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Asymptotic analysis yields new insight about the behaviour and stability of controlled 
diffusion processes, and it is useful for the determination of optimal feedback loops. 
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Abstract--Asymptotic approximations describing the behaviour 
of linear systems of diffusion type (convective or non-convective) 
with a small diffusivity, to which a feedback control of distributed 
or boundary type based on point sensors is applied, are 
constructed and proven to be correct. As a consequence one can 
find a near-optimal feedback control for a cost minimization 
problem with a quadratic performance index measuring the 
deviation of the stationary state from an ideal state, under the 
restriction of a prescribed exponential degree of stability of the 
stationary state. 

1. INTRODUCTION 

IN THIS paper linear systems of diffusion-type subject 
to a certain feedback control mechanism in a 
situation, where the diffusion constant is a small 
parameter will be considered. Such controlled 
diffusion systems can be found for example in the 
context of heating problems (Curtain and 
Pritchard, 1978; van Harten, 1979a) or chemical or 
nuclear reactor design (Owens, 1980). For the 
feedback control there are many possibilities: 
feedback without or with memory, with distributed 
input or input through the boundary, etc., while it 
also depends on the number and kind of 
observations (Curtain and Pritchard, 1978; 
Schumacher, 1981 ; Triggiani, 1979, 1980). Here we 
shall consider distributed as well as boundary 
control, but always on the basis of an instantaneous 
feedback coupling using observations of the state in 
a finite number of points y~ . . . . .  yp in the interior of 
the domain D. In the case of Dirichlet boundary 
conditions the evolution of the state is described by 
one of the following problems: 
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~U 
& L , u + [ I d u + h ,  u s o n S D ,  u( ' ,O)=ff .  

(1)d 

~U 
8t L~u + h, u [IbU + S on ~D, 

u ( . , 0 )  = ~,. 

Here L~, l l  d, I~Ib are of the following form 

with 

(1}o 

8 8 Z ? 
L2 -7 j~= aij , i, 1 ~  ~Xj  Lr = V i - -  + 7 L 

i = 1 ~Xi 

P 
fldu = Co + Z ci(G, u -  13, Co,Ci~C°~(fi) (3h 

i=1 

P 
Flbu = bo + Z bi(6y,u - Ii), bo, bi~C°~(c3D). (3)b 

i=1 

We suppose, t h a t / )  c ~n is a compact set with a 
smooth boundary ¢9D. The coefficients a u, vl, 7 are 
also supposed to be smooth. Further we assume, 
that L2 is uniformly elliptic. With 6y, we denote the 
continuous linear functional on C(/)), which maps u 
--* u(yi). Note, that the feedback control consists of a 
part independent of the observations 6r.,u and a part 
proportional to the difference between the 6y,us and 
certain ideal values Lv We shall always assume that 
the observation points y~ have an O(1) distance to 
the boundary OD. 

Because of the small parameter e in front of the 
highest order derivatives, the problems (1)b.a have a 
singular perturbation character. The stationary, 
uncontrolled problem corresponding to (l)b,d has 
been thoroughly analysed (Eckhaus, 1979; Fife, 
1974; van Harten, 1975, 1978; de Groen, 1976). It 
was understood that for the behaviour of the 
solution for e ~ 0 it makes a big difference whether 
there is convection: v ~ 0, or not: v = 0. If there is 
convection the structure of the velocity field plays an 

L, = e L  2 - L, (2) 
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important role especially the presence of turning 
points, cycles or tangency points at the boundary. If 
c = 0 the sign of the coefficient 7 is very relevant. 
Here we shall consider the following two cases: 

r = 0 : L o u = T u ,  ~ ' > 0  (4a) 

and a domain as in Fig. 1 

r = l : L l u = v . V u + T u ,  ]]vii>0 (4b) 

with a domain and velocity field as in Fig. 1. In the 
case r = 1 we have 

vn < 0 on  ¢gDe; v.n > 0 on OD o (6) 

n = the outer normal on gD. Further, let z(t;x) 
parametrize the characteristic through x, i.e. 

dz 
dt - v(z); z(0;x) = x. (7) 

Then, we assume that Vx e D3t~(x) <% 0 such that 

Z(te(X);X~ ) ,5 Xe~gDe. (8) 

Note, that the conditions on the velocity field in 
(4b)-(8) are such that turning points or cycles are 
excluded and at each point of (~D the field is 
transverse. Further, using the theory of ordinary 
differential equations it is clear, that re(X) and x~ are 
uniquely defined, smooth functions of x. 

As for the behaviour for ~ ~ 0 of the solution of the 
dynamic, uncontrolled singular perturbation pro- 
blem corresponding to (1)b.~, there are only a few 
references (Lions, 1973; Besjes, 1974; van Harten, 
1979a). The asymptotic theory for solutions of such 
parabolic problems is somewhat less developed 
than for elliptic problems. In this respect Section 3 
contains some new contributions for the case of a 
first order unperturbed operator L~ as in (4b). 

When now, for a moment, we forget the point of 
view of asymptotics and take ~: = Co = fixed, there 
are a large number of results from infinite 
dimensional control theory, which are applicable. 
They concern, for example, the following subjects: 
well posedness of the controlled problem, gener- 
ation of semi-groups by the controlled diffusion 
operator and stabilizability of the system (Curtain 

r = 0  r=1 

FKI. 1. Two different cases are distinguished: la) a zero-order 
degenerated operator; (b) a first-order degenerated operator. 

and Pritchard, 1978; Schumacher, 1981 ; van H arten 
and Schumacher, 1980; van Harten, 1979b; 
Triggiani, 1975, 1980; Balas, 1979). Some of these 
results will be useful in the sequel and sometimes it 
will be nice to compare our results found by 
asymptotic calculations with predictions valid for 
the general case, see Section 4 for the topic of 
stabilizability. 

Our purpose is to use singular perturbation 
techniques to analyse the behaviour of the solution 
of the controlled problem (1)d,b asymptotically for 
e + 0. In Section 2 this is clone for the corresponding 
stationary problem and in Section 3 for the dynamic 
problem. As a result we obtain explicit formal 
asymptotic approximations as ~:+ 0 for the effect of 
the control and also for the spectrum of the 
controlled operator, In Section 4 it is sketched, why 
the results of the previous sections are rigorous. In 
Section 5 we use the results found before to 
construct a near optimal control with respect to a 
certain cost-functional. In that optimization prob- 
lem the number of sensors is one and all 
parameters: Co, c (the input functions), the 
observation point Yl and the reference value I, are 
varied in the optimization. Finally, we remark that 
asymptotic methods are used more often in control 
theory, but for problems where the small parameter 
t: enters in a different way. For example, the 
asymptotics as considered here is from a completely 
different type than in Balas (1982) where the small 
parameter is in front of the ~9/f)t term. Other 
examples of different asymptotics can be found in 
Lions (1973). 

2. THE STATIONARY, CONTROLLED PROBLEM 

Without loss of generality we can restrict 
ourselves to the following problems with homo- 
geneous boundary conditions 

( L , : + H a - 2 ) u  ~ + f = O ,  u ~ = 0 o n ~ D  (9h 

(L~, - 2)u ~ + f =  0, u ~ = Fib ua on ~D (9)6 

with 

p p 

n o - -  y c ,¢ , ,  n b = Y b 
i = l  i = l  

Note, that we have introduced a spectral parameter 
in 2 in (9h,b. The trick to solve these problems is well 
known from Weinstein-Aronszajn's theory. If 

¢ a(L~) we can rewrite (9)a.b as follows: 

p 

U ~ =  - F ' -  E ~C~ (lO)d 
i - 1  

P 

u ~ = - F  ~ + Y ~ B ~  (10)~ 
i = 1  

with ~ = 6y~u ~, F ~ -= (L,:  - , ~ ) -  11~ C~- = (L,:  - 3~)-- Ic'/ 

and Bi is the solution of (L,: - 2)Bf = 0, B~ = hi on 
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c~D. Substitution ofx  = Yk in (10) provides us with a 
linear system of equations for ~ C p 

I t  + ~ ] ~  = - ~  (11h 

[ I  + ~g]g~ = -~t  ~ (11~o 

with t/~, = (~y~U, [ d ]k,~ = (~r~Ci, [~b ]k,i 6y~B~. If I 
+ ~)~, I -- f~, are invertible, we only have to put the 
solution #~ of (11)d,b into (10)a,b and the solution u s 
of (9)~,b is known. Note, that then the effect of the 
control is given by the following expressions 

e.d.c. = ((I  + fl~)-'t/*, C~> (12)o 

e.b.c. = - ( ( I  - fl~,)- atf, B~> (12}o 

with for e, e ' e  C p 
P 

(e,e '> = ~ ele[ 
i = 1  

and C ~, B ~ the vectors with components C~, B~. 
Of course the points, where I + ~ ,  I - fl~, are 

singular, belong to the spectrum of the controlled 
operator. 

It is now clear, that in order to construct 
approximations of the solution of the controlled 
stationary problem for e~, 0 it is sufficient to have 
asymptotic approximations for the functions F ~, C~ 
and B~. These functions are determined by 
uncontrolled problems of the following type 

(L~ - 2)C ~ = c, C ~ = 0 on t3D (13)d 

( L , : - 2 ) B  ~ = 0 ,  B ' = b o n o D .  (13)o 

Using the method of matched asymptotic expan- 
sions approximations C, B of C ' and B ~ are easily 
found (Eckhaus, 1979; Fife, 1974; van Harten, 1975, 
1978). Thus we are lead to approximations ~'~d,b of 
f~,~,q of q~ and ~ of ~', where ~ satisfies the 
approximate version of (ll)d.b, i.e. (1 + f~)~ = --r/, 
(1 --  ~b)~ = --r/and if 1 + f~d, 1 -- f~b are invertible 
we end up with an approximation u of u ~. 

In the case of a zero-order unperturbed operator 
as in (9) the approximations consist of a regular 
expansion in the interior of D and a boundary layer 
of width x/e along all of (~D 

C ~ = Co(x) + Go((,c~)H(x) + O(x/~) (14)d 

B ~ = Go((, c~)H(x) + O(x /e  ) (14)b 

where ( is the distance to ~O/x/e, q~, a (local) 
parametrization of OD and H(x)  a suitably chosen 
C ~ cutofffunction. Note, that in the case of (13)b the 
regular expansion is = 0 and the approximation is 
completely of layer type. The functions Co, (~o and 
Go are found as the solutions of the following 
problems 

- ( 7  + 2)tfo = c (15) (d2 ) 
ad~2 - ~ ; -  2 G o = 0 ,  

(Jo[¢=o = -Col~o, lira do = 0 (16)d 

a d ~ Y - 7 - 2  G o = 0 ,  

Col~=o = b, lim Go = 0 (16)b 

with a = ~, ni(aij)l,,D,~ > O, ~ = 71,,D > 0. Hence 

do = - c/(7 + 2), Go = - (~01,'o exp ( - I~) (17a) 

(~o = bexp (-~l~) (17b) 

with/~ = x/I(9 + 2)/a]. In order to be able to divide 
by 7 + 2 and to have exponential decay of the 
boundary layer terms we must have 

2 ¢ ( - o v ,  - ~ ]  with ~ = miny(x) > 0. (18) 
x E D  

Now using the approximations as found in 
(14)-(17) we find 

~ = ~ d  + 0 ( x / e )  (19)d 

O,~ ---- ~b + 0(X/e) (19)b 

with 
c,(yk) 

[ f ld]k, i  - -  )~ + ~'(Yk)' ~ b  = 0.  

The conclusion is, that in the case of boundary con- 
trol (i) the effect of the control is only noticeable in 
a layer of width x/~ along 0D and (ii) the spectrum of 
the controlled operator is contained in a set, which 
shrinks with e~0 to ( - ~ , - ~ ] .  For  distributed 
control the spectrum is contained in a set, which 
shrinks with e+ 0 to ( - ~  - 7 ]  w {).x . . . . .  20} with 
q ~< p and 21 . . . . .  ,~q the eigenvalues of the matrix A, 
where 

Ak,i = --7(Yk) + Ci(Yk). (20)0 

More precise information on the set, which contains 
the spectrum is given in Section 4. 

Let us now consider the case o f  a f irst  order 
unperturbed operator as in (4b). Then the approxi- 
mations of the solutions of (13h,b have a different 
structure. They consist of a regular expansion valid 
up to t~De and a boundary layer of width e, along 
~Do. 

In order to describe these approximations it is 
simpler to introduce the following coordinates 

s = - te (x) ;  ~b = Xe. (21) 

Note, that in these coordinates ODe = {s = 0} and 
v.V = c~/c~s. The other part of the boundary, ~Do, can 
be given as {(s,~b)ls= T(~b)}, where the in- 
terpretation of T(q~) is the time it takes to travel 
along the characteristic through (0, q~) from (0, 4)) to 
c~De. Now our approximation will have the 
following form 

C ~ = Co(S,~b) + 6~o((,q~)H(T(~) - s) + O(e) (22)d 

B* = Bo(s,(a) + G°(( , (a)H(T((o)  - s) + O(e) (22)b 
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with ~ = (T(4)) - s)/e and H a suitably chosen C ~ 
cutoff function. The functions Co, (~o, /~o, Go o are 
found as the solutions of 

( (? 7 2) ~ ° = c '  ~'°(0'4)) 0 ( 2 3 ) d ~ s - -  -- = 

) - &  - ~' - ,i B o  = O, ~ o ( 0 ,  4)) = b~ (¢ )  (23}0 

o A = ° ,  

Go(O,4)) = -Co(T(4)) ,  4)), lim (~o (~, 4)) = 0 
~ a c  

~(2  + = 

(24h 

t~o(0, 4)) = bo(4)) - /~o(T(4)) ,  4)), lim C,o((, 4)) = 0 
~ z c  

(24}0 
with 

- -  aij - -  A ° = E l ~ x i  OXi]eD ° 

b~ and bo are the values of b on ~D~ and c~Do, 
respectively. It is easy to check, that (~o, (~o °,/~o and 
Go ° are given by 

;o [ ;  C o ( s , ¢ ) = -  c ( ? , 4 ) ) e x p -  7(s',4))ds' 
g 

- ,i(s - ~ ) ]d~  (25) 

(~o(~, 4)) = _ Co(T(4)), 4 )) e x p ( -  ~/A °) 

Bo(s, 4)) b~(4))exp - , ( s ,4 ) )ds  - , i s  

(~o(~, 4)) = [bo(4)) - Bo(T(4)), 4))3 exp( - ~/A°). 

(25}0 

Now, using the approximat ions  as found in 
(22)-(25) we obtain 

~ = ~d(2) + O(e) (26)o 

with 

5o .[ 5; [ l )a (2 ) ]k , i=-  Ci(~, k)eX -- 

- -  2 ( S k  - s)] d ~  
3 

[y(S', 4)k) ds' 

where (SR,4)k) denotes the point  Yk in (s, 4)) 
coordinates, i.e. sk = --6(Yk); 4)k = (Yk)~. 

~b = ~b(,i) + O(e) (26}0 

with 

[~b(2)]k , i=bi ,e(4)k)exp[--£k '~(S ' ,~k)dS ' - -2Sk]  . 

Hence, the spectrum of the controlled opera tor  is 
contained in a set which shrinks to the zeros of a 
holomorphic  function (')d()'), t~b(2) in the respective 
cases of distributed control  and boundary  control  
with 

U)d()0 = det {I + ~d(,i)] (27h 

COb().) = det [I - ~b(,i)]. (27)b 

Of course, it would be interesting to have a rough 
idea about  the location of the zeros of these 
holomorphic  functions. Using integration by parts 
it is not difficult to show that in the case of 
distributed control  VA e R 3B > 0 such that for all 2 
with Re2/>  A: [~d(,i)]i3-%< B/(1 + 12l). Then an 
application of Gershgorin's theorem (Wilkinson, 
1965) shows that the zeros [).k; k m ~ } of(oa()0 can be 
numbered in such a way that Re ,ik,L -- ~ for k ]" ~ .  
However, in the case of boundary  control  the 
situation is quite different. It is easy to verify, that 

Ob(,i) = exp ( -- (5. -- 20)tr (S)) 

det [e ('~ ;.,,is _ ~)b(,i0)] 

= exp ( - (2 - ,i0) tr {S)) 

det [e°~-~°)s~ b 1(2o) - I ]  

det [~b()-o)]. 

Here S denotes the diagonal matrix with St,,k = Sk 
and the only requirement for ,io is, that  ~b(,iO) is 
non-singular. Using again Gershgorin 's  theorem we 
see, that the zero's of ('M)-) lie in a strip 
{2[~ < Re,i </3}. 

More  detailed information on the location of the 
spectrum of the controlled opera tor  can again be 
found in Section 4. As for the effect of the control  
notice that in the case of boundary  control,  the 
control  input on ~Do is only noticeable in the 
boundary  layer of width e along 0Do. 

On the basis of the results derived for the 
asymptotic  location of the spectrum of the 
controlled operator,  it is expected that an 
approximat ion ~ of the solution of the dynamic 
problem [see (29)d.b], will grow not faster than 

I/~(x,t)h ~< C(v,~:)e v'. (28) 

In this estimate we can presumably take v ~ ~ and 
v > v~ in the case of distributed control  with v ° 
= max ( - ~, Re ,il . . . . .  Re )~q), v~ = max {Re ,ilo)a(2) 
= 0} and in the case of boundary  control  v~ R, 
v > v~ with v ° = - j ,  v I = sup .IRe )~]~ob().) = 01. In 
the next section we shall see, that an estimate as in 
(28) indeed holds and in addit ion we shall find how 
the constant  C(v,e) in (28) depends on ~;. 

3. THE DYNAMIC, CONTROLLED PROBLEM 
Here we shall consider the time evolution of the 

state, when the equation and the boundary  
conditions are homogeneous:  
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aft = 
= (L= + F I n ) f i  ~ 

at 

i = = 0 on aD 

~,= (.,o) = O ~ c ~ ( ~ )  

= 0 on aD 

- L e f t  ~ 
at 

fi~ = Fib fi= on aD 

~,e(.,O) = O e C ~ ( D )  

~b = l-Ib~k on aD. 

(29)d 

(29)b 

In order to solve these problems we denote the 
observations 6rfi=(',t) by ¢~,(t). The solutions of 
(29)d,b can then be expressed in the following way: 

ie(',t) = e~'aO + ~( t  - z)e~°~cidz 
i=1  

( 3 0 ) d  

fie(., t) = elan, + ~i(t - r) 
i 

( 1  - eL'~)Bf dr}. (30}0 X 

Here Bf denotes the solution of the uncontrolled, 
stationary problem: LN = 0, N = b~ on a D ' N  is 
well defined, since 0¢a(Le), see Section 4. 

By v(', t) = eL:;( we denote the solution of the 
uncontrolled, dynamic problem starting at t = 0 in 
;( 

av e 
at L=v= 

v e = 0 on aD (31) 

v=(-, O) = z. 

Substitution of x = Yk in (30)d,b yields the following 
Volterra equations for if(t) 

if(t) = q~(t) + K~d(r)ff(t -- r )dr  (32)d 

if(t) = qe(t) + ~ K~(r)ff(t - r)dz (32)b 

with ~(t) = 6y~eLa~k, [Ked('~) ]k,i = 6r~,eLdci, 
[K~(Z)]k 3 = 6r~(1 -- eL=')B~. Once the solutions 
~( t )  of these Volterra equations (32)d,b are known 
we find the solutions fi '  of (29)d,b simply by 
substitution of i f(t)  in (30)d,b. Let us now consider 
our task, the construction of asymptotic approxi- 
mation for e J, 0 of the solutions of (29)d,b. This task 
really reduces to finding an asymptotic approxi- 
mation v for e+0 of the solution v ~ of the 
uncontrolled problem (31). In this respect it is 
important to notice that an asymptotic approxi- 
mation of B~ is already known, see Section 2, (13)b. 

Once such an approximation is available we also 
have approximations Kd. b o f  K~l,b, ~ of r] e and ~ of if, 
where ~ is found as the solution of the approximate 
version of (31)d,b. Next an approximation i of i = is 
found by substituting all approximations of the 
r.h.s, of (30)d,b. 

In the case of  an unperturbed operator of  zero 
order as in (4a) the approximation consists of a 
regular expansion corrected by a boundary layer of 
width x/e along all of aD, just as in the stationary 
case. However, the various terms in the approxi- 
mation now satisfy dynamic equations 

v e = Vo(X,t) + P o ( - ) H ( x )  + O(e-~tx/e) (33) 

avo 
at - -TVo (34) 

Vo(. ,0)  = z 

rio is the zero order boundary layer term and H is 
a suitable C ~ cutoff function. In order to construct 
1% we introduce rather special coordinates (y,O) 
near aD, such that: aD = {y = O} and 

U n-  I ~2 
L2 = 5-~y2 + ~, 5i~ 

~,~ = ~ aoiaoj 

+ 5o + ai ~ - .  (35) 
i= 

This can be done by first introducing (y,~b)- 
coordinates with y the distance from x to aD and 4) 
the parameters of the point on aD nearest to x. Next, 
we define 01 = qSi + gi(Y, ~b) with gi the solution of 
a g d a y = - ½ d o , i ( y , ~ ) ,  &(0,~b)=0, where do,i 
denotes the coefficient in front of a2/aya~i in L 2 . The 
reason for the introduction of these spe.cial 
coordinates is to avoid singularities at aD, t = 0 in 
[ (a /a t ) -L=]Po,  which are produced by the 
differentiations a2/ayaqsi. For the same reason we 
want to annihilate the effect of the differentiation 50 
a/ay on fro and therefore we write 

/ ~ ( - )  e x p ( - 1  ~ ' ~  d s / P ° ( ~ ' =  I i  0, t) (36) 
.o  "( ,  ~ 1 

with ( = y /x /e  and Po the solution of 

aPo aPo 
at = a ~ -  - ~TPo 

Pol;=o = -Volt=o, lim Po((,O,t) = 0 

Pol,=o = 0 (37) 

where a and 7 have the same meaning as in (16), but 
with 4) replaced by 0. The solutions of the problems 
(34) and (37) are 
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Vo(x, t) = Z(x) exp ( - 7(x)t) 

Po(~, O, t) = - gleO(O) exp ( -- y(O)t) 

3(,  

f x ~  e -  r~ dr. 

~,/~ot,~ (38) 

In the case Z = B~ we proceed in a slightly different 
way, because B~ consists only of a boundary layer 
term along ~D. We now take Vo(', 0) -= 0 and Polr=o 

--- 0, POl, = o = bi(O) exp ( -  #(0)~) with p = x/(f/a), 
see (17)b. This leads us to 

( z  = B~)Vo =- o 

fo Po(~, 0, t ) =  b~(0)e -~' '  a(g, ,q , t ,O)e-U"dt  I (38') 

with 

1 G ( ( , q , t , O ) = ~ { e x p (  (( - r/)2/ / 
- e x p  ( (~ + ")2/~ 

It is a nice exercise in the use of the maximum 
principle for a parabolic equation (Friedman, 1976; 
Protter and Weinberger, 1967) to show that 
IV01 ~< Ib~lmax (e-~',e-U~). Note, that in (33) we can 
indeed take ] = min 7(x). Let us now exploit these 
results to find asymptotic approximations of the 
kernels K~ and K~, in (32h. h 

K~ = K d + O(x/ee -gt) (39) 

K~, = K b + O(x/ee-~t) (39}0 

with [Kd] (t) = e - n Z ,  Zk,i = ci(Yk), F = the diag- 
onal matrix with Fk.k = ~(Yk) and K b -  0. Using 
these approximations for the kernels the equations 
for ~'(t) reduce to 

~(t) = e-r'r/o + 

= 

f l  e - r "  ~'Z~(r) dr; (40)d 

e-  %/0. (40)b 

We note, that (40)d is equivalent to a system of 
ODEs ~ = A~, ~(0) = % with % the vector with 
components O(Yk) and A = - F  + Z, as in (20)d. 
Hence, the solution of (40h is 

~(t)  = eA~r/o . (41)d 

Substitution of these approximations in (30)d,b 

provides us with an approximation fi of the solution 
fi' of (29h,b. For the growth of fi for t ~ ~ we find 
the following estimates 

I~(x, t)[ ~< C(v)C'  
(42h 

v > max (-°; ,  Re a(A)) = v ° 

I~(x, t)l ~< C(v)C'  
(42}o 

~, > - - j =  v o 

with constants C(v) independent of e. Note that this 
is in nice agreement with the results on the location 
of the spectrum of the controlled operator, compare 
(28). 

In the case oJ'a f irst  order unperturbed operator as 
in (4bh, the structure of an approximation of the 
solution of (31) is rather complicated. Figure 2 
shows where the various layers are found. 

Our approximation has the following form: 

Y = Wo H~ + P ° H °  + (Qo + YH)HC-H~+(I - H e) 

+ (Vo + GoH)(1 - H~)(1 - HL)(1 - H °) 

+ O(e t/5 e-~t). (43) 

Here H e, H °, H and H%, H c_ denote suitable C ~' cut- 
off functions. Let I(=) be ~- 1 for ~ ~< 1 and =- 0 for 

~>2. Then we choose H = l ( T ( c k ) - s ) ,  H ~ 
= l(s /6)  l( t /6) ,  n ° =  I ( ( T ( ~ ) -  s)/fi), l( t /6),  n~+ 
= l ( ( t  - s)/62) H ~_ = l((s  - 0 /62)  with 6 = c ~/5. Of 
course, T(~b) and s have the same meaning as in 
Section 2. In the order of the error of the 
approximation o9 e R can be taken arbitrary, as we 
shall see in the next section. The zero order terms in 
(43) are found in the following way 

~Vo ~Vo 

~t i)s 
7Vo;  Vol,=O = Z (44 )  

#Qo c~2Qo 
#~-=  A ?~T-rz - Qo (45) 

lim Qo(s, dp, r) = 0, lim Qo(s, dp, r) = Vo(s,O,s) 

~ ~te ~t e 
with r = (t - s)/x/t:, A = - - % - -  

j :  1 Oxl ~xi 

Approx.  -= 0 
Free layer along 
the characteristic 
starting at t = 0 
on aD e / t 

. . "  y 
/ / 

Q .. " f / ' 1  

f J "  

j f /  G 

..- " / / / / /  Reg. exp. = V 
t = 0x 'x "e -~e .  - * ' "  e j ' ~ o  

aD e 

FIG. 2. The approximation consists of a regular part combined 
with several layers. 
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A o 02 Yo _ 0Yo = 0 (46) 

Yo(O, c~, 3) = - Qo(T(4)), dp, 3) 

lim Yo((, ¢, z) = 0 

with ~ as above, ( = (T(~b) - s)/e and A ° = A[ooo. 
For the calculation of i0 e we introduce special 
coordinates near c3D, in order to avoid singularities 
for t+ 0 in L~P ~. Instead of (s, q~) we work with (s, 0) 
defined in such a way, that OD e = {s = 0} and 

__02 n-1 02 -- 
L2 = A~-s2 + Z A-i i - -  + i,j= z ' c30~c30s A°os 

n - 1  _ 

Such coordinates can be found by a procedure as in 
(35). Then, we define 

fig = exp -½ ' dy Pg(thO, z,) (47) 

with q = s/e, zl = t/e and Pg the solution of 

CPg OZpe CPg 
_ a ~ o ( 4 8 )  Oz~ @2 @ 

P~(q, 0, 0) = Z[eo., P[) (0, 0, 3) = 0 

and A e = .4leo. = Aloo. (0). In a completely anal- 
ogous way we can introduce coordinates So 
= T(¢) - s and 0 such that 0Do = {So = 0} and 

~@o 2 " - ' ' '  02,~v,,~v s ~So L2 = A' + Z AI.J z ~ B -  + Jl'o 
i ,j  = 0 

n - !  

+ X 

We put 

- '  0 
Po ° = exp /pO 

~1 ~O AO~O~ 
)d ~3o 3r~o,g yo] o(¢,o,,,) 

with ( = so/e and pO the solution of 

~?PO= AeC32p° OP ° 

P°(~ ,O ,O)  = zlOoo;P°(O,O,v,) = o 

(5o) 

with A = A],~Oo (0). In the case ;( = B~ the initial 
values for po are taken as the zero order term of the 
boundary layer expansion of B~, i.e. (]o(~,0) 
+/~olooo (0) as given in (25}0 with bo = b~leOo and be 
= b~loO .. The solutions of these problems can easily 
be calculated 

Vo(s ,¢ , t )= Z ( s - t , ¢ ) e x p ( -  f[_tT(S',4))ds' ) 

Qo(s, ~b, r) = exp - 7(s', ~b)ds'). qo(r, ~b, z) 

qo(r,¢,z) Zloo.(49) 1 f f  = e-t~dt 
~7~ /~/14r) 

with 

with 

(52) 

r = A(s' ,O)ds'  

Yo((, q~, 3 )=  -Qo(T(¢),  q~, T)exp(-(/A°)(53) 

P~(~l, O, z~) = Xloo, (0) e(2);-~')/(4A~) 

oZGe(~,q, Zl,O)e-¢/(2A'ld~ (54) 

1 {exp( 
G e ( ~ ' r l " C l ' O )  = 4(47~heZl) 4A-e~l ] 

- ( (~+")~I'~ 
exp ~Xe~ 1 ] j .  

e o  ° (~, O, 31) = e - (2~  +,,)/(,Ao) 

x G°(rh~,O, zz)e-"/(2~°)P°(rhO, O)drl (55) 

with 
1 

G ° ( t / , ~ , 0 , ' c 1 )  = x/(4nA%l){exp ( ~4~o~ 1-)7)2/] 

exp 4 ~  ] J '  

Using the results as found in (43)-(55) we obtain the 
following approximations for the equations given in 
(32)d.b 

~(t) = rl(t) + Kd(Q~(t -- z)dz (56)d 

~(t) = rl(t) + ~-[ Kb(Z)~(t -- Qdt  (56)b 

with 

[Kd]k,i(t)=ci(sk--t,C/)k)exp(--f]]_7(s',C~k)ds') 

for t < Sk 

= 0 for t > sk 

[Kb]k,i(t) = 0 for t < Sk 

=b,,e(4)k)exp(-f~kT(s',4ak)ds'), 

for t > $k 

and 

( f ; )  rlk(t) = O(Sk -- t, Ok)exp - k-t 7(s', Ok) , 

for t < Sk 

(51) = 0 for t > sk. 
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Here (Sk, ~)k) represents the observation points Yk in 
(s,q~) coordinates. The errors in these approxi- 
mations will be discussed in the next section. We 
observe, that for t > Sk the kth component of (56) 
yields 

~ , ( t )  = [ K d ( ~ ) ~ ( t  - -  ~ ) ] k d V .  

It is also easy to check, that (56)8 is equivalent to 
Ck(t) = rMt) + [Kb(OQ)~(t -- Sk)I:I(t -- Sk)]k with 
the Heaviside function. This shows that (56)d,b are 
equations with a finite retardation. Further, using 
the conditions which g, satisfies on OD, it is easy to 
check that q and ~ are continuous functions with 
bounded derivatives. With the exception of t = Sk 
for (56h and t =  nSk for (56)b , ~ and ~ are 
continuous. The equations (56)d,8 can easily be 
solved using Laplace transformation. Let us denote 
the Laplace transform of / '  by Lj'with 

(Lf)(2) = ,f(t)e- a, dt. 

Because of the convolution structure of (56)d,8 the 
equations for L~ are very simple 

(1 + fla(2))L~ = Lq (57) 

(1 - f~b(2)L~ = Lq (57)8 

with f~d, ~'~8 a s  in (26)d,8. Hence 

~ = L - ' [ ( 1  + ~d)-  1Lr/] (58)d 

¢ = L - ~ [ ( 1 -  ~b)~L~/].  (3.30)8 

The inverse Laplace transformation is given by 

(L lg)(t) = e"'(2~)-~ g(v + irl)e ~"' dq 
,x 

(Schwartz, 1965). Here we can use any v > v~ 
= max {Re 2[COd(2) = 0}, V > Vb ~ = max {Re 21098(2 ) 
= 0} in (58)d,8, respectively. 

It is not difficult to verify that the substitution of~ 
in (3.2)a.8 provides us with approximations fi of the 
solutions fi~ which satisfy the following estimates 

Ifi(x, t)l ~< C(v)e"' (59h 
V ~ V  1 

I~(x, t)l <~ C(v)e"' (59)~ 
1 ~ ~ Vb 1 . 

This is in good agreement with the asymptotic 
location of the spectrum as determined in Section 2, 
[cf. (28)3. 

4. O N  T H E  A S Y M P T O T I C  V A L I D I T Y  O F  T H E  
F O R M A L  A P P R O X I M A T I O N S  

Here we shall derive some results on the 
correctness of the approximations of the solutions of 
the stationary problems, as found in Section 2, and 
we shall also demonstrate that the asymptotic 

location of the spectrum of the controlled operator 
given in that section is correct. Furthermore, we 
shall discuss the validity of our approximations of 
the solutions of the dynamic problems found in 
Section 3. 

Let us first consider the case, where the 
unperturbed operator L1 is oJ" first order. The 
following result will be very useful. 

Theorem. Let L1 be as in (4b) and let w be the 
solution of the dynamic problem 

?w 
?~ = L~w + R (60) 

w = 0 on 0D 

w(.,0) = ¢ ~ Co(t~) = {z ~ c( t~) lz  = 0 on  ,~Ol 

with R e C(/) x (0, o0 )) and bounded for t ~, 0. Then 

w~C(D x [0, oo)) and 3eo,fl, C , T >  0Vee(0,%] 

Vcoe [O,~/e]Vxe~, t >I 0 

Iw(x,t)l <~ Ce- ' ° " -T 'm ax  {,0lo,suplR(' ,zje°'%} 

(61) 

where  I'10 denotes the sup-norm for the domain D. 

Proof. We first take ~, R smooth with 
supp (¢) c D and supp (R) c {t > 0}. Then (Lady- 
zenskaja and co-workers, 1968), there exists a 
solution w of (60) in C oo (/) x [0, oo)). The function 

defined by w = ~, exp(-cot)W(s)  satisfies 

- (L~ + co)~' + k with k = R eO"/W 
c~t 

= 0 on 0D, w(.,0) = ~ = ~ / W  (62) 

where the constant term of/7~ + c9 equals 5; = W 1 
(L~ + co)W. Now let W satisfy (-~/(35 + ~ + co)W 
= - ( 1  + co)W, W(0) ~ 1 with ~ = max 7, i.e. W(s) 
= exp((~ + 2o9 + 1)s). It is easy to check that '7 ~< 
- 1 - co + ('e (1 + ~ + 2co)2; hence for coe [0,fl/e] 
with fl suitably chosen we have °7 ~< -½- Using the 
maximum principle for parabolic equations 
(Protter and Weinberger, 1967; Friedman, 1976), 
we obtain 

~,(x,t) T- 2max{[¢lo,supR(.,[)[ol~O (63) 
~ .<z  ) 

Of course, (63) implies (62). 
The regularity assumptions on ¢, R can be 

weakened to those in the lemma by an approxi- 
mation argument: R. --* R in LP(Q), Q = D x (0, T), 
p sufficiently large, using L p theory for parabolic 
equations (Ladyzenskaja and co-workers, 1968), 
and Sobolev's imbedding from WI'p(Q)~ C(Q) 
(Adams, 1975), and next ~0, -+ ¢ in Co(D). 

[] 
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It is well known that L~ with Dirichlet boundary 
conditions generates an analytic semigroup e La on 
Co(D) (Stewart, 1980). A direct consequence of (61) 
is that 

[ e L a [ o ~ C m i n { 1 , e x p [ - - ~ ( t - - T ) I  } (64) 

Note, that this estimate is in perfect agreement with 
the behaviour of the approximation for eL't x given in 
(43). This is not completely trivial, since the free 
layer in (43) has a width ~/e, but its erfc-structure 
makes it decay as in (64). 

Using the characterization of analytic semi- 
groups in terms of the resolvent of the generator 
(Krasnoselskii and co-workers, 1976), it is clear that 

Since 

~(L~) ~ {2IRe2 ~ - f l /e}  (65) 

(L~ - 2 )  - 1  = - -  e-ateL~'dt 

the resolvent satisfies the estimate 

[(L~ - 2)-11o ~< Ce'°r (o  - Re2) -1 (66) 

for ~o~ [O, fl/e], Re2 > -co. This estimate in (64) is 
not only valid on Co(/3), but on all of C(/3). This can 
be seen by using an L p approximation argument, L p 
theory for elliptic equations (Agmon, Douglis and 
Nirenberg, 1959), and Sobolev's imbedding from 
Wz'P(d) ~ C(/3) for p sufficiently large. Let us now 
apply (64) to prove the validity of the approxi- 
mations in (22)d,b. We define C ' = ( 7 o  + (do 
+ ed°l)H(7"(~p) - s), B' = Bo + (CJ ° + eG°)H(T(4)) 
-s).  Note, that compared with (22) we have 
included one more term in our boundary layer 
expansion. It is easy to verify that 

(L~ - 2)(C ~ - C') = r a 
(67)d 

C ~ - C' = 0 on c3D 

(L, - 2)(B ~ - B') = rb 
(67)b 

B ~ -- B' = 0 on c3D 

with [rdl0 = O(0, Irblo = 0(0 .  
If 2 is fixed, then an immediate consequence of 

(66) is 

[C ' - C'[o = O(e) (68)a 

IB * - B'lo = O(0. (68)b 

Therefore, the order of the error specified in (22) is 
indeed rigorous. Of course, also the order of the 
differences f~  - ~d, f~,--  f~b is then O(0. 

Hence, if Od(2) # 0 (,Oh(2) # 0), we can invert 1 
+ f~  ( , 1 -  f~,) for e sufficiently small and the 
difference between u ' and its approximation u is 
rigorously O(e). 

If fDd(~.k)-----0 ( , fOb( , , ] . k )=0)  it follows from 
Rouche's theorem (Conway, 1973), that det (1 
+ f~(2)) (,det (1 - f~,(2))) has N >~ 1 zeros in an 

O (e ~ m) neighbourhood of 2k with N the order of the 
zero of C0d(2k) (,~Ob(2k)). SO, asymptotically close to 
2k are points of the spectrum of the controlled 
operator. It is also easy to check that if 2(0 is in the 

spectrum of the controlled operator and l im2(0 
e~O 

= p then p is one of the zeros of Od(2) (,Oh(2)). 
Hence, the zeros ofogd(2) (,Oh(2)) can be identified as 
the points of the spectrum of the controlled operator 
with a finite limit for e + 0. 

We can also use the above theorem to estimate 
rigorously the order of the error in our approxi- 
mation (43) for the solution of the dynamic problem 
(31). We define: v' = v + e{ff~lH e + i f°H° 
+ YxHHLW+ + G~H(1 - HL)  (1 - He)} where 
p] ,  po, I11, G1 denote suitable next order terms in 
the various expansions. These corrections can be 
chosen in such a way that 

~ - L ~  (v ~ - v ' ) = O ( e l / s ) ,  forO-%<t~< T1 

= 0 ,  for t ~> T1 

v ~ - v' = 0 on OD 

(v ~ - v ' ) ( ' ,0)= O(el/5). (69) 

Furthermore, our construction took care that the 
remainder terms in (69) satisfy the regularity 
conditions as required by (61), since we avoided 
unbounded singularities in L~v' at 8D × {t = 0}. 
The verification of the order functions in (66) is a 
long, paper-devouring business, but the calculations 
are rather straightforward. Now an application of 
(62) shows that the order of the remainder in (43) is 
rigorous. Consequently it is clear, that the 
approximation of K~,b by Kd,b ,  s e e  (32) and (56), 
takes place in the following sense: 

.It - s k i  
[g~(t) - gd(t)lk, i <~ kl((o)e-COte 1/5 + k2I [ ~ ]  

(70)d 

IK~,(t) - Kb(t)lk,, <~ k l  ~1/5 q- k2/¢ It  - -  S k I (70)b 

Here [ denotes the indicator function of the interval 
[ - 1 ,  1 ]. In the case of distributed control this is 
sufficient to show that 4 approximates 4 ' in the 
following sense 

1¢~(t) - 4(01 ~< l(v)el/Se ~' (71)d 

where v ~ R has to be > v,~, with v~ as in (28). In order 
to show this we observe that ¢ ~ - 4  satisfies the 
equation 

(I - K d * ) ( ¢  e - -  4)  = I"/e - -  r/ + (K~ - K d ) *  4 

+ (K,] - Kd)*(4 ' -- 4) (72)d 

where * denotes the convolution operation. We 
consider this equation on the space By = {4~ 
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{C[0, ~)}P{ [~l~ = supl~(t)e-~'l < oo} with 
v > v,~. We notice, that the equation (I - Kd*)z = y 
is for t ~> T = max (sk)equivalent to an autonomous 
retarded differential equation 

d 
d i (- - y)  = L ( z  - y)  + L y  

with 

P 

(LV)k(t) = ~ { [Kd]k,i(Sk)Vi(t - tk) - [Ka]k.i(O)vi(t) 
i - 1  

fi" + (Kd)k,i(~)Vi(t - r)dz}. 

Using the theory of autonomous retarded differen- 
tial equations (Hale, 1979), it is clear that L 
generates a strongly continuous semigroup on 
{C[0, T]I p, T =  max SR with [e L'] ~< C(v') exp (v't) 
for each v '>v~ .  The solution of ( l - K * ) z = y  
satisfies 

z~ = eLtzo + Yt + e a'' r)L.y~ dz 

where z~e{C[0, T ] f  is the element with z, f f ) =  
z(t) + ~), ~e [0, T]. It is now not difficult to show, 
that I - KI has a bounded inverse on B~. Since (K~ 
- Kd)* is an operator on B~ with a norm of order e ~/5 
we can solve (72)0 by a Neuman series and (72)d is a 
consequence from the fact 

It/': - r /+  (K~ - /d)*~[,. = O ( ~ 1 / 5 )  • 

Using (71)e we find an approximation ~ of fi~ 
which satisfies 

tu(',t) - ud', t)10 ~< l(v) ~,l/Sevt, V > v~. (73)a 

This shows also the spectrum of the controlled 
operator is in the half plane {2IRe2 ~< v} if vsN,  
v > v~ and ~ sufficiently small and further, that the 
analytic semigroup generated by L~ + H, [van 
Harten, 1979, (2)], satisfies the estimate 

]e(L'~+n~)']o ~< C(v)e"', for v~[R,v > v,~. (74)a 

In the case of boundary control the estimate (70)6 is 
not sufficient to carry out an analysis leading to 
something analogous to (71)a and (73)b, because of 
the derivative O/~t in (30)b and (32)6. Much more 
detailed information about the differences K~, - Kb 
and its time derivatives is necessary to do so. Our 
plan is to present such an analysis in a subsequent 
paper. 

In the case oJa zero order unperturbed operator as 
in (4a) we can proceed analogously as above (see 
also van Harten, 1979). Therefore we shall just state 
the results and leave the details of the derivations to 
the reader. For Lo as in (4a) the solution w of (61) 
will be an element of C(/) x [0, oe)) satisfying an 
estimate 

Iw[ <" C(~°)e-~"max {lq~[°'suplR(" z)e'°q°} 

for each ~o~ ~, - ~  ~> - . .  In combination with the 
selfadjointness of L~ this estimate yields: a(L,:) c 
( - ~v, - ~]. The resolvent (L~ - 2)-1 satisfies the 
estimate 

](L,:- ).) 1 [ 0  ~ C(Re)~ + ~)-1, for Re)~ >-~;  (76) 

with a constant C independent of c and (76) is valid 
on all of C(D). For Re 2 ~< -?~, Im 2 ¢ 0 we can also 
derive an estimate for [ (L~-2 ) - l J ]o  with J 
sufficiently regular. To do this one starts with the 
observation ][(L~- 2) lllg~ ~< [Im)~[-~. Next using 
repeatedly a priori estimates for elliptic PDEs 
(Agmon, Douglis and Nirenberg, 1959) and 
Sobolev's imbedding theorem from [/vm'2(D) 
--* C(/)) for m > n/2, (Adams, 1975), we determine 
that 

I ( g , : -  ,:d-~J[o ~< C (1 + I;'l)~ c b,/l(~,n,  - k  ' k 

2k > n/2. (77) 

Including sufficiently many higher order terms in 
our expansions it is now easy to prove, that the 
orders of the remainders in ( 14)(1.8 , ( 19)a.b, (33) and 
(39)d,b are rigorously correct. Consequently if 2¢ 
( - oc, - ~ ]  and if in case of distributed control also 
2 ¢ a(A), see (20h, the approximation u of u ~ has an 
error O(x/e ). In the case of distributed control the 
points ~r(A)\( - ~ ,  - ~ ] are exactly the finite limits in 
W \ ( - o  e, -?7] of eigenvalues of the controlled 
operator. In the case of boundary control the 
controlled operator has no finite limits ofeigenvalues 
in C / ( - ~ , - f ] .  For the approximation of the 
dynamic solution in the case of distributed control 
we find 

[~(.,t) - ~:(., t)[ ~< l(v)~/~:e" {78)d 

for v > v °. This shows that the spectrum of this 
controlled operator is for c sufficiently small in the 
half plane Re 2 ~< v, v > v °. The analytic semigroup 
generated by L~ + 1-I d (van Harten, 1979b), 
satisfies the estimate 

]e(L~+n~)']0 ~< C(v)e "~, for vER, v > v °. (79)d 

Let us conclude this section with a few remarks 
about stabilizability of the system. Considering the 
results on the asymptotic location of the spectrum of 
the controlled operator we cannot hope that 
feedback as in (1)d,b will improve the stability 
properties of the uncontrolled system, if ~: is 
sufficiently small. From the point of view of general 
stabilizability results this is at a first glance 
somewhat puzzling. Using (Triggiani, 1975; Curtain 
and Pritehard, 1978) we know, that in the case of 
(4a) with a one-dimensional domain, when all 
eigenvalues of L~ are simple, it is possible, for a fixed 
r, to choose one observation point .~ff and one 
distributed control input c~, such that a(L,: 
+ l l d ) ~  (--o~, --c~], where c( can be prescribed 
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arbi trary.  But, the reason why a control  (1) is not  
suitable to do this is ra ther  t ransparent :  we assumed 
that  the input functions and observat ion points  do 
not  depend wildly on e for e + 0. Hence, for a fixed 

> o~, c], y~ must  have a wildly fluctuating structure 
for e+0. 

This can also be seen from the construct ion of the 
stabilizing control  (see Triggiani,  1975). In the next 
section we shall see, that  controls  as in (1) can be 
used to opt imize a different kind of performance  
index of the system. 

AN EXAMPLE OF NEAR OPTIMAL FEEDBACK 
CONTROL 

Let us consider the following controlled prob lem 

~t = L~u + (lau + h (80) 

u = 0 on c3D, u(-, 0) = 

with (IdU = Co + C(6yU -- i) and h = f0 + eJf. Note  
that  the control  consists of a pe rmanen t  par t  Co and 
a feedback par t  based on the compar i son  of the 
observat ion of u in the point  y with the reference 
value i. We suppose that  h is a stat ionary,  
a u t o n o m o u s  inhomogeni ty ,  which in various 
situations where the system is likely to operate,  has a 
distr ibution fo + ~ f ,  fo,  f~C°° (D)  and o~ a 
stochastic pa ramete r  with E(oJ) = 0. Now we want  
to determine the control  pa ramete rs  Co, c, i and y in 
such a way, that  the expected costs J are optimal,  
with J the following quadrat ic  functional 

J= E{f,~ [(tlsta, - -  g)2 + /XoCo 2 

+ /tC2(6yUstat __ i)2 ] dx} (81) 

under  the obvious side condi t ion that  the s ta t ionary  
solution U~,a, of (80) is exponent ial ly  stable 

lu(', t) - Us,~tlo ~< C(v)JUsta, - OIo e"', 

with - , :  < v < 0. (82) 

In (81), g~  C~(/) )  has the in terpreta t ion of the ideal 
s ta t ionary  state of  the system, #o and/x are constants  
> 0. Using the results of  the previous sections we are 
able to solve this opt imizat ion  p rob lem in an 
approx ima te  sense for e J. 0. Fo r  simplicity we 
consider the case 7 constant ,  i.e. ~ = ¢. 

In order  to do so we first note, that  

Us,,, -~ 7-1{~c + Co + f o  + ~o(flc + f ) }  + . . .  (83) 

with ~ = [7i - co(y) - j o ( y ) ] / [ c ( y )  - 7], fl = 
- f ( y ) / [ c ( y )  - 7]. The remainder  term in (83) only 
contr ibutes  as O(x/e ) to the expected costs. Hence, J 
is approximate ly  given by 

t "  
J = Jo + JD {A°c2 + 2Boco + Ac 2 + 2Bc 

+ 2Ecco} dx + O(x/e) (84) 

with Jo the expected costs in the uncontrol led 
situation, A o = 7 - 2 + # o ,  B o = 7 - ~ f o - g ,  A =  
(7-2 + p) (:/2 + ¢02fl2), B = ,~7-1Bo + ~027-2flf~ 
E = ~7 2, where o) 2 = E(¢o2) ,  the second momen t  of 
6,). 

Let us first minimize the second term J l  in (84) 
without  considerat ion of the stability condit ion 
(82). Note,  that  

= fD {Ao(co + BoAo 1 + EA o  IC)2 J1 

+ Ao(C + BoAo 1)2} dx 

- f { A o l B  2 + ,4ol/~o2}dx 
JD 

with 

/10 = ~2A1 + f12A2, 

A1 = 7-2{(1 +/272 ) - (1 + u072) -1} > 0 

A 2 = ~/-2(1 + ~72)(D2 > 0 

Bo = o~B1 + fiB2, 

n ,  = 7 - 18o{1  - ?(1 + ~o72) - ' }  

B2 = 7 - 2 ~ 2 f  

J1 is minimal,  if 

Co = - A o i ( B o  + Ec) 
(85) 

c = - , 4 o  1/~o 

and the value of the min imum is 

j~in = j0  _ (o~2A1 + f lZAz)-l(~2N1 + 2~flM 
+ f12N2) 

(86) 

with jo  = _AolHBolj2, NI  = HBII[ 2, N2 = IJB2H 2, 
M = (B1,B2> where II'll and (,> denote  the norm 
and inner product  on L2(D). jo  is independent  of the 
choice of  ~, fl, but the second te rm in (86) is still a 
function of z = fl/a. If  M ¢ 0 the best choice for z is 

z = Zo = (2m)- l{(a - n ) +  x / [ ( a  - n) 2 + 4am2]} 

(87) 
with a = A1/A2, n = N1 /N  2 and m = M / N  2. 

Let us now think abou t  the stability condit ion 
(82). Because of (61)d in combina t ion  with (28) this 
condit ion is satisfied if 

elY) - 7 < v. (88) 

Now we are ready to construct  a near  opt imal  
control.  This can be done  in the following way: 

(i) choose the observat ion point  y in the interior of 
D such that  flY) # 0 and fix the value of the 
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control  function c in y as - k < v + ), in order to 
take care of (88); 

(ii) calculate Zo using (87), determine /3 from its 
definition as/3 = J(Y) / (7  + k), take ~ = fl/Zo; 

(iii) then define the near optimal form of the control  
function c as 

C(-"C) = Cu . . . .  t r ( X ) -  [c . . . . .  t~(y)+k]p(2"~ y) (89) 

with 

c~ .... ,r(X) = -- 
(B1 + zoB2)(x) 
0~{A1 + zZA2)  

according to (85). The second term sets the 
value cO') equal tc - k ,  see (i). Here p is a 
smooth  function with compact  support  and p 
=- 1 on a ne ighbourhood of 0 e ~ "  and is a 
suitable O(1) order-function, which we shall 
presently relate to ~',; 

(iv) we then obtain Co as - A o  ~ (Bo + E~), see (85); 
(v) finally, our choice of i is determined by the 

consistency condit ion f l / c ~ = Z o = - [ ( Y ) / ( " t i  

- co(y) -./~l(Y)), i.e. 

i = (7Zo)- '{Zo(Co(y) + Jo(Y)) - f ( Y ) } .  (90) 

Note  that our  asymptot ic  analysis given in the 
previous sections remains valid for control  inputs 
with a structure as in (89), though  the order of the 
remainders increase to O(~:b-2 + , , /c) .  It is easy to 
check that this nearoptimal control  produces costs 
which are at most  O ( ~ +  e6 2 +  3") above the 
genuine minimum. Hence, 6 = e)/3 for n = 1, = g 1/4 

for n/> 2 is a good  choice for 3. The analysis of  the 
non-generic case, where M = 0, is left to the reader 
as an exercise. 

Let us now work out this example on a more 
concrete level by considering the one-dimensional 
problem 

~?u ?2u 
~t - ~ : ~  - [u - Co + c (u (y , t )  - i)] 

+ (1 + ~o)e -x (91) 

on the interval [0, 1 ]. This equat ion models the 
distribution of temperature in a transparent  bar, 
while heat is produced by absorpt ion of light 
coming from the left. The stochastic parameter  ~o is 
related to the intensity of the incoming light. Let us 
suppose, that  to is uniformly distribution with values 
in [ - 1 ,  1], i.e. the second moment  02 = ~. The 
control is enforced by regulation of the temperature 
of the surroundings of  the bar  as Uo,t~ia, = Co + 
c(u(y, t )  - i). This leads to an exchange of  heat with 
the surroundings propor t ional  to - [u - Uo,t~a~]. 
Let us now determine the control  parameters Co(X), 
c(x), the observat ion point y and the reference value i 
in such a way, that  the temperature keeps close to the 

value = 1 on [0, 1 ] in a s tat ionary situation with a 
min imum of control  by minimizing the following 
cost function 

J = E {(•stal - -  1} 2 + CO 2 + C2(U~t~t(y) --1)" 21jdx 

(92) 

while we also require that initial derivations from a 
stat ionary distribution vanish for increasing time at 
least as exp ( -  ½t). For  e small, the construct ion of a 
near optimal set Co, c, y and i now proceeds as 
follows: 
{i) Since in this example jo  = j = e-X # 0 on (0, 1) 

the construct ion of a near optimal control 
works for any y inside the interval (0, 1 ). We fix 
the value c(y) as - k  with the restriction 
- k  < ' ; ,  + v = ½. 

(ii) In this case we have A1 = 2, A 2  = 3 '  B l ( - v )  

= ~(e -~ 1), B 2 ( x  ) = 1 - x  - ~e , N ,  = ~ [ - 1  +¼e  
- e - 2 ] = 0 . 0 4 2 ,  M = ~ [ - 1 - e  2 + e  1] 
= - 0 . 0 6 4 ,  N 2 = ~ [ 1 - e  2 ] = 0 . 0 4 8 ,  a 
= 2.25, n = 0.875, m = - 1.331. 

Consequently,  we obtain z0 = - 2 . 1 0 3  and 
hence fi = e-Y/(1 + k), ~ = -0.476e-~'/ '(1 + k). 

(iii) Next c ...... ,r can be determined, we find 

Cu .... ,r(X) = --0.236(1 + k)e~{0.402e-X + t~. 

In this case we can choose k in such a way that 
c ...... t~(y) = - k ,  namely by taking 

0.402 + e y 
k -  

3.829 - e x" 

This has the obvious advantage that our near 
optimal choice for c ( x ) i s  just c . . . . .  tdx), see (89). 
Therefore 

e y 
c(x)  - 3.829 - e;' (0"402e-~ + 1). (93) 

(iv) Using that A0 = 2, B o ( x )  = e - "  - 1, E = o~ = 
- 0 . 1 1 2  (3.829 e -y - 1) in the expression for Co 
given in (85) we obtain 

Co(X) = 0.444{1 - 1.11Be -x] (94) 

which is independent of y. 
(v) Finally, the reference value i is found by 

applying (92): 

i = 0.444(1 + 2.147e-Y). (95) 

We observe, that  depending on the choice of the 
observation point y the reference value can be 
larger, equal or smaller than the ideal 
temperature, which is equal to 1. The case i = 1 
occurs when y = 0.538. 

As for simplifying the choice of k we have to 
remark that  in general this is not  possible without 
violating (88). In that case one either has to put a 
restriction on the location of the observation point y 
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so that the equation c . . . . .  tr(Y) = - k  has a solution 
which satisfies (88) or one takes a suitable value for k 
and uses the more complex form for c given in (89). 

6. C O N C L U S I O N S  
In this paper it is shown that asymptotic analysis, 

especially singular perturbation theory, can be 
exploited to find approximations for the solutions of 
linear, controlled diffusion processes with a small 
diffusivity in a number of cases: with or without 
convection, with boundary or distributed feed-back 
control. This theory also provides us with 
approximate criteria for the degree of stability of the 
system. Furthermore it allows us to determine a 
near optimal feedback loop with regard to a certain 
cost criterion under a restriction on the degree of 
stability of the system. 

This approach has the advantage that in many 
cases for the construction of these approximations 
one only has to deal with algebraic equations and/or 
ordinary differential equations, which is remark- 
able, because the full problem is infinite dimensional 
and formulated in terms of an elliptic or parabolic 
partial differential equation. The methods presented 
here are also useful for a number of analogous 
feedback control problems, such as diffusion 
processes, where the control is based on different 
sensors and/or the system is subject to a different 
kind of boundary conditions. Furthermore, general- 
izations to nonlinear controlled diffusion processes 
or to systems with more than one component  are 
possible. 
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