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We generahize previous theories of collisional redistribution of near-resonance radiation to the case of a time-dependent
mcident mtensity. In the absence of saturation the relation between the mncident and the scattered spectrum 1s given by a
time-dependent redistribution function In the special case of an incident pulse with an exponential rise and decay we
evaluate the time-dependent strength of the Rayleigh or Raman scattering and of the fluorescence We pay special attention
to the restriction on the time resolution resulting from the spectral resolution that 1s necessary to observe separately the
two peaks 1n the scattered spectrum.

1. Introduction

With the advent of intense tunable lasers 1t has become feasible to observe the spectral redistribution of light
scattered from an atomic vapor after irradiation 1n the far wing of a spectral line. Experiments of thus type have
been reported by Carlsten and coworkers [1—3]. A theoretical description of redistribution by collisions has been
given by Huber [4] and’by Omont et al. [5]. These treatments employ the impact hmit, which 1s applicable 1n the
central part of the absorption line. We have given a generalized treatment, allowing for irradiation outside the
impact region [6—9]. In refs. 4—9 the scattered-light intensity is evaluated as a function of the incident and the
scattered frequency, in the case of a stationary incident intensity. For far-wing irradiation the peaks corresponding
to Rayleigh or Raman scattering and to collision-induced fluorescence become well separated 1n the scattered
spectrum.

The complementary problem of the time dependence of the scattered light has also received attention recently.
Rousseau and coworkers [10—12] observed the time dependence of the fluorescence of iodine molecules after
far-wing irradiation with a short laser pulse. These authors observed a rapidly decaying component, which reflects
the decay of the pulse, and a more slowly decaying component corresponding to the lifetime of the excited state.
The rapid decay was attributed to Raman scattering, the slow decay to collision-induced fluorescence. This 1s tn
line with the observation that the slowly decaying component 1s enhanced by increasing the pressure. A theoretical
description of these effects has been given in the impact limut by Mukamel et al. [13].

In a most interesting recent paper Courtens and Szoke [14] have given a clanifying description of the scattered
spectrum, accounting both for spectral and time resolution. In the impact limit they obtained expressions for the
strengths (not the profiles) of the various peaks 1n the spectrum, allowing for high-intensity effects such as satura-
tion and the dynamuc Stark effect. These expressions are valid 1n the adiabatic case that the rate of change of the
icident intensity 1s smaller than the frequency separation of the peaks in the scattered spectrum.

In the present paper we describe the intensity of the light scattered from atoms perturbed by collisions as a
function of time and of the scattered frequency. We avoid the restrictions of the impact limit, which is necessary
to include the experimentally important case of irradiation in the far wing of an absorption line However, we do
not account for saturation effects. The method 1s a generalization of our previous work [6—9] . We obtain expres-
sions for the time-dependent strengths of the Rayleigh or Raman scattering and of the fluorescence 1n terms of
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392 G Nienhuis/Nearly resonant light scattered from collisionally perturbed atoms

the characteristics of the pulse. The restrictions on the time resolution resulting from the use of a narrow-band
frequency filter are properly accounted for.

2. The significance of time-dependent spectra

Determination of the frequency spectrum of a time-dependent signal with a resolution Aw requires the observa-
tion of the signal during a time Acw . Thus 1f the spectrum of a non-stationary signal 1s recorded by measurmg
the transmission through a tunable filter with bandwidth Acw, the time resolution cannot be better than Aw™l
The concept of a time-dependent spectrum 1s not a property of the signal alone, rather 1t refers to the combina-
tion of the signal and the frequency filter.

A careful study of the sigmficance of time-dependent spectra has recently been given by Eberly and
Waodkiewicz [15]. In the spirit of their work we derive a simple expression for the time-dependent spectrum that
1s surtable for the purpose of this paper. We consider a non-stationary electromagnetic field. Its electnic-field com-
ponent E(f) may be decomposed n 1ts positive- and negative-frequency parts EC)¢) and E-X¢), according to the
defimtions

E(t) = ED(0) + EO ), (2.1)
where

E<+>(t)=2i f we Y E(w) (2.2)

0
and
17 .

EO@ = 3 f dw e E(w) = ED(p)*. (2.3)
Here

E(w)= j:dte“"" E@® 2.9

—oo

1s the Fourier transform of the electric field. By the definitions (2.2) and (2.3) the Founer transform of E(+)(t) is
equal to E(w) 8(w), and E) () has E(w) 8(—w) as 1ts Fourter transform, where 6 1s the unit step function. The
spectral distribution of the incident electromagnetic energy per unit area until the time £ 1s [15, 16]

c ! t
G(w,b) =Z;r—2— fdtl fdtz e—iw(tx—tz)(E(—)(tl) . E(+)(t2)). (25)

The brackets () in (2.5) denote an ensemble average over the statistical distribution of the electromagnetic field,
both for a classical treatment, where E(¢) 1s a stochastic function, and for a quantum-mechanical treatment where
E(?) 1s a Heisenberg operator, with E™ and EC) as its absorptive and emissive parts, From the double time integral
in (2.5) 1t is apparent that the spectral energy of a signal during a time interval from ¢, to ¢ is not just the sum of
the spectral energy of the signal as observed from ¢ to #,, and from £; to #3. Thus illustrates that photons emitted
n different time intervals can interfere. Accordingly, 1t is not justified in general to identify the time denvative of
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G with the time-dependent spectrum, as has been noted 1n ref. 15. In fact, from the explicit expression of this
time derivative

BG(w,t)

gleot) = - SRe [ arer@Oy - B0 - oy, 2.6)
0

one readily checks that g may well be partly negative in special cases On the other hand, the integral of (2.6) over
frequency 1s equal to the incident radiative power per unit area

f dwgl(ew,t) = 5—; EN) - ED (). Q.7
The integral of g over time gives the spectral distribution of the total energy per unit area

[ dtaten) = Glewo) = # (B, 2.8)

Furthermore 1t 1s obvious from (2.6) that for a stationary signal, g becomes equal to the correct stationary spec-
trum as given by the Wiener—Khintchine relation [15, 17].

We intend to dernve a relation between the physical time-dependent spectrum as measured by using a high-
resolution spectrometer, and the function g(cw,t), which 1s defined by (2.6) 1n terms of the signal alone. First we
give an additional relation between the function g and the correlation function of the electric field. From (2.5)
one denves directly

oo t
[ dwe G =55 [ 4 @) - EO( — 1) for >0, (2.9)

Dafferentiation of (2.9) with respect to ¢ gives the 1dentity
f dwe'“Tg(w,t) = %(E(”)(t) “EDE - 1) forr>0. (2.10)

When using a spectrometer, the physically observed signal 1s found by multiplying each Fourer component
E(w) with the transfer function §(w) characterizing the spectrometer [14, 15] . Hence the Fourier transform of
the filtered field 1s

Ep(w) = §(w) E(w). (2.11)
The central frequency wp, of §(w) 1s the setting frequency, and the width T of § 1s the passband width of the
filter In practical cases I" 1s much smaller than wp,, which 1s tuned over the frequency range of the signal. For
these large positive frequencies we may write

§(w)=w—wp), w>T, (2.12)

where the shifted transfer function o 1s centered around the origin. Because of causality the observed filtered field
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at time ¢ can only depend upon the signal field at earlier times. Therefore the time-dependent filter function
W7) = A f deo 5(w) e 17 (2 13)
2m 7

must be zero for negative values of 7 After taking the Fourier transform of the positive-frequency part of (2.11),
and applying the convolution theorem, we obtain

EQ) = fdre—'wnfu(r)ﬁm(t - 7. (2.14)
0

The negative-frequency part E S)(t) 1s the complex conjugate of (2.14).
The physically measured time-dependent spectrum is the time-dependent energy of the filtered field, which
according to (2.14) depends upon the setting frequency wrp, [15]. Hence we write

gpwpi) = 5= EH (1) ER @ (2.15)

It 1s this quantity that determines the counting rate of a photodetector behind the spectrometer. Several explicit
expressions of gp, in terms of the signal-field correlation function have been given by Eberly and Wodkiewicz [15].
We wish to express gpy directly in terms of g. After substituting (2.14) and 1ts complex conjugate mn (2.15), we use
(2.10) to express the correlation function 1n terms of g. The result after a simple change of integration variables is

oo

gplwp,t) =2 Re J. dr f dr’ J. dwe T ¥ (D) u(r + ) g(wp — w, t — 7). (2.16)
0 0

—o0

For convenience we normalize v 1n such a way that g, and g have the same total strength when integrated over
time and frequency. This requires the normalization condition

[ arto(iz= %{ (2.17)
0

(One notices that eq. (2.17) causes E, to have a dimension different from that of E, but g now has the proper
dimension of a spectral power per unit area.)

For realistic spectrometers (e.g. a Fabry—Perot interferometer) the filter function v(7) 1s given by a simple
exponential [15]

v(r) = (EI;;) e T29(z). (2.18)

In this case eq. (2.16) attains the form

£ rr [ /2n
gplwp.t) = (J; drle T _:[ dwmg(wD —w,t—T). 2.19)

Thus expression relates the physically observed time-dependent spectrum g, to the quast-spectrum g, defined by
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(2.6). It 1s apparent from (2.19) that the passband width T of the filter affects the spectrum 1n a twofold way.
Firstly, the function g is averaged over the recent past as indicated by the normalized time-distribution function
I'e T7. This excludes the time resolution from being better than rt Secondly, the function g 1s averaged over a
Lorentzian frequency window with a width I', which determines the frequency resolution. We feel that the inter-
dependence of time and spectral resolution 1s illustrated in (2.19) with greater lucidity than in expressions given
in ref. 15.

3. Time-dependent fluorescence spectrum

We consider the situation of a pulse of radiation mcident on a vapor of atoms in a perturber gas. The electric-
field component of the radiation at the position R of a scattering atom has a positive-frequency part E<+)(R,t)
The R-dependence of E®M may be factored out by writing

EDR 1) = etk1Re EO(p), 3.1

where k¢ and €y are the wave vector and the unit polarization vector of the incident radiation, and E(+)(t) 1s the
positive frequency part of the magnitude of the electric field at the origin. The atom 1s excited by absorption from
an 1n1tial state |1) to an excited state |e), and decays to a final state |f) by subsequent emission of radiation. As
before we introduce the simplified notation [6]

dl =Me1’ Gl elkl.R, (3.2)
d2 = Her® € Clkz.R, (33)

where u, and u ¢ denote the atomuc electric-dipole operator between the indicated states. The states |1, le) and |f)
may consist of several degenerate or nearly degenerate substates From a direct generahzation of the derivation in
ref. 6 we obtain an expression for the spectral distribution G,(w,,f) of the energy of the radiation with wave
vector k4, with frequency w, and with polarization €,, scattered before the time # within a unit sohid angle by a
unit volume of the system with a density n, of scattering atoms. The result is

4 t ta 4 ty
w
GZ("-’z’t) = LN m%—gg 2 Re J. dt4 f dl’3 f dtz J‘ dtl e_lwz(t4_t2)(E‘(_)(t3) E(+)(tl))

X Tr e HE- 1A g} o Hr—t0Mg) onHOF JHIH Gt IHUa— 1M g, H Gt (3.4

where H 1s the hamiltonian of the particle system of one scattering atom 1n a perturber bath, and p 1s the 1nitial
equilibrium density matrnx of the particle system. Eq. (3.4) 1s valid to first order 1n the irradiated intensity. The
four mntegration time variables ¢, ¢,, #3 and #4 in (3.4) can attain values corresponding to three possible time
ordenngs (1) ) <ty <t3<ty, () t; <t3<ty<ty,(m)t3<t; <ty <t,.Asinref. 6 we call 7|, 75 and 74 the
successive time intervals separated by these variables. Thus gives rise to an expression for G, as a sum of three
terms

wg ! <
G2(w2,t) Shp m 2 Re I dt4 I dTl dedT3
—o0 0

X [e w202t TEO (e, — 1) ED(tg — 1) — 15 — 90 Trd,y e £73([e L72(d} e 714, p))]d} }
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—] - + —] —] —]
+ e wara(gt )(t4 - Ty — 1'3)E( )(t4 —71—Ty—130Trd,e 'LT3{d£ e L7 [(e 11"'1(d1p))af§]}

+ e EON 1y — 1) — 1) — 1) EDN(ty — 7y — 730 Tr dy e_‘LT3{d£ e Ln2[d, p e"L"l(dD]}] ,
(3.5)

where the Liouwville operator is defined to include the effect of the radiative decay rate T, of the atomic state |a),
according to the relation

1
_'I-Lpab = _;{ [H’pab] - %(Fa + Fb) pab (3.6)

It 1s attractive to separate 1n the expression for G, the effect of the incident radiation from the effects of the
particle system We introduce G(wy,?) as the spectral energy distribution per unit area of the inctdent radiation
until the time ¢. This quantaty 1s related to the correlation function (£ (“)(tl)E'(+)(t1 — 7)) of the 1ncident field by
expressions stmilar to (2.5) and (2 9) After shifting the integration variable ¢4 and substituting (2 9) 1nto (3.5) we
obtain

4 L) oo
= “2
G2(w2,t) N m _;[ dwl 6'. de(wz,wllr) Gl(wl, t— T), (37)
where the time-dependent redistribution function f is equal to
flanoyly=2Re [ dry [ dry@rntita-wom-togr
0 0
X Trdy e L7{[eL72(d} e7LL71(d, p))1d]}
hod T
+2Re J. dry j‘ dr3[el1M1 71923 Ty g e 73{g] LTI (e T1(d, p)) d{]}
0 0

+ e WiT1=192T3 Tr g, e 73(g] e LE -7 g, p e LT1(g])]}]. (3.8)

If we introduce the quasi-spectra g, and g, according to

3G (wy,b) 3G, (wy,t)
glwp =12 gyt = —2, (.9)
ot ot
then we find immediately from (3.7)
4 oo oo
w3

g2((d'z,t) =np m J‘ dwl '[ de((lJ2,w1|T)gl(OJl, t— T). (3.10)

e 0

Eqs. (2.6) and (2.10) relate g;(w; f) to the correlation function of the electric-field component of the incident
radiation. The physically observed time-dependent spectrum gp(w,,f) of the scattered radiation is found by sub-
stituting g, for g in eq. (2.19).
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It 1s tempting to interpret f(w,,w;|7) as measuring the probability for scattering a photon with frequency w;
nto a photon with frequency w,, with a delay time 7 between absorption and emission. This would lead one to
mntroduce

330(wp,wy 1) - w w3
30,3037 2%t

fwy,wil7) (3.11)

as the tnple differential cross section for inelastic delayed photon scattering. This interpretation 1s justified only
apart from the interdependence between time and frequency resolution as expressed by (2.19).

Egs. (3.7), (3.10) and (3.8) express the main result of this section. The time-dependent redistribution function
£ depends on the polanization and the direction of the incident and the scattered radiation. Simplhified expressions
anse if we integrate eq. (3.8) over time or over one of the two frequencies. We find

j: d7 fwq,wqlr) =2 Re j: dry j? dr, _r dry
0 0 0 0

X [elwlTl + 1(0)1 - wg)T'z —lw)aT3 Tr d2 e—lL‘r3{[e—lL‘r2 (d;e—-lL‘l‘] (dl p))] d{}
+ elwl‘rl —1wW3T3 Tl’ d2 e_lLTS{dE e_lLT?. [(e—lLTl(dl P)) d'{]}
+ e-—-lwl‘rl —1WwaT3 Tl' d2 e—lL1’3{d'£ e-—lLT»z [d1P e'—lL‘rl(d'I)] }]
= F(wq,wy), (3.12)
which 15 equal to the stationary redistribution as derived 1n ref. 6. Hence, 1f the time-integrated fluorescence spec-
trum is recorded, the redistribution of the time-integrated incident spectrum is given by the redistribution func-

tion pertaming to the stationary case.
Integration of eq. (3.8) over the scattered frequency gives

Idwz S(wq,wylr) =4m Re f dry e'“1"1 Tr dzdz e il7 [(e_u”l(dl o) dJ{] ; (3.13)
0

This equality is relevant to the case that the scattered radiation is recorded as a function of time, with no spectral
resolution. It generalizes the theoretical result of Mukamel et al. [13].

Finally, the situation of irradiation with a broad-band spectrum s described by (3.8) integrated over w;. The
result is

j’ dew; f(w,,wilr) = 47 Re f dry 6719273 Tr 4, e LT3 [q) e LE =3, pal)]. (3.14)
0

In the next sections we simphify the general result in special cases.

4. Time-dependent strengths of Rayleigh—Raman scattering and fluorescence

In the remainder of this paper we ignore the effects due to the motion of the atom and to the possible degeneracy
of the atomic states. Hence we consider a non-moving three-state atom. Furthermore we adopt a factorization
approximation introduced and discussed in refs. 6 and 7, which has shown to be successful in describing the
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strengths of the Rayleigh or Raman scattering and of the collision-induced fluorescence. So we perform the
average over the perturber bath 1n eq. (3.8) separately for the three time intervals occurnng in each one of the
three terms The result may be expressed in terms of correlation fucntions Cy;,, defined by

Tryp, e LT 4,y = Cop(D Ay, 4.1)

where p, 1s the density matrix of the perturber bath, 4, 1s an operator between the states |a) and [b) of the
scattering atom, and Trp denotes the trace over the perturber states. The resulting stmplified expression for the
time-dependent redistribution function 1s

Flwp117) = 2pil1te; * € lbtes * €1

X[Re [ ary [ dry ererm+ior- w1027 o () Cr(ry) Cylry)
0 0

oo T
+Re J' dr, J dry 11717 192T3CA(r,) e—’Ye('r—ra)Cel(Tl)
0

g T
+ Re J‘ dry f dry e 117171923 CR(74) e"’e(f"3)C;(Tl)], 4.2)
0 0

where p, 15 the fraction of atoms initially in the state 1), and 7, 15 the decay rate of the excited state le) by in-
elastic collisions and by spontaneous emission. The Fourier—Laplace transform of the correlation functton C,p(7)
determines a normalized profile P (w) and a corresponding dispersion function, according to the relation

Pa(e) — 10p(w) == [ drenCyn). 4.3)
0

After substituting (4.3) into (4.2) we obtain
Feopo1|7) = 217 bt * € Pl * €12

X ‘Re e_i“’T’C:t('r)[Pﬁ(wl — wy) —105(w; — wWy)] [Pe(wq) — 10;(wy)]
2 [ —iwaTy % —Ye(r—73)
+;Pei(‘*’l) Re fdr3 e 1U2T3CH(T5)e e T3 , . 4.4
0

The structure of the two terms in (4.4) 1s quite different. The time dependence of the first term 1s given by
exp (—1w,yT) C(7), which has an oscillatory behavior with the frequency w, — wf, and which decays at a rate of
the order of the sum of the collisional and the natural line wadth of the transition from |e) to |f). As a function of
w, this first term will turn out to be important for wy = w; — wg, where the profile Py is maximal, and at the
resonant value w, = ws, where the oscillatory time behavtor is absent. The integral over w, of the first term in
(4.4) is zero for 7> 0, as one may show from (4.2). The second term 1n (4.4) contains as a function of w, a peak
centered at wy = wyy, With a strength proportional to F,(w;) exp (—7,7). Hence the strength of this peak decays
at the same rate as the population of the excited state le).
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If we substitute (4.4) mnto (3.10), we obtain for the function g, determining the time-dependent fluorescence
spectrum

gy(wqyt) =K {w2 Re _f dw; [Pgloy — wy) —1Qg(wy — W] [Pe(wq) — 1Q¢(w1)] 2(wy.wy, ©)
+ 27 f dw, f dr Poy(wy) g1(wy, t - T)x(wz,r)’, 4.5
—o0 0

where we introduce for abbreviation

4

w
K=ny »ﬁ2§4 Plktey* €1 Plugg * €2l (4.6)
2(wo,wy, 1) =-71? I dre T CH(r) gy(wy, t — 7), 4.7)
0
T
x(wy) =1 Re J dr3 7 92"3C(ry) T, (4.8)

The complex function z{w,,w1, ) as a function of w, may be looked upon as a convolution of

N |-

[ arewrcln = Bgwy) +10udw)) @9)
0
and the real function
Wwy,wy,t) = % Re j dre“?g(wy, t — 7). (4.10)
0

Hence we write

2(wp,wy; 1) = f dw' [Pwy — w") +1Qed(wy — w)]P(w' w1, 8). (4.11)

The validity of (4.11) may be checked by substituting (4.9) and (4.10) in its nght-hand side. The width of y as a
function of w, depends on the rate of change of the incident radiation. Its strength is given by

f dwyp(wy,wy; 1) = &1(wy 7). (4.12)
The real function x(w,,7) may likewise be written as a convolution of P,{(w,) and the function

-
-};Re f drye'*"3 e Y73 = %('yg + wz)’l('ye cos wr + w sin wr — Y, e77e"), (4.13)
0
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which for 7> 0 has a strength e™7¢”, and a width of the order of the maximum of v, and 771, Hence the strength
of x is given by

f dwyx(wy,r)=e~"e”  forr>0. 4.14)

We consider the case of far-wing irradiation, and we shall derive expressions for the time-dependent strengths
of the Rayleigh—Raman scattering and of the fluorescence. The frequency wy of the incident radiation has a fixed
value 1n the far wing of the absorption line, so that

lwg — weil > Ve (4.15)

We must expect that rapid intensity variations of the incident radiation effectively broaden its spectrum. Only
when the rate of change of the incident intensity 1s small compared to |wg — we;l can we expect that the two
peaks in the scattered spectrum are well separated. Therefore we consider the situation that the rate of change of
the incident intensity at time t is slow compared to {wy — we,|, and furthermore that this has been so since t — t;,
where 1, is large compared 10 |wg — w,,| L.

If these conditions are met, the function y defined by (4.10) has a width that 1s much smaller than [wy — wyl,
both as a function of w; and w,. Then the first term of (4.5) contributes to g5 two well-separated peaks, one at
Wy = Wey, and one at wy = wgy — wg. In order to evaluate the strengths of these two contributions, we use the
asymptotic behavior of the dispersion functions [7]

0,(w) = “J_—Zab L if lw — eyl > . (4.16)

In this asymptotic region P, is much smaller than Q. The asymptotic behavior of the function z 1s found to be

Y

L4
z(wz,wl, t) = m gl(wl,t) if (O5] = wg — Wy, (417)

for values of w; within the bandwidth of g;. After applying similar considerations as 1n refs. 7 and 8 we find that
the first term in (4.5) contributes to g, a peak at w, = wq — wy, With a strength

1

———— |dw; g1(w1 ),
(o — we1)2 I
and a peak at w, = w,s With the negative strength

1 o0
X — dwlgl(wl,t).
(wO - wei)z _oJ:

The total strength of the first term tn (4.5) 1s zero, as it should. The second term in (4.5) contributes only to the
fluorescence peak at wy = wes. The strength of this contribution is

21K I dre e f dwy Po(wy) g1(wy, t — 7).
0 —o0



G. Nienhuis/Nearly resonant light scattered from collisionally perturbed atoms 401

As a conclusion of this section we find explicit expressions for the strength S, of the Rayleigh—Raman peak
and the strength S; of the fluorescence. The resulting expressions

1
S(t)=K ooy | f dew, g1(w1.0) (4.18)

and

50 = K[z"f tre [ danffoo) - " oy wan?

f dwlgl(wl,t)] 4.19)
are valid under the condition that the incident radiation has a fixed frequency 1n the far wing of the absorption
line, and that the rate of change of the incident intensity has been slow compared to the detuning during a time
interval preceding ¢ that 1s large compared to the inverse detuning. In particular the expressions (4.18) and (4.19)
are valid if at all times the rate of intensity change has been small compared to the detuning. This corresponds to
what Courtens and Szoke [14] have termed the adiabatic situation. However, (4.18) and (4.19) are also applicable
1n the case of a very rapid rise and fall of an incident light pulse.

It is apparent from (4.18) that the strength of the Rayleigh or Raman scattering follows the light pulse, and 1s
simply proportional to the instantaneous total incident intensity. On the other hand, (4.19) shows that the
strength of the fluorescence depends on the incident spectrum during the recent past, over a time period v, 1

The total time-dependent strength of the scattered light may be directly extracted from (4.5). We find

Idwzgz(wz,t) 27K f dre e f dw Py(wy) gy(wy, t — 7). (4.20)

Thas result 1s valid irrespective of the spectrum and the time behavior of the incident radiation.

5. Explicit evaluation of time-dependent strengths

In this section we derive explicit expressions for the strengths S, (¢) and S{#) of the two peaks in the fluores-
cence spectrum for an incident light pulse with an exponential rise and decay. We characterize the incident radia-
tion by the positive-frequency part of the electric-field strength

ED(t) = Ey e 100t fil2, t<0,
EM(t) = By emiwof, 0<t<T,
EMD()=Eyetwote#C-D2 ;> (5.1)

For illustrative purposes we wish to avoid complexities due to the overlap of the transient effects due to the rise
and the fall of the pulse, so we assume that T 1s large compared to v, 1 and to the nverse bandwidth of the absorp-
tion line. This ensures that the fluorescence spectrum has time to reach 1its stationary value during the pulse.

The total strength of the incident radiation 1s found from (2.7) and (5.1)
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Iy et fort <0
fdewy gy ={ 1 for 0< 1< T, (5.2)
Ipe T fort>T
where
Ig= 591; | Eolz (5.3)

is the peak intensity of the pulse. Evaluation of S¢(f) requires an expression for the overlap of the absorption pro-
file ; with a time integral involving g; at earlier ttmes. If we calculate gy from (2.6), and substitute the result,
the time integration can be done giving the lengthy result

j dfedye?gl(wl, t— T)
0

eft 812
= 0 “2 2 2 lft <0,
B+ 7 (B12)* + (wy ~ wy)
Bl2n sin (w; ~wdt 1
=1 + Vel
® B2 + (e - 0-’0)2{ T T

82 ~ v, [ sin (wy — w)?
g N 0 Vet 08 (0 — W) F *"‘-""L""‘M]}, f0<e<LT,
72+ (wy ~ wp)? W= ot wy — Wy

- 10( ! [_‘i_ewe&m _~e~(ﬁ/2)(t*—7)}5(wl~w0)

B/Z - 7e 27e
8/2n { @1 (W — w)t = T) 1
+ . "Ye(l" T - —~(t -
B12)° + (w2 — wp)* ’ Wy ~ Wy B~ (e D
N - Te . [e—(a/z)(:- T) (cos (W~ wt -+ B2 — e sin (wy — we)( ~ T)}
(812 — 79 + (e ~ wg) “17%0
g Telt- T)]}) , if¢>T. G4

In the calculation of this result we used that T'ss sufficiently large to allow g,(w;,f) to reach its statsonary value
Ig8(wy — wq) long befose T. The strengths of the expressions (5.4) may be evaluated from (5.2)

jf’ jf eﬁf

dw; | dre "7 g (wy,t ~1) =1, ift <0,

) 1 d 1wy Ly
I
=_(L(1w b e%’) f0<t<T,
Ye B¥ .
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Iy
B_7g

B erete-1y_ i T>] ft>T. (5.5)

We wish to derive expressions for S, and Sy in the two complementary limits that the rate of change §1s small or
large

First we consider the case that § is small compared to the detuning
5 < lg — gl 5.6)

One notices from (4.15) that this does not preclude the possibility that § be large compared to 7,. In this case the

AMN L iln Ll mvnnnamnn 10 nn nuravriaem
total strength {4.20) of the fluorescence 18 an overlap ntegral of the function (5.4), which is centered at and

v, WAL 15 CUHRRICLE 22 &0 &°°

the profile P, (w;), which 1s centered at w,,. Since the separation between the centers 1s large compared to the
widths of these functions we may write to a good approximation [7]

? o - o0 - . . _ o0 o0 oo
J dwy Pefwy) Jr dre g {wy, £ — 1) = Pe(wp) Jr deoy .Jr dre7egy(wp,r—-7)+ }. dre™"e7g (W, £ — 7)
o0 0 —o0 0 0
(5.7

After substituting (5.7), (5.5) and (5.4) we obtain from (4.20) to second order 1n 7, /(wg — we,) and B/(wy — we,)

r . N

J dw2 gz(wz,t)

ef? B

=K1 ——[217}’ +———-—-——] fr <0,
051y, Lot o]

e

\ 27
e—'yet) — Py(wp) +

B + 7e 'Ye (B + 'Ye)(wo - we1)2 J

1f0<t<T,

_ kI, [( B ret-T) _ G- T)) 2P () — (e~ _ ¢ BG=T)) B ]
B - 7e 75 “ (wO - wel)z

ift>T (5.8)

(5§ Nand (58

\ V&) Al V.0

The strengths Sr and Sy of the peaks mn the fluorescence spectrum are now directly found from (4.18), (4.19),

e

R =KIO

¥

~~
L
~r

(wo — (a.)el)2 ’
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2 1
F= Klo[-; Pel(wo) — (m] (510)

for the stationary values of S, and Sy. Then the time-dependent strengths are
PR ifr<o0
S(H)=({R f0<t<T, (5.11)

eP-DR if>T

(7" 1 ifr<0

B+,

S{0) = [1— e"’e’]F ifO<t<T (5.12)
B+,

1
kb—— [Be~et~T) _ Ye ePC-DIF ife>T

Ye

It is interesting to note that S¢(¢) as given by (5.12) may be expressed in the general form

' £ 2n 1
St(t) =K')’e f dwl J‘ dr e"’e’gl(wl,t~— 1')[-7— Pei(w()) — m] (513)
—o0 0 e ei.

as is obvious from a companson of (5.5) and (5.12). This result suggests that (5.13) 1s generally valid if the rate of
change of the ineident intensity is small compared to the detuning. In fact, one may show this to be true after
taking the proper limits in eq. (4.19).

As a result of the inequality (5.6) 1t is possible to choose the filter bandpass width I to be small compared to
the detuning, so that the two peaks may be separately observed, while at the same time T is large compared to f,
so that the time resolution suffices to observe the time behavior found in (5.11) and (5.12).

Fig. 1 shows the time behavior of the strengths S,(f) and S(r) for different values of . The strength S, of the
Rayleigh—Raman peak is proportional to the instantaneous pulse intensity at all times. If § < v,, the same 1s true
for the strength S; of the fluorescence. This corresponds to the quasistationary case If 2 7,, the strength S¢(f)
does not follow the light pulse adiabatically, but it lags behind by a delay time 7e , due to the finite lifetime of
the excited state.

5.2. Rapid time variations

We now turn to the case that § is not much smaller than the detuning {wg — we;l. As a result of (4.15) we can
then be sure that § is much larger than ,; and .. In order to observe the two peaks separately, one has to use a
spectrometer with a passband width I that is much smaller than the detuning, and hence also smaller than §. The
resolution time I'! 15 then too large to observe contributions in the strength that vary at the rate 8. From (2.19)
one notices that the observed strengths S, and S;; of the peaks are related to the calculated strengths S, and S¢
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a
b I N R

3
° v — -t

Fig 1. Time behavior of the strength S, of the Rayleigh or Raman scattering and the strength S¢ of the fluorescence for different
values of the rise and decay rate § of the incident intensity. These curves are valid when g1s much smaller than the detuning of the
ncident frequency from resonance The broken curve represents SI., the solid curve is S¢ The values of g are (a) 8= '7e/3'

(b) 8= 74, (¢) 8= 3v,. The Rayleigh—Raman strength S, 1s proportional to the mcident intensity at all times, the fluorescence
strength S lags behind by a time 1;'1 The curves 1n this figure correspond to egs. (5.11) and (5.12).

according to

S (1) = f dre 75, (t — 1), (5.14)
1)

S{t) = JT dre 7 St — 7). (5.15)
0

Thas indicates that varations of S, and S; that are more rapid than I' are washed out by this time-smoothing
mtegral.

Egs. (4.18) and (4.19) for S, and S; are valid outside transient regions of the order of [wq — well“l around
t = 0and ¢ = T, where the peaks may be 1ll separated. However, these regions contribute negligibly to .57r and .STf,
which allows us to apply (4.18) and (4.19) together with (5.14) and (5.15) in order to evaluate the observed
strengths. For the same reason the rapidly varying terms in (5.2) and (5.4) are negligible. Hence we ignore (5.2)
fort<Oand fort>T.

The expressions (5.4) deserve a little more attention. The expression for # < 0 can again be sumply 1gnored. The
expression for 0 <¢ < T separates after a transient time |, — “’eil_l in a broad-band term

I B/2n 1
0 2% + (w; — wg)? B+ 7,

e el
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with a strength Iy exp (—7.1)/(B + 7,), and several narrow-band terms. From (5.5) we conclude that the narrow-
band terms have the complementary strength Io(1 — exp (—7,2))/7,. Likewise the expression (5.4) for t> T separates
1n a broad-band term and a narrow-band term. In the it > v, the broad-band term 1s approximated by

—10/271'

3 5 e—'Ye(t" (8
B/2) + (wy — wg)

with the negative strength —I exp (—7,(t — T))/B. From (5.5) one checks that after a transient time B”l the
strength of the narrow band in the lumit 3 v, 15 Iy exp (—7.(¢ — T))/7,. The overlap of P, with the narrow-
band terms 1s found 1n the same manner as applied 1n (5.7), while the overlap with the broad-band contribution 1s
approximated by using the equation

B/2n - B/2n
(8/2)2 + (w; — wp)?  (B12)* + (wg — we)?

[deoy Pofey) (516)

Ignoring the transient time domains, we obtain 1 this approximation for the total strength of the scattered light

jdwz gy(wy,t)
=0 if <0,
L , 1 632
a1 - Eron + e e 1 G
1f0<t<T, (5.17)
~KI, e Yel— T)[%Pel(wo) — ({3/2)2 " (;0 — wey]
ift>T.
In the same approximation S, and S are found to be
0 1ft<0
S(O~{ R 1f0<:t<T, (5.18)
0 oft>T
and
0 1ft <0
SO >{ (1 —e"e)F+ee! AR if0<t<T, (5.19)

e e~ D[F+2R] ift>T
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where R and F are given by (5.9) and (5.10), and where A 1s

) ®/2°
(8/2)2 + (wg — we)?

(5.20)

The parameter A is neghgible if 8 1s much smaller than the detuning, and 1t approaches unity in the opposite limit
that B greatly exceeds |wy — we,| One notices in (5.18) and (5.19) that the neglect of the transient time domains
gives rise to a discontinuous step £R in S,, and a step AR in Sy at £ = 0 and ¢ = 7. This shows that these changes
occur 1n fact at the rapid time scale measured by lwy — weyl and by 6.

The physically observed strength S, and S are found after substituting (5.18) and (5.19) in (5.14) and (5.15).
We choose the spectral resolutlon r to be large compared to the absorption linewidth and v,, so that a fortiori T
is large compared to 7 L. The result 1s

0 ifr <0
S5H={(1-e™R fO<t<T, (5.21)

e TC-Drp  ift>T

and
(~0 f <0,
~ [ -7 _1 7 (DeTe! — 7ee—rt)]F+ . _1"'7e (! _ e TR
Ji0) fO<t<T,
~ 7 _1 7 [l"e—’Ye(t— 7). 7ee—r‘(t— T)]F + I‘——P'y: [e-‘ye(t— T) _ o—T(- T)] AR
L ife>T. (5.22)

The observed strength of the Rayleigh—Raman peak shows a nse and decay determined by the resolution time
1, The fluorescence peak at Wy ™ wer shows vanations on two time scales. In the usual case that I 1s much
larger than 7,, Sf shows at # = 0 a fast rise with the amount AR, and subsequently slowly approaches 1ts stationary
value F. At ¢ =T, §; again shows a fast rise of about AR, and then decays to zero on the slow time scale. The
amount of these fast rises increases with the pulse decay rate . This may be understood as a result of the effective
broadening of the incident spectrum by rapid intensity variations. It is remarkable that these rises in S; occur on
the rapid time scale, and that their rates are not restricted by the lifetime of the excited state.

In fig. 2 we show S; in the case that I' = 10y, for vanous values of AR/F. This parameter decreases with increas-
ing perturber pressure and 1t increases with . It 1s apparent from fig. 2 that S; attains 1ts maximum value after the
pulse 1s over. The sharp rise of Sf after t = T1s more than counterbalanced by the rapid decay of the Rayleigh—
Raman peak strength. One notices from eqs. (5.21) and (5.22) that the observed total strength S + Sf of the
scattered light shows a fast decrease by about (1 — A)R at ¢ = T. The slowly decaying component aftert=Tis
entirely due to §f, and its strength is £ + AR. In the limit § — o0 or A - 1, corresponding to a square pulse, it 1s the
total stationary mtensity F + R of the scattered hight that decays at the slow rate ,, but the frequency of the
scattered hight after # = T'15 centered at the resonance frequency wy = wes.
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b
F=AR
—
§,$ .
R4 F=AR/2
£l L]
— + A1
or Yo — gt

Fig. 2. Time behavior of the observed strength S of the fluorescence for different values of AR/F. These curves are valid when g1s
of the same order of magnitude as the detuning of the mcident frequency from resonance or larger. The broken curve in (a) shows
the observed Rayleigh—~Raman strength in the case that A = 2/3. The solid curves represent S for @) AR/F=%, ®)AR/F=1,

(c) AR/F = 2. The passband width of the spectrometer 1s T = 10y, Immediately after =0 Sf increases with the rate I' by an
amount of the order of AR, and subsequently it approaches iis stationary value Fat the ratey,. After f = Tsfagammeasesby
an amount of about AR, then it decays to zero at the slow rate v,. The curves in this figure represent eqs (5.21) and (5.22).

6. Conclusions

We denve a general expression for the time-dependent spectrum of light scattered from atoms in a perturber
gas. The result is expressed mn eqs. (3.7)—(3.10) 1n terms of a time-dependent redistribution function f(w,,w;|7).
From this general result we evaluated the time-dependent strengths S, (¢) and S¢(¢) of Rayleigh—Raman scattering
and of fluorescence in the case that the detuning of the incident frequency from resonance is large. The resulting
expressions (4.18) and (4.19) are valid for times at which the rate of change of the incident intensity has been
small compared to the detuning over a period of time that is larger than the inverse detuning. These expressions
have yet to be time-smoothed over the resolution time of the spectrometer.

When the irradiated pulse has an exponential rise and decay, the strengths S, and S are given by egs. (5.11)
and (5.12) 1f the rise and decay times are large compared to the inverse detuning. These results are shown in fig. 1.
In the complementary case that the rise and decay rates are not small compared to the detuning, the cbserved
strengths are given in eqs. (5.21) and (5.22), and plotted in fig. 2.

‘We did not incorporate saturation effects, The polarization dependence of the scattered-interstty s mctudedmr
the general results in section 3, but it is ignored n sections 4 and 5. Our results should describe a spectrally
resolved version of the experiments of Rousseau et al. [10-12].
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