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Singularly Perturbed Systems of
Diffusion Type and Feedback Control*
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Asymptotic analysis yields new insight about the behaviour and stability of controlled
diffusion processes, and it is useful for the determination of optimal feedback loops.
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Abstract— Asymptotic approximations describing the behaviour
of linear systems of diffusion type (convective or non-convective)
with a small diffusivity, to which a feedback control of distributed
or boundary type based on point sensors is applied, are
constructed and proven to be correct. As a consequence one can
find a near-optimal feedback control for a cost minimization
problem with a quadratic performance index measuring the
deviation of the stationary state from an ideal state, under the
restriction of a prescribed exponential degree of stability of the
stationary state.

1. INTRODUCTION

In THIS paper linear systems of diffusion-type subject
to a certain feedback control mechanism in a
situation, where the diffusion constant is a small
parameter will be considered. Such controlled
diffusion systems can be found for example in the
context of heating problems (Curtain and
Pritchard, 1978; van Harten, 1979a) or chemical or
nuclear reactor design (Owens, 1980). For the
feedback control there are many possibilities:
feedback without or with memory, with distributed
input or input through the boundary, etc., while it
also depends on the number and kind of
observations (Curtain and Pritchard, 1978;
Schumacher, 1981; Triggiani, 1979, 1980). Here we
shall consider distributed as well as boundary
control, but always on the basis of an instantaneous
feedback coupling using observations of the state in
a finite number of points y,,..., y, in the interior of
the domain D. In the case of Dirichlet boundary
conditions the evolution of the state is described by
one of the following problems:
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%'::: L+ Tau+h, u=sonéD,u(-,0)=y.
(1)a
u .
6_t=L£u+h’ u =Tl + s on éD,
u(,0) = y. (1
Here L,, I, IT, are of the following form
L =e¢L, - L, 2)
with
"0 0 "3
2 ,.fvgl ox, Gy b= Lt T
P
Mau = co + Z ci(Oyu—1I;), co,c;eC*(D)  (3)q

i=1

P
Myu=bo+ Y bi8,u— 1), bo,b;eC®(3D). (3%
i=1
We suppose, that D < R" is a compact set with a
smooth boundary éD. The coefficients a;;, v;, y are
also supposed to be smooth. Further we assume,
that L, is uniformly elliptic. With §,, we denote the
continuous linear functional on C(D), which maps u
— u(y;). Note, that the feedback control consists of a
part independent of the observations d,,u and a part
proportional to the difference between the d, us and
certain ideal values L;. We shall always assume that
the observation points y; have an O(1) distance to
the boundary dD.

Because of the small parameter ¢ in front of the
highest order derivatives, the problems (1), 4 have a
singular perturbation character. The stationary,
uncontrolled problem corresponding to (1), 4 has
been thoroughly analysed (Eckhaus, 1979; Fife,
1974; van Harten, 1975, 1978; de Groen, 1976). It
was understood that for the behaviour of the
solution for ¢ | 0 it makes a big difference whether
there is convection: v # 0, or not: v = 0. If there is
convection the structure of the velocity field plays an
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important role especially the presence of turning
points, cycles or tangency points at the boundary. If
v = 0 the sign of the coefficient y is very relevant.
Here we shall consider the following two cases:

r=0:Lou=7yu, y>0 (4a)
and a domain as in Fig. 1
r=1:Liu=ovVu+yu |v|>0 (4b)

with a domain and velocity field as in Fig. 1. In the
case r = 1 we have

vn<0ondD,; vn>0ondD, (6)

n = the outer normal on ¢D. Further, let z(t;x)
parametrize the characteristic through x, i.e.

dz
g = s 205x) = x. (7)
Then, we assume that Vxe D3t,(x) <0 such that
2(to(x); x) £ x,€0D,. (8)

Note, that the conditions on the velocity field in
{4b)—(8) are such that turning points or cycles are
excluded and at each point of 4D the field is
transverse. Further, using the theory of ordinary
differential equations it is clear, that t,(x) and x, are
uniquely defined, smooth functions of x.

As for the behaviour for ¢ | 0 of the solution of the
dynamic, uncontrolled singular perturbation pro-
blem corresponding to (1), 4, there are only a few
references (Lions, 1973; Besjes, 1974; van Harten,
1979a). The asymptotic theory for solutions of such
parabolic problems i1s somewhat less developed
than for elliptic problems. In this respect Section 3
contains some new contributions for the case of a
first order unperturbed operator L; as in (4b).

When now, for a moment, we forget the point of
view of asymptotics and take ¢ = ¢, = fixed, there
are a large number of results from infinite
dimensional control theory, which are applicable.
They concern, for example, the following subjects:
well posedness of the controlled problem, gener-
ation of semi-groups by the controlled diffusion
operator and stabilizability of the system (Curtain

r=0 r=1

[
e

F1G. 1. Two different cases are distinguished: (a) a zero-order
degenerated operator; (b) a first-order degenerated operator.

and Pritchard, 1978; Schumacher, 1981;van Harten
and Schumacher, 1980; van Harten, 1979b;
Triggiani, 1975, 1980; Balas, 1979). Some of these
results will be useful in the sequel and sometimes it
will be nice to compare our results found by
asymptotic calculations with predictions valid for
the general case, see Section 4 for the topic of
stabilizability.

Our purpose is to use singular perturbation
techniques to analyse the behaviour of the solution
of the controlled problem (1), asymptotically for
¢} 0. In Section 2 this is done for the corresponding
stationary problem and in Section 3 for the dynamic
problem. As a result we obtain explicit formal
asymptotic approximations as ¢ | 0 for the effect of
the control and also for the spectrum of the
controlled operator. In Section 4 it is sketched, why
the results of the previous sections are rigorous. In
Section 5 we use the results found before to
construct a near optimal control with respect to a
certain cost-functional. In that optimization prob-
lem the number of sensors is one and all
parameters: c¢o, ¢ (the input functions), the
observation point y, and the reference value 1, are
varied in the optimization. Finally, we remark that
asymptotic methods are used more often in control
theory, but for problems where the small parameter
¢ enters in a different way. For example, the
asymptotics as considered here is from a completely
different type than in Balas (1982) where the small
parameter is in front of the &/¢t term. Other
examples of different asymptotics can be found in
Lions (1973).

2. THE STATIONARY, CONTROLLED PROBLEM

Without loss of generality we can restrict
ourselves to the following problems with homo-
geneous boundary conditions

(Ly+ Mg — 2+ =0, v*=00néD (9)4
(Le— 2+ f=0, ' =Tlxuw* onéD (9

with

Note, that we have introduced a spectral parameter
inAin (9)4,. The trick to solve these problems is well
known from Weinstein—Aronszajn’s theory. If
A¢o(L,) we can rewrite (9),,, as follows:

r
W= —F— 3 &C (10)q

i=1
P

w=—F+ ) B (10),
i=1

with & = 6, u°, F* = (L, — AT CE = (L, — A7
and B, is the solution of (L, — A)B: = 0, B: = b, on
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aD. Substitution of x = y, in (10) provides us with a
linear system of equations for e C?

I+ Q)= —n (11)q
U+ Q)= —-n (1),

withnf = 6, F°, [Q4 1 = 0,,Ch, [ )i = 6, Bi. I 1
+ Q5, I — O are invertible, we only have to put the
solution & of (11)4,, into (10)4, and the solution v*
of (9)4, is known. Note, that then the effect of the
control is given by the following expressions

edc. = (I + Q) 1, C (12)4
ebe = —((I— Q) B (12)

with for e, '€ C?
14
(e, =) eg]
i=1

and C¢, Bf the vectors with components C;, B;.

Of course the points, where I + QF, I — € are
singular, belong to the spectrum of the controlled
operator.

It is now clear, that in order to construct
approximations of the solution of the controlled
stationary problem for ¢] 0 it is sufficient to have
asymptotic approximations for the functions F*, C}
and B:. These functions are determined by
uncontrolled problems of the following type

(L.—i)C:=¢, C:=00ndD  (13)
(L.—A)B*=0, B =bondD. (13)

Using the method of matched asymptotic expan-
sions approximations C, B of C* and B® are easily
found (Eckhaus, 1979; Fife, 1974 ; van Harten, 1975,
1978). Thus we are lead to approximations Qg of
Qip,n of ¥ and & of &, where ¢ satisfies the
approximate version of (11)4,1.€. (1 + Q)¢ = —p,
(1 — Q)¢ = —pandifl + Q4,1 — Qg areinvertible
we end up with an approximation u of u’.

In the case of a zero-order unperturbed operator
as in (9) the approximations consist of a regular
expansion in the interior of D and a boundary layer
of width \/g along all of oD

C° = Colx) + Goll, D)H(X) + 0(/e) (14}
B° = Go((, $)H(x) + 0(/2) (14),

where { is the distance to dD/\/¢, ¢, a (local)
parametrization of ¢D and H(x) a suitably chosen
C= cutoff function. Note, that in the case of (13), the
regular expansion is =0 and the approximation is
completely of layer type. The functions C,, G, and
G, are found as the solutions of the following
problems

—(p+4)Cy=c (15)

AUT 20:1-F

G‘og:o = —Cow), }im Go =0 (16),
d: _

(a@ -y = ']')GO = 0,

GO|§=0 - b, llm GO = 0 (16)[,

with a = Z"i(aij)I«’Dnj >0, 7 = y0p > 0. Hence
Co=—c/(y + )Gy = _ComoeXp(_NC) (17a)
Go = bexp (—ul) (17b)

with u = \/[(7 + 4)/a]. In order to be able to divide
by y + 4 and to have exponential decay of the
boundary layer terms we must have

A¢(—oo0, —7] with = miny(x) > 0. (18)

xeD

Now using the approximations as found in
(14)-(17) we find

G =04 + 0(/¢) (19),
Q% = Q, + 0(/¢) (19),
with
_ Ci(yk) .
Qi = ) Y Q, =0.

The conclusion is, that in the case of boundary con-
trol (i) the effect of the control is only noticeable in
alayer of width /¢ along D and (ii) the spectrum of
the controlled operator is contained in a set, which
shrinks with ¢/ 0 to (—o0, —7]. For distributed
control the spectrum is contained in a set, which

shrinks with ¢ 0 to (—o0 —F]uU {4y, ..., 4, with
g < pand 44,..., 4, the eigenvalues of the matrix A,
where

A= —700) + i) (20),

More precise information on the set, which contains
the spectrum is given in Section 4.

Let us now consider the case of a first order
unperturbed operator as in (4b). Then the approxi-
mations of the solutions of (13),, have a different
structure. They consist of a regular expansion valid
up to ¢D, and a boundary layer of width ¢, along
oDy,

In order to describe these approximations it is
simpler to introduce the following coordinates

o = x.. 21)

Note, that in these coordinates éD, = {s = 0} and
v.V = 0/0s. The other part of the boundary, 0D, can
be given as {(s,®)|s = T(¢)}, where the in-
terpretation of T(¢) is the time it takes to travel
along the characteristic through (0, ¢) from (0, ¢) to
0D,. Now our approximation will have the
following form

C* = Cols,¢) + GAUL PH(T(P) — s) + Ofe)  (22)y
B* = Bo(s,¢) + GS (L, )H(T(¢) — ) + O(e)  (22),

§= _te(x);
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with { = (T(¢) — s)/e and H a suitably chosen C*
cutoff function. The functions C,, G,, BS, G3 are
found as the solutions of

¢ 4
- v—/l)Co—c Co(0,9) =0 (23),

~

(_F_V_A)Bo—o Bol0.6)—b(d) (3,

Go(0,¢) = —Co(T(9), ), lim Gy ({, ) =0 (24),

5 24),

ot, o,

b, and b, are the values of b on @De Aand oDg,
respectively. It is easy to check, that Cy, GJ, B and
G} are given by

8Do

Cols, d) = *J c(§,¢)CXP[—£v(5’,¢)ds’

4]
— (s — 5)] ds (25)

G, ¢) = —Co(T(¢). d)exp(—{/A°)
Bo(s.9) = be(¢>)€XP[— fs (s ¢)ds’ — /15}

0

(23

G(C,8) = [bo(¢) — Bo(T(¢), d)Jexp(—{/A°).

Now, using the approximations as found in
(22)-(25) we obtain

Qi = Qu(4) + 0) (26)q
with

Q) s = — f o6, ¢k)exp[— f " s o) ds’

— M8 — s)]ds]

where (s,,¢,) denotes the point y, in (s,¢)
coordinates, i.e. 5, = — (V)5 Px = Wie-

Q, = Qp(4) + OCe) (26),

with

[Qb 1k i~ bl e(¢k)exp|: J:k ,y(s/, d)k) ds/ - A-Sk:|-

Hence, the spectrum of the controlled operator is
contained in a set which shrinks to the zeros of a
holomorphic function wy(4), wy(4) in the respective
cases of distributed control and boundary control
with

wy(4) = det {T + Qu(4)] (27)4

wpl{4) = det [I — (4)]. (27},

Of course, it would be interesting to have a rough
idea about the location of the zeros of these
holomorphic functions. Using integration by parts
it is not difficult to show that in the case of
distributed control YA e R 3B > 0 such that for all 4
with Red> A4:[Q4(4)];; < B/(1 +|4]). Then an
application of Gershgorin’s theorem (Wilkinson,
1965) shows that the zeros { #;; k€ N} of wy(4)can be
numbered in such a way that Re 4, | — o for k T «.
However, in the case of boundary control the
situation is quite different. It is easy to verify, that

wy{A) = exp (= (s — 49)tr (S))
det [e" 4% — O (4g)]
=exp{—(4 — 4g)tr(S))
det [e?7#08Q 1 (50) — 1]
det [Qu(40) ]

Here S denotes the diagonal matrix with §; , = s,
and the only requirement for A, is, that Q,(4,) 1s
non-singular. Using again Gershgorin’s theorem we
see, that the zero’s of wy(4) lie in a strip
{Alo <Rei < Bj.

More detailed information on the location of the
spectrum of the controlled operator can again be
found in Section 4. As for the effect of the control
notice that in the case of boundary control, the
control input on ¢D, is only noticeable in the
boundary layer of width ¢ along éD,.

On the basis of the results derived for the
asymptotic location of the spectrum of the
controlled operator, it is expected that an
approximation & of the solution of the dynamic
problem [see (29)4, ], will grow not faster than

ja(x, 1)) € C(v,e)e™. (28)

In this estimate we can presumably take ve R and
v >V, in the case of distributed control with vJ
= max (—7,Re iy,....Re 4,),vi = max {Re Awy(4)
=0} and in the case of boundary control veR,
v > v, withv) = —7, v} = sup {Re £|w,(7) = 0}. In
the next section we shall see, that an estimate as in
(28) indeed holds and in addition we shall find how
the constant C(v,¢) in (28) depends on &.

3. THE DYNAMIC, CONTROLLED PROBLEM
Here we shall consider the time evolution of the
state, when the equation and the boundary
conditions are homogeneous:
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o _
—67 = (Le + I-‘[d)u8

#=0o0nadD

7 (-,0) = yeC*(D)

W =0 on 6D (29),

o’
= Lt
ot H

i = I1,@° on éD
#(,0) = y e C*(D)
W = Iyy on éD. (29),

In order to solve these problems we denote the
observations 6, %°(-,t) by i(t). The solutions of
(29)4, can then be expressed in the following way:

p
w(, ) =ely + Y | &t — r)etedr
=140
(30)q

ofa
(1) = ey + 67{; RIEE

x (1 — eb=)Bt dr}. (30),

Here B¢ denotes the solution of the uncontrolled,
stationary problem: LB; =0, B =b; on éD-B; is
well defined, since 0¢ a(L,), see Section 4.

By v(-,t) = e*'y we denote the solution of the
uncontrolled, dynamic problem starting at ¢t = 0 in

x orf

O S
ot ¥
v*=0o0ndD (31)
v°(,0) = x.

Substitution of x = y, in (30),,, yields the following
Volterra equations for £%(t)

E(t) = (t) + f Ki0)ec — 1)de (32)s
0

d 1
&) = 1) + a{ f K3 — r)dr} (32),

with i(t) = 5,4y, [Ki(7) )k = 6,8~
[K§(t) e = 6y, (1 — e™*)B:. Once the solutions
£%(t) of these Volterra equations (32)4, are known
we find the solutions @ of (29),, simply by
substitution of £°(¢) in (30)4,. Let us now consider
our task, the construction of asymptotic approxi-
mation for ¢ | 0 of the solutions of (29)4,,. This task
really reduces to finding an asymptotic approxi-
mation v for £/0 of the solution ©® of the
uncontrolled problem (31). In this respect it is
important to notice that an asymptotic approxi-
mation of B is already known, see Section 2, (13),.

Once such an approximation is available we also
have approximations Kg, of K3y, % of n° and £ of £,
where ¢ is found as the solution of the approximate
version of (31)4,. Next an approximation u of #° is
found by substituting all approximations of the
r.hs. of (30)gp-

In the case of an unperturbed operator of zero
order as in (4a) the approximation consists of a
regular expansion corrected by a boundary layer of
width \/ ¢ along all of 0D, just as in the stationary
case. However, the various terms in the approxi-

mation now satisfy dynamic equations

o = Vo(x, 1) + Po(—)H(x) + O(e 7" /¢) (33)

oVy

—0o 34
o Vo (34)
VO("O) = X

P, is the zero order boundary layer term and H is
a suitable C” cutoff function. In order to construct
P, we introduce rather special coordinates (y,9)
near 0D, such that: 6D = {y = 0} and

. 62 n—1 . 62
L2=a@5+ Z aij———

L2 36,00,
n—1 6
+ o= + lz:l aia—ei. (35)

This can be done by first introducing (y,¢)-
coordinates with y the distance from x to D and ¢
the parameters of the point on dD nearest to x. Next,
we define 0, = ¢; + g;(y, ¢) with g; the solution of
0gi/0y = —3do(y,¢), 8(0,¢) =0, where do;
denotes the coefficient in front of 3%/dyd¢;in L, . The
reason for the introduction of these special
coordinates is to avoid singularities at éD, t = 0 in
[(6/0t) — L,]P,, which are produced by the
differentiations 02/0yd¢;. For the same reason we
want to annihilate the effect of the differentiation d,
/3y on P, and therefore we write

. Ya 0
By(—)=exp (—% f ‘;"((55’9)) ds)Po(c, 0,1) (36)

with { = y/\/ ¢ and P, the solution of

0P, JP,
e
POIC=0 = - V0|y=o,clim Po(é', 6, t)= 0

Foj=0 =0 (37)

where a and 7 have the same meaning as in (16), but
with ¢ replaced by 8. The solutions of the problems
(34) and (37) are
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Vo(x, 1) = x(x)exp (—y(x)t)
Po((,0,t) = —X‘(;D(Q)exp(—?(ﬁ)t)

2 0 .
ﬁ f e “dr.
U t4al0n) (38)

In the case y = Bf we proceed in a slightly different
way, because Bj consists only of a boundary layer
term along 6D. We now take Vo(-,0) = 0 and Py|,-o

=0, Poy=o = bi®)exp(—u(0)) with u=/(/a),
see (17),. This leads us to

(1= By =0
Po(C, 0, 1) = by(0)e™ " f GGmn0e Ay (38)
0

with

, 1 ({ —n)?
GCn5.0) = /(4nat) {exp 4at )

€+n?
—exp | ==

It is a nice exercise in the use of the maximum
principle for a parabolic equation (Friedman, 1976;
Protter and Weinberger, 1967) to show that
|Po| < |bj max (e~ ",e ). Note, that in (33) we can
indeed take 7 = min y(x). Let us now exploit these
results to find asymptotic approximations of the
kernels K5 and Kj in (32),,

Ki=Kq+ 0(/ee™™) (39)
K§ = Ky + O(\/ee ™7 (39),

with [Kd] (Y) = e—nZ, Zk,i = Ci(yk)’ I' = the diag-
onal matrix with I, , = y(y;) and K, =0. Using
these approximations for the kernels the equations

for &4(t) reduce to

1) = ¢ o + f e T ZE)dT;  (40),

0
E=e" . (40),

We note, that (40), is equivalent to a system of
ODEs & = A¢, £(0) = 5, with o the vector with
components Y¥(y,) and A = —T + Z, as in (20),.
Hence, the solution of (40), is

&) = eMro. 41y’

Substitution of these approximations in (30)4,
provides us with an approximation i of the solution
i of (29)4,. For the growth of # for t — oo we find
the following estimates

la(x, 1)) < C(v)e™

A . @)
v > max (—7, Re a(A)) = vg

la(x, 1)) < C(v)e" 2),

v> —F=w

with constants C(v) independent of . Note that this
is in nice agreement with the results on the location
of the spectrum of the controlled operator, compare
(28).

In the case of a first order unperturbed operator as
in (4b),, the structure of an approximation of the
solution of (31) is rather complicated. Figure 2
shows where the various layers are found.

Our approximation has the following form:

i = PoH® + PYH® + (Qo + YH)HC_ H¢, (1 — H°)
+ (Vo + GoH)(1 — He)(1 — H)(1 — HY)
+ O3 e, (43)

Here H¢, H°, H and H¢, , H_ denote suitable C* cut-
off functions. Let I(x) be =1 for « < 1 and =0 for
o >2. Then we choose H =I(T(¢)—s) H°
= I(s/0) 1(¢/3), H®° = I((T($) — 5)/d). I(t/d), H':
= I((t — 8)/8%) HS. = I((s — t)/0*) with § = ¢'/>. Of
course, T(¢) and s have the same meaning as in
Section 2. In the order of the error of the
approximation w € R can be taken arbitrary, as we
shall see in the next section. The zero order terms in
(43) are found in the following way

v, o,

e _K-VVO; Vo=0o = 1 (44)
00, &
== ATTQ;_ Qo (45)

lim Qo(s,¢,7) =0, lLim Quls,d,1) = Vy(s, @, s)

T T — X
" Ot Ot

with 1= (t —s)/ /e, A=Y —a, =<

(t = /e, Lo

Approx. =0

Free layer along

the characteristic

startingatt =0

on oD, T

t

FIG. 2. The approximation consists of a regular part combined
with several layers.
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A =5 =0 (46)
%(0,6,7) = — Qo(T($), $,7)

lim ¥%({, ¢,7) =0

{—w
with t as above, { = (T(¢) — s)/e and A° = Al,p,.
For the calculation of p¢ we introduce special
coordinates near 0D, in order to avoid singularities
for t| 0 in L P Instead of (s, ¢) we work with (s, 6)

defined in such a way, that 6D, = {s = 0} and
_62 n—-1 2 _ 9
L,=4 ey a
1= Azt L Auggag Ao
n—1 _ 6
+ i; A,.50~i.

Such coordinates can be found by a procedure as in
(35). Then, we define

with n = s/e, T, = t/e and P§ the solution of
oPy _ Py _ 0P
0ty on®>  on
P5(n,0,0) = ¥lon,, P5(0,6,7) = 0

and A° = A|;p, = Alop. (0). In a completely anal-
ogous way we can introduce coordinates s
= T(¢) — s and 0 such that D, = {s, = 0} and

dy) Pf)("l, 0a rl) (47)

(48)

o2 0
A] A,
L= 650+,JZO 3830, T 035,
n—l_ a
Aj =5
+i§1 l(’)91'
We put

(__'[SO AO(yO’ 9)

A (yOv 0)
with { = sp/e and PJ the solution of
Lpg = A° 52P8 + a_P§
0T, a2 oL

Pg(C, 95 0) = le‘Do;Pg(Os 9"51) =

o)Pg(C,H,rl)

(50)

with 4 = A|sp, (0). In the case y = B the initial
values for P§ are taken as the zero order term of the
boundary layer expansion of Bf, ie. Go((,0)
+ Boyop, (0) as given in (25), with by = by;p, and b,
= bysp,. The solutions of these problems can easily
be calculated

VO(S, d)a t) = X(S — 1 ¢)exp(_fs_ '}/'(S/, d))ds’)
(1)

QO(S7 ¢’ T) = exp (_ J:’y(s,7 ¢)dsl) qolr, ¢’ T)) (52)

0(7‘, ¢,T) =X

R
“dr
a0 (@) 7; J:MM €

with

r= fsA(s’,¢)ds’

Yoll, ¢, 1) = —Qo(T(9), b, T)exp (—{/A°)(53)
P5(n,0,71) = ¥|ap, ()@ T/1447

fGe(é,n,rl,H)e“’:"“e’dé (54)

0
with

e _ 1 (Cv_rl)z
GG, 0) = (4nA“'r1){eXp(_ 44, )

— €Xp (— (é + '1)2 }

44,
P8(C,9, T,) = e~ (L +ri(449)
< [ 6oL 0P 000y (55)
0

with
1 =)
G°(n,0,0,7,) = m{exp (—4—14()'%)

{+n)p
_exp(__(wjf )}

Using the results as found in (43)—(55) we obtain the
following approximations for the equations given in

(32)a,

&) = f Ka@)lt —de  (56)a

&) = n(e) + { f Ko(®)E(t - r)dt}(swb
with
Kl = et = tbien [~ [ 50|
fort <s, k
=0fort> s

[KpJii(t) =0 for t < s

= bi.e(¢k)exp (_ J:k ,y(sr, ¢k) ds,) 5

fort > s,
and

nk(t) = W(Sk -1 ¢k)exp (_ qu- )’(S,, d)k)),

for t <s,

=0 for t > s,.
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Here (s, ¢x) represents the observation points y, in
(s,¢) coordinates. The errors in these approxi-
mations will be discussed in the next section. We
observe, that for t > s, the kth component of (56)
yields

£t = f " [Ka(@E( — 1) dr.
0

It is also easy to check, that (56), is equivalent to
&) = mdt) + [Ky(0)E(t — sH(t — 5) ) with H
the Heaviside function. This shows that (56), , are
equations with a finite retardation. Further, using
the conditions which y satisfies on @D, it is easy to
check that n and ¢ are continuous functions with
bounded derivatives. With the exception of ¢t = s,
for (56); and t=ns, for (56),, ¢ and 5 are
continuous. The equations (56),, can easily be
solved using Laplace transformation. Let us denote
the Laplace transform of f by Lf with

(Lf)(2) = f e *dt.

Because of the convolution structure of (56), ,, the
equations for L¢ are very simple

(1 + Qu4)LE = Ly (57)
(1 = Qp(4)LE = Ly (57

with Qg, Q, as in (26),,. Hence
E=L7M[(1+Qq) ' Ln] (58)4

&=L""[(1 - Q) 'Ln). (3.30),

The inverse Laplace transformation is given by

(g = [ g+ inean

(Schwartz, 1965). Here we can use any v > v}
= max {Re Awy(2) = 0}, v > v} = max {Re A|wy(4)
=0} in (58)4,,, respectively.

It is not difficult to verify that the substitution of ¢
in (3.2)4, provides us with approximations u of the
solutions #* which satisfy the following estimates

[a(x, 1)} < C(v)e™ (59)
v > v)
lu(x, )] < C(v)e™ (59
v > vl

This is in good agreement with the asymptotic
location of the spectrum as determined in Section 2,
(cf. (28)].

4. ON THE ASYMPTOTIC VALIDITY OF THE
FORMAL APPROXIMATIONS

Here we shall derive some results on the
correctness of the approximations of the solutions of
the stationary problems, as found in Section 2, and
we shall also demonstrate that the asymptotic

location of the spectrum of the controlled operator
given in that section is correct. Furthermore, we
shall discuss the validity of our approximations of
the solutions of the dynamic problems found in
Section 3.

Let us first consider the case, where the
unperturbed operator L, is of first order. The
following result will be very useful.

Theorem. Let L, be as in (4b) and let w be the
solution of the dynamic problem

ow
e Lw+ R (60)
w=0on ¢D

w(,0) = yeCo(D) = {yeC(D)|x = 0 on éD}
with Re C(D x (0, oc)) and bounded for ¢} 0. Then
weC(D x [0,00)) and ey, 5,C, T > OVee(0, &)

Ywe [0,8/e WxeD,t =0

Iw(x, 1) < Ce @™ max{wo,sup |R<-,r)em|o}

[0.1]

(61)

where ||y denotes the sup-norm for the domain D.

Proof. We first take ¢, R smooth with
supp (¢) < D and supp (R) < {t > 0}. Then (Lady-
zenskaja and co-workers, 1968), there exists a
solution w of (60) in C* (D x [0, o0)). The function
w defined by w = wexp (—wt)W(s) satisfies

%V;- = (L. + w)% + R with R = Re”yW
w=0ondD, w-,0) = = y/W (62)

where the constant term of L, + w equals ¥ = W ™!
(L, + w)W. Now let W satisfy (—-0/0s + o + o)W
= —(1 + w)W, W(0) = 1 with & = max y, i.e. W(s)
= exp((a + 2w + 1)s). It is easy to check that § <
—1—w+ Ce(l +a+ 2w)?; hence for we [0, fi/e]
with f suitably chosen we have § < —3. Using the
maximum principle for parabolic equations
(Protter and Weinberger, 1967; Friedman, 1976),
we obtain

W(x,t) F 2max {|¢/|0, sup R(-, E)|O}zo (63)
i<t

Of course, (63) implies (62).

The regularity assumptions on ¥, R can be
weakened to those in the lemma by an approxi-
mation argument: R, — Rin L?(Q),Q = D x (0, T),
p sufficiently large, using L? theory for parabolic
equations (Ladyzenskaja and co-workers, 1968),
and Sobolev’s imbedding from W'?(Q)— C(Q)
(Adams, 1975), and next yr,, — ¥ in Co(D).

O
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It is well known that L, with Dirichlet boundary
conditions generates an analytic semigroup e*<' on
Co(D) (Stewart, 1980). A direct consequence of (61)
is that

lek, < Cmin {1,exp|:—§(t - T):H (64)

Note, that this estimate is in perfect agreement with
the behaviour of the approximation for e*<'y givenin
(43). This is not completely trivial, since the free
layer in (43) has a width \/ ¢, but its erfc-structure
makes it decay as in (64).

Using the characterization of analytic semi-
groups in terms of the resolvent of the generator
(Krasnoselskii and co-workers, 1976), it is clear that

o(L,) = {A|Re A < —B/e} (65)

Since

(L,—A)7 = —f e Mel=dt

0

the resolvent satisfies the estimate
(L, — 4)7'o < Ce“T(w —Red)™!  (66)

for we [0, B/e], Re A > —w. This estimate in (64) is
not only valid on Cy(D), but on all of C(D). This can
be seen by using an L? approximation argument, L?
theory for elliptic equations (Agmon, Douglis and
Nirenberg, 1959), and Sobolev’s imbedding from
W*?(d) - C(D) for p sufficiently large. Let us now
apply (64) to prove the validity of the approxi-
mations in (22);,. We define C = C, + (G
+¢GHH(T($) — 5), B' = By + (G§ + ¢G))H(T(¢)
—s). Note, that compared with (22) we have
included one more term in our boundary layer
expansion. It is easy to verify that

(L =AC = C) =1y
C*—C' =0o0ndD
(L. - A)(B —B)=r,
B*— B =0o0ndD

with |rjlo = O(e), Irslo = Ofe).
If 4 is fixed, then an immediate consequence of
(66) is

(67),

(67)y

IC* = Clo = Ofe) (68)q
|B* — B'lo = Ofe). (68)y

Therefore, the order of the error specified in (22) is
indeed rigorous. Of course, also the order of the
differences Qf — Q,, Qf, — Q, is then O(e).

Hence, if w4(4) # 0 (,wy(4) # 0), we can invert 1
+ Q5 (,1 —Qf) for ¢ sufficiently small and the
difference between uf and its approximation u is
rigorously O(e).

If wik) =0 (ws(d)=0) it follows from
Rouche’s theorem (Conway, 1973), that det (1
+ Q§(4)) (det (1 — Q(A))) has N > 1 zeros in an

O(&*V) neighbourhood of A, with N the order of the
zero of wa(4y) (;wy(4x)). So, asymptotically close to
/. are points of the spectrum of the controlled
operator. It is also easy to check that if A(¢) is in the

spectrum of the controlled operator and lim A(e)

el 0
= u then u is one of the zeros of wy(4) (;wy(4)).
Hence, the zeros of wq(4) (,w,(4)) can be identified as
the points of the spectrum of the controlled operator
with a finite limit for ¢ }0.

We can also use the above theorem to estimate
rigorously the order of the error in our approxi-
mation (43) for the solution of the dynamic problem
(31). We define: v =uv+ e{P5H® + P{H®
+ Y\HH"  H + GiH(1 — H.) (1 — H*)} where
P¢ P9, Y,, G, denote suitable next order terms in
the various expansions. These corrections can be
chosen in such a way that

(% _ L.,:) (@ —v') = 0(E"), for0<i< T,
=0, fort>=T
v* —v'=0o0n dD
(f — v')(»0) = O('). (69)

Furthermore, our construction took care that the
remainder terms in (69) satisfy the regularity
conditions as required by (61), since we avoided
unbounded singularities in L' at dD x {t = 0}.
The verification of the order functions in (66) is a
long, paper-devouring business, but the calculations
are rather straightforward. Now an application of
(62) shows that the order of the remainder in (43) is
rigorous. Consequently it is clear, that the
approximation of K§, by Ky, see (32) and (56),
takes place in the following sense:

IKS(0) = KOs < kifw)e™ s + k] (%)

(70)q

Lt —5
IK§(r) — Kp()hi < ky&'® + koI (?/s—k) (70),
Here [ denotes the indicator function of the interval
[~ 1,1]. In the case of distributed control this is
sufficient to show that ¢ approximates £° in the
following sense

I£5(0) — £@)] < L()e! /e (T1)a

where ve R hasto be > v}, with v} asin (28). In order
to show this we observe that & — ¢ satisfies the
equation

(I = Ka*)E = &) =n" —n + (K& — Ko)*¢
+ (K§ — Kg)*(&* = ) (72)4

where * denotes the convolution operation. We
consider this equation on the space B, = {¢e
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"

{C[0, 20)}| &|, = sup|&(t)e ™| < o} with
v > v§. We notice, that the equation (I — K *)z = y
isfort = T = max (s, ) equivalent to an autonomous
retarded differential equation

d
G EmV=LE—y+Ly

+ J (Ki(t)ot — t)drj.

Using the theory of autonomous retarded differen-
tial equations (Hale, 1979), it is clear that L
generates a strongly continuous semigroup on
{C[0, T]}”, T=max s, with |e!| < C(v') exp (v'1)
for each v' > vj. The solution of (I — K¥)z =y
satisfies

13

o=elzg +y, + f et 9Ly dr

0
where z,€{C[0,T]}" is the element with z(7)=
z2(t) + 7), Te [0, T]. It is now not difficult to show,
that I — K}¥ has a bounded inverse on B,. Since (K}
— K4)* is an operator on B, with a norm of order ¢!/
we can solve (72)4 by a Neuman series and (72), is a
consequence from the fact

I —n + (K§ — Ka)*&l, = 0('?).

Using (71); we find an approximation u of &,
which satisfies

a(,t) — a(, 0)lo < Iv)e'Pe, v >y (713)y

This shows also the spectrum of the controlled
operator is in the half plane {i|Rei < v} if ve R,
v > v} and ¢ sufficiently small and further, that the
analytic semigroup generated by L, + I, [van
Harten, 1979, (2)], satisfies the estimate

et < Cv)e*, for veR,v > vi. (74)q

In the case of boundary control the estimate (70), is
not sufficient to carry out an analysis leading to
something analogous to (71)4 and (73),, because of
the derivative d/dt in (30), and (32),. Much more
detailed information about the differences K — K,
and its time derivatives is necessary to do so. Our
plan is to present such an analysis in a subsequent
paper.

In the case of a zero order unperturbed operator as
in (4a) we can proceed analogously as above (see
also van Harten, 1979). Therefore we shall just state
the results and leave the details of the derivations to
the reader. For L, as in (4a) the solution w of (61)
will be an element of C(D x [0, c0)) satisfying an
estimate

Iw| < C{w)e™ “ max {lt//lo,sule(',r)e‘”’lo} (75)
[0.1

foreach weR, —w > —7. In combination with the
selfadjointness of L, this estimate yields: o(L,)
{ — 20, — 7). The resolvent (L, — 1) ! satisfies the
estimate

(L, — 7)o < C(Rex+ )", for Rei >~ (76)

with a constant C independent of ¢ and (76} is valid
onall of C(D). ForRe A < —%,Im A # 0 wecan also
derive an estimate for |(L,— 4)"'f|, with f
sufficiently regular. To do this one starts with the
observation (L, — 4)""|l,, < [Im 27!, Next using
repeatedly a priori estimates for elliptic PDEs
(Agmon, Douglis and Nirenberg, 1959) and
Sobolev’s imbedding theorem from W™?*D)
— C(D) for m > n/2, (Adams, 1975), we determine
that -
(L~ 7)o < LK

{Im A

5:‘ki.f'|(‘“(5n

2k > n/2. (77)

Including sufficiently many higher order terms in
our expansions it is now easy to prove, that the
orders of the remainders in (14)4 ,, (19)4 4, (33)and
(39)e are rigorously correct. Consequently if A¢
( — oo, —7] and if in case of distributed control also
A¢ a(A), see (20)y, the approximation u of u* has an
error O(,/¢). In the case of distributed control the
points a{(A)\( — oo, —7 ] are exactly the finite limits in
W\(—oo, —7] of eigenvalues of the controlled
operator. In the case of boundary control the
controlled operator has no finite limits of eigenvalues
in C/(—o0, —F). For the approximation of the
dynamic solution in the case of distributed control
we find

A1) = B0l < e (T8)y

for v > v§. This shows that the spectrum of this
controlled operator is for ¢ sufficiently small in the
half plane Re 2 < v, v > vJ. The analytic semigroup
generated by L.+ Il; (van Harten, 1979b),
satisfies the estimate

letletHa| < Cv)e, for veR, v > 1§, (79),

Let us conclude this section with a few remarks
about stabilizability of the system. Considering the
results on the asymptotic location of the spectrum of
the controlled operator we cannot hope that
feedback as in (l)s, will improve the stability
properties of the uncontrolled system, if & is
sufficiently small. From the point of view of general
stabilizability results this is at a first glance
somewhat puzzling. Using (Triggiani, 1975; Curtain
and Pritchard, 1978) we know, that in the case of
(4a) with a one-dimensional domain, when all
eigenvalues of L, are simple, it is possible, for a fixed
&, to choose one observation point y{ and one
distributed control input ¢§, such that o(L,
+ IIy) « (—oc, —a], where o can be prescribed
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arbitrary. But, the reason why a control (1) is not
suitable to do this is rather transparent : we assumed
that the input functions and observation points do
not depend wildly on ¢ for ¢ | 0. Hence, for a fixed
o > 9, ¢, ¥4 must have a wildly fluctuating structure
for ¢} 0.

This can also be seen from the construction of the
stabilizing control (see Triggiani, 1975). In the next
section we shall see, that controls as in (1) can be
used to optimize a different kind of performance
index of the system.

5. AN EXAMPLE OF NEAR OPTIMAL FEEDBACK

CONTROL
Let us consider the following controlled problem
0 -
a—‘t‘ = L+ Mgu+ h (80)

u=0ondD, u(,0)=y

with [Tgu = ¢y + c(8,u — i) and h = f, + of. Note
that the control consists of a permanent part ¢, and
a feedback part based on the comparison of the
observation of u in the point y with the reference
value i. We suppose that h is a stationary,
autonomous inhomogenity, which in various
situations where the system is likely to operate, hasa
distribution f, + af, f;, feC®(D) and @ a
stochastic parameter with E(w) = 0. Now we want
to determine the control parameters cg, ¢, i and y in
such a way, that the expected costs J are optimal,
with J the following quadratic functional

J = E{f [(ta — ) + HoCo
D

+ 1P (6 —-DzldX} (81)

under the obvious side condition that the stationary
solution ug,, of (80) is exponentially stable

Iu(.at) - ustal'O < C(v)luslat - l//IO evt’

with —7 < v <. (82)

In (81), ge C*(D) has the interpretation of the ideal
stationary state of the system, p, and p are constants
> 0. Using the results of the previous sections we are
able to solve this optimization problem in an
approximate sense for ¢|0. For simplicity we
consider the case y constant, i.e. y = 7.

In order to do so we first note, that

U > 7 " Hac+ o+ fo+@Bc+ f)} + - (83)

with o= [yi — co(y) = fo()V/[c(y) = 7], B=
—f()/[e(y) — y]. The remainder term in (83) only
contributes as O(,/¢) to the expected costs. Hence, J
is approximately given by

J=J,+ f {Aocd + 2Bgco + Ac* + 2Bc
D

+ 2Eccy) dx + 0(/¢) (84)

with J, the expected costs in the uncontrolled
situation, Ao =72+ o, Bo=7 Yo—g A=
(G2 + ) + wf?),  B=uy By + wyy 2,
E = oy~ 2, where w, = E(®?), the second moment of
.

Let us first minimize the second term J, in (84)
without consideration of the stability condition
(82). Note, that

J = f {Ao(co + BoAg ' + EAg '¢)?
D
+ Ag(c + Bodg ')} dx
—_( {45 'B3 + Ay ' B3} dx
D
with
Ao = 0?4, + p*4,,
A=y H{+ ) = (L4 pey?) 1 >0
Ay =771 + wy?)w, >0
B, = aB, + B,
By =y 'Bo{l —y(1 + /‘0"/2)_]}
B, = ?czwzf
J; 1s minimal, if

co = —Agy '(By + Ec)

T &
and the value of the minimum is
JPr=J9 — (&®A4, + B2A4,)” («*N,y + 208M
+ B?N;)
(86)

with J{ = ~Ag'|Bol®, N, =|Byl’, N, =B,
M = (B, B,) where || and {,> denote the norm
and inner product on L,(D). J{ is independent of the
choice of o, f5, but the second term in (86) is still a
function of z = B/a. If M # 0 the best choice for z is

z=2zo=02m) Y(a—n) + \/[(a —n)? + dam*]}
(87)
with a = A;/A,, n= N,;/N, and m = M/N,.
Let us now think about the stability condition
(82). Because of (61), in combination with (28) this
condition is satisfied if

cy)—y <. (88)

Now we are ready to construct a near optimal
control. This can be done in the following way:

(i) choose the observation point y in the interior of
D such that f(y) # 0 and fix the value of the
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control function cinyas —k < v 4+ yinorder to
take care of (88);
(i1) calculate z, using (87), determine f from its
definition as § = f(y)/(y + k), take & = f/z,;
(ii1) then define the near optimal form of the control
function ¢ as

X —y

€(X) = CunrestelX) = [Cunreste(y) + k1p ( ) )

with
= Bt B

unrests a(A; + z545)
according to (85). The second term sets the
value ¢(y) equal tc —k, see (1). Here p is a
smooth function with compact support and p
=1 on a neighbourhood of 0eR" and is a
suitable O(1) order-function, which we shall
presently relate to ¢;

(iv) we then obtain ¢y as — 4; ' (B, + E¢), see (85);

(v) finally, our choice of i is determined by the
consistency condition f/x = zo = —f(¥)/(y;
— coly) — foly)), Le.

i=(720)" "{zolcoy) + fo¥)) = f()}. (90)

Note that our asymptotic analysis given in the
previous sections remains valid for control inputs
with a structure as in (89), though the order of the
remainders increase to O(ed ™% + \/s). It is easy to
check that this nearoptimal control produces costs
which are at most O(e' + &5~ 2 + &") above the
genuine minimum. Hence, § = ¢'* forn =1, = ¢'/*
for n = 2 is a good choice for 4. The analysis of the
non-generic case, where M = 0, is left to the reader
as an exercise.

Let us now work out this example on a more
concrete level by considering the one-dimensional
problem

ou O .
o = tm — [u = ¢o + clu(y,t)y — i)]
+(1+we™ 1)

on the interval [0,1]. This equation models the
distribution of temperature in a transparent bar,
while heat is produced by absorption of light
coming from the left. The stochastic parameter o is
related to the intensity of the incoming light. Let us
suppose, that @ is uniformly distribution with values
in [—1,1], i.e. the second moment w, =%. The
control is enforced by regulation of the temperature
of the surroundings of the bar as ugysige = Co +
c(u(y,t) — i). This leads to an exchange of heat with
the surroundings proportional to — [# — Ugyside J-
Let us now determine the control parameters co(x),
¢(x), the observation point y and the reference value i
insuch a way, that the temperature keeps close to the

value = 1 on [0, 1] in a stationary situation with a
minimum of control by minimizing the following
cost function

1
J = Ef {(ustal - 1)2 + ('(2) + ('Z(Usmt(}') - [)2} dx
0

(92)

while we also require that initial derivations from a
stationary distribution vanish for increasing time at
least as exp (—3t). For ¢ small, the construction of a
near optimal set ¢y, ¢, y and i now proceeds as
follows:

(i) Sinceinthisexample fo = f=e¢ ¥ #0on (0, 1)
the construction of a near optimal control
works for any y inside the interval (0, 1). We fix
the value c(y) as —k with the restriction
—k<y+v=41

(ii) In this case we have 4, =3, 4, =12, B,(x)
=3 = 1), By(x) =4 % N, = § [~ i
—e?]1=0042, M=4[—-1-e?+e 1]
= —0064, N,=+4[1-¢e2]=0048, «
=225 n=0875 m= —1.331.

Consequently, we obtain z, = —2.103 and
hence f =e /(1 + k), x = —0.476e7*/(1 + k).
(ii1) Next ¢ nresr €an be determined, we find

Conreste(X) = —0.236(1 + k)e’{0.402¢™~ + 1}.

In this case we can choose k in such a way that
Cunrestr(y) = "’k, namely by takmg

0402 + ¢
T 3829 —

This has the obvious advantage that our near
optimal choice for ¢(x) 18 Just ¢ qresir{X), S€E (89).
Therefore

N

c(x) = (040277 + 1), (93)

3829 —¢

(iv) Using that A; = 2, Be{x)=¢ " -, E=a =
—0.112 (3.829¢7¥ — 1) in the expression for ¢
given in (85) we obtain

Colx) = 0.444{1 — 1.118e 7~} (94)

which is independent of y.
(v) Finally, the reference value i is found by

applying (92):
i =0444(1 + 2.147¢77). (95)

We observe, that depending on the choice of the
observation point y the reference value can be
larger, equal or smaller than the ideal
temperature, which is equal to 1. The case i = |
occurs when y = 0.538.

As for simplifying the choice of k we have to
remark that in general this is not possible without
violating (88). In that case one either has to put a
restriction on the location of the observation point y
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s0 that the equation ¢y,,e:(¥) = —k has a solution
which satisfies (88) or one takes a suitable value for k
and uses the more complex form for ¢ given in (89).

6. CONCLUSIONS

In this paper it is shown that asymptotic analysis,
especially singular perturbation theory, can be
exploited to find approximations for the solutions of
linear, controlled diffusion processes with a small
diffusivity in a number of cases: with or without
convection, with boundary or distributed feed-back
control. This theory also provides us with
approximate criteria for the degree of stability of the
system. Furthermore it allows us to determine a
near optimal feedback loop with regard to a certain
cost criterion under a restriction on the degree of
stability of the system.

This approach has the advantage that in many
cases for the construction of these approximations
one only has to deal with algebraic equations and/or
ordinary differential equations, which is remark-
able, because the full problem is infinite dimensional
and formulated in terms of an elliptic or parabolic
partial differential equation. The methods presented
here are also useful for a number of analogous
feedback control problems, such as diffusion
processes, where the control is based on different
sensors and/or the system is subject to a different
kind of boundary conditions. Furthermore, general-
izations to nonlinear controlled diffusion processes
or to systems with more than one component are
possible.
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