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Abstract

To solve partially observable Markov decision problems� we introduce HQ�learning� a hier�
archical extension of Q�learning� HQ�learning is based on an ordered sequence of subagents�
each learning to identify and solve a Markovian subtask of the total task� Each agent learns ���
an appropriate subgoal �though there is no intermediate� external reinforcement for �good	
subgoals�� and �
� a Markovian policy� given a particular subgoal� Our experiments demon�
strate� �a� The system can easily solve tasks standard Q�learning cannot solve at all� �b� It can
solve partially observable mazes with more states than those used in most previous POMDP
work� �c� It can quickly solve complex tasks that require manipulation of the environment to
free a blocked path to the goal�

Keywords� reinforcement learning� hierarchical Q�learning� POMDPs� non�Markovian interfaces�
subgoal learning�

� Introduction

The problem� If a learner�s optimal next action always depends only on its current input�
we speak of a Markovian interface between learner and environment� The most widely used
reinforcement learning �RL� algorithms� such as TD��� �Sutton ��		� and Q
learning �Watkins
��	�� Watkins and Dayan ������ depend on Markovian interfaces� they fail if the problem requires
memory of previous events� Such non
Markovian interfaces� however� are common in the real
world 
 even Markovian environments may appear non
Markovian to the learner due to a lack of
perfect information about the current environmental state� The problem of controlling a system
in such partially observable environments can be cast in the partially observable Markov decision
problem �POMDP� framework� There are a number of algorithms for POMDPs� e�g�� Schmidhuber
������� McCallum ������� Ring ������� Kaelbling et al� ������� Jaakkola et al� ������� Littman
������� though most of them are feasible only for small problems� This paper presents a novel�
quite di�erent approach which appears to scale far more reasonably� For alternative approaches
to larger scale POMDPs� see also Schmidhuber et al� ������� Wiering and Schmidhuber �������
and Zhao and Schmidhuber �������

Basic idea� In realistic environments some memory of previous events is required to select the
optimal next action� Often� however� it is not necessary to memorize the entire past �in general
this would be quite infeasible� 
 a few memories corresponding to important previously achieved
subgoals can be su�cient� For instance� suppose your instructions for the way to the station were
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this� �Follow this road to the tra�c light� turn left� follow that road to the next tra�c light�
turn right� there you are��� While you are on your way� only few memories corresponding to the
important subgoals are relevant� such as �I already passed the �rst tra�c light�� In
between two
subgoals a reactive� memory
independent strategy will carry you safely� This idea is incorporated
in HQ
learning� a novel� hierarchical extension of Watkins� Q
learning� HQ
learning�s divide

and
conquer strategy learns subgoals to decompose a possibly non
Markovian task into simpler�
Markovian subtasks� The system uses multiple subagents� Each agent�s policy is a mapping from
states to actions� At a given time� the system�s only type of short
term memory is embodied
by a pointer indicating which agent is active� Each agent learns a context
speci�c strategy for
solving its subgoal� Policies of di�erent agents are combined in a way learned by the agents
themselves� The �rst active agent uses a subgoal table �its HQ�table� to generate a subgoal for
itself �for instance� subgoals can be represented as desired inputs�� Then it follows the policy
embodied by its Q
table until it achieves its subgoal� Then control is passed to the next agent�
and the procedure repeats itself� After the overall goal is achieved or a time limit is exceeded�
each agent uses a novel learning procedure �to be described in section �� to adjust its policy and
its subgoal� Although each agent learns only �Markovian� subproblems� the whole system can
learn �non
Markovian� tasks impossible to learn with single lookup tables� Unlike� e�g�� Singh�s
system ������ and Lin�s hierarchical learning method ������� ours does not depend on an external
teacher who provides a priori information about �good� subtasks� Unlike Jaakkola et al��s method
������� ours is not limited to �nding suboptimal stochastic policies for POMDPs with an optimal
deterministic solution�

Outline� Section � describes HQ
learning details� including learning rules for both Q
 and
HQ
tables� Section � describes experiments with relatively complex partially observable mazes�
In the �rst experiment the system solves a POMDP that standard Q
learning cannot solve by au

tomatically decomposing it into three appropriate Markovian subtasks� In the second experiment
it solves a complex POMDP �with ��� world states� that requires �nding a key to open a door
blocking the path to the goal� Section � brie�y reviews related work that has mainly been tested
on small problems� as most previous methods do not scale up very well �Littman ������ Section
� concludes and lists directions for future research�

� HQ�learning

POMDP speci�cation� System life is separable into �trials�� A trial consists of at most Tmax

discrete time steps t � �� �� �� � � ��T� The POMDP is speci�ed by Z �� S� S�� O�B�A�R� ��D ��
where S is a �nite set of environmental states� S� � S is the initial state� O is a �nite set of
observations� the function B � S � O maps states to �ambiguous� observations� A is a �nite set
of actions� R � S � A� IR maps state
action pairs to scalar reinforcement signals� � � � � � is a
discount factor which trades o� immediate rewards against future rewards� and D � S�A� S is a
state transition function� Though the framework can be extended to non
deterministic worlds� we
focus on deterministic state transition functions for simplicity� St�� �� D�St� At�� where St � S

is the environmental state at time t� and At � A is the action executed at time t� The system�s
goal is to obtain maximal �discounted� cumulative reinforcement during the trial�

Architecture� There is an ordered sequence of M agents C� � C� � ��� CM � each equipped with
a Q
table� an HQ
table� and a transfer control unit� except for CM � which only has a Q
table �see
�gure ��� Each agent is responsible for learning part of the system�s policy� Its Q
table represents
its local policy for executing an action given an input� It is given by a matrix of size jOj � jAj�
where jOj is the number of di�erent possible observations and jAj the number of possible actions�
Qi�Ot� Aj� denotes Ci �s Q
value �utility� of action Aj given observation Ot� The agent�s current
subgoal is generated with the help of its HQ
table� a vector with jOj elements� HQi�Oj� denotes
Ci �s HQ
value �utility� of selecting Oj as its subgoal� For each possible observation there is a
HQ
table entry representing its estimated value as a subgoal�

The system�s current policy is the policy of the currently active agent� If Ci is active at time
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step t� then we will denote this by Active�t� �� i� The information about which agent is active
represents the only kind of short
term memory in the system�

TRANSFER
 CONTROL

TRANSFER
 CONTROL

Q-TABLE  1

Q-TABLE  2

Q-TABLE  3

AGENT  1

AGENT  2

AGENT  3

HQ-TABLE  1

HQ-TABLE  2

Figure �� Basic architecture� Three agents are connected in a sequential way� Each agent has
a Q�table� an HQ�table� and a transfer control unit� except for the last agent which only has a
Q�table� The Q�table stores estimates of actual observation�action values and is used to select the
next action� The HQ�table stores estimated subgoal values and is used to generate a subgoal once
the agent is made active� The solid box indicates that the second agent is the currently active agent�
Once the agent has achieved its subgoal� the transfer control unit passes control to its successor�

Selecting a subgoal� In the beginning C� is made active� Once Ci is active� its HQ
table is
used to select a subgoal for Ci � Subgoal Oj is chosen with probability PHQi�Oj� according to the
Max
Uniform distribution�

PHQi�Oj� �� Prmax
Maxi�Oj�P

Ok�O
Maxi�Ok�

�
�� Prmax

jOj
� ���

Here Prmax denotes the probability of using the �max
choice rule� �which chooses a subgoal with
maximal HQ
value� for subgoal selection� Maxi�Oj� returns � if �Ok � O � HQi�Ok� � HQi�Oj��

and � otherwise� �Oi denotes the subgoal selected by agent Ci � This subgoal is only used in transfer
control as de�ned below and should not be confused with an observation�

Selecting an action� Ci �s action choice depends only on the current observation Ot� During
learning� at time t� the active agent Ci will select action Aj with probability P

Qi

t �Aj� according
to the Max
Boltzmann distribution�

P
Qi

t �Aj� �� Prmax
Maxi�Ot� Aj�P

Ak�A
Maxi�Ot� Ak�

� ��� Prmax�
eQi�Ot�Aj��Ti

P
Ak�A

eQi�Ot�Ak��Ti
�

The function Maxi�Ot� Aj� returns � if �Ak � A � Qi�Ot� Ak� � Qi�Ot� Aj�� and � otherwise�
The �temperature� Ti adjusts the degree of randomness involved in agent Ci �s action selection �as
long as Prmax � ���

�



Why use the Max
Boltzmann �Max
Uniform� distribution for Q
values �HQ
values�� Because
these distributions can prevent over
exploration� which sometimes makes policies unstable �for
discussions of exploration issues see� e�g�� Fedorov ����� Schmidhuber ����� Thrun ����� Cohn
����� Caironi and Dorigo ����� Storck et al� ����� Wilson ����b�� These distributions also make
it easy to reduce the relative weight of exploration �as opposed to exploitation�� During learning
we can increase Prmax until it �nally becomes � to obtain a deterministic policy at the end of the
learning process� Schraudolph et al� ������ also used these mixture distributions to train their
TD
Go networks �Schraudolph� personal communication� ������

Transfer control� Transfer of control from one active agent to the next is implemented as
follows� Each time Ci has executed an action� its transfer control unit checks whether Ci has
reached the goal� If not� it checks whether Ci has solved its subgoal to decide whether control
should be passed on to Ci�� � We let ti denote the time at which agent Ci is made active �at system
start
up� we set t� � ���

IF no absorbing state reached AND current subgoal � 
Oi

AND Active�t� � M AND B�St� � 
Oi

THEN Active�t� ��� Active�t� � � AND ti�� � t� �

��� LEARNING RULES

We use o�
line learning for updating the tables �no intra
trial changes�� The learning rules appear
very similar to those of conventional Q
learning� One major di�erence though is that each agent�s
prospects of achieving its subgoal tend to vary as various agents try various subgoals�

Learning the Q�values� We want Qi�Ot� Aj� to approximate the system�s expected dis

counted future reward for executing action Aj � given Ot� In the optimal case we have

Qi�Ot� Aj� �
X

Sj�S

Pt�Sj jOt��� i��R�Sj � Aj� � �VActive�t����B�D�Sj � Aj�����

where Pt�Sj jOt��� i� denotes the probability that the system is in state Sj at time t given ob

servation Ot� all architecture parameters denoted �� and the information that i � Active�t��
HQ
learning does not depend on estimating this probability �although a world model might help
to speed up learning� e�g�� Moore ������ Vi�Ot� is the utility of observation Ot according to agent
Ci � which is equal to the Q
value for taking the best action� Vi�Ot� �� MaxAj�AfQi�Ot� Aj�g�
Q
value updates are generated in two di�erent cases �T � Tmax denotes the total number of
executed actions during the current trial� and �Q is the learning rate��

Q�� If Ci is active at time t� and Cj is active at time t� �� and t � T then
Qi�Ot� At� � ��� �Q�Qi�Ot� At� � �Q�R�St� At� � �Vj�Ot�����

Q�� If agent Ci is active at time T � and the �nal action AT has been executed� then
Qi�OT � AT �� ��� �Q�Qi�OT � AT � � �QR�ST � AT ��

As mentioned above� the update rules resemble normal one
step Q
learning� A main di�erence
is that agents can be trained on Q
values which are not their own �see  Q��!��

Learning the HQ�values� We want the HQ
values HQi�Oj� to converge to the expected
�discounted� future cumulative reinforcement given subgoal Oj and current system policy� In the
optimal case we have

HQi�Oj� � E�Ri� � �ti���tiHVi���

where Ri �
Pti����

t�ti
�t�tiR�St� At�� Ci �s discounted cumulative reinforcement during the time it

will be active �note that this time interval and the states encountered by Ci depend on Ci �s subtask��
and where HVi �� MaxOl�OfHQi�Ol�g�� the estimated discounted cumulative reinforcement to
be received by Ci �
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In a given trial� we adjust only HQ
values of agents active during that trial� HQ
table updates
resemble Q
table updates ��HQ denotes the learning rate� and �Oi the chosen subgoal for agent
Ci��

HQ�� If Ci is invoked before agent CN�� � then we update according to
HQi� �Oi� � ��� �HQ�HQi� �Oi� � �HQ�Ri � �ti���tiHVi����

HQ�� If Ci � CN�� � then HQi� 
Oi�� ��� �HQ�HQi� 
Oi� � �HQ�Ri � �tN�tiRN ��

HQ�� If Ci � CN � and i � M � then HQi� 
Oi�� ��� �HQ�HQi� 
Oi� � �HQRi�

The �rst and third rules resemble traditional Q
learning rules� The second rule is necessary
if agent CN learned a �possibly high� value for a subgoal that is unachievable due to subgoals
selected by previous agents�

Comment� Although Q
tables and HQ
tables do not explicitly communicate they in�uence
each other� This results in complex dynamics quite di�erent from those of conventional Q
learning�

TD��	�modi�cation� To speed up learning we may use the TD���
method to modify the
learning rules above in a manner analogous to Lin�s ������� This changes update details as follows�

Q��	�� For the Q
tables we �rst compute desired Q
values Q��Ot� Aj� for t � �� � � � � T �
Q��OT � AT �� R�ST � AT �

Q��Ot� At�� R�St� At� � ����� ��VActive�t����Ot��� � �Q��Ot��� At����

Q��	�� Then we update the Q
values� beginning with QN �OT � AT � and ending with Q��O�� A���
according to
Qi�Ot� At�� ��� �Q�Qi�Ot� At� � �QQ��Ot� At�

HQ��	�� For the HQ
tables we also compute desired HQ
values HQ�

i�
�Oi� for i � �� � � � � N �

HQ�

N� �ON � � RN

HQ�

N���
�ON��� � RN�� � �tN�tiRN

HQ�

i�
�Oi� � Ri � �ti���ti���� ��HVi�� � �HQ�

i��� �Oi����

HQ��	�� Then we update the HQ
values for agents C� � � � � � CMin�N �M�� � according to

HQi� �Oi� � ��� �HQ�HQi� �Oi� � �HQHQ�

i�
�Oi�

� Experiments

We test our system on two tasks involving non
Markovian interfaces between learner and environ

ment� The �rst task is to �nd a path from start to goal in a partially observable �� � ��
maze�
This POMDP can be collectively solved by three or more �Markovian� agents� We study system
performance as more agents are added� The second� quite complex task involves �nding a key
which opens a door blocking the path to the goal� The optimal solution �which requires at least
� �Markovian� agents� takes 	� steps�

��� Learning to Solve a Partially Observable Maze

Task� The �rst experiment involves the partially observable maze shown in �gure �A� The
system has to discover a path leading from start position S to goal G� There are four actions with
obvious semantics� go west� go north� go east� go south� There are �� possible observations� the
agent can only �see� which of the � adjacent �elds are blocked� Although there are �� possible
agent positions� there are only � highly ambiguous inputs� �Not all of the �� possible observations
can occur in this maze� this means that the system may occasionally generate unsolvable subgoals�
such that control will never be transferred to another agent�� There is no deterministic� memory

free policy for solving this task� For instance� input � stands for ��elds to the left and to the right

�



S

G

*

*

0

200

400

600

800

1000

0 5000 10000 15000 20000

3 agents
4 agents
6 agents
8 agents

12 agents
optimal

0

200

400

600

800

1000

0 5000 10000 15000 20000

4 agents
8 agents

12 agents
optimal

Figure �� �A� A partially observable maze �POM�� The task is to 	nd a path leading from start S to
goal G� Although there are 
� possible agent positions� there are only � di
erent� highly ambiguous
inputs � some kind of memory is necessary to disambiguate them� That�s why conventional
Q�learning fails to solve this problem� The optimal solution requires �� steps and at least three
�Markovian� agents� The 	gure shows a possible solution that costs �� steps� Asterisks mark
appropriate �Markovian� subgoals� �B� HQ�learning results for the partially observable maze� for
�� �� 
� �� and �� agents� We plot average test run length against trial numbers �means of ���
simulations�� The system almost always converges to near�optimal solutions� Using more than the
required � agents tends to improve performance� �C� Results for �� �� and �� agents whose actions
are corrupted by ��� noise� In most cases they 	nd the goal� although noisy actions decrease
performance�

of the agent are blocked�� The optimal action in response to input � depends on the subtask� at
the beginning of a trial� it is �go north�� later �go south�� near the end� �go north� again� Hence
at least three �Markovian� agents are necessary to solve this POMDP�

Reward function� Only if the system hits the goal� it receives a reward of ���� Otherwise
the reward is zero� The discount factor � � ���

Parameters and experimental set�up� We compare systems with �� �� �� 	� and �� agents
for noise
free actions� We also compare systems with �� 	� and �� agents whose actions selected
during learning"testing are replaced by random actions with probability ��#� One experiment
consists of ��� simulations of a given system� Each simulation consists of ������ trials� Tmax is
����� After every ���th trial there is a test run during which actions and subgoals with maximal
table entries are selected �Prmax is set to ����� If the system does not �nd the goal during a test
run� then the trial�s outcome is counted as ���� steps�

After a coarse search through parameter space� we use the following parameters for all exper

iments� �Q � ���� �HQ � ��� �i � Ti � ��� � � �� for both HQ
tables and Q
tables� Prmax is set
to �� and linearly increased to ���� All table entries are initialized with ��

For purposes of comparison� we also ran ������ trials during which at most ���� actions were
picked randomly�

Results� Figure �B plots average test run length against trial numbers� Within ������ trials all
systems almost always �nd near
optimal deterministic policies� �Q
learning by itself fails miserably�
of course��

Consider Table �� The largest systems are always able to decompose the POMDP into Marko

vian subtasks� The average number of steps is close to optimal� In approximately � out of 	 cases�
the optimal path is found� In most cases one of the ��
step solutions is found� Since the number
of ��
step solutions is much larger than the number of �	
step solutions �there are many more
possible subgoal sequences�� this result is not surprising�

Systems with more than � agents are performing better 
 here the system pro�ts from having
more free parameters� More than � agents don�t help though� All systems perform signi�cantly
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System Av� steps �#� Found Goal �#� Optimal

� agents ��� �� �
� agents �� �� �
� agents �� ��� ��
	 agents �� ��� ��
�� agents �� ��� �
� agents ��# noise ��� 	� �
	 agents ��# noise ��� 	� �
�� agents ��# noise ��� 	� �
Random ��� �� �

Table �� HQ�learning results for random actions replacing the selected actions with probability ��
and ���� The �nd column lists average numbers of steps required to 	nd the goal� The �rd column
lists numbers of simulations during which the goal is found in the 	nal trial� The �th column lists
numbers of simulations during which the optimal path is found in the 	nal trial�

better than the random system� which �nds the goal in only ��# of all ���� step trials�
In case of noisy actions �the probability of replacing a selected action by a random action is

��#�� the systems still reach the goal in most of the simulations �see �gure �C�� In the �nal trial
of each simulation� systems with � �	� and ��� agents �nd the goal with probability 	�# �	�#�
and 	�#�� There is no signi�cant di�erence between smaller and larger systems�

We also studied how the system adds agents during the learning process� The 	
agent system
found solutions using � ��� �� �� �� 	� agents in 	 ���� ��� ��� ��� ��� simulations� Using more
agents tends to make things easier� During the �rst few trials � agents were used on average�
During the �nal trials � agents were used on average� Less agents tend to lead to better results�
however� Why� Systems that fail to solve the task with few subgoals start using more subgoals
until they become successful� But the more subgoals there are� the more possibilities to compose
paths� and the lower the probability of �nding a shortest path in this maze�

��� The Key and the Door

Task� The second experiment involves the �� � �� maze shown in �gure �A� Starting at S�
the system has to ��� fetch a key at position K� ��� move towards the �door� �the shaded area�
which normally behaves like a wall and will open �disappear� only if the agent is in possession of
the key� and ��� proceed to goal G� There are only �� di�erent� highly ambiguous inputs 
 the
task is a di�cult POMDP� The optimal path takes 	� steps�

Reward function� Once the system hits the goal� it receives a reward of ���� For all other
actions there is a reward of 
���� There is no additional� intermediate reward for taking the key
or going through the door� The discount factor � � ����

Parameters� The experimental set
up is analogous to the one in section ���� We use systems
with �� �� � and 	 agents� and systems with 	 agents whose actions are corrupted by di�erent
amounts of noise ��#� ��#� and ��#�� �Q � ���� �HQ � ��� �i � Ti � ��� Prmax is linearly
increased from �� to �	� Other parameters are the same as in section ���� One simulation consists
of ������ trials�

Results� We �rst ran ������ ���� step trials of a system executing random actions� It never
found the goal� Then we ran the random system for ���� ������ step trials� The shortest path ever
found took ����� steps� We observe� �nding the goal at all without any negative reinforcement
signals is extremely di�cult�

Figure �B and Table � show HQ
learning results for noise
free actions� Within ������ trials
good� deterministic policies are found in almost all simulations� Optimal 	� step paths are found
with � ��� �� 	� agents in 	# ��#� 	#� �#� of all simulations�
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Figure �� �A� A partially observable maze containing a key K and a door �grey area�� Starting at
S� the system 	rst has to 	nd the key to open the door� then proceed to the goal G� The shortest
path costs �� steps� This optimal solution requires at least three �Markovian� agents� The number
of possible world states is ���� which is much higher than in most POMDPs studied by other
authors� �B� HQ�learning results for this �key and door problem�� We plot average test run length
against trial number �means of ��� simulations�� Within ������ trials systems with � ��� 
 and
�� agents 	nd good deterministic policies in ��� ��
�� �
� and ���� of the simulations� �C�
HQ�learning results with an � agent system whose actions are replaced by random actions with
probability ��� ���� and ����

If random actions are taken in �# ���#� ��#� of all cases� the 	 agent system still �nds the
goal in ��# ���#� 	�#� of the �nal trials �see table ��� In many cases long paths ���� 
 ���
steps� are found� The best solutions use only 	� ���� ��	� steps� though� Interestingly� a little
noise �e�g� �#� does decrease performance� but much more noise does not lead to much worse
results� We do not yet know whether this is due to HQ
learning or the task set
up or both�

System Av� steps �#� Found Goal �#� Optimal

� agents ��� 	� 	
� agents ��� �� �
� agents ��� �� 	
	 agents ��� �� �
	 agents ��# noise� ��� �� �
	 agents ���# noise� ��� �� �
	 agents ���# noise� ��� 	� �
Random $���� �� �

Table �� Results of ��� HQ�learning simulations for the �key and door� task� The second column
lists average numbers of steps required to 	nd the goal� The third lists numbers of simulations
during which the goal was found in the 	nal trial� The fourth lists numbers of simulations during
which the optimal path of �� steps was found in the 	nal trial� HQ�learning could solve the task
with a limit of ���� steps per trial� Random search needed a ������ step limit�

� Previous Work

Other authors proposed hierarchical reinforcement learning techniques to improve performance on
Markov decision problems �MDPs�� e�g�� Dayan and Hinton ������� Moore ������� Tham �������
However� their methods are based on the Markov assumption� Since the focus of our paper is on
POMDPs� this section is limited to a brief summary of previous POMDP approaches with speci�c

	



advantages and disadvantages�

Recurrent neural networks� There are two interacting� gradient
based recurrent networks�
The �model network� serves to model �predict� the environment� the other one uses the model
net to compute gradients maximizing reinforcement predicted by the model �Schmidhuber �����
extending ideas by Nguyen and B� Widrow ��	�� and Jordan and Rumelhart ������ To our
knowledge this work presents the �rst successful reinforcement learning application to simple non

Markovian tasks �e�g�� learning to be a �ip�op�� Lin ������ also uses combinations of controllers
and recurrent nets� He compares time
delay neural networks �TDNNs� and recurrent neural
networks� Despite their theoretical power� standard recurrent nets run into practical problems in
case of long time lags between relevant input events� Although there are recent approaches to
overcome this problem �Hochreiter and Schmidhuber ������ there are no reinforcement learning
applications yet�

Belief vectors etc� Kaelbling et al� ������ hierarchically build policy trees to calculate
optimal policies in stochastic� partially observable environments� For each possible environmental
state� a �belief vector� represents the agent�s estimate of the probability of currently being in this
state� The belief vector is updated after each observation� Operation research algorithms are used
to compute optimal actions by dynamic programming� Problems with this approach are that the
nature of the underlying MDP needs to be known� and that it is computationally very expensive�

McCallum�s utile distinction memory ������ combines Hidden Markov Models �HMMs� with
Q
learning� It is able to solve simple POMDPs �maze tasks with only a few �elds� by splitting
�inconsistent� HMM states whenever the agent fails to predict their utilities �but instead expe

riences quite di�erent returns from these states�� One problem of the approach is that it cannot
solve problems in which conjunctions of successive perceptions are useful for predicting reward
while independent perceptions are irrelevant� HQ
learning does not have this problem 
 it deals
with perceptive conjunctions by using multiple agents if necessary�

Littman et al� ������ compare di�erent POMDP algorithms using belief vectors� They report
that �small POMDPs� �with less than �� states and few actions� do not pose a very big problem
for most methods� Larger POMDPs ��� to ��� states�� however� cause major problems� This
indicates that the problems in the current paper �which involve �� and ��� states� can hardly
be solved by such methods� HQ
learning� by contrast� is neither computationally complex nor
requires knowledge of the underlying MDP� In absence of prior knowledge this can be a signi�cant
advantage�

Memory bits� Littman ������ uses branch
and
bound heuristics to �nd suboptimal mem

oryless policies extremely quickly� To deal with mazes for which there is no safe� deterministic�
memoryless policy� he replaces each conventional action by two actions� each having the additional
e�ect of switching on or o� a �memory bit�� Good results are obtained with a toy problem� The
method does not scale though� due to search space explosion caused by adding memory bits� By
contrast� HQ
learning does not depend on �nding optimal memory bit settings with branch
and

bound techniques but uses an incremental learning method instead�

Cli� and Ross ������ describe a classi�er system �ZCS� for POMDPs which is trained by
bucket
brigade and genetic algorithms� They also use memory bits� to be set and reset by actions�
The system is reported to work well for small problems but to become unstable in case of more
than one memory bit� Also� it is usually not able to �nd optimal deterministic policies� Wilson
�����a� recently described a more sophisticated classi�er system which uses prediction accuracy
for calculating �tness� and a genetic algorithm working in environmental niches� His study shows
that this makes the classi�ers more general and more accurate� It would be interesting to test
whether his system can use memory for solving POMDPs�

One problem with memory bits �we tried them� too� is that tasks such as those in section �
require long traces of memory bit resets� Memory bits are critical and must be turned on"o� at
precisely the right moment� For instance� suppose that the probability of turning on a memory bit
in response to a particular observation is indeed low� but that the agent makes this observation
very often� Eventually the memory bit won�t remain switched o�� Q
learning� for example� tends
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to fail to reliably set memory bits because learning the Q
values for changing a bit depends on
luck �L� Kaelbling� personal communication� ������ HQ
learning� however� does not depend on
long traces of memory bit resets� Its memory is embodied solely in the active agent number� which
is rarely incremented during a trial� This makes it much more stable�

Multiple Q�learners� Like HQ
learning� Humphrys� W
learning ������ uses multiple Q

learning agents� A major di�erence is that his agents� skills are prewired 
 di�erent agents focus
on di�erent input
features and receive di�erent rewards� �Good� reward functions are found by
genetic algorithms� An important goal is to learn which agent to select for which part of the input
space� Eight di�erent learning methods implementing cooperative and competitive strategies are
tested in a rather complex dynamic environment� and seem to lead to reasonable results� Possibly
W
learning and HQ
learning can be combined in an advantageous way�

Digney ������ describes a nested Q
learning technique based on multiple agents learning inde

pendent� reusable skills� To generate quite arbitrary control hierarchies� simple actions and skills
can be composed to form more complex skills� Learning rules for selecting skills and for selecting
actions are the same� however� This may make it hard to deal with long reinforcement delays� In
experiments the system reliably learns to solve a small maze
task� It remains to be seen� however�
whether the system can reliably learn to decompose solutions of complex problems into stable
skills�

Learning control hierarchies� Ring�s system ������ constructs a bottom
up control hierar

chy� The lowest level nodes are primitive perceptual and control actions� Nodes at higher levels
represent sequences of lower level nodes� To disambiguate inconsistent states� new higher
level
nodes are added to incorporate information hidden �deeper� in the past� if necessary� The system
is able to quickly learn certain non
Markovian maze problems but often is not able to generalize
from previous experience without additional learning� even if the optimal policies for old and new
task are identical� HQ
learning� however� can reuse the same policy and generalize well from
previous to �similar� problems�

McCallum�s U
tree ������ is quite similar to Ring�s system� It uses prediction su�x trees
in which the branches re�ect decisions based on current or previous inputs"actions� Q
values are
stored in the leaves� which correspond to clusters of instances collected and stored during the entire
learning phase� Statistical tests are used to decide whether instances in a cluster correspond to
signi�cantly di�erent utility estimates� If so� the cluster is split� The method may be viewed a
decision tree with reinforcement learning additions� McCallum�s recent experiments demonstrate
the algorithm�s ability to improve in comparatively large state spaces� Its problem is that it
depends on the creation of an n
th order Markov model� where n is the size of the �time window�
used for sampling observations� Hence for large n the approach will su�er from the curse of
dimensionality�

Consistent Representations� Whitehead ������ uses the �Consistent Representation �CR�
Method� to deal with inconsistent internal states which result from �perceptual aliasing� due to
ambiguous input information� CR uses an �identi�cation stage� to execute perceptual actions
which collect the information needed to de�ne a consistent internal state� Once a consistent
internal state has been identi�ed� a single action is generated to maximize future discounted
reward� Both identi�er and controller are adaptive� One limitation of the method is that the
agent must have access to the external Markov model� this is not necessary for HQ
learning�

Levin Search� Wiering and Schmidhuber ������ use Levin search �LS� through program
space �Levin ����� to discover programs computing solutions for large POMDPs� LS is of interest
because of its amazing theoretical properties� for a broad class of search problems� it has the
optimal order of computational complexity� For instance� suppose there is an algorithm that solves
a certain type of maze task in O�n�� steps� where n is a positive integer representing the problem
size� Then LS will solve the same task in at most O�n�� steps� Wiering and Schmidhuber show
that LS may have substantial advantages over other reinforcement learning techniques� provided
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the algorithmic complexity of the solutions is low�

Meta�Reinforcement Learning� Wiering and Schmidhuber ������ also extend LS to obtain
an incremental method for generalizing from previous experience� To guarantee that the lifelong
history of policy changes corresponds to a lifelong history of reinforcement accelerations� a novel
reinforcement learning paradigm called �Meta
reinforcement learning� �MRL� Schmidhuber et al�
����� is combined with LS� It is shown that this can lead to further signi�cant learning speed

ups� MRL is actually not LS
speci�c� but a general approach that allows for plugging in a great
variety of learning algorithms� For instance� in additional experiments with a �self
referential�
system that embeds its policy
modifying method within the policy itself� MRL is able to solve
huge POMDPs with more than ���� states �Schmidhuber et al� ������ We believe that we will be
able to combine MRL with HQ
learning in an advantageous way�

� Conclusion

Summary� We introduced HQ
learning� a novel method for reinforcement learning in partially
observable environments� �Non
Markovian� tasks are automatically decomposed into Markovian
subtasks without intermediate external reinforcement for �good� subgoals� This is done by an or

dered sequence of agents� each discovering both a local control policy and an appropriate �Marko

vian� subgoal� Our experiments involve POMDPs with many more states than most POMDPs
found in the literature� The results demonstrate HQ
learning�s ability to quickly learn optimal or
near
optimal policies� We believe that currently there is no other reinforcement learning method
for solving similar POMDPs in comparable time�

Limitations and future work� The current version is restricted to linearly ordered subgoal
sequences� For very complex POMDPs� generalized HQ
architectures based on directed acyclic
�or even recurrent� graphs may turn out to be useful� This is left for future research�
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