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The open problems presented here were collected on the occasion of a workshop on Arith-
metic Geometry at the University of Utrecht, 26{30 June, 2000. This workshop was
organized by the editors of the present article, and was made possible by support of:

| NWO, the Netherlands Organization for Scienti�c Research,

| KNAW, the Royal Netherlands Academy of Arts and Sciences,

| MRI, the Mathematical Research Institute,

| the Faculty of Mathematics and Computer Science of the University of Utrecht, and

| the Department of Mathematics of the University of Utrecht.

We thank these organizations heartily for their support.

All problems in this list have been reviewed by at least one referee. In this process many
useful suggestions and new references have come up. We thank all referees for their valuable
comments.

Problem 1. Proposed by Dick Gross.

Question. Are there any examples of complex abelian varieties of dimension 4 with
Mumford-Tate group isogenous to a Q-form of Gm�(SL2)3 which are Jacobians of curves?

Explanation. The simplest example of a \Shimura subvariety" S � Ag;1 which is not of
PEL-type occurs for g = 4. The generic Mumford-Tate group in this case is isogenous
to a Q-form of Gm � (SL2)3. The resulting varieties S are 1-dimensional and complete;
they parametrize abelian 4-folds X with (generically) End(X) = Zbut with a certain
\exceptional" Hodge class in H4(X2). See [Mu], [MZ] and [No].

One would like to understand the intersection of the Shimura curves S obtained in
this manner with the Torelli locus. See also [Oo], section 7, where it is asked whether there
exists an S as above which is fully contained in the (closed) Torelli locus.
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Problem 2. Suggested by Richard Taylor to Dick Gross.

What is the connection between the weight (k1; k2; : : : ; kd) of a Hilbert modular form for
GL2(F ) and the restriction of the mod p Galois representation to the decomposition groups
at the primes dividing p in the totally real �eld F? (Here p is a prime dividing p in the ring
of coe�cients of the form.) For F = Q the answer to the question is known; a reference
is Bas Edixhoven, The weight in Serre's conjectures on modular forms, Invent. math. 109
(1992), 563{594.

Problem 3. Proposed by Dick Gross.

Here is a problem, which I think would shed a lot of light on arithmetic geometry (if we
could see how to approach it). What is the zeta function of the moduli space of stable
curves of genus g over Z?

Problem 4. Proposed by Frans Oort.

Conjecture. Let (X;�) be a generic supersingular abelian variety of dimension g �
2. Let k be an algebraically closed �eld containing a �eld of de�nition of X. Then
Aut

�
(X;�) 
 k

�
= f�1g.

Open problem. Suppose g 2 Z�3, and p is a prime number. Suppose there exists a
supersingular curve of genus g in characteristic p. Is it true that there exists a supersingular
curve C of genus g over Fp such that Aut(C) = feg? (See also problem number 19 in this
list.)

Problem 5. Proposed by Richard Pink.

A �nite simple group is called sporadic if it is neither abelian, nor alternating, nor of
Lie type (including Suzuki and Ree). By the classi�cation of �nite simple groups, there
exist precisely 26 isomorphism classes of such sporadic groups. For many qualitative
statements about �nite groups, however, it is enough to know that their number is �nite.
Unfortunately, the proof of the full classi�cation theorem is extremely involved, inaccessible
to non-experts, and does not provide a conceptual explanation for the mere �niteness.

For certain applications an even weaker result on sporadic groups su�ces. For example,
for any set H of positive integers consider the series �H(s) :=

P
n2H n�s. If Spor is the set

of orders of sporadic �nite simple groups, the classi�cation implies that �Spor(s) is really
a �nite sum. But perhaps one can prove by easy elementary means that Spor is sparse.
Speci�cally: Prove that �Spor(s) converges for Re(s) > 0, without using the classi�cation
of �nite simple groups.

Michael Larsen considered the above series in the following situation. Let Hur be the set
of orders of �nite groups that are generated by three elements x, y, z of orders 2, 3, and 7,
respectively, and satisfying xyz = 1. From classical results of Hurwitz it follows that these
are precisely the numbers 84(g � 1) for which there exists a compact connected Riemann
surface of genus g � 2 possessing this theoretically maximal number of automorphisms.
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Larsen proves that �Hur(s) converges for Re(s) > 1=3 but has a singularity at s = 1=3.
Thus, loosely speaking, these values of g are about as common as perfect cubes. In the
course of his proof, Larsen needs the fact that �Spor(s) has abscissa of convergence less
than 1=3. It would be nice to eliminate the dependence on the classi�cation of �nite
simple groups at this point. It would also be nice to determine the set Hur in more detail,
or at least the part that is responsible for the singularity at s = 1=3.

Reference

[1] M.J. Larsen, How often is 84(g � 1) achieved?, Preprint April 2000,

e-mail: larsen@math.indiana.edu.

Problem 6. Proposed by Richard Pink.

Let C be an algebraically closed complete normed �eld of characteristic p > 0. Consider
the punctured open unit disc D� := f� 2 C : 0 < j�j < 1g. Let q be a power of p, and let
�: D� ! D� denote the morphism � 7! �q. Let M be a vector bundle of rank n on D� in
the sense of rigid analytic geometry. Consider an OD�-linear isomorphism � : ��M !M .
Conjecture: M can be extended to a vector bundleM on the full open disc D := D� [ f0g
such that � extends to a homomorphism ��M !M (r � [0]) for some integer r.

IfM is free, this conjecture can be phrased in elementary terms, as follows. Let R denote
the ring of Laurent series

P
i2Z aiz

i with ai 2 C which converge on D�, and let R0 � R
be the subring consisting of Laurent series with �nite principal part, i.e., which have no
essential singularity at z = 0. Consider the endomorphism �

�P
i2Z aiz

i
�
:=

P
i2Z a

q
i z
i

of R. It is extended coe�cientwise to n � n-matrices over R. Conjecture: For every
A 2 GLn(R) there exists B 2 GLn(R) such that B�1 �A � �B 2 GLn(R0).

Explanation: The automorphism � of D� is properly discontinuous, so the quotient D�=�Z

exists as a locally ringed space. The Grothendieck topology de�ning the rigid analytic
structure of D� also descends to the quotient, although not in the usual rigid analytic
sense, because � acts non-trivially on the base �eld C . Nevertheless, the quotient may be
viewed as a strange kind of curve, sharing some properties with P1 and others with elliptic
curves. The pair (M ; � ) may be viewed simply as a vector bundle on D�=�Z .

For any integer r let OD�(r) denote the structure sheaf OD� together with the isomorphism
�f(z) := z�r � �f(z). Under some extra assumptions on C one can easily show that every
(M ; � ) of rank 1 is isomorphic to OD�(r) for unique r. In any case OD�(1) should play the
role of the standard twisting sheaf from algebraic geometry. Speci�cally, let us abbreviate
M (r) := M 
 OD�(r). Then the above conjecture for given M is equivalent to the
statement that M (r) is \generated by global sections" for all r � 0, or again to the
vanishing of H1(D�=�Z ;M (r)) for all r � 0. Thus many of the standard techniques of
algebraic geometry can be brought to bear on suchM .

The problem arose in studying uniformizability of t-motives, where the desired property
holds by construction of the respectiveM . In phrasing the above problem as a conjecture,
the proposer simply follows his intuition from algebraic geometry; he has no other evidence
for it. For further information please contact the proposer.
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Problem 7. Proposed by Richard Pink.

Let X be an irreducible smooth projective curve over an algebraically closed �eld k of
characteristic p. Let F be a constructible �etale sheaf of F`-vector spaces on X. If ` 6= p,
the formula of Grothendieck-Ogg-Shafarevich expresses the Euler characteristic �(X;F )
in terms of the generic rank of F , the genus gX of X, and purely local information at
the points where F is not lisse. Assume now that ` = p. Then the p-rank of a curve
does not depend on such data alone; hence there cannot be such a general formula for the
Euler characteristic. However, the p-rank of a curve is bounded by its genus, so one can
nevertheless try to bound the Euler characteristic of arbitrary F in a non-trivial way. To
be precise:

Problem: Determine the sharpest possible lower bound for the Euler characteristic �(X;F )
that involves only the generic rank of F , the genus of X, and local information on F .

In [2, Prop. 7.1] such a bound is given under certain rather strong restrictions on the
local rami�cation in F . For simplicity we illustrate this result only in an easy special
case. Let �: Y ! X be an irreducible �nite Galois covering with Galois group G, and set
F := ��Fp . Then �(X;F ) = �(Y;Fp) = 1�hY , where hY := h1(Y;Fp) is the p-rank of Y .
The stabilizer Gy of any closed point y 2 Y acts on the local ring OY;y and its maximal
ideal mY;y . Let Gy;i denote the kernel of its action on OY;y=m

i+1
Y;y . Since k is algebraically

closed, we have Gy;0 = Gy. The wild inertia subgroup is Gy;1. Let gX and gY denote the
genus of X and Y , respectively. The Hurwitz genus formula asserts that

1� gY = (1� gX) � jGj+
X
y2Y

X
i�0

1� jGy;ij

2
:

Now consider the condition

(�) Gy;2 = 1 for all y 2 Y .

If this holds, the inequality hY � gY and the genus formula imply

(y) 1� hY � (1� gX) � jGj+
X
y2Y

�
1�

jGyj+ jGy;1j

2

�
:

It was proved by Nakajima [1] that (�) holds whenever Y is ordinary, and the inequality
is then an equality. If (�) holds but Y is not ordinary, the inequality is strict. In the
general case of non-ordinary Y there are|ceteris paribus|two e�ects: On the one hand
the genus of Y becomes larger, giving room for hY to increase. On the other hand the
\defect" gY �hY will also tend to increase. How do these opposing tendencies compare to
each other? Does one of them dominate the other? For example:

Question: Does the inequality (y) hold without the assumption (�)? More generally, does
the inequality in [2, Prop. 7.1] hold without the assumption (�)?

The proposer tends to expect a positive answer, because the right hand side of (y), in
its sheaf theoretic form of [2, Prop. 7.1], is the only reasonable formula that obeys the
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requirements stated in the problem above and that is also additive in short exact sequences.
But he has no other evidence for it. During the conference the proposer made a bet with
Frans Oort about this for a bottle of wine. Everybody is invited to help settle our bet.

References
[1] S. Nakajima, p-ranks and automorphism groups of algebraic curves, Transact. Amer.

Math. Soc. 303 (1987), 595{607.
[2] R. Pink, Euler-Poincar�e Formula in equal characteristic under ordinariness assump-

tions, Manuscripta Mathematica 102 (2000) 1{24; or to obtain through the URL
http://www.math.ethz.ch/~pink/preprints.html

Problem 8. Proposed by Chia-Fu Yu.

This question may interest the people who are interested in rigid analytic geometry or
Hilbert modular forms. Let F be a totally real �eld of degree d and p a rational prime
inert in F . Let B be a quaternion algebra over F such that B is unrami�ed outside p and
the in�nite places and every archimedean place is rami�ed. Let � be a positive involution
of B and OB be a maximal order which is stable under the involution. We de�ne an
algebraic group G over Spec(Z) as follows:

G(R) =
�
g 2 (OB 
R)�

�� g�g 2 R�
	
;

where R is a commutative ring.

Question: Is there any relation between the double coset

G(Q)nG(A f )=G(Ẑ) (�)

and the space of Hilbert modular forms of certain weights and level? If it is so, is there
any explanation from geometry for this?

The motivation of this question is the following (when d = 1). Let D be the quaternion
algebra over Q rami�ed exactly at fp;1g. Taking G = D�, the double coset (�) is in
bijective correspondence with the set of supersingular elliptic curves, up to isomorphism
over Fp. Deligne and Rapoport showed that X0(p) has semi-stable reduction at p and
X0(p) 
 Fp has 2 irreducible components with transversally intersection at supersingular
points and each component is isomorphic to the j-line under projection. Each supersingular
point gives an \annulus" in the generic �breX0(p)
Qp as a rigid analytic curve. Therefore
we have

genus
�
X0(p) 
Qp

�
+ 1 = the number of supersingular elliptic curves :

Hence, we have:
dimS2

�
�0(p)

�
+ 1 = #G(Q)nG(A f )=G(Ẑ) :

There might be a natural surjective map

�
�
G(Q)nG(A f )=G(Ẑ); C

�
�! S2

�
�0(p)

�
;
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which can possibly be deduced from the global Jacquet-Langlands correspondence on GL2.

In a recent work of Stamm, he showed that Hilbert-Blumenthal moduli scheme with �0(p)-
level, when p is inert in F , has semi-stable reduction. (See H. Stamm, On the reduction of
the Hilbert-Blumenthal-moduli scheme with �0(p)-level structure, Forum Math. 9 (1997),
405{455.) Is it possible to conclude any information to my question from the rigid analytic
point of view?

Remarks.

(1) It was pointed out to me that the case d = 1 was already done by J-P. Serre. The
reference is: Jean-Pierre Serre, Two letters on quaternions and modular forms (mod p),
Israel J. Math. 95 (1996), 281{299; reprinted as Nr. 169 in Serre's Oeuvres (Collected
papers), Volume IV; Springer-Verlag, 2000. An approach to forms (mod p) on groups other
than GL2 and their connections with Galois representations was developed by B. Gross.
See B. Gross, Algebraic modular forms, Israel J. Math. 113 (1999), 61{93.

(2) A connection between the space of functions on the double coset (�) and the space
of Hilbert modular forms of weight 2 is a consequence of the Jacquet-Langlands corre-
spondence on GL2;F . A reference is: S. Gelbart, Automorphic forms on ad�ele groups,
Ann. math. Studies 83 (1975). I would like to thank R. Taylor for the discussion on the
connection.

Problem 9. Proposed by Shinichi Mochizuki.

A hyperbolic curve of type (g; r) (i.e., genus g, with r marked points, where 2g � 2 +
r > 0) in characteristic p > 2 is called \hyperbolically ordinary" (cf. [1], Chapter II, x3,
De�nition 3.3) if it admits at least one indigenous bundle (i.e., a bundle of projective lines
over the curve, equipped with a connection satisfying certain properties | cf. [1], Chapter
I, x2, De�nition 2.2) which is nilpotent (i.e., whose p-curvature, as a 2 by 2 matrix, has
square equal to zero | cf. [1], Chapter II, x2, De�nition 2.4) and ordinary (i.e., lies in
the locus of the moduli stack of hyperbolic curves equipped with a nilpotent indigenous
bundle which is �etale over the moduli stack of hyperbolic curves | cf. [1], Chapter II, x3,
De�nition 3.1). Unlike the case for elliptic curves (or abelian varieties), where, in every
positive characteristic, it is well known that there exist nonordinary curves, for hyperbolic
curves, there exist cases | for instance, (g; r) = (1; 1), p = 5 | in which every hyperbolic
curve of that type in that characteristic is hyperbolically ordinary (cf. [2], Chapter IV, x1,
the second Remark following Theorem 1.4).

Then the question is: Is it the case that all hyperbolic curves of all types (g; r) in all
characteristics p > 2 are hyperbolically ordinary (cf. the list of \Open Problems" in [2],
Introduction, x2.1, Problem 1)?

References

[1] S. Mochizuki, A Theory of Ordinary p-adic Curves, Publ. RIMS, Kyoto Univ. 32, No.
6, pp. 957-1151 (1996).

[2] S. Mochizuki, Foundations of p-adic Teichm�uller Theory, AMS/IP Studies in Ad-
vanced Mathematics 11, American Mathematical Society/International Press (1999).
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Problem 10. Proposed by Shinichi Mochizuki.

Let X0 be a hyperbolic curve over a �nite �eld k. It is known that any hyperbolic curve of
type (g; r) in characteristic p > 2 admits � p3g�3+r distinct nilpotent ordinary indigenous
bundles (cf. the Problem above; [1], Chapter II, x2, Theorem 2.3, and the discussion
following this theorem). Moreover, for each choice of such a nilpotent ordinary indigenous
bundle P0 on X0, there is associated to (X0;P0) a canonical lifting of this pair to a
pair (X;P) over the ring of Witt vectors W (k) (cf. [1], Chapter III, x3, Theorem 3.2).
This canonical lifting may be thought of as the hyperbolic curve analogue of the Serre-Tate
canonical lifting of an ordinary abelian variety (cf. [2], Introduction, x0.9, the discussion
surrounding Theorem 0.3).

Then the question is: When, if ever, is this canonical lifting (X;P) de�ned over a number
�eld (cf. the list of \Open Problems" in [2], Introduction, x2.1, Problem 7)?

(References as in the previous problem.)

Problem 11. Proposed by Ben Moonen and Frans Oort.

Let k be an algebraically closed �eld of characteristic p > 0. By a BT1 over k we mean a
�nite commutative k-group scheme G , killed by p, with the property that the sequence

G
FG��! G

(p) VG��! G

is exact. (This is equivalent to the condition that G occurs as the p-kernel of a Barsotti-
Tate group.) Let us say that G is of type (d; f) if G has rank pd and Ker(FG ) has rank pf .
Let W �= Sd be the Weyl group of G := GLd. Let X be the conjugacy class of maximal
parabolic subgroups of G which arise as stabilizers of an f-plane in kd. This conjugacy
class gives rise to a subgroup WX � WG. In [Mo] it is shown that there is a natural
bijection �

isomorphism classes of BT1's
over k of type (d; f)

�
�

���!WXnWG : (�)

Now suppose given (d1; f1) and (d2; f2) with (d1+d2; f1+f2) = (d; f). WritingWXi �WGi

for the Weyl groups associated to the pair (di; fi), we obtain a map

�
WX1

nWG1

�
�
�
WX2

nWG2

�
�!WXnWG (��)

given by taking the product of group schemes. (I.e., via the bijections as in (�) we send
(G1;G2) to G1 � G2.)

Problem. Describe the map (��) purely in terms of Weyl groups.

Let w and w0 be two WX-cosets in WG. Let us write w0 4 w if we can specialize a BT1

of type w to a BT1 of type w0, i.e., if there is a local domain R of characteristic p and a
BT1 G over Spec(R) such that the geometric generic �bre is of type w and the geometric
special �bre is of type w0.

Problem. Describe the partial ordering 4 purely in terms of Weyl groups.
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Every coset w 2 WXnWG has a distinguished representative _w of minimal length. The
most obvious guess would be that 4 is the Bruhat ordering on these distinguished repre-
sentatives. An example of Oort (see [Oo], Section 14) shows that this is not the case. In
this example we have three BT1's G1, G2 and H such that (a) G2 specializes to G1, and
the corresponding Weyl group elements are comparable in the Bruhat ordering, (b) the
Weyl group elements corresponding to G1 �H and G2 �H are not comparable in the
Bruhat ordering.

We can vary on the above questions by taking \aditional structures" into account, such
as the action of a semi-simple Fp-algebra on G or a polarization form. See [Mo] for
details. For instance, if (X;�) is a principally polarized abelian variety over k then the
p-kernel G := X[p] is a BT1 of type (2g; g), and � induces a \principal quasi-polarization"
(abbreviated as pq-polarization) �: G

�
�! GD. If g := dim(X) then the groupG to consider

is the symplectic group G := Sp2g and for X we take the conjugacy class of stabilizers of
maximal isotropic subspaces of k2g. Analogous to (�) above we have a bijection

�
isomorphism classes of pq-polarized

BT1's (G ; �) over k

�
�

���!WXnWG :

As shown in [Oo], this gives rise to a strati�cation of the moduli space: writingA = Ag;1
k
we have

A =
`

w2WXnWG

Sw ;

where the moduli point of (X;�) lies in the stratum Sw i� the associated pair (G ; �) maps
to the element w. It can be shown that each stratum Sw is equidimensional, of dimension
equal to `( _w), the length of _w as a Weyl group element.

References
[Mo] B.J.J. Moonen, Group schemes with additional structures and Weyl group cosets,

to appear in the proceedings of the 1999 Texel conference on \The moduli space of
abelian varieties".

[Oo] F. Oort, A strati�cation of a moduli space of abelian varieties, to appear in the
proceedings of the 1999 Texel conference on \The moduli space of abelian varieties".

Problem 12. Proposed by T. Katsura.

[A slightly enlarged version of the Artin-Shioda conjecture.] For K3 surfaces S over an alge-
braically closed �eld of positive characteristic p, are the following six conditions equivalent
to each other?
(i) S is a Zariski surface, i.e., there exists a purely inseparable dominant rational map of

degree p from the projective plane P2 to S.
(ii) S is unirational.
(iii) S is uniruled.
(iv) S is supersingular in the sense of Shioda, i.e., the Picard number �(S) = 22.
(v) S is supersingular in the sense of Artin, i.e., the height of formal Brauer group of S

is equal to in�nity.
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(vi) S is rationally connected, i.e., every two points x1, x2 on S are joined by a connected
chain of �nitely many rational curves.

Comments: (i) ) (ii) ) (iii) ) (iv) ) (v) holds. Condition (ii) easily implies (vi). If
the ground �eld is uncountable then (vi) implies (iii). (See Miyaoka-Peternell [4], Part I,
Lecture II, Proposition 5.4.) If S has an elliptic �bration, then (iv) is equivalent to (v),
see Artin [1] and Milne [3]. In case p = 2, it is known that the �ve conditions (i){(v)
are equivalent to each other. (Combine results in Rudakov-Shafarevich [5], [6], Artin [1]
and Milne [3].) If S has an elliptic �bration, then (v) is equivalent to (vi) in any positive
characteristic (see Artin [1] and Milne [3]). In case p � 3, for Kummer surfaces, the four
conditions (ii){(v) are equivalent to each other (see Shioda [7], and also see Katsura [2]).
Note that any Kummer surface has an elliptic �bration. In Katsura [2], we can �nd some
results on (i) for Kummer surfaces.

References

[1] M. Artin, Supersingular K3 surfaces, Ann. Scient. Ec. Norm. Sup. 7 (1974), 543{568.

[2] T. Katsura, Generalized Kummer surfaces and their unirationality in characteristic p,
J. Fac. Sci. Univ. of Tokyo 34 (1987), 1{41.

[3] J.S. Milne, Duality in the 
at cohomology of a surface, Ann. Scient. Ec. Norm. Sup.
9 (1976), 171{202.

[4] Y. Miyaoka and T. Peternell, Geometry of Higher Dimensional Algebraic Varieties,
DMV Seminar 26, Birkh�auser, Basel, 1997.

[5] A.N. Rudakov and I.R. Shafarevich, Quasi-elliptic surfaces of type K3 , Russ. Math.
Surv. 33 (1978), 215{216.

[6] A.N. Rudakov and I.R. Shafarevich, Supersingular K3 surfaces over �elds of charac-
teristic 2 , Math. USSR-Izv. 13 (1979), 147{165.

[7] T. Shioda, Some results on unirationality of algebraic surfaces, Math. Ann. 225
(1977), 153{168.

Problem 13. Proposed by T. Katsura.

(1) Is any elliptic surface in characteristic p > 0 liftable to characteristic zero?

(2) Construct non-liftable Calabi-Yau varieties in positive characteristic. Here, a Calabi-
Yau variety means a nonsingular complete variety X with a trivial canonical bundle and
Hi(X;OX ) = 0 for i = 1; : : : ;dim(X) � 1.

Comments: In characteristic 3, an example of non-liftable Calabi-Yau threefold is known
(see Hirokado [2]). In the case of dimension 2, any K3 surface is liftable (see P. Deligne [1]).

References

[1] P. Deligne, Rel�evement des surfaces K3 en caract�eristique nulle (prepared for publica-
tion by Luc Illusie), Lecture Notes in Math. 868, Algebraic surfaces (Orsay, 1976{78),
58{79, Springer, Berlin-New York, 1981.

[2] M. Hirokado, A non-liftable Calabi-Yau threefold in characteristic 3 , Tohoku Math.
J. 51 (1999), 479{487.
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Problem 14. Proposed by Bas Edixhoven.

An abelian variety A is said to have complex multiplications if its endomorphism algebra
contains a commutative semi-simple algebra whose degree over Q is twice the dimension
of A. Over the complex numbers, an abelian variety has complex multiplications if and
only if its Mumford-Tate group is commutative.

For g a positive integer, let Ag be the moduli space of principally polarized abelian varieties
of dimension g. A complex valued point of Ag is called CM if the corresponding abelian
variety has complex multiplications. Such a point is in fact de�ned over the algebraic
closure of Q, hence the absolute Galois group GQ of Q acts on the set of CM points of Ag.

The question is then whether there exists, for g �xed, positive real numbers c and d such
that for every CM point x in Ag one has:

jGQ � xj � c � jdiscr(Rx)j
d ;

where Rx is the center of the endomorphism ring of the abelian variety corresponding to x,
and discr(Rx) is its discriminant.

A positive answer would be very useful in proving the Andr�e-Oort conjecture for subvari-
eties of Ag . For g = 1, the answer is positive by the Brauer-Siegel theorem. The problem
for higher g is that the Galois action on CM points is via the so-called re
ex type norm,
which means that the problem is not only a problem about class numbers, but more about
images of morphisms between class groups. More generally, one could ask similar questions
about Galois orbits of special points in Shimura varieties.

References
[1] S.J. Edixhoven, On the Andr�e-Oort conjecture for Hilbert modular surfaces, to ap-

pear in \Moduli of Abelian Varieties", Progress in Mathematics, Birkh�auser. See
http://www.maths.univ-rennes1.fr/~edix/

[2] P. Colmez, Sur la hauteur de Faltings des vari�et�es ab�eliennes �a multiplication com-
plexe, Compositio Math. 111 (1998), no. 3, 359{368.

Problem 15. Proposed by Marc-Hubert Nicole.

Question: What is the arithmetical counterpart of the theory of the Jones polynomial knot
invariant (see [K])?

A profound conceptual analogy links algebraic number �elds and closed 3-manifolds (for a
precise dictionary, see [R]; see also the appendix of [P]): it is a fact that the cohomological
dimension of the absolute Galois group of a number �eld is three (cf. [M2]). For example,
we can picture a prime ofZas a knot in S3, since the local fundamental group Gal

�
Fp=Fp

�
is equal to �̂1(S1) = Ẑ, the pro�nite completion of Z. Furthermore, class �eld theory is
then seen to be analogous to the study of the homology of rami�ed coverings of S3, and
Iwasawa theory corresponds to the study of the homology of the in�nite cyclic cover of
the complement of a knot (i.e., the Alexander polynomial); see [Mc]. From this point
of view, it is tempting to speculate on the implications of the interplay between physics,
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topology (especially in low dimensions) and arithmetic. Earlier works in this direction
comprise [HZ], where, for example, the Atiyah-Patodi-Singer index theorem applied to:
(1) 4-manifolds yields classical Dedekind sums, and
(2) on the involution of 3-dimensional lens spaces, its output is the Legendre-Jacobi sym-

bol (see also [GZ]).
Our question points also in the direction of Connes' noncommutative geometry (the Jones
polynomial originally stemmed from the study of subfactors in von Neumann algebras)
and its resolution could maybe help to understand the connection between the former and
arithmetic (see also [D] and [K] for a di�erent perspective on the above interplay).

Some references (for a more exhaustive bibliography, contact Marc-Hubert Nicole):
[D] C. Deninger, On dynamical systems and their possible signi�cance for arithmetic

geometry. Regulators in Analysis, Geometry and Number Theory, 29{87, Progr.
Math. 171, Birkhuser Boston, Boston, MA, 2000.

[GZ] L. Goettsche and D. Zagier, Jacobi forms and the structure of Donaldson invariants
for 4-manifolds with b+ = 1. Selecta Math. (N.S.) 4 (1998), no. 1, 69{115.

[HZ] F. Hirzebruch and D. Zagier, The Atiyah-Singer theorem and elementary number
theory, Mathematics Lecture Series 3, Publish or Perish, Inc., Boston, MA, 1974.
xii+262 pp.

[K] M. Kontsevich, Operads and motives in deformation quantization. Mosh�e Flato
(1937{1998). Lett. Math. Phys. 48 (1999), no. 1, 35{72.

[M1] B. Mazur, The theme of p-adic variation. Mathematics: Frontiers and Perspectives,
433{459, Amer. Math. Soc., Providence, RI.

[M2] B. Mazur, Notes on �etale cohomology of number �elds. Ann. Sci. �Ecole Norm. Sup.
(4) 6 (1973), 521{552 (1974).

[Mc] C. McMullen, From dynamics on surfaces to rational points on curves. Bull. Amer.
Math. Soc. (N.S.) 37 (2000), no. 2, 119{140.

[P] A.N. Parshin, Finiteness theorems and hyperbolic manifolds. The Grothendieck
Festschrift, Vol. III, 163{178, Progr. Math., 88, Birkhauser Boston, Boston, MA,
1990.

[R] A. Renizkov, \The dictionary of arithmetic topology", Appendix 14, in Hakenness
and b1, preprint, Durham University.

Problem 16. Proposed by Arthur Ogus and Frans Oort.

Extending p-divisible groups and abelian schemes.

Situation. Let R be a local ring of dimension at least 2, let S = Spec(R), let 0 2 S be
the closed point, and let U � S be the complement of 0 in S. Let XU ! U be either a
p-divisible group or an abelian scheme over U .

Remark. In case R is regular of equal characteristic zero, Grothendieck proved that XU

can be extended to S, see [G], Coroll. 4.5. In general an extension does not exist: if R is
not regular, or in case R is of positive characteristic examples are easy to give. In case R
is regular of mixed characteristics, there is an example by Raynaud-Ogus-Gabber showing
that an extension in general does not exist, see [JO], Section 6. Already many years ago
Arthur Ogus asked several people whether \extension up to isogeny" is possible:
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Question. Suppose moreover that R is regular. Does there exist a p-divisible group or an
abelian variety Y ! S and an isogeny YU �U XU of the restriction YU := Y jU to XU?

References
[G] A. Grothendieck,Un Th�eor�eme sur les homomorphismes de sch�emas abeliens, Invent.

Math. 2 (1966), 59{78.
[JO] A.J. de Jong and F. Oort, On extending families of curves, J. Alg. Geom. 6 (1997),

545{562.

Problem 17. Proposed by Ching-Li Chai.

Let O = OK be a complete discrete valuation ring. Let K be the fraction �eld of O and
let � be the residue �eld of O. Let T be a torus over K. It is a fact that T has a N�eron
model T over O, which is smooth and locally of �nite type over O and satis�es the standard
universal property for N�eron models. Choose a �nite Galois extension L=K such that T is
split over L. From the universal property of N�eron models we get a homomorphism

canL;K : T �
Spec(OK)

Spec(OL) �! TL ;

where TL is the N�eron model of TL, whose neutral component is equal to the split form
of T over OL. The di�erential d(canL;K ) of the homomorphism canL;K is a homomorphism
between free OL-modules of �nite rank. Write

Coker
�
d(canL;K)

�
�=

d

�
i=1
OL=

�
�e�ciL OL

�
c1 � � � � � cd ;

where e = e(L=K) is the rami�cation index of L=K, where d = dim(T ), and ci 2Z[1=e]�0.
These non-negative rational numbers c1; : : : ; cd do not depend on the choice of the �eld L
that splits T ; on can think of them as numerical invariants of the integral representation �T
of Gal(L=K) on the character group X�(T ) of T . It is known that

Pd

i=1 ci is equal to one-
half of the Artin conductor of �T if the residue �eld � is perfect. (This is proved in [1].)

Questions:
(i) What can one say about the numerical invariants c1(�); : : : ; cd(�) attached to integral

representations �: Gal(L=K) ! GLd;Z ? Can one obtain good estimates for them?
Can one relate the invariants for an integral representation � to those for the dual
representation �_ ? How do these invariants vary in a family of representations?

(ii) When the residue �eld � is not assumed to be perfect, is the sum
Pd

i=1 ci related to
\the conductor of �T" for some general theory of conductors?

(iii) For an abelian variety A over K the same procedure gives invariants c1(A); : : : ; cd(A),

where d = dim(A). Let c(A) =
Pd

i=1 ci(A). Suppose 0 ! A1 ! A2 ! A3 ! 0
is a short exact sequence of abelian varieties over K. Is c(A2) equal to c(A1) +
c(A3) ? (They are equal if the residue �eld � is �nite, or if the fraction �eld K has
characteristic 0 and the residue �eld � is perfect; see [2].) How are the invariants ci(A)
and c(A) for an abelian variety A related to those for the dual abelian variety At ?
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References
[1] Ching-Li Chai, Jiu-Kang Yu, Congruences of N�eron models for tori and the Artin

conductor , with an appendix by Ehud de Shalit; manuscript, 31 pp.
[2] Ching-Li Chai, N�eron models for semiabelian varieties: congruence and change of base

�eld , to appear in the Asian J. of Math. (volume in honor of L.K. Hua).

Problem 18. Proposed by Ching-Li Chai and Frans Oort.

Questions on Hecke orbits.

Let k be an algebraically closed �eld of characteristic p > 0. Let Ag be the moduli
space of principally polarized abelian varieties of dimension g over k. Let ` be a prime
number. For any point x =

�
(Ax; �x)

�
2 Ag(k), where �x is a principal polarization on

the abelian variety Ax, denote by H` � x (resp. H � x) the countable subset of Ag(k)
consisting of all points

�
(Ay ; �y)

�
2 Ag(k) such that there exists an isogeny �: Ay ! Ax

with ��(�x) = `n � �y for some n 2 Z�0 (resp. ��(�x) = m � �y for some m 2 Z�1). It is
known that if ` 6= p, then the Zariski closure (H` � x)cl of H` � x is equal to Ag for every
x =

�
(Ax; �x)

�
2 Ag(k) such that Ax is an ordinary abelian variety; see [C].

In Section 5 of [FO], Frans Oort gives a conjectural description of a foliation structure
on Ag, which can be described as follows. For any point x =

�
(Ax; �x)

�
2 Ag(k), consider

the subset Z(x) consisting of all points y 2 Ag such that the quasi-polarized Barsotti-Tate
group

�
Ay [p1]; �y[p1]

�
is geometrically isomorphic to

�
Ax[p1]; �x[p1]

�
. In fact, we see

that Z(x) is a locally closed subset of Ag (in the proof we follow a suggestion by T. Zink).
A locally closed subset of the form Z(x) is called a leaf in Ag . The foliation structure
on Ag is the collection of all leaves, so that Ag is the disjoint union of all leaves in Ag. See
[FO] for properties of the foliation structure.

Questions:
(i) (Conjectured by Oort) Prove that the Zariski closure of H � x is equal to the subset

of all points
�
(Ay ; �y)

�
2 Ag such that the Newton polygon of Ay is either equal to,

or lies above, the Newton polygon of Ax.
(ii) (Conjectured by Oort) Prove that for any prime ` 6= p and any x 2 Ag(k), the `-power

Hecke orbit H` � x is Zariski dense in the leaf Z(x) that passes through x.

Remarks:
(a) Conjecture (i) is a consequence of Conjecture (ii) and the general properties of the

foliation structure on Ag.
(b) If x =

�
(Ax; �x)

�
and Ax is an ordinary abelian variety then the leaf Z(x) is the

ordinary locus in Ag, and the Conjecture (ii) holds by [C]. If the p-rank of Ax is
equal to g � 1, then the leaf Z(x) is equal to the subset of Ag consisting of all points�
(Ay ; �y)

�
such that the p-rank of Ay is equal to g � 1, and the Conjecture (ii) is

veri�ed in a preprint by Ching-Li Chai: Density of Hecke orbits for abelian varieties
of p-corank one, available from http://www.math.upenn.edu/~chai.

(c) Conjecture (ii) has been veri�ed when g � 3 by the authors (unpublished).
(d) One can also formulate Conjecture (ii) for any Shimura varietyM of PEL-type over k.

For a Hilbert-Blumenthal variety attached to a totally real number �eld in which p is
unrami�ed, the authors have checked Conjecture (ii). Here is another case when
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Conjecture (ii) has been veri�ed. Suppose that M is a U(n � 1; 1)-type Shimura
variety of PEL-type over k attached to an imaginary quadratic �eld K such that
p splits in K, and x 2M(k) corresponds to an n-dimensional ordinary abelian variety
with multiplication by OK , then the `-power Hecke orbit of x is dense in M , for any
` 6= p. The proof uses a result in Ching-Li Chai: Local monodromy for deformation of
one-dimensional formal groups, J. reine Angew. Math. 524 (2000), 227{238.

References
[C] Ching-Li Chai, Every ordinary symplectic isogeny class in positive characteristic is

dense in the moduli , Invent. Math. 121 (1995), 439{479.
[FO] Frans Oort, Newton polygon strata in the moduli space of abelian varieties, to appear

in the Proceedings of the conference on \The Moduli Space of Abelian Varieties",
Texel, 1999.

Problem 19. Proposed by Gerard van der Geer.

Does there exist a supersingular smooth curve of genus g in characteristic p for every g
and p? (The answer is yes for p = 2.)

Reference
G. van der Geer, M. van der Vlugt, On the existence of supersingular curves of given genus,
J. Reine Angew. Math. 458 (1995), 53{61.

Problem 20. Proposed by Brian Conrad.

Let k be a �eld complete with respect to a non-trivial non-archimedean absolute value.
Let k0=k be an analytic extension �eld. A general \extension of the ground �eld" functor
can be de�ned on a�noid rigid spaces over k. This functor takes open immersions of
a�noids to open immersions of a�noids and commutes with �ber products, so it can be
naturally de�ned for quasi-separated rigid spaces over k; see [1], 9.3.6. This is a functor
from quasi-separated rigid spaces over k to quasi-separated rigid spaces over k0, compatible
with formation of �ber products and quasi-compact open immersions. Can this functor be
naturally extended to be de�ned on all rigid spaces over k (in a manner compatible with
�ber products and open immersions)? More precisely, let i: U ! X be an open immersion
of rigid spaces over k, with X (and hence U) separated. Is the naturally induced morphism
i0: U 0 ! X 0 of rigid spaces over k0 an open immersion? This is the essential problem.
When i is quasi-compact or a Zariski-open map, this is relatively straightfoward to answer
in the a�rmative. In general, one only knows that i0 is an injective local isomorphism, but
it is not a priori clear if i0(U 0) is even an admissible open.

Reference
[1] S. Bosch, U. Guntzer, R. Remmert, Non-archimedean analysis, Springer-Verlag, 1984.

Problem 21. Proposed by Frans Oort and Bjorn Poonen.

Open Problem: The number of isomorphism classes in an isogeny class.

Fix a prime power q and a Newton Polygon �. For any Fq -isogeny class I of abelian
varieties, let NI denote the number of Fq -isomorphism classes of principally polarized
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abelian varieties in I. We would like to understand the \average" of NI, as I ranges over
all Fq -isogeny classes with Newton Polygon equal to �.

Moduli spaces. We have the coarse moduli space of principally polarized abelian varieties.
Once a prime number p and a Newton Polygon � are �xed, we denote by W 0

� the locally
closed subset whose geometric points correspond to principally polarized abelian varieties
having Newton polygon equal to �; its dimension is denoted by sdim(�). This is foliated
by two foliations; the dimension of the central leaves is denoted by c(�); it is conjectured
that every central leaf is the Zariski closure inside W 0

� of a Hecke-prime-to-p-orbit, see
Problem 18 in this list. The iterated-�p-Hecke orbit has components of dimension i(�) =
sdim(�)�c(�). See F. Oort, Newton polygon strata in the moduli space of abelian varieties,
to appear in the Proceedings of the Conference \The moduli space of abelian varieties",
Texel 1999.

Let S�;q be the set of Fq -isomorphism classes of principally polarized abelian varieties over
Fq with Newton polygon �. Write � for the supersingular Newton polygon (all slopes are
equal to one half). Suppose � 6= �. We expect that most (X;�) 2 S�;q have only �1 as
automorphisms over the algebraic closure; hence we expect the map S�;q !W 0

� (Fq ) to be

mostly 2-to-1. Moreover, it is conjectured that W 0
� is geometrically irreducible; hence we

expect that
#S�;q =

�
2 + o(1)

�
� qsdim(�) as q !1.

Isogeny classes. Let d(i; �) be the length of the vertical segment between � and the su-
persingular Newton polygon � at x-coordinate equal to i, with 0 < i � g, i.e., d(i; �) =
�(i) � �(i); let d(�) =

P
0<i�g d(i; �). We expect that c(�) = 2 � d(�). A slight gen-

eralization of a result of DiPippo and Howe shows there exists a \volume constant" vg
(depending only on g, not on p or �) such that for every Newton polygon � 6= �, the
number of Fq -isogeny classes of abelian varieties of dimension g having Newton polygon
equal to � is equal to: �

vg + o(1)
�
qd(�) as q !1.

See Stephen A. DiPippo and Everett W. Howe, Real polynomials with all roots on the
unit circle and abelian varieties over �nite �elds, J. Number Theory 73 (1998), 426{450;
corrigendum: J. Number Theory 80 (2000), 182. (They prove this estimate for � ordinary,
with an explicit error term; the same method works for any � 6= �.)

Question. From the previous we expect that the average Fq -isogeny class with Newton
polygon � contains

eO(1)qsdim(�)�d(�)

Fq -isomorphism classes of principally polarized abelian varieties; note that sdim(�) �
d(�) = i(�) + d(�). Moreover, the constant eO(1) should be 2=vg + o(1). Can one give a
proof of this, or at least a heuristic explanation of the exponent of q, without using the
previous considerations? In order to understand the interplay between isomorphism classes
and isogeny classes we should realize that not every Fq -isogeny class contains a principally
polarized abelian variety (see Everett W. Howe, Principally polarized ordinary abelian va-
rieties over �nite �elds, Trans. Amer. Math. Soc. 347 (1995), 2361{2401); moreover we
have to consider (iterated) �p-isogenies, and degree p isogenies and prime-to-p isogenies.
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Understanding these phenomena asymptotically and their interplay in one isogeny class
seems to be the key to what we are asking.
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