(G;)] = 1;,i = 1,2 and Cs(G,1) = (A, A).

Proof. We claim that the ordering [ in question is constructed by the following two

procedures.
Procedure Construct-Join-Ordering(G1, G2, S, 11,12, A).

Input: Two graphs G1,G> and a set S where G1 N G2 = (S, 0).
Two vertex orderings I; and Iy of G; and G3, where [1[S] = [5[S] = A
A sequence of typical sequences A € A;®A, where (A, A;) = Com(G;,1;,5),i =1,2.
Output: A vertex ordering | of G where Cs(G,1) = (A, A).
Assume that for ¢ = 1,2, let I; = [v],... ,vi ]
Let A = [U}Q%,... ,v}ﬁ},] = [vi%,... ,viﬁ] where p = |S].
Fori=1,2,set k§ =0and k), =r; +1.
Fori=1,2, set Q; = QG,-,li (0) D---D QGi,li (T‘,)

For any h=0,...,p,

EANEE ~B S v

set If =ik} + 1,6}, — 1] and I} = o[k} + 1,62, — 1].

set Q1 = Q1[r}, kiyy — 1] and QF = Qakf, k7, — 1.

set w" = Join-Orderings(12, 18 Q% Qb A(h)).
6: Seti=woMD]ow A2 w? @ - [Np—1)]dw " &[Ap)] & w.
7:  Output [
8: End.

Procedure Join-Orderings(l1,l2, Q1, Q2, A).

Input: Two orderings Iy, l2, two sequences @1, Q2 where |Q;| = |l;| +1,1,2,
and a sequence A € 7(Q1) ® 7(Q2)

Output: An ordering [.

Compute By, By so that A = 7(B; + Bs), where By ~ By, and B; € £(7(Q;)),i = 1,2.
Set w = |B1| = |Bs|, and denote v = vg, ,B,.

Forj=1,...,w—1set mj = lu(j) [IBQV(J‘)(BE;l(j) (j)):BQV(]-)(Ingm(j) + 1)) - 1]

Output m; @ -+ - D My_1.
End.

AN S
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Figure 4 gives an example of the operation of procedure Join-Orderings as well as for

the proof that follows.

By construction, [V (G;)] = l;,i = 1,2. We have to prove that Cs(G,l) = (), A).
We set G = (V(G), E(Gi)),i = 1,2 and we observe that [ is a vertex ordering for both
Gi,i=1,2 where |[l| =ry + 79 — p. Let I = [v1,...,v;] and X = [v,,... ,vs,]. We use
the notations Q; = Qg:,1(0) ®--- ® Qg:,(r),i =1,2, and Q = Qg (0) & - - - & Qg, 1 (7)
(especially for the sequences Q,Q:, and Q> we assume that their first elements are
indexed by 0). We also set Q" = Q[xp, kp11 — 1] and QP = Q;[kp, kpy1 — 1] for i = 1,2
and h = 0,...,p (where k9 = 0 and kpy1 = r + 1). Our target is to prove that
Vo<n<,7(@Q") = A(h).

From the fact that G; and G2 do not have edges in common we get that

Yo<n<p, QF + Q% = Q" (3)
We may assume that for any h = 0,...,p, the computation of I; is based on a pair
B!, B} where
A(h) = 7(B} + B}) (4)
B ~ B!

B 3 7(Q}),i=1,2.

(3

Notice that the result follows by Lemma 2.12, (3),(4), and (5) bellow.
Vie1,2 Yo<n<, QF O Bf (5)

It now remains to prove the correctness of (5). We will examine only the case where
i = 1 (the case i = 2 is symmetric). Let m”,... ,m” | be the vertex orderings produced
during step 3 of Join-Orderings(I,1%, Q%, Q%, A(h)). Let ¢ = [m}|+...+|m?,1<j <
w — 1 (assume that ¢ = 0 and w = |B?| = |B%|). The result follows from Lemma 2.12

taking into account that
Viicicw—t Q1lg) 1 +1,¢} + 1 3 [BIG), B (G +1)] (6)

Towards proving (6) we make first some observations. We will call a gap of a vertex
ordering the “space” between two consecutive vertices, the “space” on the left of the

first vertex, and the “space” on the right of the last vertex. Clearly, each gap of a
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vertex ordering is crossed by the edges with endpoints on different sides. Notice that
Q" (1) corresponds to the number of edges that cross the “gap” of I that is on the left
of vertex w”(1) and that for any 5,1 < j <w —1 and any ¢,1 <t < |m;‘| Qf(q;-l_l +
t + 1) corresponds to the number of edges that cross the “gap” on the right of vertex
wh(qJ’-Ll +t). Moreover, for any j,1 < j < w-1, Q’f(q;tl +1) corresponds to the number
of edges that cross the “gap” on the left of vertex m/(1) and for any ¢,1 < t < |m!|,
Q’f(q]’P_1 +t+ 1) corresponds to the number of edges that cross the “gap” on the right
of vertex m}(t). Let j be an integer 1 < j <w — 1.

Let v = vpn pr. We will consider two cases depending on whether B (j) = Br(j+1)
or BI(j) # BI(j +1).

If v(j) = 1, then m; is a copy of a part of the linear ordering {1 of G;. As the
relative position of the vertices of Gy are the same in ! as in l; and E(G}) = E(Gy),
the edges crossing the“gaps” of [ delimiting the vertices of m; are the same as the edges

crossing the “gaps” delimiting the same vertices in [y. Therefore, the sequence of their

cardinalities is Q{‘[ﬂQ;» (ﬁ,}% (7)) Ben (55% (j) +1)]. Therefore,
V() =1 = Qs + g} +11 = Qe (551 ). B (Bt () + D] (D)
If v(j) = 2, then mj; is a copy of a part of the linear ordering I> of G». We define

tiets = max{t | the “gap” corresponding to Q%(t) is on the left of m;(1) and has
the vertex on its left (if exists) in I; and the vertex on its right not in /; }.
tright = min{t | the “gap” corresponding to Q7(t) is on the right of m;(|m;|) and

has the vertex on its left not in /; and the vertex on its right (if exists) in I3 }.

Notice that tiers < gj—1 + 1 and g; + 1 < tyghe. Observe that the vertices in w” that
are delimited by “gaps” corresponding to Q_’f[t]eft,tright] are all vertices not in V(Gy).
Hence they are all isolated vertices of G7. Recall that if we remove from [ all the vertices
in V(G2) — S, what remains is /;. This operation replaces the “gaps” corresponding to
Q" [trefs, tright] With only one “gap” corresponding to the Baon (s5)-th gap of Q" where
s = BE% (j). However, the fact that the relative position of the vertices of G is the same
in  as in /; and the fact that all the removed vertices are isolated makes the crossing

edges of the replaced “gaps” to be exactly the same as the crossing edges of the resulting
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“gap”. Resuming, we have the following.

v(§) =2 = Vg, nicicgin Q1) = Q1 (Bor (B (4) (8)

From Lemma 2.6 we have that

T(Q1 [Bay (B (41)): By (B () + D)) = [Q1 (Bor (B (1)), Q1 (B (Bpa () + 1)1 (9)

and applying Lemma 2.7, we have

Qi (Bop (B (1)) = BL() (10)
Qi (Bop B+ 1) = Bi(j+1) (11)

If v(j) = 1 then Lemma 2.7 implies 3, (g +1) = BE,{ (j) + 1 and therefore (11) can be
1

written

Qi (Bop (Bpn() +1)) = B +1) (12)

From (7),(9),(10), and (12) we conclude that

vg 1<j<w—1,r(j)=1 T(Qf[qj—l + ]-aq]h + 1]) = [Bl( ) Bl (.7 + 1)] (13)

which clearly yields (6) for the cases where v(j) = 1.
If v(j) = 2 then Lemma 2.7 implies ﬂg% (G+1) = BBh( /) and therefore (10) and (11)
1

give

Q1 (Bap (Bgr (1)) = B () = Bi (7 +1) (19)

and (14) combined with (8), gives (6) for the cases where v(j) = 2. |

LEMMA 3.2. Let G,G1 and G2 be graphs where G1 UGy = G and G1 N G2 = (5, 0).
Let also | be vertex ordering of G. We denote I; = I[V(G;)], Cs(G,1) = (\,A), and
Cs(Gy, ;) = (A Ay),i = 1,2. Then there exists a sequence of typical sequences A €
A;®A, such that A < A.

Proof. Let r; = |l;|,i = 1,2 and p = |\| = |S|. As in the proof of Lemma 3.1, we
set Gf = (V(Q), E(G;)),i = 1,2 and we observe that [ is a vertex ordering for both

G¥,i = 1,2 where |I| = ry + ro — p. We use the notations Q; = QG:i(0) ® -+ @
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h b h 5
Q1B (DBgn ] @FBo1 (2841 ()]

Q= [69 1] Qh= 68766979 6747381 ]
m} m}
Bhi= [669991] l:[-soo:ooo‘ioo:ooo‘-]
Q1 (Bgr (1)) Q1 (Bgr(2))
Q= [é666668766975999999999996747381]
mh mg
’Ulh:[-00000.......800000490000/.......~]
mh m} mi
Q= [15236888888885665625223777777T7T7]
Bh= [188277] I=[-92000000000000000 - |
QY= [1827] Q’%:[%52368T356656%52231]

FIG. 4. An example of the proof of Lemma 3.1.

Qg:(r),i=1,2,and Q@ = Qg,(0) ® -+ ® Qg,,1(r) (especially for the sequences @Q, Q1,
and ()2 we assume that their first elements are indexed by 0). As E(G1) N E(G2) =0
and E(G1) U E(G2) = E(G) we get,

Q= Qi+Q (15)

We denote Q; = Qg;,1;(0) @ --- ® Qg,.1(r),i = 1,2 and we observe that the facts that
V(G;) CV(G}),i=1,2 and E(G;) = E(G}),i = 1,2 implies that,

Vic12 Qi C Q; (16)
We assume that if [ = [vy,... ,v,], then A = [v,,... ,v,,] and if [; = [u},... ,ul ] then
that A = [ul;,. .. ,uzz],i =1,2. Weset Q" = Q[kn, knp1—1],QF = Qub, phy —1],0 =

1,2, and QF = Q;[kn,kpt1 — 1], = 1,2 and h = 0,...,p (where ko = py = p2 = 0
and Kp41 = pjyq = piq =+ 1). From the view point of these new notations, (15)

and (16) can be rewritten as follows

Vho<h<y Q" = QF + Qb (17)

Yho<h<p Viz12 QF T QF (18)
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Notice also that

Vi=1,2 Yho<h<p Ai(h) = 7(QF) (19)
Vho<h<p A(h) = 7(Q") (20)

(18) and (19), implies that
Viz1,2 Vhos<hs, Ai(h) = 7(QF) (21)

Our target is to prove that for h = 0,. .. , p there exists a typical sequence A’ in A4 (h)®
A (h) such that A" < A(h). This follows from (17),(20), and (21) if, for h =0, ... , p, we

apply Lemma 2.17 for Q", Q% and Q4. |

LEMMA 3.3. Ifi is a join node with children jn,h = 1,2, and, for h = 1,2, FS(j;)
is a full set of characteristics for jn. Then, the set FS(i) constructed by Algorithm

Join-Node is a full set of characteristics for i.

Proof. We will prove first that F'S(¢) is a set of characteristics. To avoid overloaded
expressions, whenever we refer to a characteristic, we will insist that its width is bounded
by k. For this, it is sufficient to show that for any (A, A) € FS(i), there exists a vertex
ordering [ of G such that Cx,(G,\) = (A, A).

By algorithm Join Node we can assume that there exist two pairs (A, Ap),h = 1,2

where

()‘7Ah) € FS(Jh)7h'= 172 (22)

A € AIRA; (23)

As FS(jp),h = 1,2 are both sets of characteristics (22) implies that there exist two

orderings l1,1; of G X;, and G X, respectively such that

A= ll[Xh] = lQ[X]é] (24)

()\,Ah) = Cth (Gh,lh), 1= 1,2. (25)

Using now (23)—(25), we can apply Lemma 3.1 and conclude that there exists a vertex

ordering [ of G; such that Cx, (G,1) = (A, A). Therefore, F'S(i) is a set of characteristics.
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It remains now to prove that F'S(7) is a full set of characteristics. To prove this we
have to show that, for any vertex ordering [ of G; there exists a vertex ordering [I* of G;
such that Cx,(G;,!*) € FS(i) and Cx,(G;,1) < Cx, (G4, 1*).

Let I, = I[V(G},)],h = 1,2 and set (A, Ap) = Cx;, (Gj,,l1),h = 1,2 and (A, A) =

Cx,(G;,1). From Lemma 3.2, there exist a typical sequence A such that

A € AI®A,, and (26)

(AA) < (\A). (27)

Recall now that, for h = 1,2, that F\S(jj) is a full set of characteristics for j, and

therefore, for h = 1,2, there exists a vertex ordering [} of G, where

Cth(Gthl;k) c FS(]h) and (28)

Cth (G]'h7l;<) < Cth (Gjmlh)' (29)
Let (A, A}) = Cx;, (Gj,,1;),h = 1,2 and (28) and (29) can be rewritten as follows.

(A7A;) =< ()‘JAh)7h= 172 (31)

(26), (31), and applying Lemma 2.18 one can see that there exists a characteristic pair

(A, A*) such that

A* € AI®A;} and (32)

(A A%) < (A A). (33)

Notice now that, from (32), and Lemma 3.1, there exists a vertex ordering [* of G such

that Cx, (G;,1*) = (A, A*). The fact that Cx, (G;,1*) € FS(i) follows from (30), (32),
and Algorithm Join-Node. Finally, (27), and (33) imply that Cx,(G;,1*) = (A, A*) <
(A\,A) = Cx,(G,1) and this completes the proof of the lemma. |

We can now resume the results on this section in the following.

THEOREM 3.1. An algorithm can be constructed that, given a graph G with n vertices
of degree no more than d and a tree decomposition (X,U) of G of O(n) nodes and width

at most w, checks whether there exists an vertex ordering of V(G) of cutwidth at most

k in O(k* (w!)?22kw (§)2w nAd(w+1)*+1) gpeps.
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Proof. From Lemma 2.1 there exists an algorithm that in O(n) steps transforms
(X,U) to a nice tree decomposition (X,U,r). We have to determine the cost of com-
puting F'S(i) for all the nodes of U. Let ¢ be such a node.

If 4 is a start node then the computation of F'S(i) needs O(1) steps.

If ¢ is an introduce node then Corollary 2.2 bounds the number of repetitions of step
2 of algorithm Introduce-Node by w! (&)»+! n2¥®+1)* Moreover, step 3 involves at
most w repetitions and step 4 at most < 2k — 1 repetitions (Lemma 2.4). The time cost
of Procedure Ins is dominated by its 2nd step which requires O(w?k) steps: O(w) for
each of the edges inserted, < w + 1 for the sequences of A’ whose elements should be
incremented, and < 2k — 1 for the elements of each one of these sequences (Lemma 2.4).

w n2d(w+1)2) StepS

Therefore, computing FS(i) requires O(w3k? - w! (8)
If i is a forget node then then Corollary 2.2 bounds the number of repetitions of step
2 of algorithm Introduce-Node by w! (§)»+! n2¥®+1)* " As procedure Del needs O(wk)
steps, computing F'S(¢) requires O(wk - w! ($)¥ n2d(w+1)*) gteps.
If ¢ is a join node then Corollary 2.2 bounds the number of repetitions of step 2 of
algorithm Join-Node by (w! (8)v*! n2d(w+)*)2 " From Lemma 2.11, the computation
of A;@A, costs O(k*24%v) steps and dominates the cost of steps 3 and 4 of the same

algorithm. Therefore, computing FS(i) requires O(k*24%* (w!)? (§)%* ntd(w+1)*y gteps.

Notice that according to the analysis above, the prevailing time is the one of the join

nodes. As U contains O(n) nodes, the result follows. |

THEOREM 3.2. An algorithm can be constructed that, given a graph G is a graph with
n vertices of degree no more than d and a tree decomposition (X,U) of G of O(n) nodes

and width at most w, computes the cutwidth of G in

O((w!)? (%)2’”n4d(2“’24‘3“"“1)"‘1 (wdlogn)®) steps.

Proof. From Corollary 2.1 it is sufficient to describe an algorithm checking whether

cutwidth(G) < kforany k =1, ..., [(w+1)dlogn|. This can be done by the algorithm of

Theorem 3.1 and the result follows. |

4. CONSTRUCTING THE VERTEX ORDERING
In this section we will show how the algorithms of Theorems 3.1 and 3.2 can be

enhanced in a way that they will also construct the corresponding vertex ordering.
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Suppose now that, given a tree decomposition (X,U) = (X; | i € V(U),U) of G with
width bounded by w, after running the algorithm described in the previous subsections
we know that a graph G has cutwidth at most k, i.e., the computed set F'S(r) is not
empty. We will now describe a method to construct a vertex ordering of G with cutwidth
at most k. By observing the flow of the algorithm, it follows that we can assign to each

node i of (X,U), a characteristic (\;, A;) witness on node i, in a bottom-up fashion:

o If ¢ is a start node then (\;, A;) = ([z],[[0], [0]]) is the unique characteristic of the
vertex ordering consisting of the unique vertex x in Xj.

e If i is an introduce node then (\;, A;) is one of the characteristics constructed after
the application of Algorithm Introduce-Node on characteristic (\;, A;) where j is the
unique child of 7.

e If ; is a forget node then (A;, A;) is one of the characteristics constructed after the
application of Algorithm Forget-Node on characteristic (A;, A;) where j is the unique
child of 4.

e If 4 is an join node then (\;,A;) is one of the characteristics constructed after
the application of Algorithm Introduce-Node on characteristics (Aj,, Aj,) and (A, Aj;)
where j; and j, are the children of 4.

e (A, A;) is one of the characteristics in FS(r).

We call the collection W = ((A;, A;),i € V(U)) witness tree. Notice that if at each
time a new characteristic is computed, we set up a pointer to the characteristic it was
constructed from, we obviously have a suitable structure for constructing also a witness
tree in O(|V(U)|) steps. Let us show now how to compute, using the information of
W, a vertex ordering of V(G,) with cutwidth < k. Towards this, we will compute, for
each node i € V(U) a vertex ordering I; of V(G;) such that Cx,(G;,l;) = (A;, A;). The
case where i is a start node is obvious. The cases where i is either an insert or a forget
node are omitted as they are presented in detail in Section 4 of [22]. In each of these
cases the new vertex ordering I; can be constructed in O(wk) steps. Assume now that
i is a join node with children 4; and i5. Let also [, ,h = 1,2 be two vertex orderings of
Gi,,h = 1,2 respectively, such that Cx;, (Gj,,l;,) = (Aj,,Aj,), h =1,2. We will show
how to construct a vertex ordering l; such that Cx;, (Gj.,l) = (A, As).

Notice that, from Algorithm Join-Node, A4; is a member of A;, ®A;,. Recall now
that, from Lemma 3.1, procedure Construct-Join-Ordering(G;, , Gj,, Xi, 15, ,1;,, A) is able

to construct such a vertex ordering. Notice that if, for h = 1,2, we maintain for
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each v € Xj, a pointer indicating the position of the same vertex in I;,, procedure
Construct-Join-Ordering(G;, , Gj,, Xi,1j,,1;,, A) will call procedure Join-Orderings |X;|
times. If now, for h = 1,2, we additionally maintain a data structure associating each
of the “gaps” of A;, to the limits of its corresponding sequence of “gaps” in [}, , we can
implement step 3 of procedure Join-Orderings in O(k) steps. Resuming, we have that
the construction of I; costs O(kw) steps.

Therefore, the computation of a vertex ordering I, where Cx_(G,l.) = (A, Ay,), can
be done in O(nkw) steps. Therefore, we have the following constructive analogue of

Theorem 3.1.

THEOREM 4.1. An algorithm can be constructed that, given a graph G with n vertices
of degree mo more than d and a tree decomposition (X,U) of G of O(n) nodes and
width at most w, checks whether there exists an vertex ordering of V(G) of cutwidth
at most k and, if this is the case, outputs an ordering of V(G) of cutwidth< k in

O(k4 (w!)222kw (%)Zw n4d(w+1)2+1) steps.

As k < (w + 1)dlogn, we can conclude that the polynomial algorithm of Theo-
rem 3.2 can be adapted to output an optimal vertex ordering with an additional cost of

O(wdnlogn) steps. Therefore, 3.2 can be rewritten as follows.

THEOREM 4.2. An algorithm can be constructed that, given a graph G with n vertices
of degree no more than d and a tree decomposition (X,U) of G with O(n) nodes and
width at most w, outputs an ordering of V(G) of minimum cutwidth in

O((w!)2(%)2“’n4d(2w2+3“’+1)+1(wdlogn)5) steps.

According to the main result in [7], there exists an algorithm that, in O(w®®)20*)p)
steps, constructs a minimum width tree decomposition of any partial w-tree (see also [40,
32, 36]). This algorithm can serve as a preprocessing step to the algorithm of 4.2 that
with input a partial w-tree G with vertices of degree at most d, outputs a vertex ordering

of G of minimum cutwidth.

5. COMPUTING THE PATHWIDTH OF BOUNDED DEGREE
PARTIAL W-TREES
We will now show how to use the algorithms of the previous sections in order to

compute the pathwidth of a partial w-tree with bounded maximum degree.
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The definition of treewidth is extended to hypergraphs by replacing edges with hy-
peredges. We define cutwidth for hypergraphs by extending the definition of E(S) for
S € V(@) such that E(S) contains all the hyperedges with at least one endpoint in S.

We can prove the following extension of 4.1.

THEOREM 5.1. An algorithm can be constructed that, given an hypergraph G with n
vertices of degree no more than d and a tree decomposition (X,U) of G with O(n) nodes

and width at most w, outputs an ordering of V(G) of minimum cutwidth in

O(k4 (w!)222kw (%)211; n4d(w+1)2+1) steps.

Proof. By extending Lemma 2.1 for hypergraphs we assume that (X,U,r) is a nice
tree-decomposition of G. To prove the theorem, it is sufficient to observe that all the
algorithms of the previous sections can be straightforwardly generalized to hypergraphs
with the same time costs. In particular, algorithms Forget-Node and Join-Node are ex-
actly the same as they involve only operations on sequences of integers. The only changes

required, concern procedure Ins, described in the Appendix, and are the following two:

1. The set N should now represent the set {Ui,...,U,} where {U;U{u} |1 <t <o}

are the hyperedges of G; that contain u as endpoint. For any U;,1 <t < o we set up
jt (5¥) as the smallest (biggest) of the indices corresponding to the vertices of U; in A
(notice that in the case where G is a graph j; = jT ).
Notice that none of the hyperedges of G can have size bigger than w + 1, as they have
all to fit in some node of the tree decomposition. Therefore |U;| < w+1,1 <t < 0.
Moreover, we can assume that no vertex is an endpoint of more than 2k hyperedges as
in such a case the cutwidth of G should be greater than k. Therefore, o < 2k. These
two facts imply that computing j! and jF for 1 <t < o can be done in O(kw?) steps.

2. In step 2 of Ins, cases (i) and (ii) should now be:

(i) If 5T <j thenset A’ « A'[0,j} — 1@ (A'[j},/]+ 1)@ A'[j +1,p+1].
(ii) If j} > j + 1 then set A’ « A'[0,j] @ (A'[j +1,j5] +1) @ A'[jT + 1,p+ 1].

(iii) If j} < j < jf thenset A’ + A'[0,j} — 1@ (A'[j}l + 1,55 ]+ ) @ A'[jE +1,p+1].

The third case above examines the case where the added hyperedge contains vertices
residing in both sides of the insertion point. Notice that the time cost of the modified

step 2 is the same as the time cost of the old one. Finally, the complexity of Ins does
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not change with this small modification as the time required to compute the pairs j}L, Jr

for each of the inserted hyperedges does not prevail the time cost of the second step. |

We call a graph trunked if it does not contain vertices of degree 1. Given a trunked
graph G we define its dual hypergraph as GP = (E(G),{Eg(v) | v € V(Q)}). In what
follows, we will denote as A(G) the maximum degree of the vertices of a graph G. The

following lemma shows how to transform a tree decomposition of G' to one of GP.

LEMMA 5.1. For any graph G, treewidth(GP) < treewidth(G) - A(G).

Proof. Let (X,U) be a tree decomposition of G with width < k. Notice that A(G)
is equal to the maximum size of a hyperedge in GP. We construct a tree decomposition
(Y,U) of GP using the same tree U and setting Y; = {e € E(G) | en X; # 0}. Notice
that, for any i € V(U), |Y;| < A(G) - |X;|]- It remains to prove that (Y,U) is a tree
decomposition. Condition 1 is obvious. For condition 2, suppose that e* = {e1,... ,e,}
is a hyperedge of GP. By the construction of e*, all of its endpoints share a common
vertex v of G. Let X; be some set in X containing v. From the definition of Y;, all the
edges in e* will be members of Y; and condition 2 holds. For any two vertices i, j of
U we denote as P(i, ) the vertices of the path connecting them in U. For condition 3,
let e be a vertex of GP such that e € Y; and e € Y; for two different vertices i,j of
U. It is sufficient to prove that for any vertex h € P(i,5), e € Y. From the definition
of Y;, e has an endpoint v, € V(@) that belongs to X;. Similarly, e has an endpoint
ue € V(G) that belongs to X;. We consider two cases. If v, = u,, then from condition 3
for (X,Y), we get that v belongs to any X, where h € P(i,j). From the definition of
Y, we have that, since v, = u. is an endpoint of e, e belongs also to any Y} for any
vertex h € P(i,j). From condition 2 for (X,U), we have that there exists a vertex k
of U where ve,u, € Xj. Clearly, k¥ should be a vertex in P(i,j) in U as, otherwise,
either v, € X; or u, € X;, a contradiction. Let h be any vertex in P(i,k). As v,
belongs both to X; and to X}, condition 2 for (X,U) implies that ve € X} and from

the definition of Y, we have that e € Y},. Finally, if h € P(k, j), then applying the same

argument for this path we can conclude that e € Y}, and condition 3 holds for (Y,U). |

Notice that the proof of the above lemma gives a method to compute (Y,U) from

(X,U) in O(k|V(G)|A(G)) steps.
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The notion of linear-width for graphs was introduced by Thomas [48].

The linear-width of a graph G with n vertices is defined as follows. Let [ = [eg, ... ,e,]
be a vertex ordering of E(G). Fori=1,... ,r—1, we define {;,¢(i) = Ve ([1,{])NVa([i+
1,n]) (i-e. {,e(39) is the set of vertices of G that are endpoints of edges in both I[1,4]
and [[i + 1,n]). The linear-width of an ordering [ of E(G) is maxi<i<n—1{|¢,c(4)|}
The linear-width of a graph is the minimum linear-width over all the orderings of E(G).

From the definitions of dual hypergraph and linear width, we have the following.

LEMMA 5.2. If G is a trunked graph then linear-width(G) = cutwidth(GP).

As a consequence of Theorems 5.1, 5.1 and Lemma, 5.2, we have an algorithm for

linear-width.

THEOREM 5.2. An algorithm can be constructed that, given a graph G with n vertices
of degree no more than d and a tree decomposition (X,U) of G with O(n) nodes and

width at most w, outputs an ordering of E(G) of minimum linear-width in

0(((dw)!)2(¥)2dwn12(dw)2+20dw+9(dwlogn)s) steps.

Proof. Let G be a n-vertex graph of treewidth w and A(G) < d. Let also (U, X) be a
tree decomposition of G constructed by the O(w®®) 20(“’3)71) algorithm of Bodlaender
in [7]. From Lemma 2.2, we know that the pathwidth of G is at most (w+1)logn and, as
linear-width(G) < pathwidth(G)+1 (see, e.g. [46] or [47]), we get that linear-width(G) <
(w + 1)logn + 1. From Lemma 5.2 we have that cutwidth(G) =linear-width(GP?) <
(w4 1)logn + 1. Notice that a vertex ordering of GP with minimum cutwidth corre-
sponds to an edge ordering of G™ of minimum-linear width. Therefore, it is sufficient to
check whether cutwidth(GP) < kfork=1,...,[(w+1)logn+1] and output the vertex
ordering corresponding to the minimum & for which the result of this check is positive.
To do this, we use the construction of Lemma 5.1, and get a tree decomposition (Y, U) of

GP with treewidth < dw. The result now follows from Theorem 5.1, taking in mind that
A(GP)=2. |
For a proof of the following, see [5].

LEMMA 5.3. If G™ is the graph obtained from G by replacing every edge in G with

two edges in parallel, then pathwidth(G) = linear-width(G™).
33



It is easy to see that there exists a procedure that given an edge ordering of a graph G
with width < k, transforms it to a path decomposition of width < k in O(k|V (G)|) steps
(e.g. see [13]). This fact along with Theorem 5.2 and Lemma 5.3 yield the following

result.

THEOREM 5.3. An algorithm can be constructed that, given a graph G with n vertices
of degree no more than d and a tree decomposition (X,U) of G of O(n) nodes and width

at most w, outputs a path decomposition of G with minimum width in

O(((dw)!)2(%)2dwnl2(dw)2+20dw+9(dw logn)®) steps.

We mention that, in general, the problem of computing the pathwidth of partial
w-trees can be solved in polynomial time. The algorithm for the general case was
proposed by Bodlaender and Kloks in [12]. However, the exponent in the complexity
of this algorithm is quite large for any practical purpose. The algorithm proposed in
Theorem 5.3 is faster and can serve as a more realistic approach for partial w-trees with

bounded degree.

6. OPEN PROBLEMS

We have shown that the cutwidth of graphs with bounded treewidth and maximum
degree can be computed in polynomial time. The most insisting open problem is to
prove the same when the “bounded maximum degree” requirement is removed. Even if
this is the case for pathwidth [12], it seems that our technique cannot be easily modified
to solve the general problem because it is strongly depending on Lemma 2.3. However,
even in the case of computing the pathwidth of partial w-trees it is interesting to find
realistic polynomial algorithms. Another line of research is to try to solve the problem for
specific (typically small) values of the treewidth w. No algorithm of this type exists for
cutwidth when w > 1, while, for pathwidth, the best, so far, result is an approximation

algorithm in [10] for outerplanar graphs that have treewidth < 2 (see also [28, 45]).
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APPENDIX

A full set for a start node

If X; = {«} is a start node, then F'S(i) = {([z],[[0],[0]])}.

A full set for an introduce node
If 4 is an introduce node and j is the (unique) child of ¢ then the following algorithm
computes F'S(i), given FS(j).
Algorithm Introduce-Node
Input: A full set of characteristics F'S(j) for j.
Output: A full set of characteristics FS(i) for 4.

1: Initialize F'S(i) = 0 and set p = |X|, {u} = X; — X;, and N = Ng, (u).
2: For any X;-characteristic (A, A) € FS(j) do
3 for j=0to pdo
4: for m =1 to |A(j)| do.
5 Let (M, A") = Ins(G;,u, X;, N, A\, A, j,m)
if max(A') < k, then set FIS(i) + FS(i) U {(X,A"}.
: Output F'S(4).
6: end.

94

Procedure Ins(G,u, S, N, \, A, j,m).
Input: A graph G, a vertex u ¢ V(G), two sets S, N where N C S C V(G),
a S-characteristic (A, A) of some vertex ordering ! of G,
an integer 7,0 < j < |A|, and an integer m,1 < m < |A(j)].
Output: An (S U {u})-characteristic (A\’, A’) of some vertex ordering
U=I1,...,¥]ou@ly+1,...,]l|] of G where 0 <~ < |I] and
G' = V(@) U{u}, E(G)U{{u,z} | z € N}).

Assume the notations: A = [uy,... ,u,], and [uj,... ,u;, ] = A[N].

1: (Insertion of u)

Set X' = A[1,j] @ [u] ® A[j + 1, p]

and A’ = A[0,j — 1] & [AG)[L,m]] & [A()[m, |AG)[]] & AL + 1, ]
2: (Insertion of the edges from )

for h=1to o do

(i) If j, < j then set A’ +— A'[0,5, — 1] ® (A'[jn,j]+ 1) ®A'[j + 1,p+1].
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(ii) If j, > j + 1 then set A’ + A'[0,7]® (A'[j + 1,jpn] + 1) @ A'[jr + 1,p+1].
3: Output (A, A").
4: End.
LEmMMA 6.1 ([22]). Ifi is an introduce node with a child j and FS(j) is a full set
of characteristics for j then FS(i) constructed by the Introduce-Node algorithm is a full

set of characteristics for i.

A full set for a forget node
If 4 is a forget node and j is the (unique) child of 7 then the following algorithm
computes F'S(i), given F'S(j).
Algorithm Forget-Node
Input: A full set of characteristics F'S(j) for j.
Output: A full set of characteristics FS(i) for 4.

1: Initialize F'S(i) = 0 and let u be the forget vertex of G;.
2: For any (\,A) € FS(j) do
3: FS(i) + FS(i) U{Del(A, A,u)}.
4: Qutput FS(i).
5: end.
Procedure Del(A, A, v).
Input: A characteristic (A, A) and a vertex u € V().
Output: A characteristic pair (A, A’).
Assume the notation A = [u1,...,u;j,...,u,] where

U= uj.

LN« ALj-1DeAj+1,p).

2: A Al0,j - 2]®[r(A(G —1) @ A@))] ® A[j +1,p].

3: Output (A, A’).

4: End.

LEMMA 6.2 ([22]). Ifi is an forget node with a child j and FS(j) is a full set of
characteristics for j then FS(i) constructed by the Forget-Node algorithm is a full set of

characteristics for 1.
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