
SIMPLE PRINCIPLES OF METALEARNING

Technical Report IDSIA������

J�urgen Schmidhuber � Jieyu Zhao � Marco Wiering
IDSIA� Corso Elvezia ��� CH���		�Lugano� Switzerland

juergen�marco�jieyu�idsia�ch � http���www�idsia�ch

June ��� ����

Abstract

The goal of metalearning is to generate useful shifts of inductive bias by adapting the
current learning strategy in a �useful� way� Our learner leads a single life during which
actions are continually executed according to the system�s internal state and current policy
�a modi�able� probabilistic algorithm mapping environmental inputs and internal states to
outputs and new internal states	� An action is considered a learning algorithm if it can
modify the policy� E
ects of learning processes on later learning processes are measured
using reward�time ratios� Occasional backtracking enforces success histories of still valid
policy modi�cations corresponding to histories of lifelong reward accelerations� The principle
allows for plugging in a wide variety of learning algorithms� In particular� it allows for
embedding the learner�s policy modi�cation strategy within the policy itself �self�reference	�
To demonstrate the principle�s feasibility in cases where conventional reinforcement learning
fails� we test it in complex� non�Markovian� changing environments ��POMDPs�	� One of
the tasks involves more than
��� states� two learners that both cooperate and compete� and
strongly delayed reinforcement signals �initially separated by more than ������� time steps	�

The biggest di�erence between time and space is that you can�t reuse time�

Merrick Furst

� Introduction � Overview

In the spirit of the �rst author�s earlier work �e�g�� ��	
� ����� ����
� we will use the expressions
�metalearning� and �learning to learn� to characterize learners that ��
 can evaluate and compare
learning methods� ��
 measure the bene�ts of early learning on subsequent learning� ��
 use such
evaluations to reason about learning strategies and to select �useful� ones while discarding others�
An algorithm is not considered to have learned to learn if it improves merely by luck� if it does
not measure the e�ects of early learning on later learning� or if it has no explicit method designed
to translate such measurements into useful learning strategies�

We focus on estimating the usefulness of each learning process or bias shift �Utgo�� ��	�
 and
then exploiting it in later learning processes within a realistic� life�time reinforcement learning
context� Applications will include �inductive transfer� across multiple tasks �e�g�� Caruana et al��
����
�

Scenario� A reinforcement learner executes a lifelong action sequence in an unknown environ�
ment� Its single life lasts from birth at time � to death at unknown time T � Actions are selected
according to its changing policy� a modi�able� probabilistic algorithm mapping environmental

�

inputs and internal states to outputs and new internal states� Di�erent actions may consume dif�
ferent amounts of execution time � compare� e�g�� �Russell and Wefald� ����� Boddy and Dean�
����
� and references given therein� Occasionally the environment provides real�valued �reinforce�
ment�� The sum of all reinforcements obtained between time � and time t � � is denoted by R�t

�where R��
 � �
� Because the learner cannot change the past� its goal at time t is to use previous
experience to maximize R�T
�R�t
� the cumulative future reinforcement� Somewhat related� but
more restricted� limited resource scenarios were also studied� e�g�� by Berry and Fristedt ���	�
�
Gittins ���	�
� Greiner �����
� and references therein�

Realistic environments� Convergence theorems for existing reinforcement learning algo�
rithms require in�nite sampling size as well as strong �often Markovian
 assumptions about the
environment� e�g�� �Kumar and Varaiya� ��	�� Sutton� ��		� Barto� ��	�� Watkins and Dayan�
����� Williams� ����
� They are of great theoretical interest but not extremely relevant for re�
alistic environments where computational resources and sampling sizes are limited� �Learning�
�modifying the policy
 consumes part of the learner�s limited life� So do policy tests� And a
disappointing test outcome may imply that it is already too late for collecting much additional
reinforcement� One cannot buy cheap shares of a company after the price jumped up �no re�
peatable trials guaranteed
� In general� at a given time in system life� we may assume only one
single training example to estimate the long�term usefulness of any previous policy modi�cation
� namely the performance since then� This requires us to rethink a bit the conventional� multiple
trial�based way we measure performance and generalize�

Basic ideas �see details in section �
� Meta�reinforcement learning �MRL
 treats learning
algorithms just like other actions� Their probabilities of being executed at a given time depend on
the learner�s current internal state and policy� Their only distinguishing feature is that they may
also modify the policy� In case of policy changes� information necessary to restore the old policy
is pushed on a stack�

The learner�s life�time performance is occasionally evaluated by backtracking processes� At a
given time� we assume there is only one single training example to evaluate the current long�
term usefulness of any currently valid policy modi�cation M � namely the average reinforcement
per time since M occurred� This includes all reinforcement collected after later modi�cations for
which M may have set the stage� thus providing a measure of how useful a learning process was
for later learning processes� or how useful a shift of inductive bias was for further bias shifts� Using
the stack� backtracking invalidates certain previous policy modi�cations such that the remaining
modi�cations correspond to an �in the worst case empty
 history of long�term reinforcement ac�
celerations� Until the next backtracking process� the straight�forward generalization assumption
is� each policy modi�cation �or bias shift
 that survived the most recent backtracking process was
useful and will remain useful�

For instance� whenever the environment appears to change in the sense that the reward per time
for the current behavior is observed to decrease� backtracking will selectively undo those previously
learned policy modi�cations that do not appear useful any more �perhaps because they were too
speci�cally tailored to previous tasks and are useless for �inductive transfer�
� Backtracking will
selectively keep those modi�cations that still appear useful because until now they were followed
by long�term reinforcement accelerations� despite possible changes of the environment�

Due to unknown reinforcement delays� there is no a priori good way of starting backtracking
processes� That�s why MRL also allows for learning to trigger them� Since learning algorithms are
actions and can be combined �according to the policy
 to form more complex learning algorithms�
MRL allows for embedding the learning strategy within the policy itself� There is no pre�wired
di�erence between �learning�� �metalearning�� �metametalearning� etc� For alternative views of
metalearning� see� e�g�� Lenat ���	�
� Rosenbloom et al� �����
�

Disclaimer� In general� unknown environments� neither MRL nor any other scheme is guar�
anteed to continually increase reinforcement intake per �xed time interval� or to �nd the policy
that will lead to maximal cumulative reinforcement� But at least MRL is guaranteed to selectively
undo those policy modi�cations that were not empirically observed to be followed by an overall
speed�up of average reinforcement intake �even in non�Markovian settings
� This is more than can
be said about interesting� previous reinforcement learning algorithms� e�g�� �Kumar and Varaiya�

�

��	�� Barto� ��	�� Watkins and Dayan� ����� Williams� ����� Schmidhuber� ����� Jaakkola et al��
����� Kaelbling et al�� ����� Ring� ����
�

Outline of remainder� Section � will describe the learner�s basic cycle of operations and
clarify technical details of what has been said in paragraph �basic ideas�� Section � will explain why
the basic cycle enforces lifelong histories of reinforcement accelerations despite possible interference
from parallel� internal or external processes� To demonstrate MRL�s feasibility and generality�
sections � and � will present two concrete implementations and experiments with complex� partially
observable environments �POEs
� They show that MRL makes sense especially in situations where
previous algorithms fail because the environment does not satisfy preconditions that would make
them sound� Some of our POEs are much bigger and more complex than POEs considered in
previous POE work�

� Basic MRL Cycle

At time � �system birth
� we initialize the learner�s variable internal state I� a vector of variable�
binary or real�valued components� Environmental inputs may be represented by certain com�
ponents of I� We also initialize the vector�valued policy Pol� Pol�s i�th variable component is
denoted Poli� There is a set of possible actions to be selected and executed according to current
Pol and I� For now� there is no need to specify Pol � this will be done in the experimental
sections �typically� Poli will be a conditional probability distribution on the possible next actions�
given current I
� We introduce an initially empty stack S that allows for stack entries with vary�
ing sizes� and the conventional push and pop operations� Until time T �system death
� the system
repeats the following basic MRL cycle over and over again �while time is continually increasing
�

�� Execute actions selected according to Pol and I �this may change environment and I	� until a
certain Evaluation Criterion is satis�ed� or until an action is selected that will modify Pol�

�� IF the Evaluation Criterion is satis�ed� THEN start the following backtracking procedure
to undo certain previous Pol modi�cations if necessary �to ensure that the history of still valid
modi�cations corresponds to a history of reinforcement accelerations	�

���� Set variable t equal to current time�

IF there is no �tag� �a pair of time and cumulative reinforcement until then	 stored somewhere
in S�

THEN push the tag �t� R�t		 onto S� and go to � �this ends the current backtracking process	�

ELSE denote the topmost tag in S by �t�� R�t�		� IF there are no further tags� THEN set
variable t�� � � �recall R�t��	 � R��	 � �	� ELSE let �t��� R�t��		 denote the last but topmost
tag in S�

���� IF
R�t	�R�t�	

t� t�
�

R�t	�R�t��	

t� t��

THEN push tag �t� R�t		� and go to �� This ends the current backtracking process�

ELSE pop o
 all stack entries above the one for tag �t�� R�t�		 �these entries will be former
policy components saved during earlier executions of step �	� and use them to restore Pol as
it used to be before time t�� Then also pop o
 the tag �t�� R�t�		� Go to ����

�� IF the most recent action selected in step � will modify Pol� THEN push copies of those Poli to
be modi�ed onto S� and execute the action�

�� IF some Termination Criterion is satis�ed� THEN die� ELSE go to step ��

Comment� each step above �including pushing and popping
 will consume various amounts of
system life�time�

�

� The MRL Cycle Ensures Life�Time Success Stories

Lifelong reinforcement acceleration� At a given time in the learner�s life� de�ne the set of
currently valid times as those previous times still stored in tags somewhere in S� If this set is
not empty right before tag �t� R�t

 is pushed in step ��� of the basic cycle� then let ti �i �
f�� �� � � � � V �t
g
 denote the i�th valid time� counted from the bottom of S� It is easy to show
�Schmidhuber� ����� ����
 that the current backtracking process will have enforced the following�
essential criterion which is central to MRL �t is the t in the most recent step ���
�

R�t

t
�

R�t
�R�t�

t� t�
�

R�t
�R�t�

t� t�
� � � � �

R�t
�R�tV �t�

t� tV �t�
� ��

What does this mean� Each valid time marks the beginning of a long�term reinforcement acceler�
ation �measured up until time t
� Everything that happened after a valid time� every action and
every backtracking process� is justi�ed in the sense that it was observed to occur during a long�
term speed�up� The only still valid policy modi�cations or bias shifts are those that occurred in
between some valid time �or time �
 and the beginning of the next backtracking process following
that time� Again� each such block of policy modi�cations will have its justi�cation in the following
sense� each block�s �time marker� �the valid time preceding the block�s �rst modi�cation
 was
followed by faster average reinforcement intake than all previous such time markers� The still valid
policy modi�cations are those that survived all backtracking processes until now� In this sense�
the history of still valid bias shifts is guaranteed to be a life�time success story �in the worst case
an empty one
� No Markov�assumption is required�

MRL�s generalization assumption� At the end of each backtracking process� until the
beginning of the next one� MRL�s simple� straight�forward generalization assumption for inductive
inference is� policy modi�cations that survived the most recent backtracking will remain useful�
In other words� until there is empirical evidence to the contrary� the assumption is� the still valid
modi�cations contributed to the long�term speed�up� and will continue to contribute� In general�
unknown environments� which other generalization assumption would make sense� Recall that
since life is one�way �time is never reset
� during each backtracking process the system has to
generalize from a single experience concerning the usefulness of actions�policy modi�cations taken
after any given previous point in time� the average reinforcement per time since then�

If we prevent modi�cation probabilities from vanishing entirely then occasionally the system
will execute policy modi�cations� and keep those consistent with inequality ��
� In this sense� it
cannot help getting better� if the environment does indeed provide a chance to improve perfor�
mance� given the initial set of possible actions representing the system�s initial bias� Essentially�
the system keeps generating and undoing policy modi�cations until it discovers some that indeed
�t its generalization assumption�

Greediness� MRL�s strategy appears to be a greedy one� It always keeps the policy that was
observed to outperform all previous policies in terms of long�term reward�time ratios� To deal
with unknown reinforcement delays� however� the degree of greediness is learnable � backtracking
processes may be triggered or delayed according to the modi�able policy itself�

Speed� Due to the generality of the approach� no reasonable statements can be made about
improvement speed� which indeed highly depends on the nature of the environment and the choice
of initial� �primitive� actions �including learning algorithms
 to be combined according to the
policy� This lack of quantitative convergence results is shared by almost all other� less general
reinforcement learning schemes� though�

Actions can be almost anything� For instance� an action executed in step � may be a neural
net algorithm� Or it may be a Bayesian analysis of previous events� While this analysis is running�
time is running� too� Thus� the complexity of the Bayesian approach is automatically taken into
account� Similarly� actions may be calls of a Q�learning variant �see experiment � in section ���
�
For instance� plugging Q�learning into MRL makes sense in situations where Q�learning by itself
is questionable because the environment might not entirely satisfy the preconditions that would
make Q�learning sound�

�

I as part of Pol�s environment� As the basic cycle is repeated again and again� neither
the internal state nor the environment are assumed to be reset �real world set�up
� Essentially�
what each backtracking process attempts �and succeeds
 to do is to make the history of still valid
modi�cations a success story despite harmful �or bene�cial
 interference from parallel� external
and internal processes� It is appropriate to view the internal state as part of the policy�s changing
environment�

Outline of remainder� Sections � and � will describe two concrete implementations of
MRL� The �rst implementation�s action set consists of a single but �strong�� policy�modifying
action �a call of a Levin search extension
� The second implementation uses many di�erent�
less �powerful� actions� They resemble assembler�like instructions from which many di�erent
learning strategies can be built �the system�s modi�able� �self�referential� learning strategy is able
to modify itself
� Both implementations are successfully tested in complex environments where
standard reinforcement learning algorithms fail� In particular� the second� �self�referential� system
is successfully applied to a non�Markovian task that involves more than ���� states� two learners
that both cooperate and compete� and strongly delayed reinforcement signals �initially separated
by more than ������� time steps on average
� Section � will conclude�

� Implementation �� Plugging Levin Search into MRL

Overview� In this section� we use an adaptive extension of Levin search �LS
 �Levin� ��
�� Levin�
��	�
 as only learning action to be plugged into MRL� We apply it to partially observable Markov
decision problems �POMDPs
� which recently received a lot of attention in the reinforcement
learning community� e�g�� �Jaakkola et al�� ����� Kaelbling et al�� ����� Ring� ����� McCallum�
����� Littman� ����� Cli� and Ross� ����� Schmidhuber� ����
� We �rst show that LS by itself
can solve partially observable mazes �POMs
 involving many more states and obstacles than those
solved by various previous authors �we will also see that LS can easily outperform Q�learning
�
We then extend LS to plug it into MRL� and experimentally show dramatic search time reduction
for sequences of more and more complex POMDPs ��inductive transfer�
�

��� Levin Search
LS�

Unbeknownst to many machine learning researchers� there exists a search algorithm with amazing
theoretical properties� for a broad class of search problems� Levin search �LS
 �Levin� ��
��
Levin� ��	�
 has the optimal order of computational complexity� For instance� suppose there
is an algorithm that solves a certain type of maze task in O�n�
 steps� where n is a positive
integer representing the problem size� Then universal LS will solve the same task in at most
O�n�
 steps� See �Li and Vit�anyi� ����
 for an overview� See �Schmidhuber� ����
 for recent
implementations�applications�

Basic concepts� LS requires a set of nops primitive� prewired instructions b�� ���� bnops that can
be composed to form arbitrary sequential programs� Essentially� LS generates and tests solution
candidates s �program outputs represented as strings over a �nite alphabet
 in order of their Levin
complexities Kt�s
 � minqf�logDP �q
� log t�q� s
g� where q stands for a program that computes
s in t�q� s
 time steps� and DP �q
 is the probability of guessing q according to a �xed Solomono��
Levin distribution �Li and Vit�anyi� ����
 on the set of possible programs �in section ���� however�
we will make the distribution variable
�

Optimality� Amazingly� given primitives representing a universal programming language� for
a broad class of problems� including inversion problems and time�limited optimization problems�
LS can be shown to be optimal with respect to total expected search time� leaving aside a constant
factor independent of the problem size �Levin� ��
�� Levin� ��	�� Li and Vit�anyi� ����
� Still�
until recently LS has not received much attention except in purely theoretical studies � see� e�g��
�Watanabe� ����
�

Practical implementation� In our practical LS version� there is an upper bound m on
program length �due to obvious storage limitations
� ai denotes the address of the i�th instruction�

�

Each program is generated incrementally� �rst we select an instruction for a�� then for a�� etc�
DP is given by a matrix P � where Pij �i � �� ����m� j � �� ���� nops
 denotes the probability of
selecting bj as the instruction at address ai� given that the �rst i � � instructions have already
been selected� The probability of a program is the product of the probabilities of its constituents�

LS� arguments are P and the representation of a problem denoted by N � LS� output is a
program that computes a solution to the problem if it found any� In this section� all Pij � �

nops

will remain �xed� LS is implemented as a sequence of longer and longer phases�
Levin search�problem N � probability matrix P �

��
 Set Phase� the number of the current phase� equal to �� In what follows� let
��Phase
 denote the set of not yet executed programs q satisfying DP �q
 �

�
Phase

�

��
 Repeat

����
 While ��Phase
 �� fg and no solution found do� Generate a program

q � ��Phase
� and run q until it either halts or until it used up DP �q��Phase
c

steps� If q computed a solution for N � return q and exit�

����
 Set Phase �� �Phase

until solution found or Phase � PhaseMAX �
Return empty program fg�

Here c and PhaseMAX are prespeci�ed constants� The procedure above is essentially the same
�has the same order of complexity
 as the one described in the second paragraph of this section
� see� e�g�� �Solomono�� ��	�� Li and Vit�anyi� ����
�

��� Adaptive Levin Search
ALS�

LS is not necessarily optimal for �incremental� learning problems where experience with previous
problems may help to reduce future search costs� To make an incremental search method out
of non�incremental LS� we introduce a simple� heuristic� adaptive LS extension �ALS
 that uses
experience with previous problems to adaptively modify LS� underlying probability distribution�
ALS essentially works as follows� whenever LS found a program q that computed a solution
for the current problem� the probabilities of q�s instructions q�� q�� � � � � ql�q� are increased �here
qi � fb�� � � � � bnopsg denotes q�s i�th instruction� and l�q
 denotes q�s length � if LS did not �nd a
solution �q is the empty program
� then l�q
 is de�ned to be �
� This will increase the probability
of the entire program� The probability adjustment is controlled by a learning rate � �� � �

� �
� ALS is related to the linear reward�inaction algorithm� e�g�� �Kaelbling� ����
 � the main
di�erence is� ALS uses LS to search through program space as opposed to single action space� As in
the previous section� the probability distribution DP is determined by P � Initially� all Pij �

�
nops

�

However� given a sequence of problems �N�� N�� ���� Nr
� the Pij may undergo changes caused by
ALS�

ALS �problems �N�� N�� ���� Nr
� variable matrix P

for i �� � to r do	
q �� Levin search�Ni� P
� Adapt�q� P
�

where the procedure Adapt works as follows�
Adapt�program q� variable matrix P

for i �� � to l�q
� j �� � to nops do	
if �qi � bj
 then Pij �� Pij � ���� Pij

else Pij �� ��� �
Pij

�

��� Plugging ALS into MRL

Critique of adaptive LS� Although ALS seems a reasonable �rst step towards making LS
adaptive �and actually leads to very nice experimental results � see section ���
� there is no
theoretical proof that it will generate only probability modi�cations that will speed up the process
of �nding solutions to new tasks� Like any learning algorithm� ALS may sometimes produce
harmful instead of bene�cial bias shifts� depending on the environment� To address this issue� we
simply plug ALS into MRL from section �� MRL ensures that the system will keep only probability
modi�cations representing a lifelong history of performance improvements�

ALS as primitive for MRL� At a given time� the learner�s current policy is the variable
matrix P above� To plug ALS into MRL� we simply replace steps � and � in section ��s MRL
cycle by�

�� If the current MRL cycle�s problem is Ni� then set q �� Levin search �Ni� P 	� If a solution was
found� generate reinforcement of �
��� Set Evaluation Criterion � TRUE� The next action
will be a call of Adapt� which will change the policy P �

�� Push copies of those Pi �the i�th column of matrix P 	 to be modi�ed by Adapt onto S� and call
Adapt�q� P 	�

Each call of Adapt causes a bias shift for future learning� In between two calls of Adapt� a
certain amount of time will be consumed by Levin search �details about how time is measured
will follow in the section on experiments
� As always� MRL�s goal is to receive as much reward as
quickly as possible� by generating policy changes that minimize the computation time required by
future calls of Levin search and Adapt�

Partially Observable Maze Problems� The next subsections will describe experiments
validating the usefulness of LS� ALS� and MRL� To begin with� in an illustrative application
with a partially observable maze that has many more states and obstacles than those presented
in other POMDP work �see� e�g�� �Cli� and Ross� ����

� we will show how LS by itself can
solve POMDPs with huge state spaces but low�complexity solutions �Q�learning variants fail to
solve these tasks
� Then we will present experiments with multiple� more and more di�cult tasks
�inductive transfer
� We will show that ALS can use previous experience to speed�up the process of
�nding new solutions� and that ALS plugged into MRL �MRL�ALS for short
 always outperforms
ALS by itself�

��� Experiment �
 A Big� Partially Observable Maze
POM�

The current section is a prelude to section ��� which will address inductive transfer issues� Here
we will only show that LS by itself can be very useful for POMDP problems� See also �Wiering
and Schmidhuber� ����
�

Task� Figure � shows a ����	�maze with a single start position �S
 and a single goal position
�G
� The maze has many more �elds and obstacles than mazes used by previous authors working
on POMDPs � for instance� McCallum�s maze has only �� free �elds �McCallum� ����
� The
goal is to �nd a program that makes an agent move from S to G�

Instructions� Programs can be composed from � primitive instructions� These instructions
represent the initial bias provided by the programmer �in what follows� superscripts will indicate
instruction numbers
� The �rst 	 instructions have the following syntax � REPEAT step forward
UNTIL condition Cond� THEN rotate towards direction Dir�
Instruction � � Cond � front is blocked� Dir � left�
Instruction � � Cond � front is blocked� Dir � right�
Instruction � � Cond � left �eld is free� Dir � left�
Instruction � � Cond � left �eld is free� Dir � right�
Instruction � � Cond � left �eld is free� Dir � none�
Instruction � � Cond � right �eld is free� Dir � left�
Instruction
 � Cond � right �eld is free� Dir � right�
Instruction 	 � Cond � right �eld is free� Dir � none�

S

G

Figure �� An apparently complex� partially observable ��� �	�maze with a low�complexity shortest
path from start S to goal G involving ��� steps	 Despite the relatively large state space� the agent
can implicitly perceive only one of three highly ambiguous types of input� namely
front is blocked
or not��
left �eld is free or not��
right �eld is free or not� �compare list of primitives
	 Hence�
from the agent�s perspective� the task is a di�cult POMDP	 The S and the arrow indicate the
agent�s initial position and rotation	

Instruction � is� Jump�address� nr�times�� It has two parameters� nr�times� �� �� � � � �MAXR

�with the constant MAXR representing the maximum number of repetitions
� and address �
�� �� � � � � top� where top is the highest address in the current program� Jump uses an additional hid�
den variable nr�times�to�go which is initially set to nr�times� The semantics are� If nr�times�
to�go � �� continue execution at address address� If � � nr�times�to�go� MAXR� decrement
nr�times�to�go� If nr�times�to�go� �� set nr�times�to�go to nr�times� Note that nr�times
� MAXR may cause an in�nite loop� The Jump instruction is essential for exploiting the possibil�
ity that solutions may consist of repeatable action sequences and �subprograms�� thus having low
algorithmic complexity �Kolmogorov� ����� Chaitin� ����� Solomono�� ����
� LS� incrementally
growing time limit automatically deals with those programs that don�t halt� by preventing them
from consuming too much time�

As mentioned in section ���� the probability of a program is the product of the probabilities
of its constituents� To deal with probabilities of the two Jump parameters� we introduce two
additional variable matrices� P and !P � For a program with l � k instructions� to specify the
conditional probability Pij of a jump to address aj � given that the instruction at address ai is
Jump �i � �� ���� l� j � �� ���� l
� we �rst normalize the entries Pi�� Pi�� ���� Pil �this ensures that
the relevant entries sum up to �
� Provided the instruction at address ai is Jump� for i � �� ���� k�
j � �� ����MAXR� !Pij speci�es the probability of the nr�times parameter being set to j� Both P

and !P are initialized uniformly and are adapted by ALS just like P itself�
Restricted LS
variant� Note that the instructions above are not su�cient to build a universal

programming language � the experiments in this paper are con�ned to a restricted version of LS�
From the instructions above� however� one can build programs for solving any maze in which it
is not necessary to completely reverse the direction of movement �rotation by �	� degrees
 in a
corridor� Note that it is mainly the Jump instruction that allows for composing low�complexity

	

solutions from �subprograms� �LS provides a sound way for dealing with in�nite loops
�
Rules� Before LS generates� runs and tests a new program� the agent is reset to its start

position� Collisions with walls halt the program � this makes the problem hard� A path generated
by a program that makes the agent hit the goal is called a solution �the agent is not required to
stop at the goal � there are no explicit halt instructions
�

Why is this a POMDP� Because the instructions above are not su�cient to tell the agent
exactly where it is� at a given time� the agent can perceive only one of three highly ambiguous
types of input �by executing the appropriate primitive
� �front is blocked or not�� �left �eld is
free or not�� �right �eld is free or not� �compare list of primitives
� Some sort of memory is
required to disambiguate apparently equal situations encountered on the way to the goal� Q�
learning� for instance� is not guaranteed to solve POMDPs� e�g� �Watkins and Dayan� ����
� Our
agent� however� can use memory implicit in the state of the execution of its current program to
disambiguate ambiguous situations�

Measuring time� The computational cost of a single Levin search call in between two
Adapt calls is essentially the sum of the costs of all the programs it tests� To measure the cost
of a single program� we simply count the total number of forward steps and rotations during
program execution �this number is of the order of total computation time
� Note that instructions
often cost more than � step� To detect in�nite loops� LS also measures the time consumed by
Jump instructions �one time step per executed Jump
� In a realistic application� however� the time
consumed by a robot move would by far exceed the time consumed by a Jump instruction � we
omit this �negligible
 cost in the experimental results�

Comparison� We compare LS to three variants of Q�learning �Watkins and Dayan� ����

and random search� Random search repeatedly and randomly selects and executes one of the
instructions ���	
 until the goal is hit �like with Levin search� the agent is reset to its start
position whenever it hits the wall
� Since random search �unlike LS
 does not have a time limit
for testing� it may not use the jump " this is to prevent it from wandering into in�nite loops�
The �rst Q�variant uses the same 	 instructions� but has the advantage that it can distinguish
all possible states ���� possible inputs � but this actually makes the task much easier� because
it is no POMDP any more
� The �rst Q�variant was just tested to see how much more di�cult
the problem becomes in the POMDP setting� The second Q�variant can only observe whether the
four surrounding �elds are blocked or not ��� possible inputs
� and the third Q�variant receives as
input a unique representation of the �ve most recent executed instructions ��
��� possible inputs
� this requires a gigantic Q�table�
� Actually� after a few initial experiments with the second
Q�variant� we noticed that it could not use its input for preventing collisions �the agent always
walks for a while and then rotates � in front of a wall� every instruction will cause a collision
�
To improve the second Q�variant�s performance� we appropriately altered the instructions� each
instruction consists of one of the � types of rotations followed by one of the � types of forward
walks �thus the total number of instructions is � � for the same reason as with random search� the
jump instruction cannot be used
� The parameters of the Q�learning variants were �rst coarsely
optimized on a number of smaller mazes which they were able to solve� We set c � ������ which
means that in the �rst phase �Phase � � in the LS procedure
� a program with probability � may
execute up to ��� steps before being stopped� We set MAXR � ��

Typical result� In the easy� totally observable case� Q�learning took on average �������
steps ��� simulations were conducted
 to solve the maze in Figure �� However� as expected� in
the di�cult� partially observable cases� neither the two Q�learning variants nor random search
were ever able to solve the maze within ������������� steps �� simulations were conducted
� In
contrast� LS was indeed able to solve the POMDP� LS required �
�������� steps to �nd a program
q computing a ��
�step shortest path to the goal in Figure �� LS� low�complexity solution q

involves two nested loops�

�� REPEAT step forward UNTIL left field is free�

�� Jump �� � ���

�� REPEAT step forward UNTIL left field is free� rotate left�

	� Jump �� �
��

�

We have DP �q
 �
�
�
�
�
�
�
�
	
�
�
�
�
�
�
�
	 � ���� � ���
�

Similar results were obtained with many other mazes having non�trivial solutions with low
algorithmic complexity� Such experiments illustrate that smart search through program space can
be bene�cial in cases where the task appears complex but actually has low�complexity solutions�
Since LS has a principled way of dealing with non�halting programs and time�limits �unlike� e�g��
�Genetic Programming��GP

� LS may also be of interest for researchers working in GP and related
�elds � among the �rst papers on using GP�like algorithms to evolve assembler�like computer
programs are �Cramer� ��	�� Dickmanns et al�� ��	

� See also �Koza� ����
 for later work�

ALS	 single tasks versus multiple tasks� If we use the adaptive LS extension �ALS
 for
a single task as the one above �by repeatedly applying LS to the same problem and changing the
underlying probability distribution in between successive calls according to section ���
� then the
probability matrix rapidly converges such that late LS calls �nd the solution almost immediately�
This is not very interesting� however � once the solution to a single problem is found �and there are
no additional problems
� there is no point in investing additional e�orts into probability updates
�probability shifts
� ALS is more interesting in cases where there are multiple tasks� and where
the solution to one task conveys some but not all information helpful for solving additional tasks
�inductive transfer
� This is what the next section is about�

��� Experiment �
 Incremental Learning � Inductive Transfer

1

3

4

5

6

7

2

Figure �� A �� � �� labyrinth	 The arrow indicates the agent�s initial position and direction	
Numbers indicate goal positions	 The higher the number� the more di�cult the goal	 The agent�s
task is to �nd all goal positions in a given
goalset�	 Goalsets change over time	

This section will show that ALS can use experience to signi�cantly reduce average search time
consumed by successive LS calls in cases where there are more and more complex tasks to solve
�inductive transfer
� and that ALS can be further improved by plugging it into MRL�

Task� Figure � shows a ��� �� maze and
 di�erent goal positions marked ��������
� With a
given goal� the task is to reach it from the start state� Each goal is further away from start than
goals with lower numbers� We create � di�erent �goalsets� G�� G�� G�� G�� Gi contains goals ��
�� ���� � � i� One simulation consists of �� �epochs� E�� E�� ��� E��� During epochs E���i����� to
E��i� all goals in Gi �i � �� �� �� �
 have to be found in order of their distance to the start� During

��

Algorithm METHOD SET � SET � SET � SET �

LS last goal ��� ����� ����� �
����
LS 	�
 ����� ������ �
�	��
ALS � ���� �	� ��� ���
ALS � MRL � ���� ��
 ��� ���
ALS � ���� �	
 ��� �	�
ALS � MRL � ���� ��� 	� ���

Table �� For METHODs � and �� we list the number of steps �in thousands
 required by LS� ALS�
MRL�ALS to �nd all goals in a speci�c goalset during the goalset�s �rst epoch �for optimal learning
rates
	 The probability matrices are adapted each time a goal is found	 The �rst LS row refers
only to the most di�cult goals in each goalset �those with maximal numbers
	 ALS outperforms
LS on all goalsets but the �rst� and MRL�ALS achieves additional speed�ups	 MRL�ALS works
well for all learning rates� ALS by itself does not	 Also� all our incremental learning procedures
dramatically outperform LS by itself	

each epoch� we update the probability matrices P � P and !P whenever a goal is found� For each
epoch we store the total number of steps required to �nd all goals in the corresponding goalset�
We compare two variants of incremental learning� METHOD � and METHOD ��

METHOD � � inter
goalset resets� Whenever the goalset changes �at epochs E��� E���
E��
� we uniformly initialize probability matrices P � P and !P � Inductive transfer can occur only
within goalsets� We compare METHOD � to simulations in which only the most di�cult task of
each epoch has to be solved�

METHOD � � no inter
goalset resets� We don�t reset P � P and !P in case of goalset
changes� We have both intra�goalset and inter�goalset inductive transfer� We compare METHOD �
to METHOD �� to measure bene�ts of inter�goalset transfer for solving goalsets with an additional�
more di�cult goal�

Comparison� We compare LS by itself� ALS by itself� and MRL�ALS� for both METHODs
� and ��

LS results� Using c � ����� and MAXR � ��� LS needed �
�� � ��	 time steps to �nd goal

 �without any kind of incremental learning or inductive transfer
�

Learning rate in
uence� To �nd optimal learning rates minimizing the total number of
steps during simulations of ALS and MRL�ALS� we tried all learning rates � in f����� ���������
����g� We found that MRL�ALS is fairly learning rate independent� it solves all tasks with all
learning rates in acceptable time ���
 time steps
� whereas for ALS without MRL �and METHOD
�
 only small learning rates are feasible " large learning rate subspaces do not work for many
goals� Thus� the �rst type of MRL�generated speed�up lies in the lower expected search time for
appropriate learning rates�

With METHOD �� ALS performs best with a �xed learning rate � � ����� and MRL�ALS
performs best with � � ����� with additional uniform noise in #������ ����$ �noise tends to improve
MRL�ALS�s performance a little bit� but worsens ALS� performance
� With METHOD �� ALS
performs best with � � ����� and MRL�ALS performs best with � � ���� and added noise in
#������ ����$�

For METHODs � and � and all goalsets Gi �i � �� �� �� �
� Table � lists the numbers of steps
required by LS� ALS� MRL�ALS to �nd all of Gi�s goals during epoch E�i��������� in which the
agent encounters the goal positions in the goalset for the �rst time�

ALS versus LS� ALS performs much better than LS on goalsets G�� G�� G�� ALS does not
help to to improve performance on G��s goalset� though �epoch E�
� because there are many easily
discoverable programs solving the �rst few goals�

MRL�ALS versus ALS�MRL�ALS always outperforms ALS by itself� For optimal learning
rates� the speed�up factor for METHOD � ranges from � % to �
 %� The speed�up factor for
METHOD � ranges from �� % to �� %� Recall� however� that there are many learning rates where
ALS by itself completely fails� while MRL�ALS does not	 This makes MRL�ALS much more

��

Algorithm METHOD SET � SET � SET � SET �

ALS � �
� ����� ������ �����
ALS � MRL � ��� ����� ����� ��
�	
ALS � �
� ����� ����� �����
ALS � MRL � �
� ����� ����� ���
�

Table �� For all goalsets� we list numbers of steps consumed by ALS and MRL�ALS to �nd all
goals of goalset Gi during the �nal epoch E��i	

Algorithm METHOD TOTAL TOTAL FIRST TOTAL LAST

LS ����	�
ALS � ��	�� �	� ���

ALS � ���
� ����� ����
ALS � MRL � ����� �	� ����
ALS � MRL � 	
� �
� ����

Table �� The total number of steps �in thousands
 consumed by LS� ALS� MRL�ALS ��
 during
one entire simulation� ��
 during all the �rst epochs of all goalsets� ��
 during all the �nal epochs
of all goalsets	

robust�
For optimal learning rates� the biggest speed�up occurs for G�� Here MRL decreases search

costs dramatically� because after having found goal �� it undoes apparently harmful bias shifts
before searching for goal ��

METHOD � versus METHOD �� METHOD � works much better than METHOD � on G�

and G�� but not as well on G� �for G� both methods are equal � di�erences in performance can be
explained by di�erent learning rates which were optimized for the total task
� Why� Optimizing
a policy for goals ��� will not necessarily help to speed up discovery of goal �� but instead cause
a harmful bias shift by overtraining the probability matrices� METHOD �� however� can extract
enough useful knowledge from the �rst � goals to decrease search costs for goal ��

More MRL bene�ts� Table � lists the number of steps consumed during the �nal epoch
E��i of each goalset Gi �the results of LS by itself are identical to those in table �
� Using MRL
typically improves the �nal result� and never worsens it� Speed�up factors range from � to ��� %�

For all goalsets� Table � lists the total number of steps consumed during all epochs of one
simulation� the total number of all steps for those epochs �E�� E��� E��� E��
 in which new goalsets
are introduced� and the total number of steps required for the �nal epochs �E��� E��� E��� E��
�
MRL always improves the results� For the total number of steps � which is an almost linear
function of the time consumed during the simulation � the MRL�generated speed�up is ��% for
METHOD � and ��	 % for METHOD � �the �fully incremental� method
� Although METHOD
� speeds up performance during each goalset�s �rst epoch �ignoring the costs that occurred before
introduction of this goalset
� �nal results are better without inter�goalset learning� This is not so
surprising� by using policies optimized for previous goalsets� we generate bias shifts for speeding
up discovery of new� acceptable solutions� without necessarily making optimal solutions of future
tasks more likely �due to �evolutionary ballast� from previous solutions
�

LS by itself needs �
�	 � ��	 steps for �nding all goals in G�� Recall that �
�� � ��	 of them
are spent for �nding only goal
� Using incremental learning� however� we obtain large speed�up
factors� METHOD � with MRL�ALS improves performance by a factor in excess of �� �see results
of MRL�ALS on the �rst epoch of G�
� Figure ��A
 plots performance against epoch numbers�
Each time the goalset changes� initial search costs are large �re&ected by sharp peaks
� Soon�
however� both methods incorporate experience into the policy� We see that MRL keeps initial
search costs signi�cantly lower�

��

0

100000

200000

300000

400000

500000

600000

700000

800000

1 11 21 31

N
um

be
r o

f s
te

ps
 to

 fi
nd

 a
ll

X
 g

oa
ls

Nr epochs

ALS + MRL method 1
ALS method 1

ALS + MRL method 2
ALS method 2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 11 21 31

A
ve

ra
ge

 P
ro

gr
am

 P
ro

ba
bi

lit
y

Nr epochs

ALS + MRL method 1
ALS method 1

ALS + MRL method 2
ALS method 2

Figure �� �A
 Average number of steps per epoch required to �nd all of the current goalset�s goals�
plotted against epoch numbers	 Peaks re�ect goalset changes	 �B
 Average probability of programs
computing solutions �before solutions are actually found
	

The safety belt e�ect� Figure ��B
 plots epoch numbers against average probability of
programs computing solutions� With METHOD �� MRL�ALS tends to keep the probabilities
lower than ALS by itself� high program probabilities are not always bene�cial� With METHOD
�� MRL undoes many policy modi�cations when goalsets change� thus keeping the policy &exible
and reducing initial search costs�

E�ectively� MRL is controlling the prior on the search space such that overall average search
time is reduced� given a particular task sequence� For METHOD �� after E�� the number of
still valid modi�cations of policy components �probability distributions
 is �

 for ALS� but only
�� for MRL�ALS �therefore� �� is MRL�ALS�s total �nal stack size
� For METHOD �� the
corresponding numbers are ��� and ��� We see that MRL keeps only about ��% respectively �%
of all modi�cations� The remaining modi�cations are deemed unworthy� because they were not
observed to be followed by life�time reinforcement speed�ups� Clearly� MRL prevents ALS from
overdoing its policy modi�cations ��safety belt e�ect�
� This is MRL�s simple� basic purpose�
undo certain learning algorithms� policy changes and bias shifts once they start looking harmful
in terms of long�term reinforcement�time ratios�

It should be clear that the MRL�ALS implementation is just one of many possible MRL
applications � we may plug many alternative learning algorithms into MRL�

� Implementation �� Incremental Self�Improvement �IS�

The previous section used a single� complex� powerful� primitive learning action �adaptive Levin
Search
� The current section exploits the fact that it is also possible to use many� much simpler
actions that can be combined to form more complex learning strategies� or metalearning strategies
�Schmidhuber� ����� ����� Zhao and Schmidhuber� ����
�

Overview� We will use a simple� assembler�like programming language which allows for
writing many kinds of �learning
 algorithms� E�ectively� we embed the way the system modi�es
its policy and triggers backtracking within the
self�referential� policy itself	 MRL is used to keep
only those �self�modi�cations� followed by reinforcement speed�ups� in particular those leading to
�better� future self�modi�cations� recursively� We call this �incremental self�improvement� �IS
�

��

Outline of section� Subsection ��� will describe how the policy is represented as a set of
variable probability distributions on a set of assembler�like instructions� how the policy builds the
basis for generating and executing a lifelong instruction sequence� how the system can modify
itself executing special �self�referential instructions�� and how MRL keeps only the �good� policy
modi�cations� Subsection ��� will describe experiments� In the �rst experiment� MRL is applied to
a sequence of more and more di�cult function approximation tasks� The second task is our most
challenging one� MRL solves a complex� huge state space POMDP which involves two interacting�
changing� learning agents�

��� Policy and Program Execution

Storage � Instructions� The learner makes use of an assembler�like programming language
similar to but not quite as general as the one in �Schmidhuber� ����
� It has n addressable
work cells with addresses ranging from � to n � �� The variable� real�valued contents of the
work cell with address k are denoted ck� Processes in the external environment occasionally
write inputs into certain work cells� There also are m addressable program cells with addresses
ranging from � to m� �� The variable� integer�valued contents of the program cell with address
i are denoted di� An internal variable Instruction Pointer �IP
 with range f�� � � � �m� �g always
points to one of the program cells �initially to the �rst one
� There also is a �xed set I of nops
integer values f�� � � � � nops � �g� which sometimes represent instructions� and sometimes represent
arguments� depending on the position of IP� IP and work cells together represent the system�s
internal state I �see section �
� For each value j in I � there is an assembler�like instruction bj
with nj integer�valued parameters� See �Schmidhuber� ����
 for a related� illustrative �gure� In
the following �incomplete
 list of instructions to be used in experiment �� the symbols w�� w�� w�

stand for parameters that may take on integer values between � and n�� �later we will encounter
additional instructions
�

b�� Add�w�� w�� w�
 � cw�
� cw�

� cw�
�add the contents of work cell w� and work cell w�� write

the result into work cell w�
�

b�� Sub�w�� w�� w�
 � cw�
� cw�

� cw�
�

b�� Mul�w�� w�� w�
 � cw�
� cw�

� cw�
�

b�� Mov�w�� w�
 � cw�
� cw�

�

b�� JumpHome� IP� � �jump back to �st program cell
	

Later �in the experimental subsections
 we will encounter additional primitives allowing the
learner ��
 to move around in an environment� and ��
 to perceive certain objects within a limited
range�

Instruction probabilities � Current policy� For each program cell i there is a variable
probability distribution Pi on I � For every possible j � I � �� � j � nops � �
� Pij speci�es for cell
i the conditional probability that� when pointed to by IP� its contents will be set to j� The set of
all current Pij �values de�nes a probability matrix P with columns Pi �� � i � m� �
� P is called
the learner�s current policy� In the beginning of the learner�s life� all Pij are equal �maximum
entropy initialization
� If IP � i� the contents of i� namely di� will be interpreted as instruction
bdi �such as Add or Mul
� and the contents of cells that immediately follow i will be interpreted as
bdi �s arguments� to be selected according to the corresponding P �values� For example� the integer
sequence � � 	
 will be interpreted as Sub��� �� �
 � subtract the contents of cell � from the
contents of cell 	 and put the result into cell
�

�Self
reference�� To obtain a learner that can explicitly modify its own policy �by running
its own learning strategies
� we introduce a special �self�referential� instruction IncProb not yet
mentioned above�

��

b�� IncProb�w�� w�� w�
 � Increase Pij by � percent� where i � w� � nops � w� and j � w�

�this construction allows for addressing a broad range of program cells
� and renormalize
Pi �but prevent P�values from falling below a minimal value �� to avoid near�determinism
�
Parametersw�� w�� w� may take on integer values between � and nops��� In the experiments�
we will use � � ��� � � ������

In conjunction with other primitives� IncProb may be used in instruction sequences that compute
directed policy modi�cations� Calls of IncProb represent the only way of modifying the policy�

Self
delimiting self
modi�cation sequences �SMSs�� SMSs are subsequences of the life�
long action sequence� The �rst IncProb after the learner�s �birth� or after each MRL backtracking
process �see section �
 begins an SMS� The SMS ends by executing another yet unmentioned �self�
referential� primitive�

b	� EndSelfMod�w�
� Temporarily disable IncProb� by preventing future IncProb instructions
from causing any probability modi�cations� until w� �� � w� � nops��
 additional non�zero
reinforcement signals have been received � this will satisfy the Evaluation Criterion in
the basic MRL cycle �section �
�

Some of the �initially highly random
 action subsequences executed during system life will
indeed be SMSs� Depending on the nature of the other instructions� SMSs can compute almost
arbitrary sequences of modi�cations of Pij values� This may result in almost arbitrary modi��
cations of context�dependent probabilities of future action subsequences� including future SMSs�
Policy changes can be generated only by SMSs	 SMSs build the basis for �metalearning�� SMSs
are generated according to the policy� and may change the policy� Hence� the policy can essentially
change itself� and also the way it changes itself� etc�

SMSs can in&uence the timing of backtracking processes� because they can in&uence the times
at which the Evaluation Criterion will be met� Thus SMSs can temporarily protect the learner
from performance evaluations and policy restaurations�

Plugging SMSs into MRL� We replace step � in the basic MRL cycle �see section �
 by the
following procedure�

�� REPEAT the following UNTIL the Evaluation Criterion is satis�ed or the Boolean
variable Modification�Criterion �initially FALSE
 is TRUE�

���� Randomly generate an integer j � I according to matrix column PIP �the distribution
of the program cell pointed to by IP � initially � at system birth
� Set program cell
contents dIP �� j� Translate j into the corresponding current instruction bj � Look up
the number nj of cells required to store bj �s parameters� If IP� m�nj � �� reset IP to
�� go to step �� Otherwise generate instruction arguments for the nj cells immediately
following IP according to their probability distributions PIP��� ���� PIP�nj � and set IP
to IP � nj � ��

���� IF bj is a learning instruction and not currently disabled by a previous EndSelfMod in�
struction� THEN setModification�Criterion � TRUE� exit the current REPEAT
loop� and go to step � of the basic MRL cycle�

���� Execute bj � IF bj is EndSelfMod and the topmost entry in the stack S is not a �tag��
THEN set the integer variable nNZR equal to the �rst parameter of bj plus one �this
will in&uence the time at which Evaluation Criterion will be reached
�

���� IF there is a new environmental input� THEN let it modify I�

���� IF nNZR � � and non�zero reinforcement occurred during the current cycle� THEN
decrement nNZR� IF nNZR is zero� THEN set Evaluation Criterion � TRUE�

We also change step � in the basic MRL cycle as follows�

�� IF Modification�Criterion � TRUE� THEN push copies of those Poli to be modi�ed
by bj �from step ���
 onto S� and execute bj �

��

��� Experiment �
 Function Approximation � Inductive Transfer

Our �rst experiment does not yet involve multiple� interacting learners that are part of each
other�s changing environment� It just demonstrates that IS can successfully learn in a changing
environment where the tasks to be solved become more and more di�cult over time �inductive
transfer
� The experiment serves as an introduction to the next experiment �section ���
� where
task changes won�t be easy to identify due to multiple� co�evolving learners with partly con&icting
goals�

Task sequence� Our system is exposed to a sequence of more and more complex function
approximation problems� The functions to be learned are f��x� y
 � x� y� f��x� y� z
 � x� y� z�
f��x� y� z
 � �x � y � z
�� f��x� y� z
 � �x� y � z
�� f��x� y� z
 � �x� y � z

�

Trials� The system�s single life can be separated into n successive trials A�� A�� ���� An �but
the learner has no a priori concept of a trial
� The i�th trial lasts from discrete time step ti � �
until discrete time step ti��� where t� � � �system birth
 and tn�� � T �system death
� In a
given trial Ai we �rst select a function gi � ff�� � � � � f�g� As the trial number increases� so does
the probability of selecting a more complex function� In early trials the focus is on f�� In late
trials the focus is on f�� In between there is a gradual shift in task di�culty� using a function
pointer ptr �initially �
 and an integer counter c �initially ���
� in trial Ai we select gi �� fptr
with probability c

��� � and gi �� fptr�� with probability �� c
��� � If the reinforcement acceleration

during the most recent two trials exceeds a certain threshold �����
� then c is decreased by �� If
c becomes � then fptr is increased by �� and c is reset to ���� This is repeated until fptr �� f��
From then on� f� is always selected�

Once gi is selected� randomly generated real values x� y and z are put into work cells �� �� ��
respectively� The contents of an arbitrarily chosen work cell �we always use cell �
 are interpreted
as the system�s response� If c	 ful�lls the condition jgi�x� y� z
� c	j � ������� then the trial ends
and the current reward becomes ���� otherwise the current reward is ����

Instructions� Instruction sequences can be composed from the following primitive instruc�
tions �compare section ���
� Add�w�� w�� w�
� Sub�w�� w�� w�
� Mul�w�� w�� w�
� Mov�w�� w�
�
IncProb�w�� w�� w�
� EndSelfMod�w�
� JumpHome�
� Each instruction occupies � successive pro�
gram cells �some of them unused if the instruction has less than � parameters
� We use m �
��� n �
�

Evaluation Condition� Backtracking starts after each �th consecutive non�zero reinforce�
ment signal after the end of each SMS� i�e�� we set nNZR � ��

Huge search space� Given the primitives above� random search would require about ���

trials on average to �nd a solution for f� � the search space is huge� The gradual shift in task
complexity� however� helps IS to learn f� much faster� as will be seen below�

Results� After about ������
 instruction cycles �ca� ��
 trials
� the system is able to compute
f� almost perfectly� given arbitrary real�valued inputs� The corresponding speed�up factor over
�infeasible
 random or exhaustive search is about ��� � compare paragraph �Huge search space�
above� The solution �see Figure �
 involves �� strongly modi�ed probability distributions of the
policy �after learning� the correct instructions had extreme probability values
� At the end� the
most probable code is given by the following integer sequence�

� ����
The corresponding �program� and the �very high
 probabilities of its instructions and param�

eters are shown in Table ��

Evolution of self
modi�cation frequencies� During its life the system generates a lot of
self�modi�cations to compute the strongly modi�ed policy� This includes changes of the proba�
bilities of self�modi�cations� It is quite interesting �and also quite di�cult
 to �nd out to which
extent the system uses self�modifying instructions to learn how to use self�modifying instructions�
Figure � gives a vague idea of what�s going on by showing a typical plot of the frequency of IncProb
instructions during system life �sampled at intervals of ��	 MRL cycles
� Soon after its birth� the
system found it useful to dramatically increase the frequency of IncProb� near its death �when
there was nothing more to learn
 it signi�cantly reduced this frequency�

��

1 2 1 6 1 0 6 6 2 6 6 6 2 6 6 6 2 6 6 6 4 6 6 6

0 1 2 3 4 5 6 7 8 9 13 14 15 16 17 18 19 20 21 22 2311 1210Cell addresses:

Most probable code sequence:

0 = Add

1 = Sub

2 = Mul

3 = Mov

5 = IncProb

6 = EndSelfMod

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

4 = JumpHome

Figure �� The �nal state of the probability matrix for the function learning problem	 Grey scales
indicate the magnitude of probabilities of instructions and parameters	 The matrix was computed
by self�modi�cation sequences generated according to the matrix itself �initially� all probability
distributions were maximum entropy distributions
	

Probabilities Instruction Parameters Semantics
�� ������� ���
�� ������ �����
 Sub � �� �� �
 �z � y
 �	 c	
�� ������� ���	�� ������ �����
 Sub � �� �� �
 �x� �z � y

 �	 c	
�� ������� ������ ������ �����
 Mul � �� �� �
 �x� y � z
� �	 c	
�� ������� ������ ������ �����
 Mul � �� �� �
 �x� y � z
� �	 c	
�� ���	��� ���
�� ������ �����
 Mul � �� �� �
 �x� y � z

 �	 c	
�� ���	�	� �� �� �
 JumpHome �"� "� "�
 � �	 IP

Table �� The �nal� most probable �program� and the corresponding probabilities�

Stack evolution� The temporary ups and downs of the stack re&ect that as the tasks change�
the system selectively keeps still useful old modi�cations �corresponding to information conveyed
by previous tasks that is still valuable for solving the current task
� but deletes modi�cations
that are too speci�c for previous tasks� In the end� there were only about ��� stack entries
corresponding to only ��� valid probability modi�cations " this is a small number compared to
the about � � ��� self�modi�cations executed during system life�

��� Experiment �
 A Hard POMDP

In the previous experiment� the learner�s environment changed because of externally induced task
changes� In the following experiment� it will change in a less predictable way because of another�
changing learner� There won�t be an obvious way of identifying task changes�

Environment� Figure ��� shows a partially observable environment �POE
 with ��� � 	��
�elds �or pixels
� The POE has many more �elds and obstacles than POEs used by previous
authors working on POMDPs� For instance� McCallum�s maze has only �� free �elds �McCallum�
����
� and Littman et al��s biggest problem �Littman� ����
 involves less than ���� states� There
are two IS�based agents A and B� Each has circular shape and a diameter of �� pixel widths� At a
given time� each is rotated in one of eight di�erent directions� Total state space size exceeds ����

by far� not even taking into account internal states �IP positions
 of the agents�
There are also two keys� key A �only useful for agent A
 and key B �only for agent B
� and two

locked doors� door A and door B� the only entries to room A and room B� respectively� Door A �B

can be opened only with key A �B
� At the beginning of each �trial�� both agents are randomly
rotated and placed near the northwest corner� all doors are closed� key A is placed in the southeast
corner� and key B is placed in room A �see Figure ���
�

�

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350 400 450 500

IncP
rob

 FR
EQ

UEN
CY

TIME

Figure �� Numbers of executed self�modifying instructions plotted against time� sampled at intervals
of ��	 instruction cycles	 The graph re�ects that the system soon uses self�modifying instructions
to increase the frequency of self�modifying instructions	 Near system death the system learns that
there is not much to learn any more� and decreases this frequency	

Task� The goal of each agent is to reach the goal in room B� This requires cooperation� ��

agent A must �rst �nd and take key A �by touching it
� ��
 then agent A must go to door A
and open it �by touching it
 for agent B� ��
 then agent B must enter through door A� �nd and
take key B� ��
 then agent B must go to door B to open it �to free the way to the goal
� ��
 then
at least one of the agents must reach the goal position� Only then a new trial starts �there is
no maximal trial length� and the agents have no a priori concept of a trial
� Reinforcement is
generated only if one of the agents touches the goal� This agent�s reinforcement is ���� the other
agent�s reinforcement is ��� �for its cooperation
� Note that asymmetric reinforcement introduces
competition�

Instruction set� Agents A and B are identical in design� Each is equipped with limited �ac�
tive� sight� by executing certain instructions� it can sense obstacles� its own key� the corresponding
door� or the goal� within up to �� �steps� in front of it� The step size is � pixel widths� Limited
obstacle perception makes the problem a di�cult POMDP� The agent can also move forward� turn
around� turn relative to its key or its door or the goal� Directions are represented as integers in
f�� � � � �
g� � for north� � for northeast� � for east���� etc�� Each agent has got m � �� program
cells� and nops � �� instructions �including JumpHome�IncProb�EndSelfMod instructions from
section ���
�

b�� Move�w�
 � If � � w� � �� then move w� � � steps forward �if w� � �
 or �w� steps
backward �if w� � �
 in the current direction�

b�� Turn�w�
 � if � � w� �
 then change current direction Dc to �Dc � w� � �
mod	�

b�� TurnRelativeToKey�w�
 � If � � w� �
 then �rst turn to the direction that best matches
the line connecting the centers of agent and its key� then Turn�w�
�

b	� TurnRelativeToDoor�w�
 � �analogous to b�
�

b
� TurnRelativeToGoal�w�
 � �analogous to b�
�

b
� LookForKey�w�
 � If � � w� � �� then if the agent�s key is not within w� �� steps in front
of the agent then increase IP by � �this is a limited kind of conditional jump
� If IP � m��
then set IP � ��

b�� LookForDoor�w�
 � �analogous to b

�

b��� LookForObstacle�w�
 � �analogous to b

�

�	

b��� LookForGoal�w�
 � �analogous to b

�

b��� CondJumpBack�w�
 � If w� � � and the agent does not hold its key� or if w� � � and
the corresponding door is closed� or if w� � � and the agent does not touch the goal� then
reset agent�s IP to the instruction next to last executed CondJumpBack �if there is no such
instruction� reset IP � �
�

Results without learning� If we switch o� the system�s self�modifying capabilities �IncProb
has no e�ect
� then the average reinforcement intake speed is about ��� � ���� per instruction
cycle and agent� This corresponds to about ���� ��� time steps per trial �random behavior
�

Results with Q
Learning� Q�learning assumes that the environment is Markovian� Oth�
erwise it is not guaranteed to work� Still� some authors occasionally apply Q�learning variants
to non�Markovian tasks� sometimes even successfully� To test whether our problem is indeed too
di�cult for Q�learning� we tried to solve it using various TD�	
 Q�variants� We �rst tried prim�
itive actions and perceptions similar to IS�s� There are �� possible Q�actions� The �rst �� are
�turn to one of the 	 di�erent directions relative to the agent�s key�door�current direction�goal�
and move � steps forward�� The ��rd action is �turn �� degrees to the right�� These actions are
more powerful than those used by IS �most combine two actions that are similar to IS�s
� There
are � � � � �� possible� di�erent inputs uniquely telling the agent whether it has�hasn�t got its
key� and whether the closest object �obstacle or key or door or goal
 part of which is either ��
or �� or �� or �� or �� pixels in front of the agent is obstacle�key�door�goal�non�existent� All of
this corresponds to �� rows and �� columns in the Q�tables� Q�learning�s parameters are 	 � ����
� � ���� and learning rate ����� �these worked well for smaller problems Q�learning was able to
solve
�

This Q�learning variant completely failed to achieve signi�cant performance improvement on
our complex task� however� So we tried to make the problem easier �less non�Markovian
 by
extending the agent�s sensing capabilities� Now� each possible input tells the agent uniquely
whether it has�hasn�t got the key� and whether the closest object �obstacle or key or door or goal

part of which is either �� or �� or �� or �� or �� pixels away in front of��� degrees to the right of���
degrees to the left of the agent is obstacle�key�door�goal�non�existent� and if existing� whether it
is �������������� pixels away� All this can be e�ciently coded by ���������� � �	��� di�erent
inputs corresponding to �	��� di�erent rows in the Q�tables �with a total of ������ entries
� This
worked a bit better than the simpler Q�variant	 Still� we were not able to make Q�learning achieve
very signi�cant performance improvement� The experimental results are shown in Figure ����

Results with IS� The system dies after ��� basic cycles �ca� ���� ��� trials corresponding to
only ���� ��� reinforcement signals
� By then� average reinforcement intake per agent is
�������

per basic cycle �mean of � simulations
� This is about �� times faster than the initial speed �the
one of random behavior
� and is roughly �

� to �
� of the optimal speed �due to the POMDP setting

and the random agent initializations at trial start� however� it is very hard to calculate optimal
average speed
� Results are shown in Figures ��� and ����

Q
learning as an instruction for IS� The fact that Q�learning is not designed for POMDPs
does not mean that Q�learning cannot be plugged into IS as a useful instruction� To examine this
issue� we add Q�learning to the instruction list to be used by IS�

b��� Q�learning�w�� � with probability w�

����nops
� keep executing actions according to the Q�table until

there is non�zero reinforcement� and update the Q�table according to standard Q�learning rules
�Watkins and Dayan�
���	� Otherwise� execute only one single action according to the current
Q�table�

Interestingly� this combination leads to even slightly better results near system death �see Figure
���
� Essentially� the system learns when to trust the Q�table�

Stack size� Final stack size per agent was never higher than ���� corresponding to only
about ��� still valid policy modi�cations� Space limitations prevent us from describing many
interesting details such as the �nal� complex shape of the agent�s probability matrices� and how
the agents use memories �embodied by their IPs
 to disambiguate ambiguous inputs� and how
they use self�modi�cations to adapt the frequency of self�modi�cations�

��

� Conclusion

During each backtracking process� MRL implicitly evaluates each still valid policy modi�cation
as to whether it belongs to a block of modi�cations whose beginning has been followed by long�
term performance improvement� If there is empirical evidence to the contrary� then backtracking
invalidates policy modi�cations until the history of valid modi�cations is again a success story �in
the worst case an empty one � this will be re&ected by an empty stack
� The success of a policy
modi�cation or bias shift partly depends on the sucess of later bias shifts for which it set the stage
��metalearning�
� MRL works no matter what the environment and the internal state are like�
MRL is e�cient in the sense that only the two most recent ��topmost�
 still valid modi�cation
blocks need to be considered at a given time in a backtracking process� A single backtracking
process� however� may invalidate many modi�cation blocks� MRL is general � you can plug in
your favorite learning algorithm L as an action� This makes sense especially in situations where
the applicability of L is questionable because the environment does not satisfy the preconditions
that would make L sound� MRL can at least guarantee that those of L�s policy modi�cations that
appear to contribute to negative long�term e�ects are countermanded� This is more than can be
said about previous reinforcement learning schemes�

We don�t gain much by applying MRL to� say� simple �Markovian� mazes for which there
already are e�cient reinforcement learning methods based on dynamic programming� MRL is of
interest� however� in more realistic situations where standard reinforcement learning methods fail
�such as the ��door���key problem from section ���
�

We feel that we have barely scratched MRL�s potential� Future work will focus on plugging a
whole variety of well�known learning algorithms into MRL� and let it pick and combine the best�
problem�speci�c ones�

� Acknowledgments

Thanks for valuable discussions to Sepp Hochreiter� Marco Dorigo� Luca Gambardella� Rafa'l
Sa'lustowicz� This work was supported by SNF grant ��������
��� �incremental self�improvement��

References

Barto� A� G� �
���	� Connectionist approaches for control� Technical Report COINS ������ University of
Massachusetts� Amherst MA �
����

Berry� D� A� and Fristedt� B� �
���	� Bandit Problems� Sequential Allocation of Experiments� Chapman
and Hall� London�

Boddy� M� and Dean� T� L� �
���	� Deliberation scheduling for problem solving in time�constrained
environments� Arti�cial Intelligence� �����������

Caruana� R�� Silver� D� L�� Baxter� J�� Mitchell� T� M�� Pratt� L� Y�� and Thrun� S� �
���	� Learning to
learn� knowledge consolidation and transfer in inductive systems� Workshop held at NIPS���� Vail�
CO� see http���www�cs�cmu�edu�afs�user�caruana�pub�transfer�html�

Chaitin� G� �
���	� On the length of programs for computing �nite binary sequences� statistical consid�
erations� Journal of the ACM�
��
���
���

Cli
� D� and Ross� S� �
���	� Adding temporary memory to ZCS� Adaptive Behavior� ��
�
�
���

Cramer� N� L� �
���	� A representation for the adaptive generation of simple sequential programs� In
Grefenstette� J�� editor� Proceedings of an International Conference on Genetic Algorithms and Their
Applications� Hillsdale NJ� Lawrence Erlbaum Associates�

Dickmanns� D�� Schmidhuber� J�� and Winklhofer� A� �
���	� Der genetische Algorithmus� Eine Imple�
mentierung in Prolog� Fortgeschrittenenpraktikum� Institut f�ur Informatik� Lehrstuhl Prof� Radig�
Technische Universit�at M�unchen�

Gittins� J� C� �
���	� Multi�armed Bandit Allocation Indices� Wiley�Interscience series in systems and
optimization� Wiley� Chichester� NY�

��

Greiner� R� �
���	� PALO� A probabilistic hill�climbing algorithm� Arti�cial Intelligence� ����	�

Jaakkola� T�� Singh� S� P�� and Jordan� M� I� �
���	� Reinforcement learning algorithm for partially
observable Markov decision problems� In Tesauro� G�� Touretzky� D� S�� and Leen� T� K�� editors�
Advances in Neural Information Processing Systems 	� MIT Press� Cambridge MA�

Kaelbling� L� �
���	� Learning in Embedded Systems� MIT Press�

Kaelbling� L�� Littman� M�� and Cassandra� A� �
���	� Planning and acting in partially observable stochas�
tic domains� Technical report� Brown University� Providence RI�

Kolmogorov� A� �
���	� Three approaches to the quantitative de�nition of information� Problems of
Information Transmission�
�
�

�

Koza� J� R� �
���	� Genetic evolution and co�evolution of computer programs� In Langton� C�� Taylor�
C�� Farmer� J� D�� and Rasmussen� S�� editors� Arti�cial Life II� pages �
������ Addison Wesley
Publishing Company�

Kumar� P� R� and Varaiya� P� �
���	� Stochastic Systems� Estimation
 Identi�cation
 and Adaptive Control�
Prentice Hall�

Lenat� D� �
���	� Theory formation by heuristic search� Machine Learning� �
�

Levin� L� A� �
���	� Universal sequential search problems� Problems of Information Transmission�
���	���������

Levin� L� A� �
���	� Randomness conservation inequalities� Information and independence in mathematical
theories� Information and Control� �
�
�����

Li� M� and Vit�anyi� P� M� B� �
���	� An Introduction to Kolmogorov Complexity and its Applications�
Springer�

Littman� M� �
���	� Memoryless policies� Theoretical limitations and practical results� In D� Cli
�
P� Husbands� J� A� M� andWilson� S� W�� editors� Proc� of the International Conference on Simulation
of Adaptive Behavior� From Animals to Animats �� pages �������� MIT Press�Bradford Books�

McCallum� R� A� �
���	� Instance�based utile distinctions for reinforcement learning with hidden state�
In Prieditis� A� and Russell� S�� editors� Machine Learning� Proceedings of the Twelfth International
Conference� pages �������� Morgan Kaufmann Publishers� San Francisco� CA�

Ring� M� B� �
���	� Continual Learning in Reinforcement Environments� PhD thesis� University of Texas
at Austin� Austin� Texas ���
��

Rosenbloom� P� S�� Laird� J� E�� and Newell� A� �
���	� The SOAR Papers� MIT Press�

Russell� S� and Wefald� E� �
��
	� Principles of Metareasoning� Arti�cial Intelligence� �����
�����

Schmidhuber� J� �
���	� Evolutionary principles in self�referential learning� or on learning how to learn�
the meta�meta���� hook� Institut f�ur Informatik� Technische Universit�at M�unchen�

Schmidhuber� J� �
��
	� Reinforcement learning in Markovian and non�Markovian environments� In Lipp�
man� D� S�� Moody� J� E�� and Touretzky� D� S�� editors� Advances in Neural Information Processing
Systems �� pages �������� San Mateo� CA� Morgan Kaufmann�

Schmidhuber� J� �
���	� A self�referential weight matrix� In Proceedings of the International Conference
on Arti�cial Neural Networks
 Amsterdam� pages ������
� Springer�

Schmidhuber� J� �
���	� On learning how to learn learning strategies� Technical Report FKI�
������
Fakult�at f�ur Informatik� Technische Universit�at M�unchen� Revised January
����

Schmidhuber� J� �
���	� Discovering solutions with low Kolmogorov complexity and high generalization
capability� In Prieditis� A� and Russell� S�� editors� Machine Learning� Proceedings of the Twelfth
International Conference� pages �������� Morgan Kaufmann Publishers� San Francisco� CA�

Schmidhuber� J� �
���	� A general method for incremental self�improvement and multi�agent learning in
unrestricted environments� In Yao� X�� editor� Evolutionary Computation� Theory and Applications�
Scienti�c Publ� Co�� Singapore�

Solomono
� R� �
���	� A formal theory of inductive inference� Part I� Information and Control� ��
����

Solomono
� R� �
���	� An application of algorithmic probability to problems in arti�cial intelligence�
In Kanal� L� N� and Lemmer� J� F�� editors� Uncertainty in Arti�cial Intelligence� pages ������
�
Elsevier Science Publishers�

��

Sutton� R� S� �
���	� Learning to predict by the methods of temporal di
erences� Machine Learning�
�������

Utgo
� P� �
���	� Shift of bias for inductive concept learning� In Machine Learning� volume �� Morgan
Kaufmann� Los Altos� CA�

Watanabe� O� �
���	� Kolmogorov complexity and computational complexity� EATCS Monographs on
Theoretical Computer Science� Springer�

Watkins� C� J� C� H� and Dayan� P� �
���	� Q�learning� Machine Learning� ����������

Wiering� M� and Schmidhuber� J� �
���	� Solving POMDPs with Levin search and EIRA� In Saitta� L��
editor�Machine Learning� Proceedings of the Thirteenth International Conference� Morgan Kaufmann
Publishers� San Francisco� CA� To appear�

Williams� R� J� �
���	� Simple statistical gradient�following algorithms for connectionist reinforcement
learning� Machine Learning� ����������

Zhao� J� and Schmidhuber� J� �
���	� Incremental self�improvement for life�time multi�agent reinforcement
learning� In Proc� SAB
��� MIT Press� Cambridge MA� To appear�

��

Figure �� Snapshot of traces of interacting� learning agents A and B in a partially observable
environment with huge state space	 Initially� both agents are randomly rotated and placed near the
northwest corner	 Agent A �rst moves towards the southeast corner to grab its key� then moves
north �dotted trace
 to open door A �grey
	 Simultaneously� agent B moves east to door A and waits
for agent A to open it	 Then B moves in� grabs key B� turns� and heads towards door B to open
it� while agent A also heads southwest in direction of the goal �dotted trace
	 This time� however�
agent B is the one who touches the goal �rst� because A fails to quickly circumvent the obstacle in
the center	 All this complex� partly stochastic behavior is learned solely by
self�referential� policy
modi�cations �generated according to the
self�referential� policy itself via IncProb calls
� although
strongly delayed reinforcement is provided only if one of the agents touches the goal	

Goal

D
oor B

Room B

Key B

Door A

Key A

B

A

Room A

0

100

200

300

400

500

600

700

800

900

1000

1100

0 100 200 300 400 500 600 700 800 900 1000

Rei
nfo

rce
me

nt

Time

IS
Q-learning

IS and Q-learning

Figure
� Performance of incremental self�improvement �IS
 compared to the one of the best Q�
learning variant �reinforcement intake sampled at intervals of ��	 instruction cycles� mean of
� simulations
	 Q�learning hardly improves� while IS makes rather quick� substantial progress	
Interestingly� adding Q�learning to IS�s instruction set again tends to improve late�life performance
a bit �trace of crosses
 � essentially� the system learns when to trust�ignore the Q�table	

��

