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A DIRECT SOLVER FOR THE GRADIENT EQUATION
ROB STEVENSON

ABSTRACT. A new finite element discretization of the equation grad p = g is introduced.
This discretization gives rise to an invertible system that can be directly solved, taking a
number of operations that is proportional to the number of unknowns. Assuming that g
is such that the continuous system has a solution, we obtain an optimal error estimate.
We discuss a number of applications related to the Stokes equations.

1. INTRODUCTION AND APPLICATIONS

This paper concerns a finite element discretization of the following problem: On some
domain 2 C IR*, and for some right-hand side g = (g1, g2)" with 0 = rot g (:= 192 — Do),
find p, with fQ pdz = 0, such that

gradp=g.

More precisely, we consider this problem in its variational form: With

b(v,p) := —/pdivvd:z;,
Q

L3(Q) := {q € L*(Q) : [,qde = 0}, and V C H(div;Q) a Hilbert space that will be
specified below, given g € V' such that g(v) = 0 for all v € V for which b(v, L3(Q)) = 0,
find p € L3(2), such that

(1.1) b(v,p)=g(v) (veV)
It is well-known that (1.1) has a unique solution p, with |[p||z: < ||g|lv+, when
(1.2) (v, ) S Iviivllall: (v €V, g€ Ly(Q))
and
b(v,
(13 fallr £ sup PVDL (e ey

ozvev |[VIv

(Here and in the sequel, by C' S D we mean that C' can be bounded by a multiple of D,
independently of parameters which ' and D may depend on. Obviously, C' 2 D is defined

as D S C,and C T D as S Dand C 2 D.) Assuming that € is bounded, connected,
and that it is either a polygon, or it has a smooth boundary (sufficient is Q € C%'), it
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is known (see [ASVS8S], [Nec65]) that (1.3) is valid for V. = H}(Q)? and thus also for
V = H(div; Q). Obviously (1.2) is also valid for both choices.

With V = H}(Q)? or V = H(div; Q) respectively, problem (1.1) naturally arises in con-
nection with the (Navier)-Stokes problem or a mixed formulation of the Poisson equation.
Our discussion of applications will be focussed on the Stokes problem.

Assuming that € is a polygon, starting from some conforming initial triangulation 7 of
Q, we consider a sequence of triangulations (73)z>0, where 7441 is constructed from 7, by
subdividing each triangle from 7 into four congruent sub-triangles. For each k, we define
our trial space (J; as the space of piecewise constants with respect to 7, with zero mean.
In Section 2, we will construct test spaces Vi C Hy(Q)* such that

(1.4) dimV;, = dimQ)y,
and
b
(1.5) ~:=inf inf sup 150V, 40| >0

k 0#£qr€Qk 0£v, eV, Hka(Hl)2quHL2 ’

which latter property is known as the Ladyshenskaja-Babuska-Brezzi (LBB) stability con-
dition.
Because of (1.4) and (1.5), for any gi € V/, the problem of finding p; € Q) such that

(1.6) b(vi,pr) = gr( V) (Vi € Vi)

has a unique solution. Moreover, it will be shown that for common approximations gy of
the right-hand side g of (1.1), the square system (1.6) can be constructed and solved in
O(dimQy) operations.

Remark 1.1. In fact the results from this paper can be generalized to certain types of locally
refined triangulations and corresponding spaces (). More precisely, those triangulations
are covered where

e a triangle from 751 is either a triangle from 7, or it is generated by subdividing a
triangle from 74 into four congruent sub-triangles

e a triangle that is contained in both 74 and 741, is part of 7, for any ¢ > k.,

o two triangles from 7, that have a non-empty intersection have comparable diameters,
uniformly in .

Yet, since it requires some technicalities to show that in these local refinement cases the
resulting system can be constructed (and solved) in O(dim@)y) operations, for ease of
presentation in the remainder of this paper we restrict ourselves to the uniform refinement
case.

From (1.4), (1.5) we obtain the following optimal error estimate:
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Theorem 1.2. For g, g € HY(Q)?, such that g(v) = 0 for all v € Hj(2)? for which
b(v,L3(Q)) =0, let pr,p € L3(Q) be the solutions of

b(vi, pr) = gr(Ve) (Vi € Vi),
b(v,p) =g(v)  (veHy ()
Then
V2 1
lp = pellee < (14 57) inf lp = aullee + Sllg — gellar-2-
Proof. With py, being the solution of b(vy, pr) = g(vi) (Vi € Vi), from (1.5) we infer that

. 1 g(vi) — gr(vi 1
15— pelle < L sup BOR &8O Ly e,
Yozvievi ||Vl ¥

For arbitrary g, € Qp, we have [[p— fellze < [Ip — @ulliz + llge — ellz2, whereas

|b(Vk7 gk — ﬁk)| 1 |b(vk7 qr — p)|

lgr — prllre < 5 sup =5 sup  —p————— < @H% — pllze,
otviev, |1Vl otvieevy  |[Vill)e
so that [|p— pillzz < (14 2)infyeq, [P — qellze- O

We now discuss some applications of our gradient solver and comment on some existing

alternative approaches. Consider the Stokes equations in its primitive variables: Given
f=(f1,f2)", find u = (uy,uz)" and p, with [, pde = 0, satisfying

—Au+gradp = f inQ,
divu = 0 in €,
u = 0 ondN.

For Q being a bounded, convex polygon and f € L*(2)?, its known that the unique solution
(u,p) 1S In HQ(Q)Q N H&(Q)z X Hl(ﬂ) with HUH(H2)2 + HpHHl ,S HfH(L2)2

Standard mixed finite element discretizations yield approximations for the velocities
which are only discretely divergence-free. Approaches to obtain approximate velocities
that are exactly divergence-free are based approximating a ‘stream-function’ ¢, which is a
function that satisfies u = curlvy (:= (9y2, —911)T). Indeed, note that an approximation
Yr € HY(Q) of ¢ yields an approximate velocity vector uy := curlyy, € H(div;Q) with
div u, = 0.

A computation of an approximation ¥, of ¥ can be based on the biharmonic equation

A?*p = rotf in 0,
= 0ytp =0 on Jf).

Yet, discretizing this equation requires C'!, or in case of non-conforming approximations,
‘nearly” C'! finite elements.
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An alternative approach (cf. [GR86, Ch.III §2-3]) is to discretize the problem of finding
Y € Hy (), w € HY(Q) such that

(curlw, curl ¢)z2) f(curl ¢) (¢ € H3(2)),
(curle, curl M)(p)z = (w,M)(B) (1€ Hl(Q))v

where w = rot u is called the vorticity.

Instead of solving for ¢ and w = A, it is also possible to set up equations for ¢» and
all its second derivatives aij;/), leading to the so-called Hellan-Herrmann-Johnson scheme
(cf. [GR86, Ch.III §4]).

Above formulations have in common that the pressure p is eliminated, and so a post-
processing procedure is needed to obtain approximations of that. Our gradient solver (1.6)
can be applied for this goal.

(1.7)

As an example, we consider the stream function-vorticity formulation (1.7). Given some
approximation wy of w, based on the equation grad p = f —curlw, we can compute p; € Q)
from

(18) b(pk,Vk) = f(Vk) — (curl wk,Vk)(L2)2 (Vk € Vk)
Application of Theorem 1.2 with

g(v) (v) = (curlw, v)(z2y,

gr(Vv)

f
f(V) - (curl Wk, V)(L2)27

and so ||g — gk l|(m-12 < V2||w — w2, shows that
(1.9) Ip = pillze < (14 22) inf |Ip— aellze + L2l — welle.
9k EQk

A different approach, for example discussed in [GR86, Ch.III §2], is for some finite
element space Qr C H*(2) N L3(2), to solve py. € Qy from

(1.10)  (grad py, grad g)(z2)2) = f(grad ¢) — (curlwy, grad ¢ )(z2) (Gr € Qr).

A disadvantage of this discretized Neumann’s problem for the Laplace operator is that it
requires an iterative solver. Moreover, without assuming more regularity of p than that
it is in H'(Q), a complicated analysis is needed to demonstrate that this method yields
convergent approximations, where in any case the error bound is qualitatively not better
than (1.9). Necessarily this analysis exploits the special form of the right-hand side of
(1.10), where it is needed that wy is the second component of the solution (tx,wy) of a
finite element discretization of (1.7). It is not easily seen what the effect is on the solution
pr of algebraic error in wy, a topic that we will discuss in more detail later on. Note that
(1.9) is valid for any approximation wy of w.

Another possibility, first proposed in [GR79], is to solve (1.8) using the same trial space

Qk, but with a test space Vi being defined as the lowest order Raviart-Thomas RTO finite
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element space with respect to 7. For this pair it is known that

(1.11) inf inf sup
‘H(div) HQkHB

k 0#qr€eQy OinEVk

> 0.

Vi

If 7. contains an internal vertex, then dimvk > dimQy. Yet, if wy is such that f(¥v4) =
(curlwy, Vi) 2y for all v € Vi for which b(Vy, Q) = 0, then the modified system (1.8)

A

has a unique solution p, € Q. However, since Vi, ¢ H'(Q)?, (1.11) with ||Vi|lmiv)
replaced by |[Vi|[(z1)2 is not valid, and so a bound on ||p — pi|[(z2)2 similar to (1.9) will
depend on a norm of w — wy, which is stronger than the L?-norm.

As we have seen, our approach seems to be the most attractive one only assuming that
p € H'(Q). Yet, on the other hand, the approaches based on the discretized Neumann’s
problem for the Laplace operator or the application of the Raviart-Thomas spaces can be
applied with finite element spaces of in principal any degree, which for smooth p may lead
to schemes of higher order.

To discuss our final application of our gradient solver, we consider the Stokes equations
in the primitive variables written in variational form: Given f € H™'(Q)?, find u € Hj(Q)?

and p € L3(9) such that

a(u,v) + b(Vapg = f(v) (v e Hy(€)?)

(1.12) b(u,q) = 0 (g € L?)(Q)):

where

a(w,v) = / Vw : Vvdz.
Q

We describe the usual mixed finite element discretization. For k € IV, let S;, and Q%
be finite element spaces that serve as, increasingly better, approximations of H}()* and
L3(9Q) respectively. It is no restriction to assume that Q, C L3(Q), but we do allow non-
conforming finite element spaces Sg, i.e., S ¢ Hj(2)?. As a consequence, we generally
need extensions of a(, ) and b(, ) to a scalar product ax(, ) and a bilinear form by(, )
on (Hy(2)? 4+ Sg) x (Hy(2)* + Sg) and (Hy(2)? 4 Sg) x LE(Q) respectively. We equip
Hi(2)* + Sy, with the energy-norm || - |11 = v/ ax(+, ). We assume that by(, ) is uniformly
bounded, and that the following LBB-condition is valid:

b
(1.13) inf inf sup M>O.

k 04k €Qx 0vieSy ||Vl k] gr] 22
Assuming that f € S, we arrive at the following approximation scheme: Find uy € Sy,
i € Qp, such that

ap(ug, vi) + bp(vi,pr) = f(vi) (Vi € Sp),

(1.14) bi(up qp) = 0 (g € Qx).
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Because of (1.13), this system has a unique solution, and depending on the possible con-
sistency error, the approximation properties of Sy and @y, and the regularity of u and p,
appropriate bounds on |[u — ugll1 5 and |[p — pk||r2 are known.

Defining the space of discretely divergence-free velocities

Z, = {Vk €S, bk(VIka) = quk € Qk}v

the velocity component uy of the solution of (1.14) can be characterized as the unique
solution of the problem: Find u € Z; such that

(115) ak(uk,vk) = f(Vk) (Vk € Zk)

For some pairs (Sg, Q1) a local basis for Zj, is known. This opens a way to compute uy, by
solving the elliptic problem (1.15) only, instead of solving the original saddle-point problem
(1.14).

An example of a pair for which such a basis is available (cf. [Cro72, Tho81]) is given
by the case that, with respect to some conforming triangulation 75, of Q, S; = S with S
being the non-conforming P; finite element space, i.e.,

Sy ={ve HTETk P(T), v is continuous at the midpoints m. of the interelement
boundaries e, and it vanishes at the midpoints m. of edges along 992},

and Qr(= Q) is the space of piecewise constant functions with zero mean value. In this
case

ak(Wk,Vk) = Z / VWk : Vvkd:z;, bk(Vk7Qk) = — Z / qL diVdel'.
T T

TeT Terg

For this pair, optimal multi-grid, domain decomposition and Cascade multi-level methods
for solving uy from (1.15) were proposed and analyzed in [Bre90], [Bre96] and [Ste99]
respectively.

Other examples of pairs, all involving non-conforming spaces Sy, for which a local basis
for the resulting Z; has been constructed can be found in [CSS86, Tur94]. Constructions
based on wavelets were discussed in [Urb96].

Knowing u;, we are left with the problem of finding an approximation for the pressure.
The obvious approach is to solve p, € Qy from

(116) bk(kapk) = f(Vk) — ak(uk,vk) (Vk € Sk)

Indeed, existence and uniqueness of this py are already known, and suitable error estimates
are available.

The number of equations in (1.16) exceeds the number of unknowns. However, since
(1.16) is trivially valid for v € Zy, it is sufficient to satisfy

(1.17) be(vi, pr) = £(vi) — ap(up, vi) (v € Ry),

where Ry is some subspace of Sy satisfying Ry, N Z;, = {0} and dimR; = dika, or
equivalently, S, = Ry @ Zy.
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In [CSS86, Tur94, Urb96] we find similar-like choices of Ry which give rise to direct
solvers that can be implemented efficiently. In the following, we describe the idea for the
non-conforming P, piecewise constant finite element pair.

For all pairs T,T" € 7, such that e := TN T is an edge, let

w, = |e|'g.n. € Sy,
where n. is a unit vector normal to e, and g. € S is the standard basis function defined
1 ife= : : : : . C
by ge(me) = { 0 1{‘ Z £ Z , see Figure 1. It is easily verified that, assuming n, points into
0

FIGURE 1. ¢. and w..

T,
—(volT)™' on T,
divw, = On.g. = (volT)™" on T,
0 elsewhere.

Now on some Ty € 74, fix pg, and let Ty € 71 be such that e = Ty N T} is an edge. We
will call such triangles neighbours. Then (1.16) for v; = w. determines Pk, uniquely.
In this way, by marching from neighbour to a still unvisited neighbour, py € [[7¢,, Fo(T)
can be fixed completely. In the end, by subtracting a suitable constant, p; is mapped
into Q. Clearly, this procedure for computing py is equivalent to solving (1.17), where
R, = span{w.} with ¢ running over all edges that were crossed in the marching process.
A potential pitfall with the approach of solving (1.17) is that in practice, instead of the
exact solution ug, only an approximation 0y € Zj will be at ones disposal, since (1.15) will
have been solved by an iterative method. With uy replaced by 6y, # uy, the system (1.16)
does not have a solution, but because of (1.13) and Sy = Ry, & Zj, the system (1.17) does,

which solution we denote by pr. With T}, : Zr — Qj, being the linear operator defined by
be(Vi, Tewr) = —ag(wg, vi) (vi € Rg),
there holds
Pk — Pr = Tr(ug — y).

-1
. . . . b
Remark 1.3. 1t is easily verified that ||T}||p2e16 > <1nfo¢qker SUPoLy, R, m> )

For the non-conforming P;, piecewise constant finite element pair, we have computed
| T%|| 21 & numerically in the following situation: € = [0,1]?, 74 is a uniform partition of
Q) into right-angled isosceles triangles of which the equal sides have length h; := 27F,
and Ry = span{w.}, where ¢ runs over all edges corresponding to the dotted lines
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as indicated in Figure 2 for the case & = 2. The results given in Table 1 indicate

FIGURE 2. Crossed edges in the marching process defining Ry,

k |1 2|34 |56 | 7
HTkHLz(Q)Hk \ 2.3 \ 10 \ 11 \ 160 \ 650 \ 2600 \ 10000
TABLE 1

that ||Tk||r2)e1,6 ~ hi?. In case of f € L?()?, and thus ||lu — uxlix = O(hy) and
lp — prllzz = O(hy), this means that the algebraic error uy — uy, in || ||; g-norm should be
of order h} to be sure that the resulting algebraic error in the pressure will not dominate
the discretization error. That is, thinking of a linearly convergent iterative method, and
an initial error that is of order 1, one should triple the number of iterations sufficient for
solving the velocities from (1.15), if one wants to use the outcome to compute the pressure
afterwards using this marching process.

An alternative approach to solve for the pressure can be based on our gradient solver:
Given some approximation u; € Sy of u, solve p, € () from

b(vi, p) = T(vi) — ap(0r, vi) (v € Vi)
Since u and p satisfy

b(v,p) =f(v) —ar(u,v) (v € H(Q)7),
an application of Theorem 1.2 shows the optimal error estimate

5 VZy s _ Ly — 6
lp = pellee < (L+55) inf lp = giflze + Slw — gl

where now ||p—pi||z2 and |[u—1gl|1  are the ‘total” errors. In particular, with this approach
an algebraic error in the approximate velocities is not blown up.
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2. CONSTRUCTION AND IMPLEMENTATION OF THE GRADIENT SOLVER

Let 75 be some conforming triangulation of a polygon Q C IR*, and for k > 0, let 7,41 be
constructed from 75, by subdividing each triangle from 75 into four congruent sub-triangles.
For each k, () is defined as the space of piecewise constants with respect to 7, with zero
mean. We will construct spaces Vy satisfying both dimVy = dimQy ((1.4)) and the LBB
condition (1.5).

We recall the marching process discussed in §1, which however here will be applied on
the coarsest level only. Starting from some T' € 7y, until we have been in all triangles in
To, we travel from already visited triangles to yet unvisited neighbours putting the edges
that were crossed between such neighbours in a set called Ey. In case 75 does not contain
internal vertices and () is simply-connected, Fy will be the set of all internal edges in 7,
but otherwise Ky will be a proper subset of that set. In any case the number of elements
in Eo will be equal to dim Qq. For each ¢ € Ey, e = TNT with T,T € 7, let w, € H}()?
be some function such that fe W, - n.ds # 0, where n. is a unit vector normal to e. We
define Vo = span{w, : ¢ € Ey}.

For each 0 # ¢ € o, there exists an e € Fy, e = T' N T with T,T € 7, such that
qly # 4|7 From [b(we, q)| = |(q], — ql7) J.we - n.ds| # 0, we conclude that

b
(2.1) inf  sup M > 0.

0#1€Q0 0ve Vo [|VII(an2llallz2

For m > 1, m € IN, we define F,, as the set of new edges in 7,,, that is, all edges that
were added to refine T' € 7,_;. For each ¢ € E,,, ¢ = T N T with T,T € T, let £ be
the line connecting both vertices of 7' and 7" which are not on e. Since, because of the
refinement procedure, 7' U T is a parallelogram, ¢ intersects e at its midpoint m.. Let
ge € Hy(T'U T) be the function that is 1 at m., and that is linear on the four triangles
generated by intersecting both 7' and 7' along ¢. For a non-zero vector s, in m, pointing
along ¢, and with n. a unit vector normal to e, say pointing into T', we put

2¢g.s.

We = le] se - ng

€ H(TUT)?,

see Figure 2. By construction, divw, = s, ge 1s constant on both 7' and 7', and in

le| se'ne
particular

—(volT)™" on T,

divw, = (volT)™*  on T,
0 elsewhere.
We infer that
(2.2) divw, € Q,,, divw, Lr2 Q,_1,

and, with W, := span U* _, {w. : e € F,,}, that
(23) leWk = Qk @LL2 QO-



10 ROB STEVENSON

' 5%

Finally, using the fact that suppw. Nsuppw: = 0 for all e, ¢ € F,, that are not contained
in a common T' € 7,,_1, a homogeneity argument shows that

(2.4) 27+ [lz2y2 < ||div - ||zz  on span{w, : ¢ € E,}.

FIGURE 3. ¢. and w..

Note that the latter relation is valid uniformly in all triangulations 7y that satisfy some
minimal angle condition.

Defining Vi, = Vg + Wy, there holds that
dimVy, = # (U o Ern) = dimQy.
In Theorem 2.3 we will prove that

b
(2.5) inf inf sup b(v, )

— > (.
k ozqeQpati2 Qo opvew, || Va2 llallz

Since by (2.2), b(Wg, Qo) = 0, an application of Lemma 2.1 given below now shows that
(2.1) and (2.5) imply that
b
inf inf  sup M > 0,
b 0£a€Qr oxvevy || V]2 llallze
i.e, both (1.4) and (1.5) are valid.

Lemma 2.1. Let ) = Q14+ Q2 and V = V{+ V3 be normed linear spaces, b a sesqui-linear
form on 'V x Q) for which

b(Vz, Ql) = 0,
and C,~v1,7v2 > 0 constants such that

b
D)

b
<, inf  sup M > (1 e{1,2}).
0#4e@,020eVv ||[V[Ivlgllg 0£9€Q: 0£ueV,

vilvilglle ~
Then there exists a v > 0, only dependent on C,~1,72, such that

- 1b(v, q)]
it sup ———— > 7.
0£4€Q ozvev || V][v]¢llo
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Proof. Let ¢ = ¢1 + q27 where ¢1 € @1, ¢2 € Qs.
In case ||g2]lq < F5llaillg, and thus |lqll¢ < (1 + J5)|la1llg, let vi € Vi be such that
b(v1,q1)| > %’71”V1HVHC]1HQ Then
b(vi, 1 + @2)| > Snllvillvlialle — Clivillviille
= milvilivlialle = (G1/(1+ 35)) [Ivillvllalle-
Otherwise, when ||q:||q > 35](41]lq, and so ||g|lq < (i—? + 1)||g2]|@, let vo € V3 be such
that [b(va, q2)| > 372[[vellvlg:lle- Then

(g1 + 42, v2)] = 16(az va)l 2 balvalivilaallo > (392/ (22 + 1) [valivligle:
0

There remains to prove (2.5). At first for theoretical purposes, but later also for con-
structing an efficient implementation of the gradient solver, for m € IN, we define S, as
the conforming P; finite element space with respect to a refined triangulation 7,, defined
below, i.e. S*m = C(Q) N Hy(2) N HTGT P(T). The triangulations 7, are constructed
from 7, by subdividing each T' € 7, into 6 sub-triangles by connecting the vertices with
the midpoints on the opposite edges. The resulting spaces S,, are nested, i.e. S, C Sm-l—h

FIGURE 4. Construction of the triangulation 7, underlying S,

and for m > 1,
(2.6) {w.:e€ B,}CS,, :=52.

Remark 2.2. The construction of w, € H}(T U T) dlrectly generalizes to any pair of
triangles 7', T that share an edge e, and for which 77U T is convex. Indeed, what is needed
is that the hne ¢ connecting both vertices of T' and T that are not on e intersects e. The
reason why we only considered cases where ¢ intersects e at its midpoint is the property

(2.6).
Theorem 2.3. There holds

b
inf mf sup b(v, )

— > (.
k o0qe0peti2 Qo 0tvew, |[VIa2llallze

Proof. A so-called strengthened Cauchy-Schwarz inequality is valid on the sequence (Sm)m,
(cf. e.g. [BY93, Lemma 3.3]), i.e., there exists a § < 1 such that for n > m,

|(Vm7Vn)(H1)2| 5 5”_mHVmH(H1)22nHVnH(L2)2 (Vm - Sm,vn - Sn)
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Combined with the inverse inequality,
HVmH(H1)2 ,S QMHVmH(L2)2 (Vm € Sm)7

we derive that
k

k
(2.7) 1Y valltie S 4" Ivallfze (Vi € S0).
m=0

m=0

Substituting v, = EeeEm cw. in (2.7), by (2.4) and (2.2) we find that

k k k
H Z Z ceWeH(2H1)2 ,S Z H Z CediVWeH?’ﬁ = H Z Z cedivw@”?ﬁ?

m=1e€El, m=1 e€Elm, m=1eElbm
or || ||y =< ||div - ||z2 on Wy (uniformly in k).
Since by (2.3) any ¢ € Q) ©+22 Q¢ can be written as ¢ = divv for some v € W, we
arrive at

_ v, 9l — o(v, q)]

- HdiVVHL2 ~ HVH(H1)2

lgllz2

Y

which completes the proof. O

Finally, for given g, € V), we discuss the implementation of setting up and solving a
system corresponding to the problem of finding pp € Q) satisfying

(2.8) b(vi,pr) = gr( V) (Vi € Vi).

Let ®¢ be some basis on (Jg. If we equip V; and @) with bottom-to-top level-wise
ordered bases UX _ {w, : ¢ € E,,} and &g+ U _ {divw, : ¢ € E,,} respectively, then (2.8)
results in a matrix-vector system

B.P;, = Gy,

where Py, is the representation of p; with respect to above basis of Qr, G = [8r(We)]ceE, 0<m<ks
and By 1s the matrix having as elements the application of b to all pairs of basis functions
from Vj and @} respectively. The multi-level ordering of these bases induces a block par-
titioning By = ((Bk)mn )o<m,n<k, with the size of (Bg)n., being #F,, x #E,. The property
(2.2) now implies that (Bg)m, = 0 except for m = 0 or m = n. Moreover, with respect

to a canonical ordering of the basis functions within each level, the matrices (Bg)pm for

1 < m < k are block diagonal matrices, with blocks of size 3 x 3. We conclude that By
can be inverted in O(dim Q) operations.

Remark 2.4. Iffor all e € Ey, e = TNT with T, T € 7, the line ¢ connecting both vertices
of T and T which are not on ¢ intersects e at its midpoint, then just as on levels> 0, w.
can be selected in Sq with divw, € Q. In this case, (Bi)on = 0 for n > 0, or By, will be a
block diagonal matrix.

Otherwise, a reasonable approach is to take w, = 22 where f. € HS(T'U T) is defined

ER /
by fe(m.) =1, and f. is linear on all 7" € 1. Note that w. € Sy, fe w. -n.ds = 1, and
that divw, € @1, which means that (By)o, = 0 for n > 1.
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Since the diameters of the supports of the basis functions w, of Vi are not all of order
27% but instead range from order 1 to order 27%, a straightforward computation of Gy,
or a sufficiently accurate approximation of this vector involving numerical quadrature, can
be expected to demand a number of operations of order & dim Q).

Therefore, let us equip S, with the standard nodal basis {Vm : @ € Np}, where Ny
is the set of interior vertices of 7. Since diam(suppry,) ~ 27%, we may expect that
Gy = [(g](:)(l/k@),g](f)(l/k@))]we]\fk, or a sufficiently accurate approximation of this vector,
can be computed in O(dim Q) operations.

In view of Remark 2.4, we assume that Vo = span{w,. : ¢ € Ey} C Sl, and so V, C Sy
for k > 1. For k > 1, let I be the representation of the embedding of V. into Sk Then
there holds G; = Igék With span{w. : ¢ € E,,} being equipped with {w, : ¢ € E,,},
for m > 1 let the uniformly sparse matrices q,, and p,,+1 be the representations of the
embeddings span{w, : ¢ € F, } — S,, and S,, — Sm-l—l respectively, and let ¢ be the
representation of the embedding span{w, : e € Ey} — S,.

With these definitions, the mappings I satisfy

Lipi= [ prnls Qe ] (B>1), Li=[@ a .

So for the transpose we get

IT T T
IEH:[ p] (k> 1), Ifz{q%],
Qi1 q

which induces a top-to-bottom recursive procedure to evaluate I} times vector, in particular
to compute Gy, = Igék, in O(dim Q) operations.

As a result of the computation described above, one obtains a vector P, that represents
the solution p; with respect to the multi-level basis ®q+UF _ {divw, : ¢ € E,,} of Qj. Yet,
one often prefers to have a representation, denoted by Py, of px with respect to the canonical
basis of HTerk Po(T). We follow an analogous procedure as described above. We equip
HTerk Po(T') with its canonical basis. Let ik be the representation of the embedding of ()
into [[7¢,, Po(T). Equipping span®y with @, and for m > 1, span{divw. : e € E, } with
{divw. : e € .}, let o be the representation of the embedding span®q — []c, Fo(T),
and for m > 1 let the uniformly sparse matrices q,, and p,, be the representations of the

embeddings span{divw, : ¢ € F,,} — HTETm Po(T') and HTeTm_l Po(T) — HTETm Po(T)
respectively. Then the mappings I, satisfy

ik-|-1 = [ ﬁk+1ik élk-|—1 ] (k > 0)7 i0 = 6107

which yield a bottom-to-top recursive procedure to evaluate I, times vector, in particular
to compute Py = I; Py, in O(dim Q) operations.

Summarizing: Assuming that Gy is available, we can compute Py = IkBIZIIEGk taking
O(dim @) operations.
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