
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 19, 29O-308 (1979)

Semantics of Nondeterminism, Concurrency, and Communication*

NISSIM FRANCEZ

Department of Computer Science, The Technion, Haifa, Israel

C. A. R. HOARE

Programming Research Group, Oxford University, Oxford, OX2 6PE, England

DANIEL J. LEHMANN

Department of Computer Science, the Hebrew University, Jerusalem, Israel

AND

WILLEM P. DE ROEVER

Department of Computer Science, University of Utrecht, Utrecht, Holland

Received September 13, 1978; revised July 25, 1979

I. INTRODUCTION

1. Background and Motivation

One of the more important and active areas in the theory of programming languages
is that of concurrent programs, specifically their design, definition, analysis, and verifica-
tion. Due to recent developments in the technology of microprocessors, there is a trend
toward languages supporting distributed activities involving communication rather
than concurrent activities on some shared resources, mainly memory. Thus, it becomes
very important to supply adequate tools for the definition and analysis of such programs
and programming languages.

One recent attempt to design such a language was done by Hoare [9], where the
language CSP (communicating sequential processes) was presented informally. This is a
language for the expression of nondeterministic, concurrent, and communicating
programs.

* Based on work carried out by Francez, Hoare, and de Roever at Queen’s University, Belfast,
during the academic year 1976-1977, supported by SRC Grant B/RG/74082.

The completion of the paper was supported by NSF Grants MCS-78-673 and MCS-78-7461,
during the stay of Francez and Lehmann at the University of Southern California, Los Angeles,
and of de Roever at the University of California, Berkeley, 1977-1978.

OO22-OOOO/79/06029O-19$02.OO/O
Copyright 0 1979 by AcademicPress, Inc.
All rights of reproduction in any form reserved.

290

NONDETERMINISM, CONCURRENCY, COMMUNICATION 291

The main features which distinguish CSP are:

a. Processes are disjoint, do not have any shared variables. The only contact
between processes is by means of communication. Concurrency is explicit on the process
level.

b. Communication is achieved by means of input and output operations, which
are expressed by primitives of the language. Communication plays a double role of
both message passing and synchronization. Communication is always directed, having
syntactically specified source and target processes, and a strongly typed message.

c. Processes are nondeterministic, and the language allows one to distinguish
between two kinds of nondeterminism, discussed in the sequel.

Syntax and informal meaning of CSP are described by way of example:

where

wp, II p, II p31,

P1::A1;[P2 ?x -+ T,OP,!y --, T,];
*[P,!u + T,nP, ?v --f TJ;

P,::*[P, ?s - TJ-JP,!~ ---f T,uP, ‘w - T,];

P3::A2;*[B1 + T,nB, + T,];

-“/I” is the parallel composition operator.
--Ai’s are elementary operations such as assignment, skip, abort, etc.
-Ti’s are unspecified (for abbreviating the example) program sections.
-Pj ?x (in Pi) is an input command, expressing an input request of Pi from Pj ,

and assignment of the input value to the (local) variable X. Such a command is to be
executed only when Pj is ready to execute a corresponding output command Pi!y,
meaning a request to output the value of y to P, . Either i/o command waits until the
corresponding one is ready.

-“O” is the guard separator. Guards may be Boolean (Bi’s), passable when true,
or i/o commands, passable when a corresponding i/o command in the addressed process
is ready.

-‘I*” denotes repetition as long as there exists a passable guard.
-I‘;” is sequential composition.
-All processes have disjoint sets of local variables, the only ones to be assigned.
Thus the language is essentially different from various other attempts to consider

concurrent programs, e.g., Concurrent Pascal (Brinch-Hansen [a]), which uses monitors
[lo] to control access to shared variables and procedures, or the language used by Owicki
[15] with critical sections.

In this paper, we

(i) Define a formal (denotational) semantics for the main constructs of CSP.

(ii) Clarify, by means of semantical analysis, the relationship between nondeter-
minism, concurrency, and communication.

292 FRANCEZ ET AL.

(iii) Suggest a rigorous framework for dealing with termination and deadlock of
communicating processes.

(In this paper communication is understood as interaction between disjoint processes.)
A natural question that arises is: What can be learned from the formal semantics

(of CSP), that would not be apparent already from any informal semantics? To the
rather stale debate concerning this issue, we add an observation arising from our personal
experience on struggling with the CSP language. During the process of work toward
proof rules for this language, to our own amazement we did not succeed in devising
a satisfactory intuitive semantics (we tried as hard as we could). It became clear that
first a firm, formal foundation for the semantics of CSP had to be found, before any
progress on an operational semantics could be made. This was caused by the unrestricted
use of i/o guards, which resulted in subtleties concerning nondeterminism, termination,
scheduling, waiting, and other operational phenomena. Once the basic intuition was
captured formally, the operational semantics became clear as well.

The denotational approach to the definition of the semantics of programming languages
originated from a pioneering paper by Scott and Strachey [18], who have shown that
a relatively small number of basic semantic constructions are needed for an adequate
modeling of the realm of meanings of sequential, deterministic programs. The main
idea in this approach is to attach to each program some mathematical object as its
meaning, or denotation; see Strachey and Milne [22] f or a survey of such a characterization
of various programming language constructs. The domain of these objects is called a
semantic domain. This attachment enables a mathematical proof of properties of the
program, and supplies a justification for various inductive proof rules. The process
of attaching a meaning to a program uses induction on the syntactic structure of the
program. Because of the presence of circular definitions, e.g., recursive procedures,
a mathematical theory had to be developed (Scott [19]) . m order to prove the existence
of the required denotations. According to this theory, a program denotes a partial
function from one domain to another. In case of circular definitions (e.g., recursive
ones), it can be shown that there exists a unique partial function which satisfies this
definition and is a limit of a sequence of partial functions, each of which is at least as
well defined as its predecessor. Using tools from lattice algebra and topology, Scott
was able to give the appropriate foundations needed for this approach.

More recently, Plotkin [16] extended this approach to cover also nondeterministic
programs. By a construction of power domains, which are domains of certain sets of
elements from the base domain ordered in an appropriate approximation ordering
(see also Egli [6]), he was able to supply denotations to nondeterministic programs
by using set-valued partial functions. Another power domain construction appears
in Smyth [20].

Milner [14] suggests a construction, called renewals (or resumptions), to give denota-
tions to concurrent programs. However, the programs he has in mind in [14] involve
highly interleaved actions on shared variables. Thus, an action by a process may either
deliver a result, or give rise to a new process yet to be interleaved with other processes.
Since process interaction in CSP is by means of communication rather than by means

NONDETERMINISM, CONCURRENCY, COMMUNICATION 293

of sharing memory, a different description of the semantics is enabled. We suggest
another construction which is adequate for communicating processes in CSP (compare
also Milne and Milner [13]) and which reduces the degree of interleaving.

The importance of this work is twofold:

(1) The formal semantics for CSP clarifies many of the complex issues which
are needed in order to formulate and validate proof rules for CSP; compare [7].

(2) The clearer relationship between concurrency, nondeterminism, and com-
munication suggests a way for both the design of language constructs which diminish
the danger of deadlock, and the construction of terminating programs.

In the next section, we specify some new contributions of the paper, which expand
on (1) and (2) above.

2. What is New ?

2.1. A Priori Semantics

We regard a single process (taken out of a set of communicating processes) by itself
to be a semantically meaningful entity, which deserves a denotation of its own. Therefore,
we are led to a definition of semantics which attributes a separate meaning to each
component Pi of P::[P, 11 .*a 11 P,]. This kind of semantics is called a priori because
it denotes all the communication capabilities of Pi when confronted with any environ-
ment, i.e., all other processes in P. At the next level we introduce a binding operator 9,
which combines the set of all separate a priori meanings of all Pi’s to a joint meaning
of P. This n-ary binding will be compared with Milne and Milner’s binary binding
in Section 111.1.

Since every process has its own (disjoint) local memory, the only contact with other
processes being via communication, the degree of interleaving is much smaller than
with shared variables, as in each process local computation, involving no communication,
does not influence in any way similar computations in other processes. Therefore,
the semantics of each separate process is determined by (1) providing an initial state
for the local variables and (2) describing its reaction to every possible message requested.
Since the values of these messages may vary, each value specifies a different possibility
for continuing the computation. These possibilities will be expressed as branches of a
tree. This leads to the construction of a new semantic domain, which we call the domain
of history trees. The histories in question are histories of communication (i.e., traces
of records of communications that might have taken place). We show that these histories
are sufficient for the description of deadlock since deadlock can be caused only by some
communications failing to happen. With these histories we provide a uniform alternative
to mythical (“ghost”) variables (e.g., Clint [3] and Owicki [15]), since these variables
are used to capture parts of such histories.

In this context, communication involves a message passing from a source process
to a target process. Other approaches are, e.g., Milne and Milner [13], where emphasis

571/19/3-7

294 FRANCE2 ET AL.

is put on exchange of values, or Kahn [l 11, where message transmission is buffered,
not synchronizing.

2.2. Nondeterminism, Concurrency, and Communication

In our semantic domain we distinguish between two kinds of nondeterminism, which
are expressed in CSP by means of two kinds of guarded commands [4] (this may be
one of the innovations of CSP). These two types differ in the way nondeterminism is
resolved, and have a different impact on achieving successful communication and deadlock
freedom.

The one kind, using Boolean guards, we call local nondeterminism, and is the “old”
notion introduced by Dijkstra [4]. Examined in connection with communication, it
occurs when a process Pt can communicate with any of Pi1 *a. Pi,, and decides on its own
for which communication to wait, i.e., independent of any consultation with the other
processes.

The second kind, using i/o guards, we call global nondeterminism, and is resolved
by inspecting the other processes w.r.t. to their willingness to communicate. Only
mutual willingness to communicate may result in a de facto communication.

Mixtures of Boolean guards and i/o guards are not considered in this paper. As a
simple example, consider the difference between the following two programs:

[P,::[true -+ P,?xOtrue + P2!O] (1 P,::P,!I]

and

[P,::[P,?x --f skipUPa! --f skip] 11 P,::P,!l].

(1)

In the first, PI may choose the second alternative and cause a deadlock. In the second,
successful termination is guaranteed.

In our semantic domain of history trees, this distinction is reflected by letting the
history trees have two kinds of nonleaves, on which the binding operator operates
differently. This difference reflects also the different implications of the presence of
the two kinds of nondeterminism on freedom from deadlock, and will underlie a future
proof rule [7].

2.3. The Use of End-Signaling fm Termination

CSP [9] enables a neat handling of loops which depend on communication guards,
and also enables the abortion of the corresponding selection. Upon termination, a process
Pi reaches a final state, which may be sensed by all processes communicating with Pi .
A guard consisting of a communication request is regarded as false iff the target process
has already terminated! Otherwise, waiting occurs, because the communication may
take place in the future. Thus, a loop depending on guards communicating with Pi, .a. Pi
is exited only if all of these processes have terminated. Correspondingly, a selectioi
depending on such guards aborts.

NONDETERMINISM, CONCURRENCY, COMMUNICATION 295

Note that termination is in general not a property of a single process. As a typical
example, consider a “service process” which responds to requests until it receives
a signal meaning “terminate!” If presented with an infinite sequence of requests, it
should produce an infinite sequence of responses. Only the pair consisting of user-
process and service-process may provably terminate. For a more interesting example,
displaying how intricate the termination of such programs may be, see Dijkstra [5].
Thus, although every possibility for (non)termination is already present in the a priori
meaning of a single process, actual (non)termination of the combination of all processes
is determined only on the level of the binding operator 99.

Dealing with terminating processes is an essential feature of the conception of CSP.
This may be a distinguishing trait of our formalism compared to Milne and Milner’s,
in its present form [13]. They consider nonterminating processes, and the problem
of termination has never arisen in their work.

II. A DOMAIN F, AND SEMANTIC EQUATIONS FOR d[Pi),
THE A PRIORI SEMANTICS OF P,

The distinction between local and global nondeterminism implies that a domain
of ordinary trees (whose arcs are possibly labeled by records of communication) is not
sufficiently structured to reflect this distinction. For, whenever local nondeterminism
is resolved, a number of independent alternatives are created, each of which has to be
independently confronted with the environment. However, global nondeterminism
postpones resolution until the moment of binding since it looks for mutual consent
with the environment and can therefore only be resolved during binding.

Therefore, a more refined structure of (finite and infinite) trees with two kinds of
nodes, called local nodes and global nodes, is needed.

Since at any stage in its computation, at the level of elementary statements and opera-
tions, a process can make only a finite number of nondeterministic choices, any local
node has only a finite, positive, number of outgoing arcs.

A global node signals willingness to communicate. Therefore, any arc outgoing a
global node is labeled by a target process identifier. Willingness to communicate means
either willingness to output a value or to input one of the appropriate type.

At any instant, a process may have a global nondeterministic choice to communicate
with a finite number of processes, and therefore the corresponding node will have a
finite number of outgoing edges, specifying these processes.

There will be also nodes corresponding to a single input command, and these may
have an infinite number of outgoing branches, each labeled by a record of communication
corresponding to one of the possible input values. An output command will be represented
by a node with a single outgoing edge, labeled by the record of communication corre-
sponding to the output value.

We now proceed with the formal definition of this domain.

DEFINITION. Let A be any nonempty set, called the Communication Alphabet.

296 FRANCEZ ET AL.

Members of A represent messages passed via i/o from one process to other. In this
paper we shall assume that A = (n 1 n > O}.

DEFINITION. A record of communication (rot) is a triple u = (a, i,j), a E A.
The intended interpretation of u is that of the message a passed from Pi to P, . Let

1 < i, j < n. Then ,$j = {(a, i, j)) a E A}, where i # j, and Q = m. Also, let
ri = {I,..., n} - {i}. Z’i = ujor, Zi’ and 2’ = Uierj Zi’.

DEFINITION. Let Vi denote the set of (local) variables of Pi . Si = [Vi -+ -41 u {fad>
is the set of states of Pi .

We consider a state to be mapping from variables to values. We avoid the consideration
of “environments” 1181 since these do not change in the restricted language we consider;
fail is a special state denoting a failing computation.

For s E Si , s # fail, x E Vi , and a E A, sax = hy. if y = x then a else s(y).
Next, we define the complete partial order (cpo) q as the least solution (in the category

of cpo’s) of a domain equation. The reader unfamiliar with the technicalities of this
kind of equations could consult [21,22]. < is the domain of history trees corresponding
to Pi , and will be used as the range of the semantic function J![PJ, characterizing
the a priori semantics of Pi .

X+ = pF(X) and F(X) = XY-X@X@ Y,

i.e., X+ is the domain of finite (nonempty) sequences over X - (1) with the following
ordering: there is one bottom element, sequences of different lengths are not comparable,
and sequences of the same length are ordered coordinatewise by the ordering inherited
from X.

Equation (1) defines a (finite or infinite) tree in < to be either bottom or belonging
to one of five addends.

Formally: If A is a partially ordered set then A, is obtained by adding to A a new
bottom element. The union symbol u denotes disjoint union of partially ordered sets
(no bottom element is added); union is thus associative. (For instance, an element
A u B u C is either in A or in B or in C and corresponds therefore with three cases;
this is in contrast to the customary usage of the disjoint sum A + B + C which adds
more bottom elements and therefore creates more partially defined objects (and is not
associative)).

If A is a set and B a cpo, [A + B] is the cpo of all total functions from A to B with
the obvious ordering.

The symbol x denotes Cartesian product p denotes the least fixed point operator.
The coalesced sum @ and the coalesced product @ have been defined in [12,21].

They are used to avoid the introduction in Xi- of partially undefined and infinite objects,
as explained in [12] (warning: In [12] the coalesced sum is denoted by +).

NONDETFRMINISM, CONCURRENCY, COMMUNICATION 291

Intuitive explanation: The solution to Eq. (1) can be thought of as the domain of
all finite and infinite trees, which have the following nodes:

a. Leaves are labeled by S, u (I} and have no outgoing arcs.

b. Input nodes have a (possibly infinite) number of outgoing arcs, each labeled
by some CJ E Zi.

c. Output nodes have one outgoing arc, labeled by some u E Zi .

d. Global nodes have a finite, positive, number of outgoing arcs, labeled by ri
and an additional unlabeled arc (will be denoted in figures as 0).

e. Local nodes have a finite, positive, number of unlabeled arcs (will be denoted
in figures as ??).

Note that each kind of node corresponds to a particular addend in (1). Equation (1)
has been designed so as to induce the following ordering on K (see [12, 211):

Tr L T2 iff Tz may be obtained from Tl by replacing some
i-labeled leaf by some T’ E & .

Thus,

c

This is very refined ordering, which, e.g., distinguishes between

and

Such distinctions are natural in a context in which histories (and not only terminal
values) matter. One could envisage a semantics of the whole program reflecting the
difference of such incomparable trees, e.g., by counting nondeterministic choices
involved in producing a given final value. Our specific semantics ignored this difference
at the binding level. Both trees will produce the same results while bound to the same
environment. The smallest element in this ordering is J_. We shall denote by is , ir,
z. , iG , and iL the corresponding injections from the components to their corresponding
copies in z ; cf. [18].

298 FFtANCEZ ET AL.

Thus,

Before defining the semantic function AY[[Pil, we define an auxiliary function 9 (replace-
ment), which generalizes functional composition from the sequential case.

When defining the meaning of S, ; S, , S, has already produced an (intermediate)
history tree. Thus, the meaning of S, has to be applied to all possible leaves of that
tree, and will in general depend on the states labeling the leaves of this tree; e.g., if S,
starts with some Boolean selection, the state will determine the selected branch(es).

and the meaning of W[T, F] is the tree obtained by replacing every leaf labeled s by the
tree F(s). (We assume F(fuil) = f&L)

6% is defined recursively by structural induction on T:

WU”,Fl = I, if T=I,

= F(T), if T E is(&),

= i& . ~[T(u), F]), if T E iI([Zji --j YJ),

= io(<T 4 1, g[T $2, Fl)), if T eio(Zlij x &), (2)

= EG(<<(T'J 1 4 1, W[T'J. 14 2,Flh..., (T'JK 4 1, W[T'Jk JZFl)),W)h
wheres=TJ2andT’=TJl, if T E iG(ri x ~3$)" x s),

= k((g[T& l,Fl,..., W[T JhFl), if T E iL(qk)

(ii denotes the projection to the ith component of an n-tuple).
Note that 99 does not affect infinite paths in T. Clearly, 98 is continuous. The apparent

(notational) complexity of the definition of 9%’ is due to the fact that a domain equation
for denoting our history trees had to be employed. Had we considered such trees as
self-explanatory, a notationally simpler definition of W could ‘have arisen; compare
Hoare [23].

Next, we proceed with the formal definition of A’[PJ: Si -+ z , and the informal
explanation of each clause in the definition.

(1) A[Q~(fuz’Z) = fail for all Q. In the sequel, we assume s # ftil!
(2) Input

We get a new function, returning for each s the modified state, which records the side
effect of input the value component u 4 1 of the input (rot) 0.

Thus, Pj ?x creates the following tree, to be called an input node.

NONDETERMINISM, CONCURRENCY, COMMUNICATION 299

(3) output

h![Pj!xl] = hs - &(((~(a$, i, j>, is(s))).

We get a tree with one arc to be called an output node.

<s(x),i,j>

S

The subtree labeled s indicates that output has no side effect, and the output value
will have to be matched by 9I to an input arc in the tree corresponding to Pi .

(4) Assignment

&l[x := e] = Xs. ifV(e, s) = fud then f&Z

else idshd).

V(e, s) is an auxiliary function which computes the value of an expression e in state s.
We assume V(e, s) = fail if e is undefined. We do not consider recursive functions
here, so the evaluation of expressions always terminates, and yields fail in cases like
division by 0. The meaning of assignment is to update the state s. Note that it does
not create any new arcs in the tree.

(5) Skipping

A[skip] = As * is(s). Obvious.

(6) Sequential composition

For a given state s, we first apply A![SJ to s, obtaining a tree, say T, . Then, we apply

300 FRANCE2 ET AL..

the replacement operator 9 to T, and the function .&I[&$ This reflects the fact that
the operation of S, depends upon the final state of J&Q, which it continues.

Note that ~Yl[S,~(fuz7) = fuiZ by assumption (case (I)), and R may therefore be
applied with JI as an argument. Also, if S, has a nonterminating computation, JQSJ(s)
will have an infinite path, which will not be affected by 9.

(7) Boolean selection. We treat here the case of two guards only. The extension
to any number of guards should be clear. We assume guards are always defined.

where

.M[[B, -+ S,OB, --+ S,]j = As - T, ,

T, = cue <+‘I4 , 4, W& ,s)) of
<ff,ff>: W4;
c.15 w: 4sdw;
wtf): -4ww

In case both guards are false, computation is aborted. In case exactly one guard is true,
then JZ of the corresponding guarded statement is applied to s.

In case both guards are true, a local node is created, reflecting in its two unlabeled
subtrees the two independent continuations, thus recording local nondeterminism,
which will cause independent binding of each subtree.

The picture for this case is:

(8) i/o directed seZection. Again, we shall describe the semantics of a particular
case, involving only two guards, both being input guards. The description of M for
more (or less) than two guards, and for output guards, should be clear.

where

An input can be accepted from either Pj or from Pk , and then the corresponding

NONDETERMINISM, CONCURRENCY, COMMUNICATION 301

guarded statement will be executed. The decision as to which continuation to take is
postponed to the binding time, when the state of Pj and P, will be available, thus
reflecting the global nondeterminism.

The picture corresponding to this case is:

The fail subtree will be used if both Pi and Pk have terminated, a fact to be noticed
at binding.

Since all the auxiliary functions applied so far are continuous, the definition of ,&Z
for loops by means of least fixed points is justified.

(9) Boolean repetition

If both guards are false, the loop is exited. In case exactly one guard is true, the corre-
sponding guarded statement is executed and the whole guarded command is attempted
again.

In case both guards are true, a local node is created, and both continuations are recorded
as subtrees of this node.

(10) i/o directed repetition

where

&l[*[P, ?x + S,OP, ?y + S,]j = &IF . As . T,),

302 FRANCE2 ET AL.

If both processes end, the loop is exited. Otherwise an input is selected (again, postponing
the decision from which process), the corresponding statement S executed, and the
whole loop attempted again.

This completes the definition on &‘[PJ by means of semantic equations. As a simple
example, reconsider the program presented in the Introduction.

Let s E S, , s’ E S, be two initial local states.

n~o,l,2> s

Anticipating the binding function, one can see intuitively that the second program
can never fail, since it will choose that alternative in PI which will match Pz (i.e., the first).
On the other hand, the first program may fail, if Pi chooses its second guard as a “wrong”
independent choice, thereby causing deadlock.

III. THE BINDING OPERATOR ~49

1. The purpose of the binding operator is to attach a joint meaning to a concurrent
command P::[P, j/ ... (1 Pn] in an initial state (si ,..., s,) by using the history trees

~lI~Jl(%)~~~ * > -4IPnnhl)~

We restrict ourselves to “closed” concurrent commands since the semantics for,
and the proper restrictions to be imposed upon, nonclosed concurrent commands are
still under scrutiny; cf. Hoare [9]. (By “closed” we mean that no component Pi of P
communicates with any process not among P, ,..., Pi_1, Pi+l ,..., P, .)

NONDETERMINISM, CONCURRENCY, COMMUNICATION 303

The computation of P starts in (si ,..., s,) and may produce a set of such n-tuples
as final states. While binding, all the histories of communication are “forgotten” and
only final states are left; cf. also Milne and Milner [13]. Any occurrence of an infinite
computation in any process Pi is recorded by a single formal value J_ standing for the
“undefined” n-tuple. We also include two other states, deadlock, which records a deadlock
situation, and fail, which records abortion in any component. The meaning of P is given
by L%(JY[P,@,),..., A’[P&)).

In Milne and Milner [13], a binary binding of processes is introduced. Thus,
[P, 1 P, ~ P,] is interpreted as, e.g., [(PI jj PJ 11 PJ, where “(,)” correspond to the
binary binding. The binary binding is associative. This operation leads to intermediate
trees which describe a mixture of global and local nondeterminism on the same level.
This mixture arises from internalization of communication between the bound processes.
Consider the following example:

where

P::[P, 11 P2 ii P3],

P1::[P2 ?x + P3 ?ynP, ?y ---t Pz ?x],

P,::P,!z,

P,::P,!u.

Then, [(PI :I Pz) jl PJ is equivalent to

[[true - x := z; P,?ynP,?y + x := z] // Pl!u].

Such mixed trees introduce subtleties, which on the level of program constructs, as
seen from the above example, introduce guarded commands with a mixture of Boolean
and i/o guards. These subtleties are our reason for excluding such mixtures from the
present paper, and considering instead n-ary binding of closed commands, which avoids
the introduction of such trees.

1.1. On the Egli-Milner Order

Before defining the binding operator 22 we first need to introduce the concept of the
Egli-Milner order to describe the value domain of @--a certain collection of subsets
of S, x ... Y: S, v (1, fail, deadlock) and its underlying structure (since L8 is defined
recursively, J’s existence follows from the usual continuity considerations with respect
to this order).

The concept of the Egli-Milner order (Egli [6], Plotkin [16]) dates back to 1975,
and constituted a breakthrough in the semantics of nondeterminism, and a fortiori,
of concurrency; its application in de Roever [17] resulted in the first comprehensive
model-i.e., including a characterization of nondeterminism-of Dijkstra’s predicate
transformer; and it is based on a powerful intuition which is best explained in Egli’s
unpublished paper, extensively cited in, e.g., de Bakker [l].

304 FRANCEZ ET AL.

Let D denote any nonempty set with J_ $ D. PB_&D u {I}) denotes the collection C
of all nonempty subsets V of D U {I} satisfying: If v E C and P is infinite, then
J_ E I’. Order P,_,(D u {I}) as follows: For I’, , V, E P&D u {I}).

vl CE-M V, iff either 1 E VI and VI - {I} 2 V,

(set-theoretical containment)

or I$ VI and VI = V, .

(PE-M(D u 029, &L-M) is a complete partial order, called the Egli-Mimer order.
We shall use the property that if Vi E PE_&D u {I}) and Vi EE_M ViaI , for i E N,

then y E I.u.b+ Vi iff 3j . y E Vi . This concept is related to nondeterminism in that
functions with values in PE_+,(D U {I}), such as 97, describe nondeterministic program
behavior. The extension of this concept to subsets of any complete partial order
(L, Ed) has been described by Plotkin [16]. Smyth [20] provides a masterful account
how this order can be more simply described for the general case.

1.2. The DeJnition of 29

The functionality of 5? for any n > 2 is given by

b%F~ x “’ x yn + PE_M((& x *.. x S,) u {I, fail, deadlock)).

First, we give a recursive definition of B(T, ,..., T,) accompanied by an informal
explanation of the role of each clause in the definition. We shall number the successive
clauses in the margin, for convenience.

g(7-1 ,..., T,) = {J_ / 3i (1 < i ,< n). Ti = I>. (1)

{ JJ is the bottom element of PE_M mentioned above, and denotes undefined informa-
tion. A i-node in z is used to describe approximations to elements in < , and will
appear in the approximations to the a priori semantics of loops within Pi . This clause
is needed for the continuity of 9.

(For all subsequent clauses, assume Vi (1 < i ,< n). Ti # I.)

u {fail 1 3i (1 < i < n). Ti = is(fail)}. (2)

Fail is a formal value denoting some machine-detectable error, such as a selection
with false guards only, etc. It is preserved under the a priori semantics (see clause 1
in the definition of A), and could be used to issue an error message (Goguen [8]). Once
such an error occurs within any A’IIPt](si), it will be reflected in the value of 9. Note
that 1 r fail.

(For all subsequent clauses, assume Vi (1 < i < n). Ti # is (fail).)

u KS1 ,a.., s,J] Vi (1 < i < n). Ti = si E is(&)). (3)

NONDETERMINISM, CONCURRENCY, COMMUNICATION 305

This is the case of successful termination of all Pi’s, each reaching a final state Si E Si .
Then we add the tuple (sr ,..., s,) to the set of final values of a.

u g’(T, ,..., Ti-1 9 Ti(Tj j. I),..., Tj-r > Tj 4 2>..., Tn)

if Ti E ir([&i --f 9J) and Tj E io(Zji x &). (4)

This is the case of successful communication, where Ti contains an input node
(from Pj) and Ti contains a corresponding output node (to Pi), with matching roc’s.
Then, Ti is replaced by the subtree corresponding to this matching rot, which is obtained
by applying Ti , which is a function, to this rot, and Ti is replaced by its (unique)
subtree; then 39 is called recursively.

u {fail 1 Ti E il([Zji -9J) and Tj eiS(Sj), or Ti E io(Zij x q) and Tj E &(Sj)} (5)

This is the case of unsuccessful communication, where Ti is an input node or an
output node, and Tj E Sj is a final state of Pj , meaning that Pj has already terminated.
A communication attempt with a terminated process is interpreted as failure, and the
value is {f&Z).

u .B(T, ,..., T,_, , Ti',..., T,) if Ti = (Til,..., Tim) E iL(&+), 1 <j < m, (6)

This is the case of local nondeterminism in Pi involving selection with Boolean guards.
As already noted, the meaning is that any of the subtrees of Ti can be chosen, and bound
to the other Ti's. Thus, we pick an arbitraryj, 1 < j < m, and replace Ti by its subtree
Tij in the recursive call. Since the union is taken over all possibilities, each T,j will be
considered.

0 ia(T, ,..., Ti_, , Tii,..., Tj_l , Tj ,..., T,)

if Ti = (<(k,, Til>, (k,, Ti'>,..., (km, Ti">,s),

and (7)

or Tii~ io(2$ x Fi) and T~,E iI([ZF+Fkjl), for 1 <j<m,

This is a case of global nondeterminism in Pi . Ti is a global node, with subtrees corre-
sponding to communication with Pk, ,..., Pk . For some j, 1 < j < m, Tij is an input
node (corresponding to an input guard), addressing P,, , and Tk is an output node
addressing Pi . Thus the global nondeterminism can de successfully resolved. Note
that this binding step does not reflect the establishment of the corresponding com-
munication. This communication will be detected at the next level of recursion, when
the input node Tij is confronted with the output node Tk, . A similar case arises if T,j
is an output node (to 4,) and Tkj is an input node.

306 FRANCEZ ET AL.

GY(T, ,..., Ti_l , Tip ,..., T,_, , Ti” ,..., T,)

if Ti = <<<k, TA,..., <km, Tim>>, s>,
Tj = <<<h > Th..., (6, Tj’>>, 0

and for some p, q, k, = j, 1, = i, and
(8)

either Tip E iI([Zii + 9J), Ti* E i,(Zt x Tj),

or Tip E io(&j x &), Tf E iI([&j + S,]) .

This is another case of resolvable global nondeterminism in both Pi and Pi . Each of
them has an i/o guard addressing the other with matching roc’s. Again, the actual com-
munication will be detected at the next recursive call.

(9)

This is the case of unresolvable global nondeterminism in Pi , and then Ti is replaced
by the “escape” state S, which accompanies the guards. The state s is a proper state
if this node was generated in an i/o directed loop (clause 10 in the definition of A)
or equals fail in case of selection (clause 7 in the definition of A). The global nondeter-
minism is unresolvable only if all addressed processes Pk, ,..., Pk, have terminated.

u {deadlock 1 if none of the other clauses is applicable}. (10)

This case arises when a group of processes are involved in some cyclic communication,
while all the rest have terminated. This is a deadlock state, and is recorded as such
in the value of SY.

Note that we are able to detect a nondeterministically possible deadlock state. Compare
Milne and Milner [131.

In the example at the end of the last section, one would get

~(.4i[p,Tl(s), JWan(~‘)) = K(G 9 01

whereas

&h’[P;~(s), A[PJ(s’)) = {((s): , s’), deadlock}.

2. The first thing that has to be done is to show that if the equation is written
as SY = T(GQ the functional T is continuous in g. Let <SF)& be a sequence of partial
functions from Fr x -1. x Ya to PE_&S1 x *** x S, u (1, fail, deadlock}), G&, 5
a1 E *-* E 9Yi E *a*, and SP = I.u.b.,S; then 7(gm)(Tl ,..., T,) is obtained by
replacing all occurrences of 9 in r by .W; from go E SYr 5 me* E aS E ... it follows
that .?W(T,’ ,..., Ti) = 1.u.b.i #(T; ,..., Ti) for arbitrary Ti ; by continuity of u one
obtains @P)(Tr ,..., T,) = l.u.b., +@)(Tl ,..., T,).

NONDETERMINISM, CONCURRENCY, COMMUNICATION 307

One of the cardinal principles of denotational semantics being that all semantically
meaningful functions are continuous, one would like to show next that 9 is continuous
in its arguments. 8 being the least upper bound of the sequence Q c T(B) E

+Y ... E +(Q) ... (where Q is the completely undefined function), it is enough to
show that +(Q) is continuous for every i; it suffices to show that if A is continuous
then so is 7(/l) since Q is obviously continuous.

The first step is to see that if A is monotone then T(A) is monotone. Suppose Z’i c Ti :
Then case analysis shows that if a E (S, x ... x 8,) u {fd, deadock} and a E T(A)(T, ,
T 2 ,--.> T,), then a E T(A)(T; , T2 ,..., T,) and if 1 E +4)(T; , T, ,..., T,) then J_ E

M)(T, , T, ,..a, Z’,); the case analysis is tedious but standard, and therefore omitted.
The last step is to show that if A is continuous and Tlo E T,l E .. . 5 Tli E ... is an
ascending sequence whose 1.u.b. is T,” then, if a E (S, x ... x S,) u {fud, deadlock}
and a E T(A)(T,~, T, ,..., T,) then there are a, i such that a E 7(A)(Tli, T, ,..., T,,) and
that if for every i, 1 E T(A)(T~$, T, ,..., T,) then J_ E 7(A)(Tlm, T2 ,..., T,). Both
properties are checked by case analysis.

We give a detailed proof of one case.
Assume A is continuous, and let T,O E Tll E ... c T: E ..., T,” = l.u.b.,(Tii).

Let y E 7(A)(Tlm, T2 ,..., T,), where y = (si ,..., s,). We want to show that 3 i s.t. y E

+A)(Tii, T, ,..., T,). From the form of T’S definition, there are six clauses due to which
this y could be generated (y is a tuple of final states!). These are clauses 3, 4, 6, 7, 8, 9.
Since, by assumption, A is continuous in its arguments (and application and projection
are continuous as well), we have that

AU-,“, T, ,..., T,) = 1.u.b. A(Tli, T, ,..., T,).

By a property of PE_-M of a flat domain D, d E l.u.b., Vi implies that 3 j. d E Vi , for
Vi E PE_-M(D). This implies the claim for clauses 4, 6, 7, 8,9.

For clause 3, we have that

T,” = s1 (S, has no I!), and therefore 3 i. Tli = s1 ; again the claim follows.

Similar arguments can be given for the remaining arguments ‘I; ,..., T, .

A Semantic Variant

According to the semantics presented, a possible outcome of a program is the set
{l,fuiZ}. This represents a nondeterministic situation, where there is a nonending
computation and a failing computation. This could be interpreted operationally as
terminating (actually aborting) the whole concurrent program once a local failure is
detected.

An alternate semantics could be that in the presence of nontermination the result
is {I}, and any failure is disregarded. In order to achieve this semantics, one has to
restrict the application of the “negative” clauses 2 and 5 only if no other, “positive”
clause, is applicable.

308 FRANCEZ ET AL.

ACKNOWLEDGMENTS

We are grateful for helpful remarks from D. Albert, M. Clint, E. W. Dijkstra, D. Harel, R. Milner,
G. Plotkin, and A. Pnueli. Special thanks are due to Robert Milne, who discussed in detail previous
drafts and helped to improve both contents and presentation. We are grateful to SRC of the United
Kingdom and to NSF of the United States for providing funds for living and traveling.

REFERENCES

1. J. W. DE BAKKER, Semantics and termination of nondeterministic recursive programs, in
“Proceedings, 3rd Coll. Automata, Languages and Programming,” Edinburgh Univ. Press,
Edinburgh, 1976.

2. P. BRINCH-HANSEN, The programming language Concurrent Pascal, IEEE Trans. Software
Engrg. 1, 2 (1975), 199-207.

3. M. CLINT, Program proving: Coroutines, Acta Informatica 2, No. 1 (1973), 50-63.
4. E. W. DIJKSTRA, “A Discipline Programming,” Prentice-Hall, Englewood Cliffs, N. J., 1976,
5. E. W. DIJK~TRA et al., An elephant inspired by the Dutch National Flag, EWD 608, Burroughs-

Nuenen, 1977; see also EWD 607.
6. H. EGLI, “A Mathematical Model for Nondeterministic Computations,” Technological

University, Zurich, 1975.
7. K. R. APT, N. FRANCES., AND W. P. DE Roevrm, A proof system for communicating sequential

processes, TOPLAS, submitted for publication.
8. J. GOGUEN, Abstract errors for abstract data types, in “Proceedings, IFIP Working Conference

on Formal Description of Programming Concepts, 31 July to 5 August 1977, New Brunswick.”
9. C. A. R. HOARE, Communicating sequential processes, Comm. ACM 21 (1978).

10. C. A. R. HOARE, Monitors: An operating systems structuring concept, Comm. ACM. 17 (1974),
549-557.

11. G. KAHN, The semantics of a simple language for parallel programming, IFIP, 1974.
12. D. J. LEHMANN AND M. B. SMYTH, Algebraic specifications of data types: A synthetic approach,

Math. Systems Theory, in press. (Summary in “Proceedings, 18th Annual Symposium on
F.O.C.S. Providence, R. I., Oct. 1977,” pp. 7-12.)

13. G. MILNE AND R. MILNER, Concurrent processes and their syntax, J. Assoc. Comput. Much. 26
2 (1979).

14. R. MILNER, Processes: A mathematical model of computing agents, in “Logic Colloquium
1973,” North-Holland, Amsterdam, 1973.

15. S. OWICKI AND D. GRIES, An axiomatic proof technique for parallel programs, I, Acta Informa-
ticu 6 (1976), 319-340.

16. G. D. PLOTKIN, A power domain construction, SIAM J. Comput. 5, No. 3 (September 1976
17. W. P. DE ROEVER, Dijkstra’s predicate transformer, nondeterminism, recursion, and termination,

in “Proceedings, Conference on Mathematical Foundation of Computer Science, 1976,”
Lecture Notes in Computer Science, Springer-Verlag, New York/Berlin, 1976.

18. D. SCOTT AND C. STRACHEY, Towards a mathematical semantics for computer languages,
in “Proceedings, Symposium on Computers and Automata,” Microwave Research Institute,
1971.

19. D. SCOTT, Outline of mathematical theory of computation, in “Proceedings, 4th Princeton Conf.
on Info. Sci and Sys., 1970.”

20. M. SMYTH, Power domains, J. Comput. System Sci. 16 (1978), 23-36.
21. J. STOY, “Denotational Semantics of Programming Languages: The Scott-Strachey Approach,”

MIT Press, Cambridge, Mass., 1977.
22. C. STRACHEY AND R. MILNE, “A Theory of Programming Language Semantics,” Chapman &

Hall, London, 1977.
23. C. A. R. HOARE, “A Model for Communicating Sequential Processes,” Oxford, December 1978.

