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The kinetics of clustering through addition (ak + al ~ ak+l) and condensation (aj + ak ~ aj+k, 
j v ~ 1, k ~ 1) for a model of cylindrically shaped monomeric units a~ are studied, using Smoluchowski's 
coagulation equation, and analytic solutions for several limiting cases (fiat disks and needles) with and 
without condensation reactions, were given. The condensation models of flat disks and needles include, 
respectively, the linear polymer model RA 2 and the branched polymer model A2RB~ (with a gelation 
transition). If condensation reactions are inhibited, we obtain exactly soluble addition models with a 
monomer-cluster rate constant independent of or proportional to the cluster size. The monomers are 
(i) supplied in a given amount at the initial time; (ii) generated by a steady source; or (iii) supplied by 
an infinite reservoir that keeps the concentration of monomers, cz(t), constant in time. 

1. INTRODUCTION 

In this paper we discuss models  for clus- 
tering or coagulation processes, resulting f rom 
addition and condensat ion reactions, occur- 
ring in many  fields o f  science; e.g., atmospheric 
physics (1), po lymer  science (2), colloid chem- 
istry (3), hematology (4), etc. The clustering 
process is initiated by a pr imary  source o f  fine 
grained particles or  monomer i c  units a~. 

In the early stages o f  clustering the basic 
mechanism of  growth proceeds via fine grained 
particles, that  can either stick to larger particles 
or  to each other, according to the addit ion 
reaction ak + a~ ~ a~+~. 

This reaction scheme enters in a variety o f  
clustering problems, such as birth and death 
processes (5), aerosol agglomerat ion in gas to 
particles conversion systems (6-10), poly- 
merizat ion (1 1), fiocculation (3), aggregation 
o f  red blood cells (4). 

In the next stage o f  the growth process, when 
the a m o u n t  o f  m o n o m e r s  becomes depleted 
or the concentrat ions o f  m o n o m e r s  and o f  k- 
mers become comparable,  condensation re- 
actions (a i + ak ---* aj+~; J, k > 1) become 
impor tant  (12-15). The t ime evolution o f  the 

0021-9797/84 $3.00 
Copyright © 1984 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

size distribution or  concentra t ion c~(t) of  k- 
mers is then given by Smoluchowski ' s  coag- 
ulation equat ion ( 1): 

dc~/dt = -~ ~ Kqcicj - c~ ~ Kkjc~, [1.1] 
i+j =k j = 1 

to  be solved subject to the m o n o m e r  initial 
condit ion ck(0) = Mrkl (where M is the con- 
centrat ion o f  m o n o m e r s  initially put  into the 
system). Kq is the bimolecular  rate constant  
for coagulation o f  an i-mer and  a j -mer ,  and 
fragmentat ion reactions have been neglected 
in [1.1]. A fundamenta l  property o f  [1.1] is 
the conservation o f  total mass ~ kc~(t) = M. 
Certain condensation reactions, however, lead 
to a violation o f  mass conservat ion after a 
finite time, which is interpreted as being caused 
by the appearance o f  an infinite cluster or  gel 
(13, 14). This phenomenon ,  to which we will 
briefly return in Section 2, is called gelation 
in polymer  science. 

Also growth processes by condensat ion re- 
actions form a transient stage in the process 
o f  clustering. As clusters are growing in size, 
break up processes become important and  the 
clustering process should be described by the 
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reversible reaction ai + ak ~ aj+k. The rate 
equations read then (2): 

1 
6k = ~ ~ [Kijc~cj - F~jci+j] 

i+j =k 

- ~ [Kk~CkCj -- FkjCk+j], [1.2] 

where F# is the rate constant of the reverse 
(fragmentation) reaction and Kij that for the 
forward (coagulation) reaction. By Arrhenius' 
law (15) Fij/K# is proportional to X = exp(g/ 
kBT), where g is the binding energy of a single 
bond (g < 0), T is the temperature and kB is 
Boltzmann's constant. Only for very strong 
bonds (g ~ - m )  fragmentation may be ne- 
glected, and the rate equations [ 1.2] reduce 
to the coagulation Eq. [ 1.1 ]. 

The kinetic equations for reversible coag- 
ulation (2, 16-20) yield more realistic size dis- 
tributions for large times; e.g., the "most  
probable solutions" in the Flory-Stockmayer 
theory of polymerization (12, 21) for a given 
extent of reaction can be found as the sta- 
tionary solution of the kinetic equations of 
reversible polymerization (20). 

Of course, many more limitations are in- 
herent to the coagulation equation for mod- 
eling the kinetics of clustering (22). Neverthe- 
less, it is of interest to idealize certain coag- 
ulation processes as irreversible additions or 
condensation reactions, and construct ex- 
tremely simplified, but exactly soluble models 
from which certain details such as asymptotic 
properties of  the time dependence of the size 
distribution and its moments  can be obtained. 
The actual values of the physical parameters 
determine to what extent (time interval, cluster 
size) the above models are relevant for the 
coagulation process under consideration. In 
addition, these models may be used to test 
numerical methods for solving the infinite set 
of coupled nonlinear rate equations with more 
realistic clustering mechanisms. 

In this philosophy we start from a coagu- 
lation model (SP-model), introduced by Sam- 

sel and Perelson (4) to describe the aggregation 
of red blood cells (rouleaux formation) with 
some minor modifications. Samsel and Per- 
elson have performed extensive numerical 
studies of coagulation kinetics in the above 
model at different values of the physical rate 
constants. Our exactly soluble models may be 
considered as special limiting cases of  this 
model. 

In Section 2 we will discuss condensation 
models and in the remaining sections, addition 
models with initial monomer  supply (Section 
3), with a steady source (Section 4), and with 
an infinite reservoir (Section 5). 

2. A D D I T I O N  A N D  C O N D E N S A T I O N  M O D E L S  

Flat Disk Model (Condensation Model A) 

In this section we give a short description 
of the SF-model, from which the flat disk and 
needle model can be obtained as limiting cases. 
The coagulation equations for these conden- 
sation models are given, and some analytic 
results for the monomer  and the total cluster 
concentration are derived. A special case of  
the needle model corresponds to Flory's poly- 
mer model A2RB~ (21) for which the analytic 
solution for size distribution and moments  
are given explicitly both for irreversible and 
reversible coagulation reactions. Next,  we 
idealize cases of condensation reactions with 
very small rate constants as pure addition re- 
actions, and present the kinetic equations for 
the resulting addition models. 

The SF-model describes the coagulation ki- 
netics of cylindrically shaped units (mono- 
mers): its caps are uniformly covered with re- 
active A-groups (surface area s) and its walls 
(surface area w) with reactive B-groups. One 
allows cap-cap reactions (A-A bonds) leading 
to elongation of linear chain segments, and 
cap-wall reactions (A-B bonds) leading to 
branching. 

Here we only consider two limiting cases. 
If w ~ s, the monomers are flat disks, the basic 
coagulation mechanism is through cap-cap 
reactions, and the majority of  clusters consist 
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o f  linear chains with A - A  bonds. 1 We, there- 
fore, consider the limiting case, w = 0, in which 
each cluster has two caps (no branching). I f  
the mobili ty o f  the clusters is sufficiently large, 
such that the reaction rates are not  limited by 
diffusion, then the coagulat ion coefficient is 
proport ional  to the n u m b e r  o f  ways in which 
two clusters can be connected.  In the present 
case there are three possibilities independent  
o f  the sizes o f  the reacting clusters, so that  K# 
is a constant:  

g l l  = ~, Kli  = 1 ,  

K;j = 3" (i :~ 1, ] 4= 1). [2.1] 

The parameters  (E, 3') m a y  be used to account  
for  dif ferences  in ra te  c o n s t a n t s  be tween  
monomers  and clusters (dimers, t r i m e r s , . . . )  
e.g., there may  be mechanisms lowering the 
reactivity o f  functional  groups on clusters, or  
one may  model  the smaller mobility o f  clusters 
compared  to that o f  monomers ,  by smaller 
3"-values (3" < e, 1). The  Smoluchowski  equa- 
t ion for the flat disk model  reads then: 

d c l / d t  = - E c  2 - c l R  

dc2/dt  = 1/2~c~ - c~c2 - 3"c2R 

dck ld t  = Cl[Ck-i -- Ck] 

+ 1/z3" ~ cicj  - 3"ckR, 
i+j =k 

[2.2] 

where i, j ,  k > 2 and R represents the n u m b e r  
o f  clusters, defined as 

cx) 

R ( t )  = ~ ck(t). [2.3] 
k=2 

Mass conservation, ~ o  kck(t)  = M ,  is valid 
k = l  

for all times, and no gelation transition occurs, 
as Z kZck(t) remains bounded  on bounded  
time intervals (23). In the special case, e = 3" 
= 1, the model  reduces to a s tandard growth 
model  for linear polymers,  where the analytic 

solution o f  [2.2] is well-known (1). Samsel 
and Perelson have made  extensive numerical  
studies o f  [2.2] for different values o f  (e, 3"). 

For  general (e, 3") we have obtained analytic 
solutions for the concentra t ion o f  monomers ,  
c~(t), and for the lotal  concentrat ion o f  clusters, 
which satisfies 

dR~dr  = ~/2~c~ - '/23"R 2. [2.4] 

This equat ion can be derived by summing  the 
equations for ek(t) in [2.2]. Dividing [2.4] by 
the equat ion for c~ enables us to eliminate the 
t variable and to consider R ( t )  as a funct ion 
o f  cl(t).  In t roduct ion  o f  the variables x = c~ 
and y = R/c~ yields the differential equation: 

x d y / d x  

= [(3" - 2)y z - 2 ~ y -  ~]/(2E + 2y). [2.5] 

Since c1(0) = M = 1 and R(0) = 0, 2 this equa- 
t ion should be solved subject to the boundary  
condit ion y = 0 and x = 1. The solution, 
found by standard methods,  can be written 
a s  

X(-r-2)(yl -Y2)/2  

-- (1 - y/yl) '+Yl(1 - y / y2)  - ' -y2 [2.6] 

with the following definitions: 

Y l , 2 = b + ( 6 2 + 6 ) 1 / 2 ; 6 = ~ / ( 3 " - 2 ) .  [2.7] 

This result enables one to plot R as a funct ion 
o f  Cl (0 < C 1 < 1), as we have done  in Fig. 1 
for the rate constants Kll = ~ and Kij  = 3" (i, 

1 > 1 ) .  
The t ime dependence o f  cl = x and R = x y  

can be obtained by quadrature,  using [2.4], 
[2.5], and [2.6] and yields 

t = [ 2 / ( 2  - 3')1 

× d y ' [ x ( y ' ) ( y '  - yl ) (y '  - y2)] -1. [2.8] 

1 In the SF-model for aggregation of red blood cells the 
cap diameter is about 3 times as large as the height of the 
disk. 

2 If one denotes concentrations of monomers and clus- 
ters for the case M ~ 1 respectively as cl(t; M) and R(t; 
M), one easily verifies that c,(t; M) = Mc~(Mt; 1) and 
R(t; M) = MR(Mr; 1). 
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FIG. 1. Cluster concentration R = ~k=2 Ck versus monomer concentration cl in condensation model A 
(q ~ 0 corresponds to t --~ oo) for different condensation rate constants K 0 = 7 (i, j > 1) (3' = 0 yields 
addition model A) with a monomer-monomer rate constant (a) K H  = 1 and (b) KH = 10. 

By numerical ly performing this integral we 
have obtained graphs o f  q ( t )  and R( t )  for dif- 
ferent values o f  the rate constant  K~j = 3" (i, 
j > 1) and Kll = ~, as shown in Fig. 2. 

In  some special cases the expressions sim- 
plify. For  instance for 3" = 2 we have instead 
o f  [2.6] and [2.8]: 

x = (1 + 2y) -1+0/2d exp(--y]O 

f 
l + 2 y  

t = e -1 dz2  -(1/2d exp{(z-1)/2E}.  [2.9] 
Q.I1 

For  long t imes,  when the concentra t ion o f  
m o n o m e r s  becomes  vanishingly small, [2.6] 
predicts for 3" > 2 that  y T Yl or  R ~ y~cl.  For  
3" = 2 one finds f rom [2.9] R -~ -~Cl In cl 
( q ~  0) and for 3" < 2, f rom [2.6] R 
,,~ Ac~/2 where A can be easily calculated. This 
last result contains the s!mr_ple case e = 3" = 1, 
where the relation R = Vcl - Cl holds for all 
times. These results can be unders tood as fol- 
lows. When  3" is large (3" > 2), the condensation 
reactions proceed fast, such that for long times 
the total number  o f  clusters R decreases pro- 
port ional  to cl. For  3, < 2 the condensat ion 
reactions are slowed down so that R ~ (Cl) ~/2 
decreases slower than c~ as c~ ~ 0. 

I f  condensat ion reactions are m u c h  slower 
than addit ion reactions (i.e., when 3" ~ 1), 
condensat ion m a y  be neglected in [2.2] for a 

long period o f  time, determined by the relation 
c~ > 3,R. The rate equat ions for the addit ion 
reaction, obtained by putt ing 3' = 0 will be 
discussed at the end o f  this section. They  have 
been studied numerical ly by Samsel and Per- 
elson. 

N e e d l e  M o d e l  

I f  the wall area o f  a cylindrical m o n o m e r  
is m u c h  larger than its cap area, i.e., w ~> s, 
the m o n o m e r s  are needle-shaped,  the basic 
coagulation mechanism is through cap-wal l  
reactions where each A - B  bond  gives rise to 
a new branch.  The majori ty  o f  clusters have 
only A - B  bonds  and are highly branched.  We 
therefore consider the limit, s = 0, with a single 
reactive A-group on each cap. As each addi- 
t ional unit  in a k-mer  adds an extra cap, a k- 
mer  has (k + 1) A-groups. The n u m b e r  o f  B- 
groups on a k-mer  is propor t ional  to its wall- 
surface, which in turn is proport ional  to k. 
Therefore, the number  o f  possible A - B  bonds  
between an i-mer and a j -mer  is proport ional  
to [(i + 1)j + (j + 1)i]. This yields the cor- 
responding coagulat ion coefficient: 

K #  = (2 i j  + i + j )  1 

3' 

if  i = j = l  

if i = l , j ~ l  

if  i ~ l , j ~ l  

[2.101 
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FIG. 2. Monomer concentration cl(t) and total cluster concentration R(t) versus time in condensation 
model A for different condensation rate constants K~j = 3' (i, j > 1) (3' = 0 yields addition model A) with 
(a) Ku = 1 and (b) Ku = 10 as monomer-monomer rate constant. The curves for c~(t) (drawn as a single 
curve) depend only weakly on % For t < 6 they are indistinguishable on the present scale and for t > 6 
the difference between the curves for ~, = 0 and "r = 1 is always smaller than 0.02. 

The  pa rame te r s  (c, 3') account  for differences 
in the  rate cons tants  for reac t ions  be tween 
m o n o m e r s  a n d  clusters. This  m o d e l  exhibi ts  
a gela t ion t ransi t ion.  Hence,  b e y o n d  the gel 
po in t  3 tc the  sol mass  is no longer  conserved.  
F o r  general  values o f  the  pa rame te r s  (~, 3") we 
have no t  been  able to de t e rmine  the size dis- 

t r ibu t ion  ck(t) or  the  macroscop ic  var iables  
Cl(t) and  R(t) .  However ,  for the  s imple  case 

= 3' = 1, the  coagula t ion  coefficients [2.10] 
co r respond  to F l o r j ' s  (21) p o l y m e r  m o d e l  
AzRB~ ( m o n o m e r s  with 2 A-groups ,  f B- 
groups  0 c ---+ oo), clusters are b ranched ,  have 
only  A - B  b o n d s  and  no  cycles). 

The  size d is t r ibu t ion  and  m o m e n t s  for the  
irreversible and  reversible condensa t ion  mode l  
wi th  a general  b i l inear  kernel  Kij = A + B(i 
+ j)  + Cij  and  with c~(0) = 6ka have recent ly  
been de t e rmined  by  Van  Dongen  and  Erns t  
(20). I f  thei r  results are app l ied  to the  A2RBoo 
mode l  with Kij = 2i j  + i + j and  F~j = 0 the  

3 We have not  determined the value of  to, where 
Z kZck(tc) diverges, but  the following bounds  can be easily 
established: lkMo i In 2 < tc < lkrr~71 In 2, where m o =  rain 
(~, y, 1) and Mo = max (~, % 1). 

size d is t r ibu t ion  becomes  in  the  pre-gela- 
tion stage (t < tc = 1/2 In 2 or  a( t)  < oec = 1 

- 1/vr2): 

ck(t) = Nkoek-l(1 -- t~)k+le-Z~k, [2.1 la]  

where  the  extent  o f  reac t ion  a is 

oe(t) = 1 - e t, [2.1 lb]  

and  the Nk are de t e rmine d  f rom the  recurs ion  
relat ion:  

1 
( k -  l)Nk = ~  ~ KaN~N j (N1 = 1). [2.12] 

i+./=k 

For  large k these numbe r s  behave  as: 

Ark ~ [2rr(2 + re2)] - ' /2  

X k -5 /2~ek  ( k  ---+ oo) [2.13a] 

with 

& = '/2(x/2 - 11 expb /2  - 2], [2.13b] 

and  the m o m e n t s  are  given by  

Mo(t) = 1 - 2~, 

M l ( t )  = 1 

M2(t) = 1/(1 - 4 a  + 2az).  [2.14] 
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In  the post -gelat ion  s tage  (t >t t~) we have the 
following result for Q(t) = {ck(t), Mo(t),  M~(t)}: 

Q(t) = Q(t~)/g(t) [2.15a] 
with 

and  
g(t)  = 1 + b(t - &), [2.15b] 

b = 2 + 42; C~tc) = (4~ + 1 ) N k ~  

Mo(t~) = 4 2 -  1; M l ( t c ) =  1, [2.161 

whereas M,(tc) = ~ for n >/2 .  
F o r  r e v e r s i b l e  c o a g u l a t i o n  the  A 2 R B ~  

model  (with F# = XNiNjK#/Ni+j  and K~j = 2i j  
+ i + j yields according to the m e t h o d  o f  
(20) in the pre-gelat ion stage (a(t) < a¢ 
= 1 - 1 / ~ )  the results [2.1 1]-[2.14], where 
the extent  o f  reaction in [2.1 lb]  is now given 
by 

a(t) = (1 + X) 1{1 - exp[(1 + X)t]} [2.17] 

with )~ = exp(g]kBT) ,  as defined below [1.2]. 
For  X > Xo (here Xo = 1 + 42), i.e., for small  
binding energies, one sees tha t  o~(m) < ~¢. 
Hence,  the gelation t ransi t ion is suppressed 
for sufficiently weak bonds. For  X < ~o gelation 
occurs at the gel-point tc, de te rmined  by  the 
condi t ion o~(t~) = a t .  The  post-gelat ion so- 
lutions (t > tc) are again given by [2.15] and  
[2.16] with g(t )  in [2.15b] replaced by  

g(t)  = X-l{X0 + (), - ~0) 

× e x p [ - 4 2 X ( t -  to)]}. [2.18] 

I f  3' ~ 1 the condensa t ion  react ions m a y  be 
neglected dur ing the per iod in which the loss 
o f  k-clusters through addi t ion react ions is 
m u c h  larger than  the loss through the con- 
densat ion reactions. The  rate equat ions  for 
the resulting mode l  (putt ing 3" = 0) read 

c~3 

dc l / d t  = -4~c21 - cl ~, s~cj 
j=2 

dc2/dt  = 2~c~ - s2clc2 

dc f f d t  = cl[sk-ick-1 -- &ck], [2.19] 

where the rate constant  for monomer -c lu s t e r  
reactions, K~k = Sk =-- 3 k  + 1, (k  >i 2) is for 
large k propor t iona l  to the size of  the cluster. 
A closely related addi t ion mode l  with sk = k 

will be discussed in the next  subsection. We  
did not  succeed in solving the addi t ion mode l  
with Sk = 3k + 1, but  we expect  tha t  the mode l  
with & = 3k yields essentially the same results 
for the size distribution, except for the smallest 
cluster sizes. 

Condensa t i on  m o d e l  B. For  later compar -  
ison with the addi t ion mode l  with Sk = k ( k  
t> 2) we briefly consider  the condensa t ion  
model:  

K l l = ~ ,  Klj = j ,  

K o = 3 " i  I ( i4 :  1, j ¢  1), [2.20] 

which exhibits a gelation transit ion. The  sim- 
ple case, ~ = 3, = 1, corresponds to the po lymer  
model  R A ~  (monomers  with f A-groups ( f  --~ 
~ ) ;  A - A  bonds;  b ranched  po lymers  wi thout  
cycles). In the pre-ge la t ion  s tage  (t < tc = 1 
or a(t) < ac = 1) the size distr ibution and  
m o m e n t s  are (13, 14): 

Ck(t) = N k a k - l  e - ~ k  

Mo(t)  = 1 - l / 2 a ;  M l ( t ) =  1; M2 = ( 1 -  a)  -1 

R(t )  = Mo(t)  - cl(t) = 1 - 1/2a - e -~ [2.21] 

with a(t)  = t and  N k  = kk-2 /k ! .  In  the post -  
ge la t ion  s tage  we have for Q = { Ck, M o ,  M1}  
the result: 

O(t) = Q(&)/g( t )  [2.22] 

with g(t)  = t. All m o m e n t s  M , ( t )  = ~ for  
n >~ 2 and  t >~ tc. 

For  reversible  coagula t ion  the R A ~  mode l  
yields according to the m e t h o d  of  (20) in the 
pre-gelat ion stage (a(t)  < ac = 1) the results 
[2.21] with a replaced by  a(t)  = (1 - e-Xt)/),. 
For  X > Xo = 1 (weak bonds)  the gelation 
transi t ion is suppressed. For  ~ < ~o = 1 
gelation occurs at the gel poin t  t~ = - ~ - ~  
× In (1 - ),). The  post-gelat ion solutions are 
given by [2.22] with g(t)  = (1 - e-X')/),. 

For  general values of  the pa ramete r s  (~, 3") 
we have the pre-ge la t ion  results: 

cl(t) = {1 - E + E#}- '  

R(t )  = 1/2(1 - ~)-1(~ _ 3")[c1(t) - 1] 

+ 1/2(1 - 0-2(3" + e - 2e3") In cl(t) 

+ V2(1 - e)-2e(1 - ~3")t. [2.23] 
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In Fig. 3 we have plot ted R(t)  for the case 
E = 1 and  various choices o f  % The  graphs 
are valid up to the gel point  &, defined through 
the relation M2(&) = oo, and  de te rmined  nu- 
merically f rom the second m o m e n t  equat ion.  
The  post-gelation result is only known  for c 
= 3, = 1 through [2.22]. 

Addit ion Models  

The  addi t ion models  to be discussed are 
limiting cases o f  coagulat ion models ,  in which 
the cluster-cluster  reactions have very small  
rate constants  (3' ~ 1). Put t ing ~/ = 0, we 
obtain the rate equat ions for addi t ion reac- 
tions. The  coagulat ion coefficients then  have 
the general fo rm Kij = Sirjl qL S j ~ i l ,  where KI~ 
= 2sl is the rate constant  for m o n o m e r -  
m o n o m e r  reactions and  Klk = Sk(k >i 2) that  
for m o n o m e r - c l u s t e r  reactions. The  kinetic 
equat ions at tain the simple form: 

oo 

d q / d t  = - s l c~  - c 1 ~ s j c j  ~- Q 
i=1 

dck/dt  = Cl(Sk-lCk-1 -- SkCk) (k  >1 2), [2.24] 

where we have added a (possibly vanishing) 
source t e rm Q, representing the rate o f  m o n o -  
m e r  produc t ion  by  an external source. The  
total mass  balance is therefore given by 

kdck/dt  = Q. I f  the concent ra t ion  Cl(t) o f  
m o n o m e r s  does not  significantly change with 
t ime,  q(t )  m a y  be approx ima ted  by a constant  
and  the rate equat ions become  linear. This  
approximat ion  is exact i f  the system is coupled 
to a reservoir that  emits monomers .  In general, 
however, the m o n o m e r s  are given at the initial 
t ime in a total  a m o u n t  M or  p roduced  at  a 
given rate Q, and  the rate equat ions are non-  
linear. We will investigate how these different 
c i rcumstances  affect the addit ion process. 

The  rate constants  Klk = Sk(k >f 2) in our  
addi t ion models  are either independent  o f  the 
dus t e r  size (Sk = S )  or propor t iona l  to it (Sk 
= Sk),  where S is some  constant.  The  m o n o -  
mers  are supplied in one o f  the following 
manners:  (i) by a given initial distribution ck(0) 
= Mrkl  (here Q = 0); (ii) by  a steady source 

025 

1 
R o2o 

015 

0.10 

005 

0.0 10 20 30 
t ~  

FIG. 3, Cluster concentration R(t) versus time in con- 
densation model B with addition rate constants K~j = j 
for different values of  the parameter "r in the condensation 
rate constant Kil = ij'y (i, j > 1) (3' = 0 yields addition 
model B). The gel point (where the second moment  

k2ck(t) diverges) is indicated by an open circle. The solid 
curves for t below the gel point tc are the pre-gelation 
curves (Eq. [2.23]). The broken lines represent the analytic 
continuation of  the pre-gel results across the gel point. 
Only for 3' = 1 (corresponding to Flory's model RAw) 
the post-gelation curve (solid line for t > t¢) is known 
through Eq. [2.22]. 

Qk = Qrkl,  switched on at t = 0 (here Ck(0) 
= 0); (iii) by an infinite reservoir, such that  
q( t )  remains  constant  (here ck(0) = Clrkr). 

It is further  convenient  to work  in nondi-  
mensional  variables. In  case (i) we rescale the 
concentra t ions  as ck(t) = M?k([), and  the t ime  
as t = {/SM, so that  E kck({) = 1. In  case (ii) 
we insert c~(t) = C0Ck({) and  t = t0{into [2.24] 
and  choose Co and  to such that  the source 
strength Q and the constant  S are equal  to 
uni ty in the rescaled equation.  The  result is 
Co = (Q/S )  I/2 and  to = (QS)  -uz.  In  case (iii) 
we rescale ck(t) = ClCk({) and t = { / S q ,  such 
that  m o n o m e r  concent ra t ion  and  constant  S 
are uni ty in the rescaled equat ion.  

Henceforward  we only work  with nondi-  
mens iona l  variables, we drop  the bar  on Ck 
and {, and  use the kinetic equat ion  [2.24] with 
M = 1 in (i); Q = 1 in (ii); cl = 1 in (iii); and  
S = 1 in all cases. 

As a prepara t ion  for the solution o f  these 
models  in the following sections, it is con- 
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venient  to in t roduce a new " t i m e "  variable r,  
defined as 

d r  = c~(t)dt 

o r  
r 

t = dr ' (G(r ' ) )  -1, [2.25] 

and to consider  the size distr ibution as a func- 
t ion of  r,  i.e., 

ck(t) ~ C~(r). [2.26] 

In te rms  o f  the new t ime  variable r the non-  
linear kinetic equat ions  for k > 2 reduce to 
a set o f  coupled l inear relaxation equat ions  
for Ck(r) with a t ime  dependen t  " source"  Qk 
= &G(r)6k2.  This  set o f  equat ions  can be 
solved mos t  convenient ly  by int roducing gen- 
erating functions: 

f (x ,  r) = ~ SkC~(r)e kx 
k=2 

or3 

g(x,  r )  = ~ Ck(r)e kx. [2.27] 
k=2 

After these prepara t ions  we can t rans form 
[2.24] into 

dCl ( r ) /dr=  -2s ,C~(r)  - riO, r) + Q [2.28] 

Og(x, r)/Or 

= (e x - 1)f(x, r) + &Cl(r )e  2x, [2.291 

where g(x,  r) satisfies the initial condit ion g(x,  
0) = 0, since Ck(0) = 0 for k >/2.  I f  an  initial 
a m o u n t  of  m o n o m e r s  is given, or if  the system 
is coupled to an infinite reservoir,  the initial 
condi t ion on the m o n o m e r  concent ra t ion  is 
ck(0) = 6kl, whereas  Ck(0) = 0 in the presence 
of  a source. We consider  six different cases: 

model  A: & = l (k  >~ 2); 

Q = 0(no source); cl(0) = 1 

model  B: & = k(k />  2); 

Q = 0(no source); c1(0) = 1 

mode l  C: Sk = k(k > 1); 

Q = l(source); cl(0) = 0 

mode l  D: Sk = l (k  > 1); 

Q = l(source); Cl(0) = 0 

mode l  E: Sk = l (k  > 2); el(t) = l(reservoir) 

mode l  F: Sk = k(k  > 2); c,(t) = l(reservoir)  

Except  in mode l  D, we shall calculate for all 
these models  the t ime dependence  o f  the size 
distr ibution and  its first few m o m e n t s  Mn(t) 
~- ~tn(r), defined as 

Mn(t) = u,(r)  = ~ k~Ck, [2.30] 
k=l 

where u , ( r )  is considered as a funct ion o f  r.  
The  m o m e n t  Mo(t) denotes  the total  n u m b e r  
of  clusters in the system, and  M~(t) = M(t)  is 
the total  mass. A possible measure  for the 
cluster size is given by the n u m b e r  average o f  
polymerizat ion:  

U(t) = ml(t) /Mo(t) .  [2.31] 

For  mode l  D only certain propert ies  of  the 
solution, such as the large k-behavior ,  can be 
obtained.  

3. A D D I T I O N  M O D E L S  W I T H  I N I T I A L  

M O N O M E R  S U P P L Y  

Model  A: KH = 2a; Klk = Sk = 1 (k > 1), 
No  Sources 

In  the present  case the two generat ing func- 
t ions in [2.27] are equal, and  we have chosen 
s~ = a in [2.28]-[2.29]. The  solut ion of  the 
differential equat ion [2.29], satisfying g(x,  O) 
= 0, reads: 

g(x,  r) = ae 2~ dr'Cl(r') 

X exp[(r  - r')(e x -  1)]. [3.1] 

The  size distr ibution follows f rom [2.27] and  
[3.1] by Taylor  expansion: 

Ck(r) = a dr'Cl(r')e -'+*' 

× (r - r ' )k-g/(k--  2)!. [3.2] 

It  simplifies considerably for large k, where 
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the dominan t  contribution comes from a small 
r '  region a round  the origin. By putt ing r '  = y~ 
k and using the relation (r - r ' )  k - 2  ' ~  "r k - 2  

× e x p ( - y / r ) ,  valid for k --* 0% we obtain in 
the large k-limit: 

Ck(r)  ~-- a e - * r k - l / ( k  -- 1)! (k --~ oo). [3.3] 

To  derive this we had to use the fact C1(0) 
= 1 only. Physically this means  that  there are 
no backcoupling effects o f  the changing Ck(r )  

on the "source"  Cl(r)  present in [3.3], as these 
effects do not  instantaneously propagate to 
large k-value. 

For  general k the solution [3.2] depends on 
the unknown  G ( r ) .  Combina t ion  o f  [2.28] 
with g(0, r ) i n  [3.1] yields, after differentiating 
with respect to r:  

Cj + 2aC1 + aG = 0, [3.4] 

to be solved with Cl(0) = 1 and C1(0) = - 2 a .  
Dots denote differentiations with respect to r. 

C a s e  KI~ = 2(a  = 1) 

A simple case occurs for a = 1, where the 
size distribution follows f rom [3.4] and  [3.2] 
a s  

C l ( r )  = e~(1 - r)  [3.5a] 

(f rk-1-- 1)] k.lrk} 
Ck(r )  = e -~g(k  . [3.5b1 

The momen t s  [2.30] can be calculated f rom 
[3.5] 

dT!  (e~ - 1). [3.6] 

The first few are explicitly given by 

# o = e  -~, u ~ =  1; / , 2 = 2 r +  1; 

#3 = 3r  2 + 6 r  + 1. [3.7] 

The original t ime variable can be recovered 
f rom [2.25] and [3.5] as 

t = e[El(1 - r) - El( l ) ] ,  [3.8] 

where E l ( r )  is an exponential  integral (24). 
The equations [3.5]-[3.8] represent the ex- 

act solution o f  this addit ion model  in para- 

metric form. The parameter  r can be elimi- 
nated in the limiting cases o f  small and large 
times. Only  the latter will be given explicitly. 
For  t -  0 we find r ~ t - t 2 + -  • -, and for 
t ----0 OO: 

r - 1 - exp[-3 ,  - E l ( l )  - t /e],  [3.9] 

where 3, is Euler 's  constant.  As r ~ r ~  = 1 
or  t --~ ~ the supply o f  m o n o m e r i c  units, 
Cl(t), is exhausted and addit ion reactions stop. 
The size distribution ck(t) and  its m o m e n t s  
Mn( t )  approach a finite limiting value, C l ( r ~ )  

and/~n(r~), exponentially fast: 

cl( t)  ~- exp [ -1  - "y - El(t) -- t /e] + .  • • 

ck(t) ~-- ( k  - 1) /ek!  

- c l ( t ) ( k  2 - 3 k  + 1) /k!  + .  • • 

Mo( t )  ~ 1 / e  + c~(t) + .  • • 

M2(t) = 3 - 2ec l ( t )  + .  • • [3.10] 

For  this version o f  model  A with Kll = 2(a 
= 1) Samsel and Perelson (4) have already 
obtained the results [3.5a] and [3.8] with r 
replaced with r = log U (where U = 1 / M o  is 
the average cluster size). Here we have, in ad- 
dition, determined the complete  size distri- 
but ion and all its moments .  

C a s e  K H  = 2 a  

For general values o f  a one obtains f rom 
[3.4] and [3.3] for a > 1 after some algebra: 

Cl(r) : [ e - 7 2 ( a  - 1 ) ] { - p i e  -p'T + (1 ~ 2)} 

= e-a~[cosh b r  - ( a /b )  sinh br] 

Ck(r )  = [ a e - 7 2 ( a  -- 1)]p~ -k 

k - 2  

× { Z (Plr)~/ l!  - e p'~} + (t  ~ 2). [3.11] 
l=o 

Here (1 ~ 2) indicates that  a similar te rm 
with Pl replaced by P2 should be added, where 

Pl,2 = 1 -  a + b; b =  [ a ( a - 1 ) ]  1/2 . [3.12] 

The most  convenient  way to calculate the 
lower m o m e n t s  is not  f rom the generating 
funct ion [3.1], but  directly f rom [2.28]. This 
yields 
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FIG. 4. Size distribution c~(t) (k = 1, 2, 3, 4) and dus te r  concentration R(t)  versus t ime for addition 
model A with initial condition Ck(0) = 6kj and rate constants K u = 1 (j > 1) for different choices of  
m o n o m e r - m o n o m e r  rate constants: (a) KH = 1; (b) Ku --- 4; and (c) Ku = 10 (see also Figs. 2a and b for 
3, = 0). Note the dependence of  R(t) and c2(t) on K,a; for larger Ku values more clusters are formed which 
are smaller on the average. 

M o ( t )  = #0(r)  = (1 - 2 a ) c l  - C l  

= e -aT c o s h  br.  [3 .13]  

T h e  total  m a s s ,  M1 = 1, is c o n s e r v e d  and  M2 
is o b t a i n e d  b y  integrat ing  the  m o m e n t  equa-  
t ion;  i .e. ,  

M2(t)  = ~2(¢) 

= M2(0)  + 2~" + 2 (a  - 1) 

X d r ' C l ( r )  = 1 + 2r 

+ 2 ( b / a ) e  -a* sinh bz. [3 .14]  
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In the limit a --~ 1 we recover the results for 
KI 1 = 2. The relation between t and  r follows 
f rom [2.25] and [3.11] as 

t = dse  ~s 

× [cosh bs - (a/b)  sinh bs] -1, [3.151 

but the integral does not  reduce to any special 
function. It has been evaluated numerical ly 
to determine the size distribution Ck(t) and the 
number  o f  clusters R(t)  = Zk%2 Ck(t) for dif- 
ferent values o f  g l l  = 2a, as shown in Fig. 4. 
The same results are also contained in Figs. 
1 and 2 with 3' = 0. For  t ~ 0 one finds 
r ~ t, and for t ~ oo one finds r ~ r~  where 
r~  is the root  o f  Cl(z) = 0. The approach  to 
the limiting value is described by too - r 
- ( e x p ( - ~ t ) ,  as t ~ ~ ,  where w = faa 
× exp(-aroo).  Therefore the concentra t ion o f  
monomers  decays exponentially: Cl "~ exp(-wt)  
and Ck and Mn approach  their limiting values. 
Ck0-~) and #,(r~) ,  respectively, at an expo- 
nential rate. For  a < 1 the derivation proceeds 
along similar lines. The difference is that  hy- 
perbolic functions are replaced by tr igono- 
metric ones. Of  special interest is the case a 
= 1/2, where all rate constants are equal, i.e., 
K 0- = K~ = 2a = 1. The size distribution be- 
comes: 

Cl(z) = f2e  -~/2 cos ( z /2  + a-/4) 

1 k/2 -r /2 Ck(7) = ~ 2 e sin ( k T r / 4  - ~-/2) 

1 k-2 
- -  -- 2k/2e-~ ~ sin [(k - / ) ~ - / 4 ]  

2 t=o 

X ( r / f2 ) t / l !  [3.16] 

and the first few m o m e n t s  are: 

Mo(t)  =/Zo(r) = e -*/2 cos ~-/2 

Mr(t) = Uz(r) 

= 1 + 2 z - 2 e  ~/Zsinz/2. [3.17] 

The integral expression for tO-), corresponding 
to [3.15], has been evaluated numerically.  

M o d e l  B: K l l  = 1 - ~ (~ < 1); Kjk  = k 
(k  > 1) N o  Sources  

In this case, where we have pu t  sl = Yz(1 
- /3) in [2.28] and  [2.29] the equat ion for 
Cffr)  does not  couple to [2.29], since f(0,  r) 
= 1 - Cl(r)  as a consequence o f  mass con- 
servation E kCk = 1. The  equat ion for C 1 c a n  

be solved directly and the solution with G ( 0 )  
= 1 reads 

1 
Cl(r)  = ~ (1 + ( / 3 -  1)eel}. [3.18] 

The original t ime variable can be recovered 
f rom [2.25] and is given by the relation 

e - ~  = 1 - / 3  + / 3 e  -t. [3.19] 

As t ~ 0 one finds r - t, and as t ~ ~ one 
finds: r _ ro~ - e-7(1 - /3 ) ,  where too = -/3 -1 
× In (1 - / 3 ) .  

The m o n o m e r  concentra t ion in terms of  
the original t ime variable is 

Cl(t) = [/3 + (1 - /3 )e t ]  -l .  [3.20] 

The generating functions [2.27] are related as 
f = gx, and [2.29] reduces to a partial differ- 
ential equation, that  can be solved by the 
method  o f  characteristics: 

dr  d x  Z=I; Z-- 1-eX; 

dg 1 
- (1 - /3)G(~-)e  2~. [3.21] 

ds 2 

The solution satisfying g(x ,  0) = 0 becomes  

1 
g(x ,  r) = ~ (1 - / 3 )  d'c'Cl(r') 

× [1 - e*-"(1 - e-O] -2 [3.221 

and the size distribution Ck(T) for k >1 2 follows 
by Taylor  expansion: 

1 
Ck(r) -- ~ (1 - / 3 ) ( k  - 1) 

× dr'G(r')e-2T+2~'(1 - e-7+") k-2. [3.231 

The asymptot ic  expression for large k sim- 
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plifies considerably,  since the d o m i n a n t  con- 
t r ibut ion to the r '  integral comes  f rom a small  
region a round  r '  = 0, so tha t  G(r ' )  ~- c,(O) 
= 1. By put t ing r '  = y / k  and  using the relat ion 
(1 - e~'-~) k-2 - (1 - e-~) k-2 e x p [ - y / ( e  ~ - 1)], 
valid for large k, we obtain  for k --+ or: 

1 
Ck(r) = Z (1 - /3)e-*(1  - e-~) k-1. [3.24] 

Z 

Case g l l  = 2(/3 = - 1 )  

The  special case /3 = - 1  is again simple. 
With  the help of  [3.20] and  [3.23] one obtains  
the size distr ibution for all k: 

Ck(r) = UI (1  - e-*)k-l((k + 1 ) e  ~ - 1) 

ck(t) = k~l(1 - e- ' )  k-I 

× (2 - e-')-k(k - 1 + e 9- [3.25] 

In the last line o f  [3.25] the variable r has 
been e l iminated in favor  of  the original t ime  
variable t, using [3.19] for fi = - 1 ;  i.e., 

e ~ = 2 - e -t. [3.26] 

The  m o m e n t s  can be calculated directly f rom 
[2.30], yielding 

# o ( r )  = 1 - r 

d ~n-1 
# ~ ( r ) = (  d -  1 ) [ ( e  ~ -  1)~rr J (e ~ -  1) 

(n > 1). [3.27] 

The  first few read explicitly: 

#2( r )  = e2~; #3(r) = 4e 3~ -- 3e2L [3.28] 

In te rms  o f  the original t ime  variable t we 
have 

Mo(t) = 1 - log (2 - e -t) 

M2(t) = (2 - e t )  2 

M3(t) = (2 - e-t)2(5 - 4e-t). [3.29] 

Case Kll  = 1 - / 3  (/3 < 1) 

For  arbitrary values o f / / t h e  size distribution 

Ck(r) can be calculated f rom [3.23] and  [3.18] 
by expanding [- • • ]k-2 in powers  o f  e -*+~' us- 
ing Newton ' s  b inomial  formula.  Ck(r) is found 
to be a po lynomia l  o f  degree k in e-* = [1 
- / 3  +/3e-t]  I/e. It  will not  be writ ten here, bu t  
m a y  be easily calculated. In  the special case 
/3 = 0 (i.e., Kll  = 1) one obtains  the relatively 
simple expression: 

l=l  

(k/> 2) [3.30] 

with ~ = 1 - e -r  and r = 1 - e -t on account  
of  [3.19]. The  m o m e n t s  for general /3 can be 
calculated f rom the generating function [3.22], 
combined  with [3.18] and  the relation: 

[(0)n ] 
u~(r) = cl(r) + ~x g(x,  r) x=o" [3.31] 

One finds for the first few: 

#0(r) - 1 +/32 ( ~ f l ~ )  ( ~ 2  Hz ) 2/32 + r -  e ~7 

1 + /3  3 ( 1 - / 3 ] e 2 r  
#2(r) = 2--fl-- + 2 \ ~ - - ~ ]  

( 1 - / 3 2 )  em. [3.32] 
/3(2 - / 3 )  

The  large t-behavior of  m o m e n t s  and  distri- 
but ion funct ion can be studied along the lines 
o f  the previous sections by  expanding Ck(r) 
and # , ( r )  in powers  o f  r ~  - r = e-7(1 - / 3 ) ,  
where roo is defined below [3.19]. In  Fig. 5 
the size distr ibution ck(t) and n u m b e r  o f  clus- 
ters R(t) = Mo(t) - Cl(t) are plot ted versus 
t ime for K,1 = 1(/3 = 0). The  same results are 
contained in Fig. 3 for 3' = 0. For  a compar i son  
with the results o f  mode l  A we refer to Table  
I. (See also Fig. 3 for q, = 0.) In  models  A 
and B, all m o m e n t s  approach  finite values (cf. 
Figs. 4 and  5). In mode l  A (with Klz = 2), 
Mo(oO) = 0.37, m 2 ( o o  ) = 3 and in mode l  B 
(with KI~ = 2), M0(oo) = 1 - In 2 - 0.31, 
and  M2(oo) = 4. Hence  in the latter mode l  
the same a m o u n t  o f  mass  (M~ = 1) is dis- 
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FIG. 5. Size distribution c~(t) (k = l ,  2, 3, 4) and cluster 
concentration R(t) versus time for addition model B with 
rate constants Kli = j (1 >i 1) and initial condition Ck(0) 
= bk~. The concentration ck(t) of larger cluster sizes k in- 
creases faster through faster monomer adsorption and 
consequently R(oo) is smaller than in the comparable case 
of Fig. 4a. 

tributed over a smaller total n u m b e r  o f  clus- 
ters, necessarily having a larger average size. 
This is to be expected physically f rom the 
larger coagulation rates. 

For  both  models,  if  we decrease (increase) 
the value o fKl l  the value o f  M0(oo) decreases 
(increases) accordingly. For  example, if we put  
/~ll = 1 in model  A we find M0(oo) = 0.32, 
where M o ( ~ )  = 0.37 for KI~ = 2. This is again 
to be expected. Due  to the smaller coagulat ion 

rate for the format ion o f  dimers, more  m o n o -  
mers are available to condense onto  larger 
clusters. 

4. ADDITION MODELS WITH SOURCES 

Some properties o f  the solution drastically 
change if  the m o n o m e r i c  units are being pro- 
duced by a steady source, Qk = 6kl, instead 
o f  being present in a finite amoun t  at the initial 
time. The relevant kinetic equations [2.24] for 
the choice s~ = k (k >-- 1) are 

d q / d t  = - -c lM1 -- c~ + 1 

dcg/dt  = ( k -  1)Ck-lCl --  kCkCl ( k  >t 2), [4.1] 

to be solved wi th  ck(0) = 0. One  easily shows 
that  the total mass o f  particles M 1 = Z kCk 

= t. The differential equat ion for q ( t )  is a Ric- 
cati equation. Its solution with q(0)  = 0 can 
be obtained staightforwardly through the sub- 
stitution cl = 1/ t  + 1/u(t) .  The result is 

with 
Cl(t) = F ( t ) / N ( t )  [4.21 

N( t )  = tF( t )  + exp(--lht 2) 

;o F(t)  = N ' ( t )  = d x  exp(-'/2x2), [4.3] 

where F(t)  = V ~  erf ( t / l /2)  is related to the 
error funct ion (24). Its limiting behavior  is 

TABLE I 

Properties of the Solutions for the Various Addition Models with K,, = 2 

Mode l  r ~ t ck(t), k ~ 

l ~  oO 

ck(t), t ~ oo R M~ M~JMI 

e-rTk- I  
A t = e ( E , ( l  - r )  - E l ( I ) )  

( k -  i ) !  

B e ~ = 2 - e - t  e - * ( 1  - e - ' )  k-~ 

71" 1/2 

e-t lk-I  
E z = t  

(k- 1)! 

F r = t e-t0 - e-t) ~-. 

(k  - l) /ek[ + O ( e  - ' /~)  0 . 3 7  1 3 

2 - k ( k  - -  1)/k  - O(e - ' )  0 . 3 1  1 4 

t - '  + O(t  -2) 0 . 9 7  t 0 . 7 2 t  

1 - O(e-'t k-2) t ~/2t 2 I/at 

k-' - O(e -t) t 2e t 3/~e' 
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CI(I) ' ~  t -1 - (2/rr) l /2t  2 

× e x p ( - V z t  2) + .  • • (t---* oo) 

- ~ t - 2 t 3 / 3 + - . .  ( t ~ 0 ) .  [4.4] 

For later use it is convenient to define a new 
time variable r through r = fo  d t 'c l ( t ' ) ,  where 
c~(t) in [4.2] is a known function of t ,  yielding 

e ~ = N ( t )  ~- t ~ f ~  + 

t -2 exp(- t2/2)  (t--~ ~ )  

- 1 + 1/2/2 (t ~ 0). [4.5] 

The kinetic equations [4.1 ] for Ck with k >~ 2 
are identical to those in model B, provided 
we change to the new time variable with dr 
= c~(t)dt. The solution as a function of  ~- is 
given by [3.23]. It can be expressed in the 
original t variable with the help of  [4.4] and 
[4.5]: 

ek(t) = [ ( k -  l ) / N 2 ( t ) ]  

× d t ' f 2 ( t ' ) [ 1  - N ( t ' ) / N ( t ) ]  k-2. [4.6] 

All integrals in [4.61 can be expressed in error 
functions, but the calculations soon become 
very laborious. We only quote 

c2(t) = { tF2( t )  + 2F(t) exp(-t2/2)  

- f 2 F ( t f 2 ) } / u Z ( t ) .  [4.7] 

We first study the properties of  Ck(t), starting 
with the l a rge  k - b e h a v i o r  at fixed t. It can be 
calculated from [4.6] in much the same way 
as for models in A and B. The dominant  con- 
tribution to [4.6] comes from a small region 
about t' = 0, proportional to 1/1/%. By making 
the substitution t' = y /V% one finds with the 
help of [4.5] the following equality for large 
k: 

[ 1 - N ( t ' ) / N ]  k-2 

-~ [ ( N -  1 ) / N ]  k-2 e x p [ - y 2 / 2 ( N -  1)]. [4.8] 

This factor cuts off the integration over y = t /  
f k  at a finite value, so that the large k-limit 
can be taken under the integral sign. The result 
is 

Ck(t) ~ ( r c / 2 k ) l / 2 ( N -  1 ) k - l / 2 N  - k  

(k --* oo, t fixed) [4.9] 

Qualitatively we have here: ck ~ k - l / 2 X k  to be 
compared with c~ ~ X k / ( k  - 1)! in model A 
and ck ~ X k in model B, where )t is some 
number smaller than unity. 

The s h o r t  t i m e  b e h a v i o r  of  ck(t) can be de- 
duced from [4.6] with the help of [4.5] and 
[4.3]: 

Ck(t) ~-- ( k  - 1 ) ! t 2 k - l / ( 2 k  -- 1)!! 

(t ~ 0), [4 .10]  

to be compared with Ck ~-- t k l / ( k  - 1)! in 
model A, and ck ~- t k-~ in model B. The l o n g  

t i m e  b e h a v i o r  of  Ck(t) can be determined most 
conveniently from the kinetic equation [4.1 ]. 
Using [4.4] and [4.7] one finds 

Ck(t) ~-- 1/ t  -- 2~--1/2(k - 1)/t 2 +"  • • 

(k > 1, t---* oo). [4.11] 

Note that the monomer  concentration c~(t) 
approaches its asymptotic form, l / t ,  much 
faster than ck(t) does (cf. [4.4]). 

Next, we study the m o m e n t s  Mn( t ) ,  which 
may be obtained from the generating function 
g ( x ,  t), given by [3.22] (with fl = - 1 )  as a 
function of r. Changing to the original time 
variable with d~- = Cl(t)dt  and using [4.2] and 
[4.5] yields 

g ( x ,  t) = d t 'FZ( t  ') 

× [N(t') + N ( t ) ( e  - x  - 1)] -2. [4.12] 

With the help of [3.31] one derives for the 
moments: 

Mo( t )  = cl + d t ' F 2 N  -2 

Ml(t) = Cl + 2N fo' d t ' F 2 N - 3  = t 

M2(t) = cl + 6N 2 d t , F 2 N  4 

- 2 N  f t  d t ' F 2 N  -3. [4.13] 
do 
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The result, M1 = t, can be easily verified by 
partial integration, using [4.2] and  [4.3]. The  
short t ime behavior of  Mn(t) can be obtained 
more  easily f rom [2.30], [4.4], and [4.10]: 

M,(t)  ~- ca + 2"c2 ~ t + t3(2" - 2)/3 

(t --* 0) [4.14a] 

to be compared  with 

M , ( t ) =  1 + ( 2  n - 2 ) t  ( t ~ 0 )  [4.14b] 

in models A and B. 
The long time behavior can be deduced f rom 

[4.13], where the integrals f FZN -k with 
k >t 2 approach a constant  value as t ime goes 
to infinity. One easily verifies for t ---, oo: 

fo M~(t) ~- (n + 1)!N" dt'F2N -~-2 

~- n!c~Or/2)n/2tn. [4.151 

In the last equality we have used [4.5] and  
defined 

'°~ . . . . . . .  997_ __ 08 ~I~R 
()7 

0.6 

05 

(?4 

02 

01 

O0 20 z..O 60 80 10.0 12.0 14 .0  160 180 20.0 

FIG. 6. Size distribution Ck(t) (k = 1, 2, 3) and cluster 
concentration R(t) versus time for addition model C with 
a monomer source Qk = 6k~, initial condition Ck(0) = 0 
and addition rate constants K,j = j (/" i> 1). Although 
monomers are being added at a constant rate the cluster 
concentration approaches a constant R(oo) = 0.97 and 
each individual concentration Ck(t) eventually decreases, 
approaching the limiting curve y = 1/t (see Eq. [4.11]). 
Note that Ck = 1/t is a solution of Eq. [4.1] with M~(t) 

~0 ~ 
an = dx(N(x))  -"-I exp(-x2/2) ,  [4.16] 

where al  = (2/~-) ~/2, and where C~o = 0.969 
and ~2 = 0.299 have been calculated numer-  
ically. In Fig. 6 we have plotted the size dis- 
tr ibution ck(t) and the n u m b e r  o f  clusters R(t) 

oo = ~k=2 cg(t) versus t. The behavior  o f  ck(t) in 

model  C is very different f rom that  in models  
A and B, as can be seen by compar ing  Fig. 6 
with Figs. 4 and 5 (see also Fig. 7 where the 
model  A results o f  Fig. 4 are plotted on the 
same scale used in Fig. 6). It can also be seen 
from Table I, compar ing  the large t-behavior. 
The approach to the "l imit ing" distribution 
is nonuniform.  The concentrat ion Ck(t) at fixed 
k initially increases according to [4.10], it 
reaches a m a x i m u m  at a t ime tm~x(k) and then 
starts to decrease, disappearing asymptotically 
like [4.11] al though m o n o m e r s  are being fed 
into the system at a constant  rate. The value 
o f  tm,x(k) is determined by the condi t ion dck/ 
dt = 0, which can be solved for large k, using 
[4.8]. The result is tma~(k) = 1/2k. The previous 
properties can also be formulated differently: 

at a given t ime t, sufficiently large, Cko(t) with 
ko = 2t has reached its m a x i m u m  value. For  
all ck(t) with k ~> ko the t ime dependence is 
given by [4.10] and for all cg(t) with k ~ k0 
is given by [4.11 ]. All momen t s  grow like Mn 
oc t n as t ~ oo, whereas they were bounded  
in models A and B. Remarkably  enough the 
number  o f  clusters R(t) approaches a finite 
value s0 = 0.969, al though the mass in the 
system keeps increasing linearly with time. 

Model  D: Klk = l ( k  > 1) 
with Monomer  Source 

In the presence o f  a m o n o m e r  source for- 
mulas [3.1] and [3.2] remain valid. The cor- 
responding equat ion for ca(t) =- x ( r )  is the 
equat ion o f  mot ion  for a damped,  ha rmonic  
oscillator 5/+ (2 + x-2)~ + x = 0, with bound-  
ary conditions ~(0) = 1. We have not  been 
able to find the solution for all times, which 
is required to determine the relation between 
t and r. Still, some properties o f  the size dis- 
tr ibution can be found, e.g., the large k-be- 
havior at fixed t, 
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2 )  7k-l/2e-r 
Ck oC ( k -  1)! ' 

in which, however, r is an unknown function 
of  time. 

5. ADDITION MODELS W IT H 
INFINITE RESERVOIRS 

M o d e l  E :  K l l  = 2 a ;  K l k  = 1 ( k  > 1) 

We imagine the system coupled to an in- 
finite reservoir which can emit  monomers ,  in 
such a manner  that c , ( t )  remains constant. 
The transition rate for the reaction ak 
+ a~ ~ ak+~ is assumed to be independent of  
the size of  the reacting clusters, i.e., K~k = 1 

for k > 1. Then we can use [3.2] with q ( t )  

= 1, to calculate the resulting size distribution 
(note the relation t = r in this case): 

f ck(t) = a d t ' e - C ( t ' ) k - R / ( k  - 2)! 

oo tl 
= a e  -~ ~ ~ .  [5.1] 

t=k-~ 

The limit distribution Ck(OO) = a, which is the 
stationary solution of  [2.24] with Sl = a and 
Sk = l(k > 1), is approached nonuniformly.  
In fact, we have the limiting behavior: 

ck(t) = a 1 - e - t  ~ = a - O ( e - t t  k-a)  
t=0 

(t ~ oo, k fixed) [5.21 

e-ttk-1 
ck(t) ~- a - -  ( k  ---, ~ ,  t fixed). [5.3] 

( k -  l)! 

The latter also represents the short t ime be- 
havior of  Ck. From [5.1] lower moments  can 
be calculated straightforwardly. The first three 
are given by 

M o ( t )  = 1 + a t  

M ~ ( t )  = 1 + a ( 2 t  + t 2 / 2 )  

MR( t )  = 1 + a ( 4 t  + 5tR/2 + t3/3). [5.4] 

The nth momen t  is a polynomial  of  degree n 
+ 1 in the variable t, and the average cluster 
size [2.31] grows linearly with t ( t  - - ,  ~ ) .  

1.o l 

0 . 9  , 
i 
I R - -  m o d e l  A (ck.(o) =6k i )  

0 . 8  i 
I . . . . .  m o d e l  E ( C l ( t )  = 1) 

l 
0.7  ! 

0 .6  

c 1 
o.~ , . "  - ; : - ;~"~-  . . . . . . . . . . . . . . . . . . . . . . . . . .  

/ c  2 / / • 
0 . 4  / c 3 ,  c 

i / 4 

i / / 0.2 I ~  
i c 2 

0.1 i c3 

0 . 0  O. 2.  4 .  6 .  8 .  10.  12. 14 .  16. 18. 2 0 .  

t - ~  

FIG. 7. Size distribution ck(t) (k = 1, 2, 3, 4) and total 
cluster concentration R(t) versus t ime for addition models 
A and E with rate constants K,,  = K u = 1 (j ~> 1) for 
two types of  boundary conditions: model A (full curves) 
with an initial concentration of one monomer  per unit  
volume and model E (broken curves) with a monomer  
reservoir keeping q(t) = 1. Note the nonuniform approach 
in model E of  each ck(t) (k > 1) to its stationary value 
ck(oo) = 1/2, whereas their sum R(t) = V2t increases linearly 
with t ime (see Table I for a detailed comparison of  models 
A and E). 

U(t)  ~- lh t  ( t  ~ ~ ) .  [5.51 

For the special case K H ( a  = 1/2) the size dis- 
tribution ck(t) and number  of  clusters R ( t )  

= M o ( t )  - 1 = V2t are plotted versus t in Fig. 
7. Although model A and F have the s a m e  

transition rates (K1] = 2; K~k = 1) they have 
different limiting distributions as t ~ ~ .  

The reason behind this is that in model A 
only a finite amount  of  monomers  is present, 
which is used up within a finite time, i.e., in 
[2.24], q ( t )  ~ O, so that d c d d t  ~ O. In model 
E, on the other hand, q ( t )  is kept constant 
and the limiting distribution is the stationary 
solution of  [2.24] determined by the condition 
SkCk = &-~Ck-1 .  For a further comparison of  
the different models we refer to Table I. 

M o d e l  F." 1(11 = 2a ;  KIK = k ( k  > 1) 

Consider again a system coupled to an in- 
finite reservoir of  monomers ,  such that q (t) 
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is kept constant, whereas the rate coefficient 
for the reaction ak + a~ ---, ak+l is proportional 
to the size of  the k-cluster, i.e., Klk = k. We 
may use [3.23] with t = r to calculate the size 
distribution at all times: 

ck(t) = a (k  - 1) dt 'e-2r(l  - e-") k-2 

= a(1 - e-t)k-l(l + (k  - 1)e-9 /k .  [5.6] 

The limiting distribution ck(oe) = a/k ,  which 
is the stationary solution of  [2.24] with 
Sl = a and sk = k, is approached nonuniformly: 

Ck(t) ~-- a(1 - ' / 2k  (k  - 1)e- ' ) /k  

(t --~ 0% k fixed). [5.7] 

In the coupled limit k --~ 0% t ---* oo, k e  -t  

fixed, the mass distribution kCk is exponential: 

kCk ~-- a (1 + Ice -t) exp(-ke-t) .  [5.8] 

We note that in both models E and F the 
limiting distribution can be found directly 
from the kinetic Eq. [2.24] by setting all t ime 
derivatives equal to zero. Calculating the lower 
moments  from [5.6] is again straightforward. 
We find 

M o =  l + at  

M I  = 1 + 2a(e  t -  1) 

M2 = 1 + a(3e  2 t -  2 # -  1). [5.9] 

From the second of  these equations we see 
that the rate at which monomers  are supplied 
by the infinite reservoir increases exponentially 
with time. For large t the average cluster size 
[2.31] grows exponentially fast (cf. [5.5]): 

U(t) ~- 2 # / t  (t ~ oo). [5.10] 

In Fig. 8 the size distribution Ck(t)(k > 1) and 
number  of  clusters R(t)  are plotted versus t ime 
for the special case Klk  = k(a  = 1/2). 

In models E and F where monomers  are 
supplied by an infinite reservoir the number  
of  clusters increases linearly with time, but in 
the latter model the average cluster size grows 
exponentially with time, while in the former 
one it only grows as t. We note a similar large 

0.20 

0.15 i / C3 

O.10 ~ 

0.05 

0 11o 210 3'0 4.'0 ~o ~.o t 

FIG. 8. Size distribution ck(t) (k = 2, 3, 4) and total 
cluster concentration R(t)  for addition model F with rate 
constants K u = j (j >1 1) and with a monomer  reservoir 
keeping cl(t) = 1. The stationary size distribution Ck(OO) 
= (2k) -1 is approached in a nonuni form way, such that  
the total cluster concentration R(t)  = l/2t increases linearly 
in t ime (compare with model E in Fig. 7; see also Table 
I for a comparison with other addition models). 

k-behavior in models E and F, and A and B, 
respectively. The only difference is due to the 
different relations between r and t. In models 
A and B, z approaches a finite value 7oo, as 
t --0 oo and in models E and F we have simply 
r = t. These properties have been summarized 
in Table I. 

6. DISCUSSION 

Using Smoluchowski's equation we have 
studied the kinetics of  clustering through ad- 
dition (ak -t- al --~ ak+l) and through conden- 
sation ( a k - I - a l  --~ ak+l; k, l > 1). The rate 
constants K# for clustering reactions depend 
on the cluster sizes and vary for different 
models. We have found a great variety of  new 
analytical results, which provide new insights 
into the properties of  the coagulation equation, 
and checks on numerical calculations for more 
complicated models. 

The addition and condensation models are 
special limiting eases (flat disks and needles) 
of  a model, introduced by Samsel and Perelson 
for coagulation cylinders; their caps are uni- 
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formly coveredwi th  reactive A-groups, their 
walls with reactive B-groups. A - A  bonds lead 
to linear chain segments, A-B bonds lead to 
branching. 

In the model of  fiat disks (condensation 
model A) the rate constants are K1~ = ~, Klj 
= 1 (j > 1), and Kij = 3" (i, j > 1), reducing 
to those of  Flory's model RA2 in the special 
case ~ = 3" = 1. In the needle model  one has 
Kll = 4e, K1~ = 3j + 1 (j > 1), and Kii 
= (2i j  + i + j)3" (i, j > 1), reducing to those 
of  Flory's model A2RB~o for the special case 
E = 3" = 1. In the closely related condensation 
model B the rate constants are K~ = ~, 
Klj = j (] >1), and Kij = ij3" (i, j > 1), 
reducing to Flory's model RAo~ for e = 3" 
= 1. The last two models exhibit a gelation 
transition; the first one does not. For the Flory 
models RAo~ and A2RB~o the size distribution 
ck(t) and its first few moments  Mn(t)  (n = O, 
1, 2) in pre- and post-gelation stage have been 
given in analytical form in [2.11]-[2.18] and 
[2.21 ]-[2.22] for both irreversible and revers- 
ible coagulation reactions. Inclusion of  frag- 
mentat ion reactions changes the t ime  depen- 
dence of  the extent of  reaction a(t),  but does 
not affect the functional dependence of  cg(a) 

and Mn(a)  on a. In the RAo~ model a(t)  = t 
without  f r agmenta t ion ,  and  a( t )  = X-I(1 
- exp(-Xt)) with fragmentation. In the A2RB~ 
model a(t)  = 1 - e -t  without fragmentation 
and a(t)  = (1 + X)-I{1 - exp[- (1  + X)t]} 
with fragmentation. 

The parameter  3" in the condensation rate 
constant Kij (i, j > 1) can be used to model 
an inhibition or stimulation mechanism that 
lowers (3" < 1) or raises (3" > 1) the reactivity 
of  functional groups on clusters as compared 
to those on monomers .  For 3" = 0 the con- 
densation models reduce to pure addition 
models. The parameter  ~ in the m o n o m e r -  
monomer  rate constant K~ = e simulates a 
similar mechanism. For general values of  the 
parameters (e, 3") in the condensation models 
A and B we were able to find the m o n o m e r  
concentration Ca(t) and total cluster concen- 

ct) tration R(t )  = ~k=2 cg(t) as a function of  t ime 
with initial condition ck(0) = ~k~ (see [2.2]- 

[2.9] and [2.23] and Figs. 1, 2, 3). In conden- 
sation model B (Fig. 3) these solutions are 
only valid up to the gel-point to, defined by 
the relation M2(tc) = ~ .  

In condensation model A the concentration 
of  monomers  ca(t) depends only weakly on 
the parameter  3' (see Fig. 1), whereas in con- 
densation model B Cl(t) in [2.23] is indepen- 
dent of  3". 

In the kinetic equation [2.2] for conden- 
sation model A one may neglect terms pro- 
portional to 3" for sufficiently short t imes (t 
< to(3")), yielding the rate equations for ad- 
dition model A. The t ime to(3") is determined 
by the requirement Ca - 3"R (see [2.2]), and 
can be found from the graphs in Fig. 2. E.g. 
for 3" = 1 we find t0(2) -~ 2.2 and for 3" = 0.5 
we find t0(0.5) - 2.8 in properly normalized 
time units. In condensation model B the cor- 
responding criterion for neglecting conden- 
sation terms is Ca >~ 3" ~k=2 kck = 3"(I - ca) 
where mass conservation (in the sol phase) 
has been used, yielding t ~< to(3")= In (1 
+ 1/e3"). The time to(3") in condensation model 
B is smaller than t0(3") in model A on account 
of  the larger condensation rate constants Kij 
= ij  7. These criteria only make sense for small 
cluster sizes, as can be clearly seen from the 
values of  t0(3") in condensation model B. For 
3" >~ 0.75 the t ime t0(3") is already larger than 
the corresponding gel-point tc (see Fig. 3), 
where the infinite cluster appears. In addition 
model B no gelation occurs. 

In Sections 3 to 5 we have studied the cor- 
responding addition models (condensation 
models with 3" = 0). In model A, D, and E 
the monomer-c lus te r  rate constant K~k = 1 
(k > 1) and in models B, C, and F, Klk = k 
(k > 1). Both models have been solved for 
different boundary conditions. In Section 3 
we have determined the size distribution Ck(t) 
and its moments  for model A and B, where 
at the initial t ime only monomers  are present, 
i.e., ck(0) = ~kl. In Section 4 with models C 
and D monomers  are supplied by a steady 
source Qk = ~kl  and ck(0) = 0. Here only model 
C with/(11 = 2 has been solved completely. 
In Section 5 the size distribution c~(t) and its 
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moments Mn(t) have been calculated for mod- 
els E and F, where the system is coupled to 
an infinite reservoir of monomers that keeps 
ck(t) = 1. 

The effects of boundary conditions in the 
models A and E with Klk = 1 can be clearly 
seen in Fig. 7, and in the models B, C, and 
F with Klk = k in Figs. 5, 6, and 8. The time 
evolution of ck(t) and Mn(t) strongly depends 
on the boundary conditions, even for relatively 
short time. In Table I we have compared the 
size distribution and its moments  for all ad- 
dition models. Physically, the large time be- 
havior of addition models is not so important, 
as they should be replaced by condensation 
models, and also fragmentation terms should 
be included (16-20). 

The approach to equilibrium is in all cases 
nonuniform in k, which is a general property 
of solutions of Smoluchowski's equation. 

From Table I one sees that at a fixed time 
t the large k-behavior of  the size distribution 
is the same for the different boundary con- 
ditions (compare models A and E and B and 
F), provided the parameters z in models A 
and B is replaced by t in models E and F. 
(This involves a transformation of  the time 
variable only.) 

Our analytical results for the condensation 
model A (flat disks) and addition model A 
have been obtained numerically by Samsel 
and Perelson for different values of the rate 
constants Kll = ~ and Kij = 3' (i, j > 1). These 
authors have also numerically studied the in- 
clusion of break-up terms in the coagulation 
equation (19). An extensive discussion of  the 
numerical effects of  changing the different pa- 
rameters can be found in Samsel and Perel- 
son's work. 
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