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Abstract. In this paper we show that the theories Peano Corto (or: PA↓↓ :=

I(Σ∞,Σ1,0)) and Peano Basso (or: PA↓ := I(Σ∞,Σ1,1)), two theories of local

induction, are locally cut-interpretable in the basic arithmetic PA−. We prove

a number of theorems about Peano Corto and Peano Basso. We provide some

insights that illustrate that these theories are in many respects analogues of
full Peano Arithmetic PA.

The theory PA↓↓ extends the theory of parameter-free Π1-induction, IΠ−1 .

Hence, IΠ−1 is locally cut-interpretable in PA−. We will draw a number of

consequences of this fact for IΠ−1 .

1. Introduction

The induction scheme tells us that any progressive virtual class contains all num-
bers. There is an extensive literature on restrictions of the induction scheme. Such
a restriction is usually realized by considering only progressive virtual classes of a
certain prescribed complexity. E.g., if we restrict the classes, say, to Σ1-definable
classes, we get IΣ1 and if we restrict the classes to parameter-free Π1-definable
classes, we get IΠ−1 . In this paper we will consider another kind of restriction of
induction. it has the form: if a virtual class is progressive, then it is large in
some sense. Such theories were introduced by Andrés Cordón Franco, Alejandro
Fernándes Margarit and Felix Lara Martin. We follow these authors in calling such
forms of induction local induction. (See e.g. [CFL11].)

The specific axiom scheme that we will be looking at in this paper says, roughly, that
every progressive virtual class is so large that it has non-empty intersection with
every virtual non-empty, parameter-free Σ1-definable class. This theory proves I∆0.
Over I∆0 the scheme takes a very appealing form: it says that every progressive
virtual class contains all elements with a (parameter-free) Σ1-definition. So, we can
say that a class is large if it contains all good numbers, which are in this case the
Σ1-definable ones. Since, in the absence of Σ1-collection, there turn out to be two
relevant notions of Σ1-definable, two arithmetics result from such a scheme. The
stronger one is Peano Basso, which we also call PA↓ or, with a more systematic
name, I(Σ∞,Σ1,1). The weaker one is Peano Corto, PA↓↓ or I(Σ∞,Σ1,0).1
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The central result of this paper is that Peano Basso is locally weak. This means
that it is mutually locally interpretable with a very weak arithmetic PA−. As we
will see more is true: Peano Basso is mutually locally cut-interpretable with PA−.
This means that we can choose our interpretations from a very restricted class that
guarantees us some extra properties. For example, we cannot interpret (classically)
false principles on a cut. We will show that the local cut-interpretability of Peano
Basso in PA− is optimal: we cannot interpret or even model-interpret Peano Basso
in PA−.

An alternative way to understand Peano Corto and Peano Basso is as follows. One
can show that Peano Arithmetic is equivalent, over a weak theory like S1

2, to the
full uniform reflection principle for formulas of predicate logic in the signature of
arithmetic. Reflection can be interpreted in two ways here: reflection for ordinary
provability and reflection for for restricted provability. The result holds for both
forms. The theory Peano Corto is equivalent over a suitable weak theory, to wit
CFL which will be explained in the paper, to the full sentential reflection principle
for restricted provability. To obtain Peano Basso we have to add Σ1-collection.

Thus, in a sense, Peano Corto is the solution of the equation:
PA

(restricted) uniform reflection
=

?

restricted sentential reflection
.

Since Peano Corto proves restricted sentential reflection, it follows that it cannot
have a finitely axiomatized extension in the same language. Thus, Peano Corto is
not contained in any of the theories IΣn. So, we have the curious phenomenon of
a true, locally weak theory that is incomparable with any of the IΣn. The theory
Peano Basso inherits these properties from Peano Corto.

The main difference between Peano Basso and Peano Corto is that Σ1-collection is
lacking from Peano Corto. The difference between Peano Corto and Peano Basso
is due to the fact that, in the absence of Σ1-collection, the formulas that are Σ1

when Σ1-collection is present, split into the Σ1,n hierarchy. In this paper we will
develop the basic facts concerning this hierarchy.

The theory Peano Corto and, a fortiori, Peano Basso extends IΠ−1 . Both theories
prove the same bool(Σ1)-sentences as IΠ−1 and as Elementary Arithmetic EA.

We will provide a model theoretic characterization of Peano Basso. It is this char-
acterization that shows that, in a sense, Peano Basso is more like PA than Peano
Corto.

The theories Peano Basso and Peano Corto share many metamathematical prop-
erties not related to strength with PA. For example, both theories fail to have an
extension in the same language that is finitely axiomatizable.2 Every RE sequential
theory is mutually locally interpretable with a finite ∆2-extension of Peano Basso
and similarly for Peano Corto, which mirrors the fact that every RE extension of

2On the other hand Peano Basso and Peano Corto are locally mutually interpretable with a

finitely axiomatized theory, to wit PA−, but PA is not locally mutually interpretable with any

finitely axiomatized theory. We will show that e.g. Peano Basso plus Exp, the axiom saying that
exponentiation is total, does share this property with PA.
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PA (in the same language) is mutually interpretable with a finite extension of PA
(in the same language).

2. Preliminaries

In this section we introduce some basic concepts, notations and some elementary
facts.

2.1. Translations and Interpretations. We only treat one-dimensional inter-
pretations without parameters for relational signatures. Since our main focus will
be a positive result to the effect that one theory is locally cut-interpretable in an-
other theory, the fact that we employ a rather restricted class of interpretations
is not a real limitation. For a treatment of the many-dimensional case, see e.g.
[Vis12a]. Also, we are mainly interested in sequential theories in this paper. Any
multi-dimensional interpretation in a sequential theory is definably and provably
isomorphic to a one-dimensional one. So for sequential theories one-dimensional
and multi-dimensional interpretability coincide.

We can translate languages with function symbols in their signature into language
into languages of relational signature using the well-known term-unraveling algo-
rithm. We always will implicitly assume that this has been done. We note that for
translations that are only relativizations the presence of terms is no problem.

Consider two relational signatures Σ and Θ. A translation τ : Σ→ Θ is a quadruple
〈Σ, δ,F ,Θ〉, where δ(v) is a Θ-formula containing just v free and where, for any n-
ary predicate P of Σ, F(P ) is a formula A(v0, . . . , vn−1) in the language of signature
Θ, containing just v0, . . . , vn−1 free. We will often write δτ for the domain formula
of τ and Pτ (v0, . . . , vn−1) for F(P ), where F is the F of τ .

We extend the translation τ to the full language as follows:

• (P (x0, . . . , xn−1))τ := F(P )(x0, . . . , xn−1).3

• (·)τ commutes with the propositional connectives.

• (∀xA)τ := ∀x (δ(x)→ Aτ ).

• (∃xA)τ := ∃x (δ(x) ∧Aτ ).

We allow identity to be translated to a formula that is not identity.

We may define the identity translation idΣ on Σ, the composition ρ ◦ τ of trans-
lations τ and ρ, and the disjunctive translation τ〈A〉ρ, that is τ if A and ρ if ¬A.
Thus, we define:

• δτ〈A〉ρ(v) :↔ (A ∧ δτ (v)) ∨ (¬A ∧ δρ(v)).

• (P (x0, . . . , xn−1))τ〈A〉ρ :=
(A ∧ Pτ (x0, . . . , xn−1)) ∨ (¬A ∧ Pρ(x0, . . . , xn−1)).

3We suppose that some mechanism is chosen to avoid variable-clashes due to the substitution
of the xi for the vi. We will address this matter in boring detail elsewhere.
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A translation is a relativization if it sends any predicate P to P (v0, . . . , vn−1), where
the predicates include identity. We will write AD, for Aτ if A is a relativization with
domain formula D. The translations that we will mostly consider in this paper are
relativizations to definable cuts. We discuss these in more detail in Subsection 3.4.

A translation is direct if its domain is the trivial domain of all objects and if it trans-
lates identity as itself. In other words, a translation is direct if it is unrelativised
and identity preserving.

A translation τ : Σ→ Θ can be seen as an internal model construction of a model
τ(M) of signature Σ in a model of M of signature Θ. Note that M 7→ τ(M) is
only a partial mapping since we need the condition that δMτ is non-empty and that
=Mτ satisfies the axioms of identity (relative to the signature Σ).

A translation relates signatures; an interpretation relates theories. An interpreta-
tion K : V → U is a triple 〈V, τ, U〉, where U and V are theories and τ : ΣV → ΣU .
We demand: for all axioms A of V , we have U ` Aτ . A theory V is interpretable
in a theory U if there is an interpretation K : V → U . A theory V is locally
interpretable in a theory U if every finitely axiomatized subtheory V0 of V is in-
terpretable in U . Finally, a theory V is model-interpretable in a theory U if, for
every model M of U , there is a translation τ such that the internal model τ(M)
is defined and is a model of V . Clearly U �mod V iff, for every complete extension
U? of U , we have U? interprets V . We write:

• U � V for: V is interpretable in U .

• U ≡ V for U � V and V � U .

• U �loc V for: V is locally interpretable in U .

• U ≡loc V for U �loc V and V �loc U .

• U �mod V for: V is model-interpretable in U .

• U ≡mod V for U �mod V and V �mod U .

• We use variants like U �mod,loc V with the obvious meaning.

Here are some further definitions and conventions.

• We often write AK for AτK .

• IDU : U → U is the interpretation 〈U, idΣU
, U〉.

• Suppose K : U → V and M : V → W . Then, KM := M ◦K : U → W is
〈U, τM ◦ τK ,W 〉.

• Suppose K : U → (V +A) and M : U → (V +¬A). Then the interpretation
K〈A〉M : U → V is the disjunctive interpretation 〈U, τK〈A〉τM , V 〉. In an
appropriate category K〈A〉M is a special case of a product.

We prove a useful lemma. This lemma is exercise 8 of [Hod93], p237.

Lemma 2.1. Let A be a finitely axiomatized theory. Then V �A iff V �mod A.

Proof. The direction from left to right is trivial. Suppose every model M of V
has an internal model that satisfies A. Let B be the conjunction of the axioms
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of identity for the signature of A (including ∃x x = x) and let C := (B ∧ A).
Consider the theory V + {¬Cτ | τ : ΣA → ΣV }. Clearly, V is inconsistent, since
by our assumption, it can have no models. So, V proves a disjunction

∨
i<n C

τi .
We compress the τi into one translation by taking:

• τ? := τ0〈Cτ0〉(τ1〈Cτ1〉(τ2 . . . (τn−2〈Cτn−2〉τn−1) · · · )).

It is easily seen that τ? gives us an interpretation of A in V . 2

We note that Lemma 2.1 is very robust w.r.t. the notion of interpretation involved
(modulo minor variations in the proof). It works for one-dimensional interpretations
with or without parameters, for multi-dimensional interpretations, for unrelativized
interpretations, for identity-preserving interpretations, and also for interpretations
that are relativizations to definable cuts. The main condition is that the associated
class of translations is closed under the operation (·)〈·〉(·).

We note the following consequence.

Theorem 2.2. We have:

i. U � V ⇒ U �mod V .

ii. U �mod V ⇒ U �loc V .

iii. U �mod,loc V ⇔ U �loc V .

Example 2.3. In case we allow piece-wise interpretations the theory INF which is
the theory of pure equality EQ plus axioms saying, for every n, ‘there are at least
n elements’ is locally interpretable in EQ. In case we allow only multi-dimensional
interpretations INF is interpretable in EQ plus ‘there are at least two elements’.
Clearly, INF is not an internal model of any finite model of EQ. Regrettably this
simplest of examples does not work in the one-dimensional case.

Vaught’s Set Theory VS is locally interpretable in the theory of unordered pairing
using one-dimensional interpretations. (See e.g. [Vis08].) However, VS is essentially
undecidable since it interprets the theory R of Tarski, Mostowski and Robinson. On
the other hand, the true theory of Cantor pairing is decidable (see [CR01]). In the
standard model for this theory we can build via a translation an internal model for
the theory of unordered pairing which inherits the decidability. Thus, the theory
VS cannot be an internal model of this model. Hence, VS is not model-interpretable
in the theory of unordered pairing.

For some background concerning our next and final example, see Subsections 2.3
and 3.5. Consider any finitely axiomatized sequential theory A. The theory 0(A)
is locally one-dimensionally interpretable in A but it is not model-interpretable,
since, by a result of Jan Kraj́ıček, for every interpretation N : A � PA−, we can
find a number mN such that the theory

K(A) := A+ {inconNmN
(A) | N : A� PA−}

is locally interpretable in A, and hence consistent. See [Kra87]. See also [Vis93]
and [Vis05]. Clearly, no model of K(A) can have an internal model satisfying 0(A),
since we would have inconMmM

(A), where M is the corresponding interpretation. So
A�loc 0(A), but A 6�mod 0(A).
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We will give an example that separates interpretability and model-interpretability
in Subsection 5.5.

2.2. Sequential and Pair Theories. A theory is sequential iff it directly inter-
prets adjunctive set theory AS. Here AS is the following theory in the language with
only one binary relation symbol.

AS1. ` ∃x∀y y 6∈ x,

AS2. ` ∀x, y ∃z ∀u (u ∈ z ↔ (u ∈ x ∨ u = y)).

So the basic idea is that we can define a predicate ∈? in U such that ∈? satisfies
a very weak set-theory involving all the objects of U . Given this weak set theory,
we can develop a theory of sequences for all the objects in U , which again gives
us partial truth-predicates, etc. In short, the notion of sequentiality explicates one
possible idea of a theory with coding.

A theory is a pair theory if it directly interprets a weak theory of non-surjective
unordered pairing UP. The theory of non-surjective unordered pairing UP is given
as follows. It has, apart from identity, one binary symbol ∈. It has, apart from the
axioms of identity, the following axioms.

UP1 ` ∃x∀y y 6∈ x,

UP2 ` ∀x, y ∃z ∀u (u ∈ z ↔ (u = x ∨ u = y)).

The demand that our pairing is non-surjective is, modulo mutual direct inter-
pretability, equivalent to the axiom that there are, provably, at least two objects
in the domain. A theory of ordered pairing can developed from our theory of
unordered pairing using Kuratowski pairing.

2.3. Complexity and Satisfaction. In this subsection we explain the notion of
restricted provability. An n-proof is a proof from axioms with Gödel number smaller
or equal than n only involving formulas of complexity smaller or equal than n. To
work conveniently with this notion, a good complexity measure ρ is needed. This
should satisfy three conditions. (i) Eliminating terms in favour of a relational
formulation should raise the complexity only by a fixed standard number. (ii)
Translation of a formula via the translation corresponding to an interpretation K
should raise the complexity of the formula by a fixed standard number depending
only on K. (iii) The tower of exponents involved in cut-elimination should be of
height linear in the complexity of the formulas involved in the proof.

Such a good measure of complexity together with a verification of desideratum (iii)
—a form of nesting degree of quantifier alternations— is supplied in the work of
Philipp Gerhardy. See [Ger03] and [Ger05]. It is also provided by Samuel Buss in
his preliminary draft [Bus11]. Buss also proves that (iii) is fulfilled.

We will use proofU,n for the proof predicate where only U -axioms with Gödel num-
bers ≤ n are allowed and where the formulas occurring in the proof are in the
complexity class Γn of all formulas of complexity ≤ n. Similarly we use U `n A,
conn(U), 2U,mA, etc. As usual, 2U,mA is short for ∃x proofU,n(x, pAq).
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In sequential theories we can define partial satisfaction predicates for formulas with
complexity below n, for any n. The presence of these predicates has as a conse-
quence that for any sequential theory U and for any n, we can find an interpretation
N of a weak arithmetic like Buss’ S1

2 in U such that U ` conNn (U). See e.g. [Vis93]
for more details.

3. The theory PA−

In this section we treat the basic theory PA−

3.1. PA− introduced. The theory PA− is the theory of discretely ordered com-
mutative semirings with a least element. The theory is mutually interpretable with
Robinson’s Arithmetic Q. However, PA− has the additional good property that it
is sequential as was shown in [Jeř12].

The theory PA− is given by the following axioms.

PA−1 ` x+ 0 = x

PA−2 ` x+ y = y + x

PA−3 ` (x+ y) + z = x+ (y + z)

PA−4 ` x · 1 = x

PA−5 ` x · y = y · x

PA−6 ` (x · y) · z = x · (y · z)

PA−7 ` x · (y + z) = x · y + x · z

PA−8 ` x ≤ y ∨ y ≤ x

PA−9 ` (x ≤ y ∧ y ≤ z)→ x ≤ z

PA−10 ` x+ 1 6≤ x

PA−11 ` x ≤ y → (x = y ∨ x+ 1 ≤ y)

PA−12 ` x ≤ y → x+ z ≤ y + z

PA−13 ` x ≤ y → x · z ≤ y · z

We will consider the subtraction axiom:

sbt ` x ≤ y → ∃z x+ z = y

We will call PA−sbt := PA− + sbt. The theory PA−sbt extends Robinson’s arithmetic
Q. In the literature the name “PA−” is often used for what we call “PA−sbt”. See
e.g. [Kay91].

By Lemma 1 of [Jeř12], the following principles are verifiable in PA−.

PA−a ` (x ≤ y ∧ y ≤ x)→ x = y

PA−b ` x · 0 = 0

PA−c ` 0 ≤ x
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PA−d ` x ≤ y + 1↔ (x ≤ y ∨ x = y + 1)

We note that ∀x, y (x ≤ y → ∃z x+ z = y) is equivalent to

∀x, y (x ≤ y → ∃z ≤ y x+ z = y).

So the subtraction principle is Π1.

3.2. The Σ1,n-Hierarchy and Collection. The facts proved in this subsection
about the Σ1,n-hierarchy are folklore. We work in the arithmetical language with
0, 1, +, · and ≤.

The class Σ1,0 consists of formulas of the form ∃~xS0(~x, ~y), where S0 is ∆0. The
class Σ1,n+1 consists of formulas of the form ∃~x ∀~y ≤ ~t S0(~x, ~y), where S0 is Σ1,n.
Here ∀~y ≤ ~t stands for a block of the form ∀y0 ≤ t0 . . . ∀yk−1 ≤ tk−1. Here yi is
not allowed as free variable in ti. The blocks ~x and ~y ≤ ~t are allowed to be empty.
The class Σ1,∞ is the union of the Σ1,n. In a similar way we define the formula
classes Π1,n and Π1,∞.

Remark 3.1. It is a bit awkward to pronounce e.g. Π1,1 as pi-one-one, since
we can not distinguish this from the customary pronunciation of Π1

1. Therefore, I
propose to pronounce Π1,1 as: pi-one-sub-one.

When we use Σ1 we will always mean Σ1,0 and when we use Π1 we will always
mean Π1,0.

The formula classes Σ1,n are inextricably connected to the Σ1-collection scheme
BΣ1. This scheme is given by:

• ∀a, ~z (∀x ≤ a ∃y A(x, y, ~z )→ ∃b∀x ≤ a ∃y ≤ bA(x, y, ~z )), where A is ∆0.

We will write BΣ1,x,y{A}(a, ~z ) for:

∀x ≤ a ∃y A(x, y, ~z )→ ∃b∀x ≤ a ∃y ≤ bA(x, y, ~z ),

always assuming that the free variables of A are among x, y, ~z.

Over I∆0, the scheme BΣ1 can be formalized by Π1,1 formulas. We define the
scheme BΣ◦1 by:

• ∀a, ~z ∃u ≤ a ∀b∀x ≤ a∃y ≤ b (A(u, b, ~z )→ A(x, y, ~z )), where A is ∆0.

Or, in a more readable version:

• ∀a, ~z ∃u ≤ a ∀b (A(u, b, ~z )→ ∀x ≤ a ∃y ≤ bA(x, y, ~z )) where A is ∆0.

We will write BΣ◦1,x,y{A}(a, ~z ) for:

∃u ≤ a∀b (A(u, b, ~z )→ ∀x ≤ a∃y ≤ bA(x, y, ~z )),

always assuming that the free variables of A are among x, y, ~z. Note that we have:
BΣ◦1,x,y{A}(a, ~z ) is Π1,1.

Theorem 3.2. For any ∆0-formula A:

a. PA− + BΣ◦1,x,y{A}(a, ~z ) ` BΣ1,x,y{A}(a, ~z ),

b. I∆0 + BΣ1,x,y{A}(a, ~z ) ` BΣ◦1,x,y{A}(a, ~z ).
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Proof. We fix a ∆0 formula A and variables x, y, ~z such that the free variables of
A are contained in x, y, ~z.

We prove (a). We reason in PA− + BΣ◦1,x,y{A}(a, ~z ). Suppose

(1) ∀x ≤ a ∃y A(x, y, ~z ).

Pick u as promised by BΣ◦1,x,y{A}(a, ~z ). By (1), there is a b with A(u, b, ~z ). Hence,
by BΣ◦1,x,y{A}(a, ~z ), we have ∀x ≤ a∃y ≤ bA(x, y, ~z ).

We prove (b). We reason in I∆0 +BΣ1,x,y{A}(a, ~z ). In case ∃x ≤ a ∀y ¬A(x, y, ~z ),
we can take the u that witnesses BΣ◦1,x,y{A}(a, ~z) as an example of an x such that
x ≤ a and ∀y ¬A(x, y, ~z ). Suppose ∀x ≤ a∃y A(x, y, ~z ). By BΣ1,x,y{A}(a, ~z ),
we can find a b such that ∀x ≤ a ∃y ≤ bA(x, y, ~z ). Take b? the smallest such
number (using the ∆0-minimum principle). In case we would have ∀x ≤ a∃y <
b?A(x, y, ~z ), the number b? would not be minimal. So, for some x? ≤ a we have
∀y < b? ¬A(x?, y, ~z ). Clearly, A(x?, b?, ~z ). so we can take u := x? to witness
BΣ◦1,x,y{A}(a, ~z ). 2

Clearly, over PA− + BΣ1, the class Σ1,∞ collapses modulo provable equivalence to
Σ1,0. We show that in the presence of the negation of an instance of BΣ1 the class
Σ1,∞ expands to the full arithmetical language in various circumstances.

Lemma 3.3. We have:

PA− + ¬BΣ◦1,x,y{C}(a, ~z ) ` ∀uA(u)↔ ∀x ≤ a∃y (C(x, y) ∧ ∀v ≤ y A(v)),

where C is in ∆0 and x, y, ~z includes the free variables of C. The same result holds
when we replace ∀u and ∀v by quantifier blocks ∀~u, ∀~v.

Proof. We reason in PA− + ¬BΣ◦1,x,y{C}(a, ~z ). Note that ¬BΣ◦1,x,y{C}(a, ~z ) is
equivalent to: (†) ∀x ≤ a∃y C(x, y, ~z ) and (‡) ∀b∃x ≤ a ∀y ≤ b¬C(x, y, ~z ).

The left-to-right direction is immediate by (†). For the right-to-left direction, sup-
pose that (i) ∀x ≤ a∃y (C(x, y) ∧ ∀u ≤ y A(u)). Consider any u. By (‡), we
can find an x∗ ≤ a such that (ii) ∀y ≤ u¬C(x∗, y, ~z ) We have, by (i), that (iii)
(C(x∗, y∗) ∧ ∀v ≤ y∗A(v)), for some y∗. It follows, by (ii) and (iii),that y∗ > u.
Hence, by (iii), we have A(u).

The adaptation of the proof to blocks ∀~u, ∀~v is obvious. 2

Theorem 3.4. Consider any ∆0-formula C(x, y, ~z ). We have the following:

i. For any formula A(~w) of the arithmetical language, there is a Σ1,∞-formula
A?(a, ~z, ~w), such that:

PA− + ¬BΣ1,x,y{C}(a, ~z) ` A(~w)↔ A?(a, ~z, ~w).

ii. For any formula A(~w) of the arithmetical language, there is a formula Ã(~w) in
Σ1,∞ such that I∆0 + ¬∀a, ~z BΣ1,x,y{C}(a, ~z ) ` A(~w)↔ Ã(~w).

Proof. We prove (i). We first bring A(~w ) in prenex normal form, say this is A◦(~w ).
Then we replace all maximal blocks ∀~u in A◦ by ∀x ≤ a ∃y (C(x, y) ∧ ∀~u ≤ y . . .),
obtaining A?(a, ~z, ~w ). By Lemma 3.3, A? is equivalent to A. Moreover, A? is
clearly in Σ1,∞.
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We prove (ii). From (i), we find, by predicate logic:

PA− + ∃a, ~z ¬BΣ1,x,y{C}(a, ~z) ` A(~w )↔ ∃a, ~z (¬BΣ1,x,y{C}(a, ~z)∧A?(a, ~z, ~w )).

By Theorem 3.2, it follows that:

PA− + ∃a, ~z ¬BΣ1,x,y{C}(a, ~z) ` A(~w )↔ ∃a, ~z (¬BΣ◦1,x,y{C}(a, ~z)∧A?(a, ~z, ~w )).

Thus we can take:

Ã(~w ) := ∃a, ~z (¬BΣ◦1,x,y{C}(a, ~z) ∧A?(a, ~z, ~w )).

Clearly, Ã is in Σ1,∞. 2

So we have the somewhat strange result that in a model of I∆0 the Σ1,∞-definable
sets are either the Σ1,0-definable sets or the definable sets simpliciter.

3.3. Initial Embeddings. We will use a specialization of a theorem due to Dave
Marker. See [Mar84]. The proof of this theorem uses methods introduced by J.
Schlipf in [Sch78].

Theorem 3.5 (Marker). Suppose M and N are countable models of PA− that are
jointly recursively saturated. Suppose further that, for all sentences S of Σ1,∞, we
have: if M |= S, then N |= S. Then there is an initial embedding of M in N .

An immediate consequence of this theorem is Feferman’s Preservation Theorem
([Fef68]).

Corollary 3.6. Suppose Θ is a theory in the language of arithmetic that extends
PA−. Suppose the set Γ of sentences in the language of arithmetic is preserved under
end extensions between models of Θ. Then Γ is axiomatizable by Σ1∞-sentences
over Θ.

The proof of the Corollary from the Theorem is again in [Mar84].

Since a model of I∆0 + ∃a, ~z ¬BΣ1,x,y{C}(a, ~z ) does not have an end-extension,
Corollary 3.6 provides an alternative proof that any sentence is provably equivalent
to a Σ1,∞-sentence over I∆0 + ∃a, ~z ¬BΣ1,x,y{C}(a, ~z ).

3.4. Cut-interpretability in PA−. A cut I is a formula I(v) in the language
of PA− such that PA− proves that I contains 0 and is closed under +1 and is
downwards closed w.r.t. ≤. An a-cut is a cut that is PA−-provably closed under
addition and a am-cut is a cut that is PA−-provably closed under addition and
multiplication. We will treat cuts as virtual classes. We note that on an am-cut we
again have PA−. Moreover, in PA−sbt we will have PA−sbt on an am-cut.

Suppose I is a cut, we define:

• I1 := {x ∈ I | ∀y ∈ I y + x ∈ I}

• I2 := {x ∈ I1 | ∀y ∈ I1 y · x ∈ I1}.
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It is easily seen that I1 is an a-cut and I2 is an am-cut. (This result is an example
of Solovay’s method of shortening cuts. See [Sol76].) Similarly we can construct a
cut that is also closed under ω1. See e.g. [HP91].

We can easily interpret PA−sbt on an am-cut in PA−. See also [Jeř12].

Consider extensions U and V of PA− in the same language. Let Γ be a set of
Π1,∞-sentences. Suppose U �(loc,)cut V . Then, we have (U + Γ) �(loc,)cut (V + Γ).
We note that sbt is a Π1,0-sentence, that BΣ◦1 is a Π1,1-scheme and that I∆0 + BΣ1

is a Π1,1-theory. So all of these are all preserved under (local) cut-interpretability.

One would expect (local) cut-interpretability to behave in a rather tame way. After
all, a true theory can only (locally) cut-interpret a true theory. However, it turns
the local cut-interpretable theories are rich and varied.

To make that visible we use an idea due to Solovay in a letter to Nelson.

Lemma 3.7. In I∆0 + ¬Exp we can prove that there is a unique number s such
that supexp(s) exists and supexp(s + 1) does not.

We leave the simple proof to the reader. We call s: Solovay’s number. As we will
see ‘s’ is not a rigid designator and Solovay’s number may change its identity when
we move to another environment.

Theorem 3.8. We have I∆0 �cut (I∆0 + (Ω1 → Exp)).

Proof. We work in I∆0. We construct an am-cut on which we have Ω1 → Exp.

If we have Exp we have Ω1 → Exp on the identity cut.

Suppose ¬Exp. In this case s exists. Let t := supexp(s). Note that 2t does not
exist. Take an a-cut J of numbers x for which both 22x

and tx exist. Let I be the
numbers y such that, for some x in J , we have y ≤ tx. Then I is an am-cut and t

is in I. Moreover, ω1(t) does not exist in I, since |t| is not in J because 22|t| does
not exist. Hence I interprets ¬Ω1 and, a fortiori, Ω1 → Exp. 2

The following theorem is a variant of a result due to Solovay which was proved in
the letter of Robert Solovay to Edward Nelson that we mentioned above.

Theorem 3.9. Consider any numbers k < n. Then I∆0 + (Exp ∨ s ≡ k (mod n))
is cut-interpretable in I∆0 (and, hence, in PA−).

Proof. We define:

• itexp(x, 0) := x, itexp(x, n+ 1) := 2itexp(x,n),

• Logn := {x | itexp(x, n) exists}.

We can show that in I∆0 + Ωn, the virtual classes Logj , for j ≤ n are am-cuts, in
fact we have Logj : I∆0 + Ωn �cut I∆0 + Ωn−j . (We take ω0(x) := x2.)

It is well known that we can cut-interpret I∆0 + Ωn in I∆0. Hence it is sufficient
to construct the desired cut in I∆0 + Ωn. We work in I∆0 + Ωn. If Exp we take the
identity cut.
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Suppose ¬Exp. Consider any j ≤ n. The class Logj is a cut on which we have
¬Exp and we have: (s = x)Logj iff s = x+ j. We define the desired cut as follows:

J := Log0〈s ≡ k (mod n)〉(Log1〈s ≡ k + 1 (mod n)〉(. . . Logn−1) . . .).

It is easily seen that J is a cut interpreting s ≡ k (mod n). 2

For the next theorem we drop our silent assumption that a theory has to have a
p-time decidable axiomatization and we allow theories with arbitrary axiom sets.

Theorem 3.10. There is a class X of 2ℵ0 extensions of I∆0 that are locally cut-
interpretable in I∆0, such that any two elements of X are incompatible in the sense
that their union implies Exp and is hence not locally interpretable in I∆0.

Proof. Consider any binary sequence α := a0a1a2 . . .. Using Theorem 3.9 we can
locally interpret an extension Θα of I∆0 that says: we have either Exp or the binary
digits of s end with . . . a2a1a0. If α 6= β we clearly must have: Θα ∪Θβ ` Exp. 2

3.5. The Mho-functor. An important theoretical notion in the context of the
study of sequential theories is the functor 0.4 In [Vis11a], I defined the functor for
the base theory S1

2. Since PA− is the central theory of our paper, it seems better
to define 0 for the base theory PA−. We define, for any recursively axiomatized
theory U :

• 0(U) := PA− + {conn(U) | n ∈ ω}.

The central fact about the 0-functor is as follows:

Theorem 3.11. We have: U �loc V ⇔ 0(U) � V . In other words, 0 is the right
adjoint of the embedding functor of � considered as a preorder category into �loc

considered as a preorder category.

For a proof, see [Vis11a].

In Example 2.3, we sketched an argument to show that, for a finitely axiomatized
sequential theory A, we have: A 6�mod 0(A) and, a fortiori, A 6� 0(A).

4. IΠ−1 and CFL

In this section we briefly introduce the salient theories IΠ−1 and CFL.

4.1. IΠ−1 . There is a surprising contrast between the induction scheme with pa-
rameters and the induction scheme without parameters. This is well illustrated by
comparing the theory IΠ1 of full Π1-induction and the theory IΠ−1 of parameter-
free Π1-induction. The theory IΠ1 is interderivable with IΣ1. See e.g. [HP91, I.2].
However, the proof of equivalence essentially involves a parameter. The theory
IΠ−1 is strictly weaker than IΣ−1 , the theory of parameter-free Σ1-induction. See
[KPD88].

We will show, in this paper that IΠ−1 is a subtheory of PA↓↓. This is Theorem 5.1.
We will also show that PA↓ is locally weak, i.e., it is locally interpretable in PA−.

4We pronounce ‘mho’ is such a way that it rhymes with ‘joe’.
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This is Theorem 5.11. Hence, the theory IΠ−1 is also locally weak. We will prove
that the theory IΠ−1 is reflexive. See Subsection 6.3. It follows that the theory IΠ−1
is not globally interpretable in PA−, so the local interpretability result is optimal.
In contrast, IΠ1 is a finitely axiomatizable sequential theory. This tells us that IΠ−1
and IΠ1 have quite different behaviour w.r.t. local and global interpretability, as
will be explained in the paper.

The interest of IΠ−1 derives from its deep connections to salient theories like PA− and
EA. We refer the reader to the fundamental papers [KPD88], [Big95] and [CFL11].

We remind the reader of the witness comparison notation. We assume our language
has a binary relation symbol ≤. Let x < y :↔ (x ≤ y ∧ x 6= y).

We define, for any C = ∃xC0(x) and D = ∃y D0(y):

• C ≤ D := ∃x (C0(x) ∧ ∀y < x¬D0(y)). We note that C ≤ C tells us that
there is a smallest C0.

• C < D := ∃x (C0(x) ∧ ∀y ≤ x¬D0(y)).

• (C ≤ D)⊥ := (D < C), (C < D)⊥ := (D ≤ C).

We consider the following theories:

• IΠ−1 is PA− plus parameter-free Π1-induction.

• LΣ	1 is PA− plus the parameter-free Σ1-minimum, principle. We note that
LΣ	1 is axiomatized by PA− plus axioms of the form S → S ≤ S, where
S is a Σ+

1,0-sentence. The superscript + indicates that the sentence begins
with at least one existential quantifier.

• LΣ−1 is LΣ	1 plus the subtraction axiom, i.o.w., it is PA−sbt plus the parame-
ter-free Σ1-minimum, principle.

We can easily show that IΠ−1 and LΣ−1 are interderivable. The theory LΣ	1 is
strictly weaker. It is valid on the polynomials in a variable X with coefficients in ω
with the obvious interpretation of the operations and the ordering. In this structure
e.g. X has no predecessor.

We end this subsection by briefly reflecting on IΠ−1 and the Σ1,n -hierarchy. We
remind the reader that Π1 is, in this paper, the formula class Π1,0. So, the theory
IΠ−1 could also be called IΠ−1,0. What about IΠ−1,n, for n > 0?

We note that, by Theorem 3.2, BΣ1 is equivalent with BΣ◦1 over IΠ−1 , since IΠ−1
extends I∆0. We repeat the Π1,1-definition of BΣ◦1:

• ∀a, ~z ∃u ≤ a ∀b (A(u, b, ~z )→ ∀x ≤ a ∃y ≤ bA(x, y, ~z )) where A is ∆0.

It is easily seen that the virtual class

{a | ∀~z ∃u ≤ a ∀b (A(u, b, ~z )→ ∀x ≤ a ∃y ≤ bA(x, y, ~z ))}.
is progressive. Hence, IΠ−1,1 proves BΣ1. Thus, we find that, for all n ≥ 1, IΠ−1,n is
extensionally the same as IΠ−1 + BΣ1. On the other hand IΠ−1 is a subtheory of the
theory axiomatized by the true Π1,0-sentences. The traditional model-theoretical
argument (see e.g. [Kay91]) shows that the theory of the true Π1,0-sentences does
not prove BΣ1, so IΠ−1,0 0 BΣ1.
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4.2. CFL. The theory CFL is introduced by Andrés Cordón Franco, Alejandro
Fernándes Margarit and Felix Lara Martin in [CFL11] as an axiomatization of
the bool(Σ1)-consequences both of IΠ−1 and of EA.

My preferred axiomatization of CFL is as follows:

• I∆0 + {∃xS0(x)→ ∃x∃y (2x = y ∧ S0(x)) | S0 ∈ Σ1(x)}.

Let K be the I∆0-cut {x | ∃y 2x = y}. We note that CFL is equivalent to:

I∆0 + {S → (S < ∃xx 6∈ K) | S is a Σ+
1 -sentence}.

By an easy argument we can also show that CFL is equivalent to:

I∆0 + {∃xS0(x)→ ∃x∃y (2x = y ∧ S0(x)) | S0 ∈ ∆0(x)}.

In [CFL11], the theory CFL is axiomatized by I∆0 plus the scheme:

∀x, y, u, v ((S0(x) ∧ ∀z (S0(z)→ z = x) ∧
S1(y) ∧ ∀z (S1(z)→ z = y) ∧
u ≤ x ∧ v ≤ y )→ ∃w uv = w ),

where S0 ∈ Σ1(x) and S1 ∈ Σ1(y).

Let us locally call our version: CFL0, and the version of [CFL11]: CFL1. To prove
the equivalence of these theories we will need a lemma. The lemma is a special case
of Lemma 1.36 of [HP91, Chapter IV]. We reproduce it for the reader’s convenience.

Lemma 4.1. For every Σ1(x)-formula S, there is a Σ1(x)-formula S?, such that:

i. I∆0 ` ∃xS(x)→ ∃y S?(y),

ii. I∆0 ` ∀x, y ((S?(x) ∧ S?(y))→ x = y),

iii. I∆0 ` ∀x (S?(x)→ S(x)).

In words: every Σ1-definable element is syntactically Σ1-definable over I∆0.

Proof. Suppose S(x) is ∃~y S0(x, ~y), where S0 ∈ ∆0. Suppose the sequence ~y has
length n. In I∆0, we can build internal sequences of length n+ 1, e.g. by iterating
Cantor pairing. So, ∃xS(x) is equivalent to ∃z S0(π0(z), . . . , πn(z)). Note that the
formula S0(π0(z), . . . , πn(z)) is ∆0.

We define S?(x) as the formula:

∃z (π0(z) = x ∧ S0(π0(z), . . . , πn(z)) ∧ ∀w < z ¬ (S0(π0(w), . . . , πn(w)))).

It is easily seen that, by the ∆0-minimum principle, the formula S? has the desired
properties. 2

The proof of the following theorem is mainly the same as the proof of Theorem 2.3
of [CFL11]. We have:

Theorem 4.2. CFL0 and CFL1 are equivalent.
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Proof. We work in CFL0 and derive the axioms of CFL1.

Suppose S0(x) ∧ ∀z (S0(z) → z = x) and S1(y) ∧ ∀z (S1(z) → z = y) and u ≤ x
and y ≤ v. Let S(a) := S0(π0(a)) ∧ S1(π1(a)), where the πi are the projection
functions for the Cantor pairing. We have S(a), for a := 〈x, y〉. We find that
∀b (S(b) → a = b). By our axiom scheme we find that 2a exists. We have, uv ≤
xy ≤ (2x)y = 2x+y ≤ 2a. So, by I∆0-verifiable facts, it follows that uv exists.

See [HP91, V.3(c)] for the basics of the development of exponentiation in I∆0.

We prove the converse. Consider any formula S(x) in Σ1(x). We work in the
formulation of CFL1 and prove the axioms of CFL0. Suppose ∃xS(x). Let S? be as
in Lemma 4.1. Let x? be the unique x such that S?(x). Clearly, 2 is Σ1-definable,
so 2x

?

exists. Since S(x?), we are done. 2

The theory CFL is a natural locally weak theory in which we have soundness and
completeness of Löb’s Logic. See e.g. [Vis12a].

5. Peano Basso and Peano Corto

In Subsection 5.1 we introduce the theories Peano Basso and Peano Corto. We
prove the basic facts about them in Subsection 5.2. We prove a number of further
results in Subsections 5.3, ??. Our main result, to wit the local cut-interpretability
of PA↓ in PA−, is proved in Subsection 5.4. Finally, in Subsection 5.5, we take a
closer look at the series of approximations used in the proof of the main result.

5.1. Introducing Peano Corto and Peano Basso. We start with the introduc-
tion of PA↓↓. First we need some preliminary definitions. We define:

• progx(A(x)) :↔ (A(0) ∧ ∀y (A(x)→ A(x+ 1))).
In case we treat A as a virtual class, we write simple prog(A).

• cutx(I(x)) :↔ I(0) ∧ ∀y (I(x)→ I(x+ 1)) ∧ ∀y, z ((I(y) ∧ z ≤ y)→ I(z)).
In case we treat I as a virtual class, we write simply cut(I). Similarly for
e.g. am-cut.

• r-rfn(Θ) is the principle ` 2Θ,nA→ A, where A is a sentence of the signa-
ture Θ and 2Θ,n is n-restricted provability in predicate logic of signature Θ.
We always assume that n ≥ ρ(A), where ρ counts the depth of quantifier
alternations. We write r-rfn and 2n if Θ is the signature of arithmetic.

• rfn(Θ) is the principle ` 2ΘA→ A, where A is a sentence of the signature
Θ and 2Θ is provability in predicate logic of signature Θ. We write rfn and
2 if Θ is the signature of arithmetic.

• r-RFN is the principle ` ∀~x (2PA−,nA(~x)→ A(~x)), where A is a formula of
the signature of arithmetic and the variables inside of the box are realized
using codes of efficient numerals. We always assume that n ≥ ρ(A).5

5The use of PA−-provability is not really necessary in the formulation, but is seems awkward

to use the efficient numerals in a context where they do not make sense—especially where they
are paraphrased away in a relational version of the language.
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• RFN is the principle ` ∀~x (2PA−A(~x)→ A(~x)), where A is a formula of the
signature of arithmetic.

The theory Peano Corto or PA↓↓ or I(Σ∞,Σ1,0) is axiomatized as PA− plus the
scheme:

` ∀~z ((progx(A(x, ~z )) ∧ ∃xS0(x))→ ∃x (A(x, ~z ) ∧ S0(x))).

Here, the formulas A has at most x, ~z free and S0 has at most x free and S0 ∈ Σ1,0.

We note that PA↓↓ extends IΠ−1 and, hence CFL and I∆0.

Theorem 5.1. We have PA↓↓ ` IΠ−1 . In fact, we even have IΠ−1 [Σ1,0] ` IΠ−1 .

Proof. Suppose P (x) is Π1,0 and has only x free. We work in or IΠ−1 [Σ1,0].

Suppose P (x) is progressive and ∃y ¬P (y). Then ∃y (¬P (y)∧P (y)). A contradic-
tion. So, we have ∀y P (y). 2

The theory PA↓↓ has many equivalent formulations. In the next theorem we present
a selection of these.

Theorem 5.2. The following theories are equivalent.

(1) PA↓↓

(2) PA− plus the scheme:

` (progx(A(x)) ∧ ∃xS0(x))→ ∃x (A(x) ∧ S0(x)).

Here, the formulas A has at most x free and S0 has at most x free and S0 ∈ Σ1,0.
We call this system I(Σ−∞,Σ1,0).

(3) PA− plus the rule:

` ∀~z progx(A(x, ~z )) ⇒ ` ∀~z (∃xS0(x)→ ∃x (A(x, ~z ) ∧ S0(x))).

Here A(x, ~z ) has at most x, ~z free and S0(x) has only x free and S0 is in Σ1.
We can restrict the antecedent of the rule to PA−-provability.

(4) PA− plus the rule:

` progx(A(x)) ⇒ ` ∃xS0(x)→ ∃x (A(x) ∧ S0(x)).

Here A(x, ~z ) has at most only x, ~z free and S0(x) has only x free and S0 is in
Σ1. We can restrict the antecedent of the rule to PA−-provability.

(5) PA− plus the scheme:

` ∀~z ((am-cutx(J(x, ~z )) ∧ S)→ SJ~z ).

Here J(x, ~z ) has at most x, ~z free and S is a Σ1-sentence.

(6) PA− plus the scheme:

` (am-cutx(J(x)) ∧ S)→ SJ .

Here J(x) has only x free and S is a Σ1-sentence.
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(7) PA− plus the rule:

` ∀~z am-cutx(J(x, ~z )) ⇒ ` S → ∀~z SJ~z .

Here J(x, ~z ) has at most x, ~z free and S is a Σ1-sentence. We can restrict the
antecedent of the rule to PA−-provability.

(8) PA− plus the rule:

` am-cutx(J(x)) ⇒ ` S → SJ .

Here J(x) has only x free and S is a Σ1-sentence. We can restrict the antecedent
of the rule to PA−-provability.

(9) I∆0 plus the scheme:

` ∀~z (progx(A(x, ~z ))→ ∀x ((S0(x) ∧ ∀y (S0(y)→ x = y))→ A(x, ~z ))).

Here A(x, ~z ) has at most x, ~z free and S0(x) has only x free and S0 is in Σ1.
We can prove rule variants and am-cut variants and parameter-free variants of
this scheme in the style of the previous items.

(10) CFL + r-rfn.

Proof. Clearly: (1) ⇒ (2) ⇒ (4), and (1) ⇒ (3) ⇒ (4). In the case of the rule
variants the cases where we have PA↓↓-provability in the antecedent imply the cases
with PA−-provability in the antecedent. Suppose we have (4). Consider anyA(x, ~z ).
Define A?(x) := ∀~z (progx(A(x, ~z )) → A(x, ~z)). Clearly PA− ` progx(A?(x)). So,
we find: ` ∃xS0(x)→ ∃x (A?(x) ∧ S0(x)). Ergo,

` (progx(A(x, ~z )) ∧ ∃xS0(x))→ ∃x (A(x, ~z) ∧ S0(x)).

Thus we have proved the equivalence of (1), (2), (3) and (4).

The equivalence of (5), (6), (7) and (8) is similar.

We show (2) ⇒ (6). We reason in I(Σ−∞,Σ1,0). Consider any am-cut J . Clearly,
J is progressive. Let S := ∃~xS0(~x), where S0 is in ∆0 and contains no variables
other than ~x. We can easily show that S is equivalent to ∃z ∃~x < z S0(~x). We find:
∃z ∈ J ∃~x < z S0(~x). Hence, SJ .

We show (6)⇒ (2). We reason in the system given in (6). Suppose A is progressive.
We can find an am-cut J that is contained in A. Let S be a sentence ∃xS0(x),
where S0(x) is Σ1. We find SJ , and, a fortiori, ∃x (A(x) ∧ S0(x)).

By Theorem 5.1, we have PA↓↓ ` I∆0. Hence (1) ⇒ (9). The direction (9) ⇒ (1)
is immediate using Lemma 4.1.

We show that (10) ⇒ (8). Let S be a Σ1-sentence and let J be an am-cut of
PA−. We reason in CFL + r-rfn. Suppose S. Without loss of generality we may
assume that S is of the form ∃z S0(z), where S0 is in ∆0. We can find a witness
z? for ∃z S0(z) such that 22z?

exists. Since the presence of a number of the size of
22z?

is sufficient to make the usual proof of Σ1-completeness work, we find, for a
sufficiently large m, that 2m(

∧
PA− → SJ). Ergo, by reflection, we find SJ .

Finally we show that (1) ⇒ (10). By Theorem 5.1, we have CFL. We reason in
PA↓↓. Suppose 2mA, where A is any sentence in the arithmetical language. Since
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PA−+A is sequential, we have for some am-cut J , 2J
mA→ A. On the other hand,

from 2mA, we find 2J
mA. 2

We have:

Theorem 5.3. PA↓↓ 0 BΣ1.

Proof. Characterization (8) of Theorem 5.2, tells us that PA↓↓ is a subtheory of
the theory of the true Π1-sentences. By the usual model-theoretical argument (see
[Kay91]), we find that this theory does not prove BΣ1. 2

We define:

• I(Σ∞,Σ1,n) is PA− plus the scheme ` am-cut(J) → (S → SJ), where S is
a Σ1,n-sentence.

• The theory Peano Basso or PA↓ is I(Σ∞,Σ1,1)

We have overloaded the definition of I(Σ∞,Σ1,0), but this is harmless given the
equivalence of the two definitions.

Theorem 5.4. For n ≥ 1, the theory I(Σ∞,Σ1,n) is equivalent to I(Σ∞,Σ1,0) +
BΣ1.

Proof. It is well known that PA− interprets BΣ1 on an am-cut. See e.g. [Háj93].
Say this cut is J .

We reason in I(Σ∞,Σ1,1). Since I(Σ∞,Σ1,0) proves I∆0, we also have I∆0 on J .
Hence we have (BΣ◦1)J . Since BΣ◦1 is Π1,1, we find BΣ◦1, and, hence BΣ1.

Since over PA− + BΣ1 the Σ1,n-hierarchy collapses to Σ1,0, it is immediate that,
for n > 0, we have I(Σ∞,Σ1,n) is equivalent to I(Σ∞,Σ1,0) + BΣ1. 2

We have seen that that our hierarchy I(Σ∞,Σ1,n) produces two theories: PA↓↓ and
PA↓ which is equivalent to PA↓↓+BΣ1. Since PA↓↓ does not prove BΣ1, the theories
PA↓↓ and PA↓ are not equivalent.

Remark 5.5. It is rather easy to see how to generalize local Σ1,n-induction to
the full sequential case. Suppose U is sequential and that N0 : PA− � U . Then U
satisfies local Σ1,n-induction w.r.t. N0 iff, for every N : PA−�U and every sentence
S in Σ1,n such that U ` SN , we have U ` SN0 .

It is less clear how to generalize local induction —as defined by Andrés Cordón
Franco, Alejandro Fernándes Margarit and Felix Lara Martin— for other formula
classes. This is a problem for further research.

5.2. Basic Facts. Here are some simple facts about PA↓↓ and PA↓.

Fact 5.6. Suppose W is an extension of PA↓↓ in the same language and Z is an
extension of PA↓ in the same language.
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a. Suppose M : W �U and N : U � PA−. Then, for any Σ1,0-sentence S, we have
M : (W + S) � (U + SN ).6

b. Suppose M : Z �U and N : U � PA−. Then, for any Σ1,∞-sentence S, we have
M : (Z + S) � (U + SN ).

c. Suppose U is an extension of PA− in the same language and J : W�cutU . Then,
we have J : (W + B) �cut (U + PA↓↓ + B), for any Boolean combination B of
Σ1,0-sentences.

d. Suppose U is an extension of PA− in the same language and J : Z�cutU . Then,
we have J : (Z + B) �cut (U + PA↓ + B), for any Boolean combination B of
Σ1,∞-sentences.

Proof. Ad (a). Suppose M : W � U and N : U � PA−. Then, there is a am-cut J
of ID that is definably isomorphic to a definable am-cut of NM . If, in W , we have
the Σ1,0-sentence S, we also have SJ , and, hence SNM .

The proof of (b) is analogous to the proof of (a).

Ad (c). Clearly, in W , both Σ1,0- and Π1,0-sentences are preserved to definable
am-cuts. Hence, ipso facto, Boolean combination of Σ1,0-sentences are preserved
to definable am-cuts. Moreover, suppose that I is a PA−-cut, J is a W -cut and S
is a Σ1,0-sentence. Then IJ is a W -cut. Since,

W ` (SJ → S) ∧ (S → SIJ),

we find W ` (S → SI)J .

The proof of (d) is analogous to the proof of (c). 2

We have the following corollary.

Corollary 5.7. PA↓↓ �cut PA↓.

Both for PA↓↓ and PA↓ we have non-finite-axiomatizability results as the following
lemma makes clear.

Fact 5.8. We have the following two insights.

i. The theory PA↓↓ does not have a consistent finitely axiomatized extension in
the same language. Hence, PA↓↓ is not contained in any of the IΣn. It does
not even have an RE extension that is mutually interpretable with a finitely
axiomatized theory,

ii. No extension in the same language of PA↓↓ + Exp is mutually locally inter-
pretable with a finitely axiomatized theory.

Note that we will prove that PA↓↓ and PA↓ are mutually locally cut-interpretable
with PA−, so the second claim of the above fact does not generalize downwards to
PA↓↓ and PA↓.

6Par abus de langage, we confuse M here with the interpretation 〈U + SN , τM ,PA↓↓ + S〉.
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Proof. Ad (i): Every extension U of PA↓↓ is reflexive, because U ` 0(U). By the
results of [Pud85], no reflexive theory can be finitely axiomatizable, so U is not
finitely axiomatizable. Moreover, as is easily seen reflexivity is preserved under
mutual interpretability, so no theory that is mutually interpretable with U can be
finitely axiomatizable either.

Ad (ii): Let U be any extension of PA↓↓ + Exp. Since U ` 0(U), we have U `
(0?(U))J . Here:

• J is a superlogarithmic cut. We assume that J satisfies Ω1.

• 0?(U) := PA− + {con?n(U) | n ∈ ω}.

• con?n(U) is the ordinary consistency of the first n axioms of U .

The fact that U ` (0?(U))J follows by the formalization of cut-elimination.

Suppose U ≡loc A, where A is any finitely axiomatized theory. It follows that U0�A,
where U0 is a finitely axiomized subtheory of U . It follows that U ` con(A)J .
Hence A� (PA− + con(A)), contradicting the interpretation version of the Second
Incompleteness Theorem. 2

5.3. Model Theoretic Characterization of Peano Basso. In some respects
PA↓ is more like PA than PA↓↓. The characterization that we demonstrate in this
subsection illustrates this fact.

Consider any countable recursively saturated model M of PA↓. Let I be the in-
tersection of the definable cuts of M. We add a new symbol J to the language.
Consider the following recursively axiomatized theory:

U := am-cutv(J(v)) + {am-cutv(J)→ J ⊆ J | J ∈ For(v)} +

{S → SJ | S ∈ Σ1,∞-sent}.

Here For(v) is the set of formulas of the arithmetical language having just v free.

By a simple compactness argument, the theory Th(M) +U is consistent. SinceM
is countable and recursively saturated, we can expand M with an am-cut J such
that M,J |= U in such a way that M,J is again recursively saturated. This uses
the insight that countable recursively saturated models are chronically resplendent.
The precise result that we use is [Kay91, Theorem 15.8, p252]. We will confuse
J with the restriction of M to J . Clearly, J |= PA− and J is an am-cut of I.
Moreover, we have: if M |= S, then J |= S, for all Σ1,∞-sentences S. Hence, by
Theorem 3.5, there is an initial embedding of M in J . Thus, we have found:

Theorem 5.9. Let M be a countable and recursively saturated model of PA− and
let I be the intersection of the definable cuts of M. Then, M satisfies PA↓ iff I
contains a, not necessarily definable, cut that is isomorphic to M.

It is easy to adapt Marker’s proof of Theorem 3.5 directly in order to give a theory-
free proof of Theorem 5.9.

We note that I satisfies exponentiation. Thus, if M does not satisfy exponenti-
ation, then necessarily every isomorphic copy that is an am-cut of I is not equal
to I. Also PA↓ + incon(PA−) is consistent. Suppose M |= incon(PA−). Since,
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any superlogarithmic am-cut of I satisfies con(PA−), it follows that the isomorphic
image of M will be strictly between I and all superlogarithmic am-cuts of I

We have the following corollary.

Corollary 5.10. Let Y be the class of all countable, recursively saturated models
M of PA− for which there is an initial embedding in the intersection of all definable
cuts. Then PA↓ = Th(Y).

We note that if the initial embedding of M into I is definable, then M will be a
model of PA.

5.4. Interpretability of Peano Basso in PA−. In this subsection we prove the
main result of this paper.

Theorem 5.11. We have PA− �loc,cut PA↓.

Proof. We verify the local cut-interpretability of PA↓ as given by axiomatization
(8) of Theorem 5.2, with PA−-provability in the antecedent. Let S be a finite set
of Σ1,∞-sentences with n elements and let J(x) be a formula having only x free.
Suppose PA− ` am-cut(J). We interpret in PA− the sentence:

AS,J :=
∧
S∈S

(S → SJ).

It is easily seen that this is sufficient since the definable am-cuts of PA− are closed
under finite intersections.

We define: I := ID〈AS,J〉J . We will show that PA− ` (AS,J)I
n

.

Consider any modelM of PA−. LetMi for i ≤ n be the model given by Ii(M), so,
M0 :=M, andMi+1 is the model given by I(Mi). Clearly, for each i,Mi |= PA−.
It is immediate that, if for no i′ < i, we have Mi′ |= AS,J , then Mi is given by
J i(M). If for some i, we haveMi |= AS,J , then for any i′ with i ≤ i′ ≤ n, we have
Mi′ =Mi, and, a fortiori, Mn |= AS,J .

Let ki be the number of elements of S that are satisfied inMi. SupposeMi 6|= AS,J .
Then, for some S in S, we have Mi |= S ∧ ¬SJ . It follows that ki+1 < ki. So, as
long as we do not have AS,J , ki will decrease. Thus, if, at some stage, ki = ki+1,
we are done. Otherwise, ki keeps decreasing. In this case, k0 must be n and no
sentence of S is true in Mn. But then we must have: Mn |= AS,J . 2

There is an alternative proof of Theorem 5.11. This proof has the advantage of
being easier —given a lemma—, but it has the disadvantage that it yields its com-
putational content less readily. Emil Jeřábek simplified my simple version to a very
simple version. We give his version of the argument.

Second proof of Theorem 5.11. Consider any finite set S of Σ1,∞-sentences. Con-
sider any modelM of PA−. The set S splits into S0 the set of S in S that are true
in all definableM-am-cuts J , and S1 the set of S in S such that for some definable
M-am-cut JS we have M |= (¬S)JS . Let J∗ be the intersection of the JS for S in
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S1. Then clearly we have J∗(M) |= S → SJ , for all PA−-verifiable am-cuts J and
for all S ∈ S.

Thus,

PA− �mod,cut (PA− + {S → SJ | S ∈ S and J is a PA−-verifiable am-cut}).

By Lemma 2.1 we may conclude that PA− � PA− + AS,J , for any PA−-am-cut J .
Hence PA− �loc,cut PA↓. 2

The second proof establishes a bit more.

Theorem 5.12. For any finite set of Σ1,∞-sentences S, we have:

PA− �mod,cut (PA− + {(S → SJ) | S ∈ S and J is a PA−-verifiable am-cut.}).

Finally, we worry about where Theorem 5.11 can be verified. The first proof of
Theorem 5.11 can evidently be verified in EA. I am not sure that this can be
improved. If we do the construction of the cuts In naively their size ( = number of
symbols) will be exponential in n. However, by using the method of writing small
formulas (see: [FR79] and [Pud91]) we can make the size of In polynomial in n. It
seems that the statement of the induction step “that, for i < n, either AI

i

S,J or the
number of true sentences in S is ≤ n − i” involves formulas of exponential size. I
leave it as an open problem whether we can get around this.

Remark 5.13. The proofs of Theorem 5.11 were inspired by the proof of the local
interpretability of sentential Σ1-completeness in I∆0 + Ω1 of [Vis91a]. See also
[Vis12a]. In fact, this earlier result follows from Theorem 5.11.

Our proof-method has similarities to the idea of the proof of Goryachev’s Theorem.
See [Gor86] or [AB04]. In fact, if we drop the demand that our interpretations are
relativizations to cuts, we can prove Theorem 5.11 from a Goryachev-style result.
See Appendix A.

5.5. Interpretability, Model Interpretability, Local Interpretability. We
have shown that PA− �loc,cut PA↓. Since, PA↓ extends 0(PA−), it follows that
PA− 6�mod PA↓ and, similarly, PA− 6�mod IΠ−1 and PA− 6�mod CFL. See Exam-
ple 2.3.

The approximating sequence of PA↓ that we constructed for local interpretability
of PA↓ in PA− proceeds by finite extensions. Theorem 5.12 shows that for local
model interpretability we can make more greedy steps: we still treat finitely many
Σ1,∞-sentences in each step, but we do treat all PA−-verifiable cuts simultaneously.
The next theorem shows that these big steps are generally not possible for ordinary
local interpretability. We choose the theorem so to illustrate the point even for
steps to approximate CFL rather than PA↓.

This gives us the promised example that separates interpretability and model in-
terpretability. The idea of the proof is derived from [Kra87], [Vis93], [Vis05].

Theorem 5.14. Consider any Σ1,0-sentence S of the form ∃xS0(x), where S0 ∈
∆0. Consider any finitely axiomatized sequential theory A. Let

W := I∆0 + conn0(A) + {S → ∃x, y ( itexp(n, x) = y ∧ S0(x)) | n ∈ ω}.
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Here n0 = ρ(A) + 1.

We have (i) A�mod W . On the other hand, (ii) suppose N : A�W . Then, either
S is true or A ` ¬SN .

Proof. Let A, S, W and N be as in the statement of the theorem.

Claim (i) is immediate since A� (PA− + conn0(A)) and

(PA− + conn0(A)) �mod

PA− + conn0(A) + {(S → SJ) | J is a PA−-verifiable am-cut}.

We turn to (ii). Let R be such that PA− ` R ↔ S ≤ 2A,n(S → R)N .7 Here n is
taken sufficiently large.

Consider any model M of A. Let N := N(M). Suppose N |= S. It follows that
R∨R⊥, since we have I∆0 inN . Suppose we have R⊥, i.e. 2A,n(S → R)N < S. Let
the smallest witness of S be s. Let N ∗ be the restriction of N to the n ≤ itexp(k, s),
for some k ∈ ω. Clearly, N ∗ satisfies EA + conn0(A) + S + R⊥. Since we have S
we have in N ∗, by Σ1-completeness, 2A,nS

N . Combining this with the fact that
we have 2A,n(S → R)N , we find that N ∗ satisfies (i) 2A,nR

N . On the other
hand, R⊥ gives us that N ∗ satisfies (ii) 2A,n(R⊥)N . By (i) and (ii), we find
N ∗ |= 2A,n⊥. Since in EA, we have cut-elimination for standard cuts, we may
conclude N ∗ |= 2A,n0⊥. Quod non. So, we must have R in N .

By the completeness theorem we find that A ` (S → R)N . Ergo, either R or R⊥

is true. In the first case we have S. In the second case we have A ` (R⊥)N , and,
hence, A ` ¬SN . 2

If we take A := PA− and, e.g., S := incon(PA−), where we have written incon(PA−)
in ∃∆0-form, Theorem 5.14 delivers an example of a true theory W such that
PA−�mod,cutW but PA− 6� W . This example involves some theoretical development
and there are related ones that similarly involve some theoretical development. So
we ask the following question.

Open Question 5.15. Can we find a meaningful but elementary example that sep-
arates interpretability from model interpretability, where we allow multi-dimensional
interpretations?

6. Consequences

In this section we collect some consequences of Theorem 5.11.

7Since we do not have Ω1, we have to move with some care. We are assuming that a sentence

like 2A,n(S → R)N is Σ1,0 and of the form ∃xC(x), where C is ∆0. However, the usual proof

predicate is ∆b
1. See e.g. [Bus86]. So we have to rewrite the more natural version of a provability

formula to the desired form.This means specifically that the witness is not really the code of the
proof but contains some extra information, etc. Fortunately all this does not affect our argument.
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6.1. Representability of Sequential Theories by a Sentence. We can exploit
the similarity between Peano Corto / Peano Basso and PA to downscale many well-
known results about PA. In fact, I suspect that if one takes Per Lindström’s great
textbook [Lin02], it will turn out that a substantial majority of the results can be
downscaled. In this subsection, I will zoom in on a result by Lindström that is one of
my favorites. He shows that every RE extensions of PA is finitely axiomatizable over
PA modulo mutual interpretability. In other words, each degree of interpretability
of the RE extensions of PA contains a finite extension.

The proof given here is a direct adaptation of Lindström’s proof.

Let W be either PA↓↓ or PA↓. We consider a sentence Θ such that:

PA− ` Θ↔ ∀x (conx(W + Θ)→ conx(U)).

Theorem 6.1. We have (W + Θ) ≡loc U . Specifically, we have (W + Θ) � U and
U �loc (W + Θ).

Proof. Since, for every n, W + Θ ` conn(W + Θ). It follows that, for every n,
W + Θ ` conn(U). Ergo, W + Θ ` 0(U). Hence, (W + Θ) � U .

On the other hand, by Theorem 5.11, U �loc (W + 0(U)). We trivially have:

(W + 0(U) + Θ) � (W + Θ).

Consider W + 0(U) +¬Θ. It is easy to see that, over W , the sentence ¬Θ implies
∀x (conx(U)→ conx(Θ)). Hence, W + 0(U) + ¬Θ ` 0(W + Θ). Hence,

(W + 0(U) + ¬Θ) � (W + Θ).

We may conclude that (W + 0(U)) � (W + Θ). Thus, U �loc (W + Θ). 2

We note that:

IΠ−1 ` Θ↔ (con(U) ∨ ∃x (inconx(W + Θ) ∧ ∀y < x cony(U))).

So it follows that Θ is ∆2 over IΠ−1 and, hence, over W .

Remark 6.2. We can get a related result following a different road. Consider any
RE pair theory U of finite signature. Remember that a pair theory is a theory that
directly interprets the weak theory of unordered pairing UP. The theory U is bi-
interpretable with a theory V where the signature just contains a binary predicate
symbol. See [Hod93]. Since being a pair theory is preserved by bi-interpretabilty,
V will be again a pair theory. The improved version of a theorem of Vaught’s
tells us that V is axiomatizable by a scheme. See [Vau67] and [Vis10]. It follows
that V is mutually locally interpretable with a a theory consisting of the first order
comprehension scheme plus a single sentence: the result of replacing the schematic
variables of the scheme by second order variables and universally quantifying these
variables. See [Vis10], Theorem 7.1 and [Vis12b], Section 2.3, for some details.
Thus, the first order comprehension scheme over a first-order language with a binary
relation symbol is a basic theory, say B, such that, for every RE pair theory U , there
is a sentence A such that U is mutually locally interpretable with B+A. In a sense,
this last result is better than the result proved above since it has wider scope. Still
I think Theorem 6.1 has independent interest since it is very different in flavor and
since the sentences it provides have a very specific simple form.
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6.2. Conservativity. In [KPD88], it was shown that IΠ−1 is Π2-conservative over
EA. We improve this result by showing that PA↓ is Π2-conservative over EA.

Theorem 6.3. PA↓ is Π2-conservative over EA.

Proof. Let A := ∀x ∃y A0(x, y), where A0 is ∆0. Suppose that PA↓ ` A. By
Theorem 5.11 it follows that, for some am-cut J , we have PA− ` AJ . We may
conclude PA− ` ∀x ∈ J ∃y A0(x, y). By Corollary 4.4 of [Vis92], we find: EA `
A.8 2

We note that, by the results of [KPD88], the theory EA is Σ2-conservative over
IΠ−1 . So, a fortiori, EA is Σ2-conservative over PA↓. It follows that EA and PA↓

prove the same bool(Σ1,0)-sentences, i.e. the same Boolean combinations of Σ1,0-
sentences. By the results of [CFL11], this class of bool(Σ1,0)-sentences is also the
class of bool(Σ1,0)-sentences proven by IΠ−1 . It is axiomatized by CFL.

6.3. Reflexivity. A theory U is reflexive iff U � 0(U).

Theorem 6.4. The following hold.

i. Suppose B is a sentence in bool(Σ1). Then, CFL +B is reflexive.

ii. Suppose B is a sentence in bool(Σ1). Then, IΠ−1 +B is reflexive.

iii. Every extension of PA↓↓ in the same language is reflexive.

Proof. Ad (1) and (2): The theories EA and CFL and IΠ−1 prove the same BΣ1-
sentences as was shown in [CFL11]. So it is sufficient to show that, for T is CFL

or IΠ−1 , we have EA + B ` conn(T + B). Since T is a subtheory of PA↓, by
Theorem 5.11, we can find an PA−-am-cut J and a number m, such that (a) EA `
conm(PA−+BJ)→ conn(T +B). By Lemma 3.4.8 of [Vis92], we have (b) EA+B `
conm(PA− +BJ). Combining (a) and (b), we are done.

Claim (3) is immediate from Theorem 5.2. 2

We consider the double structure of recursively enumerable theories with the par-
tial preorders of global interpretability and local interpretability. We zoom in on
the theories that are mutually locally interpretable with PA− ordered by global
interpretability. The class of these theories we call [PA−]loc. The class [PA−]loc is
preordered by global interpretability. Since PA− is finitely axiomatized, it is in the
minimal global degree in [PA−]loc.

Here are some examples of theories that are mutually globally interpretable with
PA−:

• Robinson’s arithmetic Q.

• Buss’ theory S1
2,

• I∆0. See e.g. [Nel86], [HP91].

• I∆0 + Ω1. See e.g. [Nel86], [HP91].

8This corollary is a sharpening of a result of [WP87].
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• Pudlák’s adjunctive set theory AS. See e.g. [MPS90], [Vis11b].

• Grzegorczyk’s theory of concatenation TC. See [Grz05], [Šve07], [Šve09],
[Vis09].

Reflexive theories U have the property that if U �loc V , then U � V . See e.g.
[Vis11a]. Thus, the reflexive theories in [PA−]loc are in the maximal global degree
of [PA−]loc. Here are examples of theories in this maximal degree in the maximal
global degree of [PA−]loc, that are, thus, all mutually interpretable with each other:

• 0(PA−). See [Vis11a].

• I∆0 + Ω∞ := I∆0 + {Ωn | n ∈ ω}. See [Wil86], [Vis93, Claim 3.2.4].

• PA− plus first-order comprehension. This is a two-sorted theory, but we
can rephrase it in a one-sorted format. See [Vis11a].

• CFL.

• IΠ−1 .

• PA↓↓.

• PA↓.

We note that EA ` 0(PA−). So it follows that EA � PA↓.

By the results of [Pud85], the minimal global degree and the maximal global degree
of [PA−]loc are distinct. So, CFL, IΠ−1 , PA↓↓ and PA↓ are not globally interpretable
in PA−. Note that it follows that CFL, IΠ−1 , PA↓↓ and PA↓ are not finitely axiom-
atizable. This last fact for IΠ−1 was first proved in [KPD88]. Note that we have a
bit more: CFL, IΠ−1 , PA↓↓ and PA↓ cannot be mutually interpretable with a finitely
axiomatized theory. On the other hand, in contrast to PA, they are locally mutually
interpretable with a finitely axiomatized theory.

Here is a little scheme comparing some theories.

fin. ax. ≡ fin. ax. ≡loc fin. ax.
PA− + + +
S1

2 + + +
I∆0 ? + +
CFL - - +
IΠ−1 - - +
PA↓↓ - - +
PA↓ - - +
PA↓ + Exp - - -
PA - - -

Remark 6.5. I only know artificial examples of theories U where we know that U
is mutually interpretable with a finitely axiomatized theory, but not itself finitely
axiomatizable. E.g. consider the theory

U := EA + {2n
EA⊥ → 2EA⊥ | n ≥ 1}.
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This is a true theory. By Löb’s Theorem, it is not finitely axiomatizable. Since it
extends EA, surely U �EA. By an interpretation version of the Second Incomplete-
ness Theorem (see [Vis90] or [Fef97]), we have EA�(EA+2EA⊥). Since, EA+2EA⊥
extends U , we find EA �U . So, EA and U are mutually interpretable. (By a meta-
theorem due to Per Lindström, we even have that EA and U are mutually faithfully
interpretable. See [Vis05].)

I do not know of a proven example of theories that are mutually am-cut-interpretable
such that that one theory is finitely axiomatizable and the other is not.

Open Question 6.6. We list some questions.

1. Does IΠ−1 imply restricted sentential Σ2-reflection for I∆0?

2. Does IΠ−1 imply restricted sentential Σ2-reflection for itself?

6.4. Speed-up. By the results of [KPD88], EA is Σ2-conservative over IΠ−1 . In
contrast to this, we have the following theorems.

Theorem 6.7. EA is not interpretable in PA↓.

Theorem 6.8. EA has superexponential speed-up for ∆0-sentences over PA↓.

Proof. Since EA ` PA− �loc,cut PA↓, it follows that

EA ` con(PA−)→ con(PA↓).

By a meta-theorem of Wilkie and Paris (see [WP87], see also [Vis92]), it follows
that, for some cut I,

I∆0 + Ω1 ` con(PA−)→ conI(PA↓).

Since EA interprets I∆0 +Ω1 +con(PA−) on a superlogarithmic cut J (see [WP87]),
we find that EA interprets I∆0 + Ω1 + con(PA↓) on some cut J?. The speed-up
result now follows by the methods of [Pud85]. 2
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[Háj93] P. Hájek. Interpretability and Fragments of Arithmetic. In P. Clote and J. Krajiček,
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Appendix A. A Goryachev-style Argument

In this appendix, we provide a Goryachev-style proof of our main result, where we
replace local cut-interpretability by local interpretability. For Goryachev’s work see
[Gor86] or [AB04].

Theorem A.1. PA− + r-rfn is locally interpretable in PA−.

The proof is a straightforward adaptation of Goryachev’s argument. In fact we will
establish that S1

2 + r-rfn is locally interpretable in PA−.

Proof. We consider:

• A: a finite set of arithmetical sentences,

• n: the cardinality of A.

• k: any standard number such that k ≥ ρ(A), for every A in A, and k >
ρ(provy(x)) + 1, and k ≥ ρ(S1

2).

Consider any model K of PA−. By standard considerations, we can find an internal
model M of K satisfying S1

2 + connk (S1
2). Let:

U := S1
2 + conn−1

k (S1
2) + {A ∧2kA | A ∈ A and M |= 2kA}

By the above observations we find thatM |= conk(U). It follows that we can build
an M-internal model M? of U .
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For any model N of S1
2, let σ(N ) be the number of A ∈ A such that N |= A∧2kA.

In case, for some A ∈ A, we haveM |= 2kA andM 6|= A, it follows that σ(M?) >
σ(M). If this case obtains, we repeat the procedure on M?.

The procedure must stop in at most n steps and hence we find an internal model
that satisfies S1

2 plus 2kA→ A, for each A in A.

The theorem follows by applying Lemma 2.1. 2

We note that the theory PA− + r-rfn has all kinds of interesting properties. For
example, no extension of PA−+ r-rfn in the same language is finitely axiomatizable.
Moreover, if a theory is locally interpretable in an extension U of PA−+ r-rfn in the
same language, then it is globally interpretable.

We show how to interpret PA↓↓ in PA−+ r-rfn on an am-cut. We will use a lemma.

Lemma A.2. Suppose I is a PA−-cut such that relativization to I interprets S1
2.

Then PA− + r-rfn proves S1
2 + r-rfn on I.

Proof. Suppose I is a PA−-cut and PA− interprets S1
2 on I. We reason in PA−+r-rfn.

Suppose 2I
mA. Then, 2I

m+ρ(I)+1(∃x I(x) → AI), and, hence, it follows that
2m+ρ(I)+1(∃x I(x)→ AI). Ergo, AI . 2

Theorem A.3. PA↓↓ is cut-interpretable in PA− + r-rfn.

Proof. By Lemma A.2, it is sufficient to show that PA↓↓ is cut-interpretable in
S1

2 + r-rfn. Let J be S1
2-cut on which S1

2 is satisfied and such that, provably in S1
2,

for every x ∈ J , there is a y, such that 22x

= y. We show that we have PA↓↓ in J .

By Lemma A.2, the cut J satisfies S1
2 + r-rfn.

Consider any sentence S, in Σ1,0. Let I be any am-cut of PA−. We reason in
S1

2 + r-rfn.

Suppose SJ . By the usual proof of Σ1-completeness, we find, for a sufficiently large
k, that 2k(

∧
PA− → SIJ). Hence, SIJ . 2

Combining Corollary 5.7 and Theorems A.1 and A.3, we find:

Theorem A.4. Both PA↓ and PA↓↓ are locally interpretable in PA−.

We note that, in Theorem A.4, we do not get local cut-interpretability via this
proof strategy.
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