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In continuation of previous work we extend the class of two-body potentials, either repulsive 
or of generalized LennardJones type, for which it can be proved that among all configurations of 
an infinite one-dimensional system of interacting particles (with fixed density in the case of 
repulsive interaction) the configuration where all particles are equidistant has the minimum 
potential energy per particle. It is shown that this property does not hold for the repulsive 
potential 4(x) = (1 +x4)-‘. 

For infinite systems in n-dimensions it is stated that a necessary condition for an analogous 
property is that the Fourier transform 4(k) of the potential be non-negative for all k. The proof of 
this statement will be given in a subsequent publication. 

1. Introduction 

In a previous paper’), to be referred to as I, we studied configurations of 
one-dimensional systems consisting of a finite or infinite number of equal 
particles interacting with two-body potentials 4 (x). We assumed throughout 
d(x) = 4(-x) and 4(x) to be integrable at infinity. 

With respect to these systems we proved a number of theorems among 
which were the following: 

1) If 4”(x) > 0 for x# 0, i.e. if the two-body interaction is given by a 
convex repulsive potential, then for an infinite system of arbitrary but fixed 
number density the configuration where all particles are equidistant has the 
minimum potential energy per particle. 

2) If 4(x) is a Lennard-Jones potential (L.J. potential) defined by 

then, if 

I-m~(m+l)({(m)-l), with{(m)=2n-“, 
II=1 

(1) 

for an infinite system among all configurations the one, where all particles are 
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equidistant with lattice constant ao, has the minimum potential energy per 
particle. a0 is uniquely determined by the condition Xr=, 4(kx) has a minimum 
for x = a~. 

Furthermore we considered in I a more general though rather similar type 
of potentials than the L.J. potential, which we called type-A potentials. A 
potential 4(x) was called a type A-potential if i) there exists a positive 
number ro, such that 4(x) is strictly decreasing for 0 <x s ro and strictly 
increasing for x 2 ro and ii) Jt 4(x) dx > 0 (or 03). It will be evident that a L.J. 
potential is of type-A, but the latter are more general. Theorem 2) may be 
generalized for a wider class of type-A potentials than the L.J. potential 
satisfying condition (2), however it was shown in I by a counter-example that 
it does not hold for all type-A potentials. 

In the present paper we will continue the work reported in I and we will 
prove a number of theorems which extend the class of potentials for which 
the equidistant configuration proves to be the one with minimum potential 
energy per particle. For instance we will show that for a class of repulsive 
potentials which are not convex (in distinction from 1)) and which includes 
potentials like 

4(x) = e-ax2 (a > 0) (3) 

and 

1 
4(x)=(b*+x*)o (a>&b>O), 

for infinite systems with a given arbitrary density the equidistant configuration 
has minimum potential energy per particle. On the other hand we show that 
the latter property does not hold for a potential as 

4(x) = (1 + x3-l. (5) 

Furthermore we have generalized the theorem 2) mentioned above to a 
subclass of type-A potentials (which are repulsive at short distance and 
attractive at large distance), which includes all L.J. potentials (1) and which 
we call type-C potentials. (Type-B potentials defined in I will not be con- 
sidered here, but it may be noticed that not all B-potentials are C-potentials 
and neither are all C-potentials B-potentials.) 

A type-C potential in a type-A potential for which a fixed number (Y > 0 
exists such that 

((Y + l)+‘(x) + x+“(x) > 0 for all x > 0. (6) 

All L.J. potentials (1) with 1 > m > 1 are of type-C, since 4 (x) given by (1) will 
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satisfy (6) for I 2 a 2 m. However, type-C potentials are more general 
because any A-potential is of type-C as soon as its derivative can for x > 0 be 
written in the form: 

4’(x) = x-“-%(x), 

where (Y > 0 and e(x) may be any differentiable strictly increasing function. 
On the other hand there are many A-potentials which are not of type-C, e.g. 

4(x) = A e-*” -B emw (x,B,j~ >O;A >p;Ap >Bh). (7) 

It seems plausible that theorem 2) also holds for the potential (7), but we 
have not yet been able to prove this. We have shown, however, that for 
potential (7) among all ‘periodic configurations with 2 and 3 particles per unit 
cell and with a volume per particle a s a0 the equidistant configuration with 
the same volume a per particle has the minimum potential energy per particle. 
Here a0 is uniquely determined by the condition that ZF=, 4(kx) has a 
minimum for x = ao. The proof of this statement will not be reproduced here. 

While the present paper was being written we received a preprint by 
Gardner and Radin’) in which a one-dimensional system of particles interac- 
ting with a L.J. potential is considered. The authors show that for a finite 
system the configuration with minimum potential energy is unique and that it 
approaches uniform spacing in the limit of an infinite number of particles. 

It has been mentioned in I already that unfortunately the proofs of the 
theorems mentioned above cannot be readily generalized for systems in two 
and three dimensions. In a subsequent publication, however, we will prove 
the following theorem valid for an infinite n-dimensional system: 

Let 4(r) be a potential in n-dimensions with the following properties: 

i) 9(r) = 4(-r). 
ii) 4(r) is sufficiently well-behaved at Irl = 0 and at jr1 = ~4. 

iii) The Fourier transform &k) = I eik ‘r4(r) dr exists. 

If a density p. exists such that for all given densities p > p. the potential 
energy per particle in an infinite periodic system of particles has a minimum 
for a Bravais-lattice (the unit-cell of which may be chosen in such a way that 
its linear dimensions approach 0 as p *m) then d(k) 2 0 for all k. 

2. Type-C potentials 

It may be recalled (cf. I) that in the case of an infinite number of particles 
we have introduced a large but finite periodicity number IV, such that 

XN+n+l- XN+n = x,+1-x,, for all n and the x, are chosen so that x,+~ -x. > 0. 
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Furthermore in this case the mean potential energy per particle is defined by 

U({&)) = N-’ $, 8, 4(&+f - Xi). (8) 

On the other hand for a finite system with N particles u({x,}) is defined by 

N-l N-i 

U({&l) = N-’ 2 2 4(&+l -Xi). 
i=l I=1 

In this section we will prove two theorems: 

i) If 4(x) is a type-C potential (cf. (6)), the equation 

z @‘(la) = 0 h as a unique solution a = a0 > 0, 

and for all finite or infinite configurations 

(10) 

(11) 

The equal sign holds iff x,+~ -x,, = a0 for all n. 

ii) If 4(x) is a type-C potential, for an infinite system with a given volume 
per particle N-‘(xN -x0) = a s a0 (i.e. the fixed density is larger than or equal 
to ai’ given by (10)) 

U(-+“1) 2 ;, Ma). (12) 

Again the equal sign holds iff x,+1 -x, = a for all n. 

The proof of these two theorems will be arranged in a few steps: 
a) In I, appendix A it has been shown that for all type-A potentials and 

therefore in particular for all C-potentials the equation 

z @‘(la) = 0 

has at least one solution a0 > 0. 
From (6) we infer that the equation ET=“=, @‘(lao) = 0 implies 

and therefore that the function 2;“=, @‘(la) is increasing in the neighbourhood 
of its zeroes. Hence Z;“=i L#J’(/u) has at most one zero for a > 0. From these 
observations we may conclude that a0 is unique. 
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b) From (6) it follows that for x > 0 and z > 0 

I (1-U) {Y@'(Y) + (a + ~M'(Y )> dy 2 0, 

where the equal sign holds iff x = t. Integrating by parts we find 

We now combine (13) and (14) and we find 

L 

d(z)-4(x)=/@(y)dy+a-‘{(;)“-l]x+‘(x), 
X 

(13) 

(14) 

(15) 

where the equal sign holds iff x = z. 
c) Applying (15) to (8) we find 

U({X”l) - 8, Wa) T= -a-’ 2 [N-1 g {(&y - l]] W’(la), (16) 

where for the moment a is an arbitrary positive number. The equal sign in 
(16) holds iff x,+! - xn = a for all n. Now 4(x) is a type-A potential, hence 
there is a positive number r. such that 4’(x) < 0 for 0 <x < r. and 4’(x) > 0 
for x > t-0. Therefore if a 2 ro, Z;“=, l+‘(h) >O and from this we infer that 
a0 < ro. 

Let us choose the number a in (16) in such a way that 

0 < a < ro. (17) 

From (6) it follows that the condition C+‘(X) s 0 implies 4”(x) > 0. Hence 4’(x) 
is a strictly increasing function of x in the interval 0 <x G ro. 

Let 10 be the largest integer for which lou s ro. It then follows that 

4’(k) < +‘((I + 1)~) GO for I + 1 =z lo (Iga) 

and 

4’(k) > 0 for I > lo. (18b) 

Nowlett, (m=1,2,..., j) be a set of numbers obeying t, 3 tz* * .a ti 2 0. In 
appendix A we will prove that for any convex function g(x) and if I 3 j: 
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(19) 

where the equal sign holds iff x,+~ -x, is independent of n. We use the 

inequality (19) taking j = 10, t, = -~#~‘(ma) and we find for I > 10 

We now make the choice g(x) = (a/x)” - 1 and we apply (20) to the summation 
EC+, which is part of the right-hand side of (16). As a result we find: 

x {$, i$ ((xi+~~xi)~ - 1) md’(mu)}. j$ WW. (21) 

If in particular we take for a the value a0 as defined by (lo), we conclude 
from (21) that 

(22) 

where the equal sign holds iff x,+~ -x,, = a0 for all n. 
This proves, for infinite systems, the first theorem. 

By the same arguments as given in I it may be shown that ZF==, ~$(/a~) is also 
a lower bound on the energy per particle of a finite system and further that 
this lower bound can be approximated to any degree of accuracy by increas- 
ing the number of particles of the system. 

d) In order to prove theorem ii) we now suppose that N-‘(xN - x0) < a0 and 
in (21) we choose a = iV-l(x~ -x0), i.e. a is the fixed average volume per 
particle. We then have 

(23) 

because we know that Z;“=, @‘(la) has only one zero ao, where the derivative 
of this function is positive. 

From the fact that (a/x)” - 1 is a convex function of x and that +‘(ma) s 0 

for m s 10 we conclude that 

N-‘g {(xi::xiJ - l}m4’(ma) 
=s { ((Nma)-’ 2 (Xi+m -X,))-a - 1) m+‘(ma) = 0. (24) 
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Combination of (21), (23) and (24) then leads to 

(25) 

for a = NM1(xN -x0) <a~. The equal sign holds iff x,+~ - xn = a for all n. 
Q.E.D. 

3. Repulsive potentials 

In this section we consider again infinite one-dimensional systems of 
particles, but the two-body potential 4(x) will now belong to a class of 
repulsive potentials, which, however, will not be convex in distinction from 
those treated in I. We will prove that for the potential 

4(x) = emax (a > 0) (26) 

the minimum potential energy per particle for all systems with a given, but 
arbitrary, density is assumed (and assumed only) for the configuration where 
all particles are equidistant. 

It then follows immediately that potentials of the form 

m 

4(x) = / W(a) e-ax2 da, with W(a) 2 0, 

0 

have the same property. For instance, choosing 

a”-l 

W(a) = me 
-ub2 . , with n > :, 

we see that the property mentioned also holds for the potential 

d(x)= l (b2+XZ)nr with n >i. 

(27) 

(28) 

(2% 

Here b is an arbitrary constant. 
On the other hand we will show by a counter-example that the property 

does not hold for the potential 

46) =& 
In fact this might be inferred already from the necessary condition for the 
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Fourier transform of the potential, mentioned at the end of the introduction. 
The Fourier transform of (30) is given by3) 

A 
4(k) = n e-“2tilki cos($d/Zlkl - an), (31) 

which is not positive definite. 
Let us now proceed to the proof of our theorem for the potential 4(x) = 

emX2 (without loss of generality we take LY = 1 for simplicity). Let p be the 
positive root of the equation 

e X2 = 1 +2x2. 

Numerical calculation gives p = 1.1209. 
We distinguish two cases: 1) a ap and 2) 0 <a up, where a = 

N-‘(xhi - x0), i.e. the mean volume per particle. 
1) We define a function 4,(x) by 

6(x) = 4(x) for 1x12 P, 

4,(x) = 1- 21x1~ ewpz for 1x1 Sp. 
(32) 

Notice that d,(x) and its derivative are continuous in x = p. It is easily verified 
that 4,(x) has the properties: 

a) 61(x) <4(x) for 0 <x <P, 

b) @i’(x) 2 0, i.e. 4,(x) is (not strictly) convex. 
(33) 

We can now conclude that 

U({Xn})EN-‘~ 2 ~(Xi+l-Xi)ZN-'$~ +l(Xi+/-Xi) 
i=l I=1 i=l /=I 

a 2 41 {N-’ 2 (-%+I -xi)} = g 4l(IQ) = $ $(la). (34) 

This completes the proof for case 1). 
2) This case is rather more complicated. The Fourier transform of #J(X) is 

given by 
m 

d(k) = 2 
I 

4(x) cos kx dx = d; e-1’4k2. 
0 

It is not difficult to verify by means of partial integrations that 

m 

4(x) = $ j 4(k) cos kx dk 
0 

(35) 

2da 

=; j- coskx(&k)-~(k-;;‘a)‘&‘)(~)]dk+ 
0 
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m 

+-1_ 
5r I g(kx)k4&4’(k) dk = 4,(x) + C&(X). (36) 

2do 

+,(x) and &(x) are defined by the first and second integral respectively. 
$‘“‘(x) denotes the nth derivative of J(k) and the function g(y) is given by 

g(y) = y-*(:y2+ cos y - 1). (37) 

We note that dC4)(k) = (1/16)X&(k* - 12k2 + 12) em”4k2 > 0 for k > (6 -t 2%%)“‘= 
3.3014. 

In the present case we have 

F 2 F = 5.6054 > (6 + 2d6)“‘, 

and therefore 

dc4’(k) > 0 for 

From its definition 
given by 

k>k 
‘a’ 

(36) it is evident that the Fourier-transform 

6,(k) = d(k) - &, w $(I) (F) for Ikj SF 

and 

&i(k)=0 for Iklp?. 

(38) 

of ~$i(x) is 

(39) 

Further we remark that from the explicit expression for d(k) it may be shown 
that 

J,(k) > 0 for Ikl CC (cf. Appendix B). (40) 

From Poisson’s summation theorem”) we can now conclude that 

N-l 2 2 +I(-%+1 - Xi) 
i=l I=1 

(41) 
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We now show that a similar inequality can be proved for 

m 

C#Q(X) = a 1 g(kx)k4cjc4’(k) dk. 
27ria 

(42) 

Let us introduce a function g,(y) defined by 

gdy) = g(y) for y 2 2~ 

= g(27r) + (y - 2r)g’(2n) for 0 S y S 2~r. 

g,(y) can simply be shown to have the following properties: 

a) gl(y) is convex for y > 0, 

b) g(y)-g,(y)>0 for Ocy <27r. 

It then follows that (cf. (38), (42), (43) and (44)): 

N-l 2 2 +2(Xi+l - Xi) 
i=l I=1 

m 

= (TN)-’ 2 2 1 g{k(xi+, - xi)}k4dc4) dk 
i=lI=l 

Zala 

a (TN)-’ g _f 2 g,{k(xi+/ - xi)Ik4$(4)(k) dk 

2alo 

m 

2 nTT-’ z 1 gl (kN_’ 2 (xi+/ - &I} k4d’4’(k) dk 
Zda 

g,(kla)k4$‘4’(k) dk 

=?T 
-lg i 

g(kla)k4&‘4’(k) dk 
2nla 

Combination of (41) and (45) leads to the result that also in case 2) 

U(lxn}) = IV-’ 2 2 +(Xi+l -Xi) a g, +(lU). 
i=l I=1 

(43) 

(44 

(45) 

(W 

It is easily verified that the equal sign in (46) holds iff x,+~ - xn = a for all n. 
We will now show by a counter-example that the theorem proved in this 
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section for a class of repulsive potentials is by no means true for all repulsive 
potentials. Let us consider the potential 

C$(x) = (1 + x4)-‘. (47) 

First we calculate the mean potential energy per particle for the equidistant 
configuration: 

x, =+n (all n). (48) 

The result is: 

u({x,)} = 2 &I) = 1.7212. 
I=1 

Next consider the configuration: 

x2” = n W n), 

x2”+1= n (all n). 
(50) 

This configuration, where at each lattice point n two particles coincide, has 
the same density 2 as the equidistant configuration (48), but here the mean 
potential energy per particle is: 

u({x,)} = f+(O) + 2 2 4(I) = 1.6570, 
I=I (51) 

i.e. it has a smaller energy per particle than the equally dense equidistant 
configuration. It is easily verified that the configuration with 3 coincident 
particles (and the same density) has an even lower energy per particle. 

Appendix A 

Proof of (19)* 

Let us first take t, = 1 (m = 1,2, . . . , j), i.e. we will prove that 

(A. 1) 

for any convex function g(x) and for 1 2 j. The equal sign will hold iff x,+] - xn 
is independent of n. Let us call 

g g ry) = 2 g (“i + Qi+l+ * * * + Ui+m-I) ~ G,. 

i=l m 64.2) 

* We wish to thank Dr. J. Groeneveld for showing us the proof of (A.l) reproduced here, which 
is more elegant than ours. 
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Here ai z xi+1 - Xi is the distance between particles i and i + 1. (Qi+N = ai). 
Hence we must prove 

Ai,= i m(G,-G/)30 forIZ=j. 
!?I=, 

From the convexity of g(x) we know that 

k l-k 
G, <-Gk +- 

I 
, GImk forO<kkf. 

Hence 

(A.3) 

(A.4) 

(A.9 

Noticing further that Ajj = A+l,j we conclude from (AS) that we can restrict 
ourselves in our proof to: 

lSj<IS2j-1. (A-6) 

Let us define 

Ckl= kGk + (I - k)GIek - IGI for 0 S k S 1. (A.7) 

From (A.4) it follows that 

Ck, a 0. (A.@ 

Consider now (I - j <j): 

Ail- &j-I)/ = C m(Gm - GI) 
m=l-j 

= (1- j)G,-j + jGj - IGI 

+ (I -j + l)G,-j+l + (j - l)Gj_l - IG, + * * * 

(A-9) 

where 

1 forx>O 

e(x)= f for x =0 

0 forx<O. 

Now obviously All 3 0 and as I - j - 1 <j - 1 we may conclude from (A.9) 
that we can successively show that Aj/ 2 0 for all j and 1 satisfying (A.6) and 
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hence also for all I 2 j 3 1. The proof of (A.l) is now complete. In (19) we had 
introducedasetofnumberst,(m=1,2,...,j)withtl~~tz5~~~~~ti~O.We 
now multiply (A.l) with rj, (A.l) with j replaced by j - 1 with rim,- tj, (A.l) 
with j replaced by j - 2 with ti-2 - tj-1 and so on. 

Adding the resulting inequalities we find (19). 

Appendix B 

Proof of (40) 

We start from (39): 

&r(k)=0 for k 3%. 
a 

We want to show that $r(k) > 0 for 0 s k < 2n/a. Let us call 27/a = ko. 

4,(O) = &O) - 2: (- @‘(k )k’ 
,=o l! 0 0. 

Therefore 

& {c&(o)} = - 2 &, kb-‘&‘)(ko) - 2 $$ kb$“+“(ko) 

= _ 2 (- l)‘+’ - k$‘+‘)(ko) - $, + k&$(‘+‘)(ko) 
,=o I! 

k: = z dC4’(ko) > 0 (cf. (38)). 

Hence J,(O) is an increasing function of ko. For ko = 2n/p calculation gives: 

d,(O) = 0.746Od\/1r, 

and for all k. 2 274~ (i.e. 0 -C a up): &r(O) > 0. One verifies from J(k) = 
Gee- 1’4k2 that 

(- l)@“‘(ko) > 0 0’ = 0, 1,2,3,4). 

Further from (39): 

&i’(k) = 4”‘(k) _ 2 @+!!?.i &f+“(ko) 

I=0 . 

forj=0,1,2,3andOSkcko. 
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One can now show easily that 

$‘(O) > 0, ${“(O) > 0, &$“(O) t0 and ${3’(0> > 0 

and also: (B.1) 

C&(/C,,) = &“(ko) = &*‘(k,,) = &i3’(k,,) = 0. 

Furthermore we know from (39) and the explicit expression for Jc4’(k) (cf. the 
line below (37)): 

&\4’(k) = Jc4’(k) > 0 for 0 < k ~(6 - 2X&)“* 

and for ko > k > (6 + 2.\/6)“*, 

c$t4)(k) = $‘4’(k) < 0 for (6 - 2X&)“* < k < (6 + 2V/6)“*, 

i.e. 4’:‘(k) is strictly increasing for 0 s k ~(6- 2v\/6)“* and kOa k 3 

(6 + 2X@“*, and is strictly decreasing for (6 - 2fi)“* G k s (6 + 2~&)“*. 
If we combine this result with (B. 1) we may conclude that a number z3 exists 

with (6 - 2d/6)‘/* < z3 =c (6 + 2~&)“*, such that 

$r’(k) > 0 for 0 =S k < 23, 

&r’(k) < 0 for 23 < k < ko, 

&j3)(z3) = 0. 

Hence d’*‘(k) is strictly increasing for 0 s k s z3 and strictly decreasing for 
23 G k s ko. We can continue in a similar way and we find: There is a number 
22 with 0 <z2 <z3, such that 

&P’(k) < 0 for 0 G k < z2, 

d\“(k) > 0 for 22 < k < k 0, 

f$ (:)(z*) = 0. 

Furthermore there is a number zl with 0 < zl < z2, such that 

d\“(k)>0 for O<k <tl, 

C$ I”(k) < 0 for ,zl < k s ko, 
1 
41(z1) =a 

And finally (cf. (B.l)): 

&(k)>O for O=%k<ko. Q.E.D. 
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