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Abstract

Given a polygon P , a 
ipturn involves re
ecting a pocket p of P
through the midpoint of the lid of p. In 1973, Joss and Shannon (published
in Gr�unbaum (1995)) showed that any polygon on n vertices will become
convex after a sequence of at most (n � 1)! 
ipturns. They conjectured
that this bound was not tight, and that n2=4 
ipturns would always be
suÆcient. In this work, we show that any polygon on n vertices will be
convex after any sequence of at most n(n� 3)=2 
ipturns.

1 Introduction

Given a simple polygon P , a 
ipturn involves re
ecting a pocket p of the convex
hull of P through the midpoint of the convex hull edge de�ning p. See Fig. 1
for an example. In this paper, we study the number of 
ipturns required to
convexify a polygon.

In studying this problem there are actually two questions that arise. One
can consider the optimization problem of determining the minimum number of
carefully chosen 
ipturns required to convexify any polygon, where the 
ipturns
are chosen carefully so as to minimize this quantity. One can also consider the
problem of determining the maximum number of 
ipturns required to convexify
any polygon, where the 
ipturns are performed arbitarily.

P 0

P

Figure 1: An example of a 
ipturn.

1



Dubins et al [2] show that the minimum number of 
ipturns required to
convexify any simple lattice polygon (A lattice polygon is a polygon in which
all edges have length 1 and are either horizontal or vertical.) on n vertices is at
most n� 4.

Surprisingly, the more general case of arbitrary polygons was studied as early
as 1973 when Joss and Shannon (see Gr�unbaum [3]) showed that the maximum
number of 
ipturns required to convexify any polygon is at most (n�1)!. They
conjecture that this bound is not tight and that n2=4 
ipturns always suÆces.

Biedl [1] has found an example where a sequence of 
(n2) carefully chosen

ipturns are required to convexify a polygon. However, the same polygon can
be convexi�ed using a di�erent sequence of O(n) 
ipturns. Thus, the 
(n2) is
only a lower bound on the maximum number of 
ipturns required to convexify
a polygon.

Gr�unbaum and Zaks [4] showed that even non-simple polygons can be con-
vexi�ed with a �nite sequence of 
ipturns. For a survey of these and other
results on 
ipping polygons, see the paper by Toussaint [6].

In this paper we show that any simple polygon P with n vertices will be
convexi�ed after any sequence of at most n(n�3)=2 
ipturns, i.e., the maximum
number of 
ipturns required to convexify any polygon is at most n(n � 3)=2.
More generally, any polygon for which the slopes of the edges take on at most
s di�erent values will be convexi�ed after at most n(s � 1)=2 � s 
ipturns.
In Section 2 we give some de�nitions. Section 3 presents our proof. Section 4
summarizes and concludes with open problems.

2 Preliminaries

Let P be a simple polygon whose vertices in counterclockwise order are v0; : : : ; vn�1,
and let the edges of P be oriented counterclockwise so that ei = (vi�1; vi).

1 A
pocket p = (vi; : : : ; vj) of P is a subchain of P such that vi and vj are on the
convex hull of P and vk is not on the convex hull of P for all i < k < j. A lid
(vi; vj) is the line segment joining the two endpoints of a pocket (vi; : : : ; vj).

In our proof, there is a special degenerate case that must be treated carefully.
Let (vi; vj) be a lid of P . Let l be the line containing vi and vj and let vk be
the �rst vertex at or following vj such that vk+1 is not contained in l. Then
we call (vi; : : : ; vk) a modi�ed pocket of P and the segment (vi; vk) is called a
modi�ed lid of P . Modi�ed pockets and lids are equivalent to standard pockets
and lids except when convex hull edges have the same slope as edges of P . Fig. 2
illustrates modi�ed pockets.

Let p = (vi; : : : ; vk) be a modi�ed pocket of P . Then a 
ipturn fi;k(P ) of
the polygon P transforms P into a new polygon P 0 by re
ecting all edges of p
through the midpoint of the modi�ed lid (vi; vk). Equivalently, fi;k(P ) rotates
the modi�ed pocket p = (vi; : : : ; vk) 180 degrees about the midpoint of the lid
(vi; vk).

1Here an henceforth, all subscripts will be taken modn.
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vj = vk vi
vivjvk

(a) (b)

Figure 2: The pocket vi; : : : ; vj and modi�ed pocket vi; : : : ; vk in (a) a non-
degenerate case and (b) a degenerate case.

Let dir(ei) be the direction of an edge of P , measured as the angle, in radians,

between a right oriented horizontal ray and ei. Let S =
Sn�1
i=0 fdir(ei);�dir(ei)g,

i.e., the set of all directions and their negations used by edges of P . We will label
the directions in S as d0; : : : ; dm�1 in increasing order. For two directions di and
dj in S we de�ne the discrete angle between di and dj , as \didj = (j�i) mod m,
i.e., one plus the number of other directions in S between di and dj as we rotate
di in the counterclockwise direction.

For a vertex vi of P incident on edges ei and ei+1 we de�ne the weight of vi
as

w(vi) =

�
\dir(ei)dir(ei+1) if vi is convex

\dir(ei+1)dir(ei) if vi is re
ex
:

We de�ne the weight of P as w(P ) =
Pn�1

i=0 w(vi). See Fig. 3 for an example.
For ease of notation, we de�ne the variable s as jS=2j, which is exactly the

number of distinct slopes used by supporting lines of edges of P . From these
de�nitions, it is clear that w(vi) � s� 1 and therefore w(P ) � n(s� 1).

S

1
3

1

1
3

2

1

Figure 3: A polygon for which jSj = 8 labelled with its vertex weights.

3 Proof of the Main Theorem

In this section we prove our main theorem by showing that the weight of P
decreases by at least 2 after every 
ipturn. We start with the following simple
lemma.

Lemma 1. For any convex polygon P , we have w(P ) = 2s.
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Figure 4: Four cases in the proof of Lemma 2. Arrows indicate the directions
of the edges in P before performing the 
ipturn.

Proof. Consider the circle of all directions. The weight of a vertex vi is the num-
ber of elements in S contained in the circular interval Ii = [dir(ei�1); dir(ei)).

Since P is a polygon,
Sn�1

i=0 Ii is the interval [0; 2�). Therefore, each element of
S contributes at least one to w(P ) so w(P ) � 2s. Since P is convex, e0; : : : ; en�1
are ordered in decreasing order of direction, therefore no two intervals Ii and
Ij , i 6= j overlap. Thus, each element of S contributes at most one to w(P ), so
w(P ) � 2s.

Consider a modi�ed pocket p of P , and without loss of generality assume
that the modi�ed lid of p is parallel to the x-axis. Let vi and vj be the left and
right vertices of the modi�ed lid of p. Let r and b be the weight of vi and vj ,
respectively, before performing a 
ipturn on p and let r0 and b0 be the weight of
the vi and vj , respectively, after performing the 
ipturn.

Lemma 2. r + b� r0 � b0 � 2

Proof. Let dw = dir(ei�1), dx = dir(ei), dy = dir(ej�1), and dz = dir(ej). To
aid in understanding the problem, we place vi and vj at the same point and
draw the four edges incident on vi and vj along with their extensions. There
are now four cases to consider, depending on the order of dw, dx, dy, and dz.
These four cases are illustrated in Fig. 4.

When viewed this way, it is clear that in each of the four cases r+b�r0�b0 =
2�, where � = minfdw; dyg � maxfdx; dzg. Since the discrete angles between
edges of P are non-negative integers, all that remains to show is that � 6= 0.
In order to have � = 0, the two edges de�ning � must both be pointing in the
same direction in P before performing the 
ipturn. Thus, with the condition
� = 0 we obtain one of the four situations depicted in Fig. 5. However, in each
of these situations, (vi; vj) is not a modi�ed lid. We conclude that � 6= 0.
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Figure 5: Four situations corresponding to cases in the proof of Lemma 2.

Theorem 1. Any simple polygon on n vertices is convexi�ed after any sequence
of at most n(s� 1)=2� s 
ipturns.

Proof. This follows immediately from the following three facts. (1) Initially, the
weight of P is at most n(s� 1). (2) The weight of P once it is convexi�ed will
be 2s. (3) During a 
ipturn, the only weights that change are the weights of
the two verices of the modi�ed lid being 
ipped. Therefore, by Lemma 2 the
weight of P decreases by at least 2 after every 
ipturn.

Strengthening the result of Joss and Shannon [3], we immediately obtain the
following corollary by taking s = n.

Corollary 1. Any simple polygon on n vertices is convexi�ed after any sequence
of at most n(n� 3)=2 
ipturns.

As for the result of Dubins et al [2] we take s = 2 and obtain the following.

Corollary 2. Any simple lattice polygon on n vertices is convexi�ed after any
sequence of at most n=2� 2 
ipturns.

Indeed, Corollary 2 is the best bound possible. This is because the weight of
any vertex in a lattice polygon P is at most 1, thus the decrease in the weight
of P during a 
ipturn is at most 2. Therefore n=2� 2 
ipturns are necessary to
convexify any simple lattice polygon with n corners.

4 Conclusions

Table 1 summarizes the results obtained in this paper and compares them to
the previous best known results. The columns labelled Min (respectively, Max)
refer to the minimum (respecively, maximum) number of 
ipturns required. The
�rst row of the table shows the previously known lower bounds, the second row
shows the previously known upper bounds and the third row shows the new
upper bounds obtained in this work.

In looking at this table, an obvious open problem is that of closing the gap
between the linear lower bound and the quadratic upper bound on the minimum
number of 
ipturns required to convexify an arbitrary polygon.
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Arbitrary Polygons Lattice polygons
Min Max Min Max

PLB n=2� 2 
(n2) [1] n=2� 2 [2] n=2� 2 [2]
PUB (n� 1)! [3] (n� 1)! [3] n� 4 [2] 2:6382n [3, 5]

NUB n(n� 3)=2 n(n� 3)=2 n=2� 2 n=2� 2

Table 1: Summary of previous and new results.
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