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I. INTRODUCTION 

1. Background and Motivation 

One of the more important and active areas in the theory of programming languages 
is that of concurrent programs, specifically their design, definition, analysis, and verifica- 
tion. Due to recent developments in the technology of microprocessors, there is a trend 
toward languages supporting distributed activities involving communication rather 
than concurrent activities on some shared resources, mainly memory. Thus, it becomes 
very important to supply adequate tools for the definition and analysis of such programs 
and programming languages. 

One recent attempt to design such a language was done by Hoare [9], where the 
language CSP (communicating sequential processes) was presented informally. This is a 
language for the expression of nondeterministic, concurrent, and communicating 
programs. 
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The main features which distinguish CSP are: 

a. Processes are disjoint, do not have any shared variables. The only contact 
between processes is by means of communication. Concurrency is explicit on the process 
level. 

b. Communication is achieved by means of input and output operations, which 
are expressed by primitives of the language. Communication plays a double role of 
both message passing and synchronization. Communication is always directed, having 
syntactically specified source and target processes, and a strongly typed message. 

c. Processes are nondeterministic, and the language allows one to distinguish 
between two kinds of nondeterminism, discussed in the sequel. 

Syntax and informal meaning of CSP are described by way of example: 

where 

wp, II p, II p31, 

P1::A1;[P2 ?x -+ T,OP,!y --, T,]; 
*[P,!u + T,nP, ?v --f TJ; 

P,::*[P, ?s - TJ-JP,!~ ---f T,uP, ‘w - T,]; 

P3::A2;*[B1 + T,nB, + T,]; 

-“/I” is the parallel composition operator. 
--Ai’s are elementary operations such as assignment, skip, abort, etc. 
-Ti’s are unspecified (for abbreviating the example) program sections. 
-Pj ?x (in Pi) is an input command, expressing an input request of Pi from Pj , 

and assignment of the input value to the (local) variable X. Such a command is to be 
executed only when Pj is ready to execute a corresponding output command Pi!y, 
meaning a request to output the value of y to P, . Either i/o command waits until the 
corresponding one is ready. 

-“O” is the guard separator. Guards may be Boolean (Bi’s), passable when true, 
or i/o commands, passable when a corresponding i/o command in the addressed process 
is ready. 

-‘I*” denotes repetition as long as there exists a passable guard. 
-I‘;” is sequential composition. 
-All processes have disjoint sets of local variables, the only ones to be assigned. 
Thus the language is essentially different from various other attempts to consider 

concurrent programs, e.g., Concurrent Pascal (Brinch-Hansen [a]), which uses monitors 
[lo] to control access to shared variables and procedures, or the language used by Owicki 
[15] with critical sections. 

In this paper, we 

(i) Define a formal (denotational) semantics for the main constructs of CSP. 

(ii) Clarify, by means of semantical analysis, the relationship between nondeter- 
minism, concurrency, and communication. 



292 FRANCEZ ET AL. 

(iii) Suggest a rigorous framework for dealing with termination and deadlock of 
communicating processes. 

(In this paper communication is understood as interaction between disjoint processes.) 
A natural question that arises is: What can be learned from the formal semantics 

(of CSP), that would not be apparent already from any informal semantics? To the 
rather stale debate concerning this issue, we add an observation arising from our personal 
experience on struggling with the CSP language. During the process of work toward 
proof rules for this language, to our own amazement we did not succeed in devising 
a satisfactory intuitive semantics (we tried as hard as we could). It became clear that 
first a firm, formal foundation for the semantics of CSP had to be found, before any 
progress on an operational semantics could be made. This was caused by the unrestricted 
use of i/o guards, which resulted in subtleties concerning nondeterminism, termination, 
scheduling, waiting, and other operational phenomena. Once the basic intuition was 
captured formally, the operational semantics became clear as well. 

The denotational approach to the definition of the semantics of programming languages 
originated from a pioneering paper by Scott and Strachey [18], who have shown that 
a relatively small number of basic semantic constructions are needed for an adequate 
modeling of the realm of meanings of sequential, deterministic programs. The main 
idea in this approach is to attach to each program some mathematical object as its 
meaning, or denotation; see Strachey and Milne [22] f or a survey of such a characterization 
of various programming language constructs. The domain of these objects is called a 
semantic domain. This attachment enables a mathematical proof of properties of the 
program, and supplies a justification for various inductive proof rules. The process 
of attaching a meaning to a program uses induction on the syntactic structure of the 
program. Because of the presence of circular definitions, e.g., recursive procedures, 
a mathematical theory had to be developed (Scott [19]) . m order to prove the existence 
of the required denotations. According to this theory, a program denotes a partial 
function from one domain to another. In case of circular definitions (e.g., recursive 
ones), it can be shown that there exists a unique partial function which satisfies this 
definition and is a limit of a sequence of partial functions, each of which is at least as 
well defined as its predecessor. Using tools from lattice algebra and topology, Scott 
was able to give the appropriate foundations needed for this approach. 

More recently, Plotkin [16] extended this approach to cover also nondeterministic 
programs. By a construction of power domains, which are domains of certain sets of 
elements from the base domain ordered in an appropriate approximation ordering 
(see also Egli [6]), he was able to supply denotations to nondeterministic programs 
by using set-valued partial functions. Another power domain construction appears 
in Smyth [20]. 

Milner [14] suggests a construction, called renewals (or resumptions), to give denota- 
tions to concurrent programs. However, the programs he has in mind in [14] involve 
highly interleaved actions on shared variables. Thus, an action by a process may either 
deliver a result, or give rise to a new process yet to be interleaved with other processes. 
Since process interaction in CSP is by means of communication rather than by means 
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of sharing memory, a different description of the semantics is enabled. We suggest 
another construction which is adequate for communicating processes in CSP (compare 
also Milne and Milner [13]) and which reduces the degree of interleaving. 

The importance of this work is twofold: 

(1) The formal semantics for CSP clarifies many of the complex issues which 
are needed in order to formulate and validate proof rules for CSP; compare [7]. 

(2) The clearer relationship between concurrency, nondeterminism, and com- 
munication suggests a way for both the design of language constructs which diminish 
the danger of deadlock, and the construction of terminating programs. 

In the next section, we specify some new contributions of the paper, which expand 
on (1) and (2) above. 

2. What is New ? 

2.1. A Priori Semantics 

We regard a single process (taken out of a set of communicating processes) by itself 
to be a semantically meaningful entity, which deserves a denotation of its own. Therefore, 
we are led to a definition of semantics which attributes a separate meaning to each 
component Pi of P::[P, 11 .*a 11 P,]. This kind of semantics is called a priori because 
it denotes all the communication capabilities of Pi when confronted with any environ- 
ment, i.e., all other processes in P. At the next level we introduce a binding operator 9, 
which combines the set of all separate a priori meanings of all Pi’s to a joint meaning 
of P. This n-ary binding will be compared with Milne and Milner’s binary binding 
in Section 111.1. 

Since every process has its own (disjoint) local memory, the only contact with other 
processes being via communication, the degree of interleaving is much smaller than 
with shared variables, as in each process local computation, involving no communication, 
does not influence in any way similar computations in other processes. Therefore, 
the semantics of each separate process is determined by (1) providing an initial state 
for the local variables and (2) describing its reaction to every possible message requested. 
Since the values of these messages may vary, each value specifies a different possibility 
for continuing the computation. These possibilities will be expressed as branches of a 
tree. This leads to the construction of a new semantic domain, which we call the domain 
of history trees. The histories in question are histories of communication (i.e., traces 
of records of communications that might have taken place). We show that these histories 
are sufficient for the description of deadlock since deadlock can be caused only by some 
communications failing to happen. With these histories we provide a uniform alternative 
to mythical (“ghost”) variables (e.g., Clint [3] and Owicki [15]), since these variables 
are used to capture parts of such histories. 

In this context, communication involves a message passing from a source process 
to a target process. Other approaches are, e.g., Milne and Milner [13], where emphasis 

571/19/3-7 
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is put on exchange of values, or Kahn [l 11, where message transmission is buffered, 
not synchronizing. 

2.2. Nondeterminism, Concurrency, and Communication 

In our semantic domain we distinguish between two kinds of nondeterminism, which 
are expressed in CSP by means of two kinds of guarded commands [4] (this may be 
one of the innovations of CSP). These two types differ in the way nondeterminism is 
resolved, and have a different impact on achieving successful communication and deadlock 
freedom. 

The one kind, using Boolean guards, we call local nondeterminism, and is the “old” 
notion introduced by Dijkstra [4]. Examined in connection with communication, it 
occurs when a process Pt can communicate with any of Pi1 *a. Pi,, and decides on its own 
for which communication to wait, i.e., independent of any consultation with the other 
processes. 

The second kind, using i/o guards, we call global nondeterminism, and is resolved 
by inspecting the other processes w.r.t. to their willingness to communicate. Only 
mutual willingness to communicate may result in a de facto communication. 

Mixtures of Boolean guards and i/o guards are not considered in this paper. As a 
simple example, consider the difference between the following two programs: 

[P,::[true -+ P,?xOtrue + P2!O] (1 P,::P,!I] 

and 

[P,::[P,?x --f skipUPa! --f skip] 11 P,::P,!l]. 

(1) 

In the first, PI may choose the second alternative and cause a deadlock. In the second, 
successful termination is guaranteed. 

In our semantic domain of history trees, this distinction is reflected by letting the 
history trees have two kinds of nonleaves, on which the binding operator operates 
differently. This difference reflects also the different implications of the presence of 
the two kinds of nondeterminism on freedom from deadlock, and will underlie a future 
proof rule [7]. 

2.3. The Use of End-Signaling fm Termination 

CSP [9] enables a neat handling of loops which depend on communication guards, 
and also enables the abortion of the corresponding selection. Upon termination, a process 
Pi reaches a final state, which may be sensed by all processes communicating with Pi . 
A guard consisting of a communication request is regarded as false iff the target process 
has already terminated! Otherwise, waiting occurs, because the communication may 
take place in the future. Thus, a loop depending on guards communicating with Pi, .a. Pi 
is exited only if all of these processes have terminated. Correspondingly, a selectioi 
depending on such guards aborts. 
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Note that termination is in general not a property of a single process. As a typical 
example, consider a “service process” which responds to requests until it receives 
a signal meaning “terminate!” If presented with an infinite sequence of requests, it 
should produce an infinite sequence of responses. Only the pair consisting of user- 
process and service-process may provably terminate. For a more interesting example, 
displaying how intricate the termination of such programs may be, see Dijkstra [5]. 
Thus, although every possibility for (non)termination is already present in the a priori 
meaning of a single process, actual (non)termination of the combination of all processes 
is determined only on the level of the binding operator 99. 

Dealing with terminating processes is an essential feature of the conception of CSP. 
This may be a distinguishing trait of our formalism compared to Milne and Milner’s, 
in its present form [13]. They consider nonterminating processes, and the problem 
of termination has never arisen in their work. 

II. A DOMAIN F, AND SEMANTIC EQUATIONS FOR d[Pi), 
THE A PRIORI SEMANTICS OF P, 

The distinction between local and global nondeterminism implies that a domain 
of ordinary trees (whose arcs are possibly labeled by records of communication) is not 
sufficiently structured to reflect this distinction. For, whenever local nondeterminism 
is resolved, a number of independent alternatives are created, each of which has to be 
independently confronted with the environment. However, global nondeterminism 
postpones resolution until the moment of binding since it looks for mutual consent 
with the environment and can therefore only be resolved during binding. 

Therefore, a more refined structure of (finite and infinite) trees with two kinds of 
nodes, called local nodes and global nodes, is needed. 

Since at any stage in its computation, at the level of elementary statements and opera- 
tions, a process can make only a finite number of nondeterministic choices, any local 
node has only a finite, positive, number of outgoing arcs. 

A global node signals willingness to communicate. Therefore, any arc outgoing a 
global node is labeled by a target process identifier. Willingness to communicate means 
either willingness to output a value or to input one of the appropriate type. 

At any instant, a process may have a global nondeterministic choice to communicate 
with a finite number of processes, and therefore the corresponding node will have a 
finite number of outgoing edges, specifying these processes. 

There will be also nodes corresponding to a single input command, and these may 
have an infinite number of outgoing branches, each labeled by a record of communication 
corresponding to one of the possible input values. An output command will be represented 
by a node with a single outgoing edge, labeled by the record of communication corre- 
sponding to the output value. 

We now proceed with the formal definition of this domain. 

DEFINITION. Let A be any nonempty set, called the Communication Alphabet. 
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Members of A represent messages passed via i/o from one process to other. In this 
paper we shall assume that A = (n 1 n > O}. 

DEFINITION. A record of communication (rot) is a triple u = (a, i,j), a E A. 
The intended interpretation of u is that of the message a passed from Pi to P, . Let 

1 < i, j < n. Then ,$j = {(a, i, j) ) a E A}, where i # j, and Q = m. Also, let 
ri = {I,..., n} - {i}. Z’i = ujor, Zi’ and 2’ = Uierj Zi’. 

DEFINITION. Let Vi denote the set of (local) variables of Pi . Si = [Vi -+ -41 u {fad> 
is the set of states of Pi . 

We consider a state to be mapping from variables to values. We avoid the consideration 
of “environments” 1181 since these do not change in the restricted language we consider; 
fail is a special state denoting a failing computation. 

For s E Si , s # fail, x E Vi , and a E A, sax = hy. if y = x then a else s(y). 
Next, we define the complete partial order (cpo) q as the least solution (in the category 

of cpo’s) of a domain equation. The reader unfamiliar with the technicalities of this 
kind of equations could consult [21,22]. < is the domain of history trees corresponding 
to Pi , and will be used as the range of the semantic function J![PJ, characterizing 
the a priori semantics of Pi . 

X+ = pF(X) and F(X) = XY-X@X@ Y, 

i.e., X+ is the domain of finite (nonempty) sequences over X - (1) with the following 
ordering: there is one bottom element, sequences of different lengths are not comparable, 
and sequences of the same length are ordered coordinatewise by the ordering inherited 
from X. 

Equation (1) defines a (finite or infinite) tree in < to be either bottom or belonging 
to one of five addends. 

Formally: If A is a partially ordered set then A, is obtained by adding to A a new 
bottom element. The union symbol u denotes disjoint union of partially ordered sets 
(no bottom element is added); union is thus associative. (For instance, an element 
A u B u C is either in A or in B or in C and corresponds therefore with three cases; 
this is in contrast to the customary usage of the disjoint sum A + B + C which adds 
more bottom elements and therefore creates more partially defined objects (and is not 
associative)). 

If A is a set and B a cpo, [A + B] is the cpo of all total functions from A to B with 
the obvious ordering. 

The symbol x denotes Cartesian product p denotes the least fixed point operator. 
The coalesced sum @ and the coalesced product @ have been defined in [12,21]. 

They are used to avoid the introduction in Xi- of partially undefined and infinite objects, 
as explained in [12] (warning: In [12] the coalesced sum is denoted by +). 
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Intuitive explanation: The solution to Eq. (1) can be thought of as the domain of 
all finite and infinite trees, which have the following nodes: 

a. Leaves are labeled by S, u (I} and have no outgoing arcs. 

b. Input nodes have a (possibly infinite) number of outgoing arcs, each labeled 
by some CJ E Zi. 

c. Output nodes have one outgoing arc, labeled by some u E Zi . 

d. Global nodes have a finite, positive, number of outgoing arcs, labeled by ri 
and an additional unlabeled arc (will be denoted in figures as 0). 

e. Local nodes have a finite, positive, number of unlabeled arcs (will be denoted 
in figures as ??). 

Note that each kind of node corresponds to a particular addend in (1). Equation (1) 
has been designed so as to induce the following ordering on K (see [12, 211): 

Tr L T2 iff Tz may be obtained from Tl by replacing some 
i-labeled leaf by some T’ E & . 

Thus, 

c 

This is very refined ordering, which, e.g., distinguishes between 

and 

Such distinctions are natural in a context in which histories (and not only terminal 
values) matter. One could envisage a semantics of the whole program reflecting the 
difference of such incomparable trees, e.g., by counting nondeterministic choices 
involved in producing a given final value. Our specific semantics ignored this difference 
at the binding level. Both trees will produce the same results while bound to the same 
environment. The smallest element in this ordering is J_. We shall denote by is , ir, 
z. , iG , and iL the corresponding injections from the components to their corresponding 
copies in z ; cf. [18]. 
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Thus, 

Before defining the semantic function AY[[Pil, we define an auxiliary function 9 (replace- 
ment), which generalizes functional composition from the sequential case. 

When defining the meaning of S, ; S, , S, has already produced an (intermediate) 
history tree. Thus, the meaning of S, has to be applied to all possible leaves of that 
tree, and will in general depend on the states labeling the leaves of this tree; e.g., if S, 
starts with some Boolean selection, the state will determine the selected branch(es). 

and the meaning of W[T, F] is the tree obtained by replacing every leaf labeled s by the 
tree F(s). (We assume F(fuil) = f&L) 

6% is defined recursively by structural induction on T: 

WU”,Fl = I, if T=I, 

= F(T), if T E is(&), 

= i& . ~[T(u), F]), if T E iI([Zji --j YJ), 

= io(<T 4 1, g[T $2, Fl)), if T eio(Zlij x &), (2) 

= EG(<<(T'J 1 4 1, W[T'J. 14 2,Flh..., (T'JK 4 1, W[T'Jk JZFl)),W)h 
wheres=TJ2andT’=TJl, if T E iG(ri x ~3$)" x s), 

= k((g[T& l,Fl,..., W[T JhFl), if T E iL(qk) 

(ii denotes the projection to the ith component of an n-tuple). 
Note that 99 does not affect infinite paths in T. Clearly, 98 is continuous. The apparent 

(notational) complexity of the definition of 9%’ is due to the fact that a domain equation 
for denoting our history trees had to be employed. Had we considered such trees as 
self-explanatory, a notationally simpler definition of W could ‘have arisen; compare 
Hoare [23]. 

Next, we proceed with the formal definition of A’[PJ: Si -+ z , and the informal 
explanation of each clause in the definition. 

(1) A[Q~(fuz’Z) = fail for all Q. In the sequel, we assume s # ftil! 
(2) Input 

We get a new function, returning for each s the modified state, which records the side 
effect of input the value component u 4 1 of the input (rot) 0. 

Thus, Pj ?x creates the following tree, to be called an input node. 
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(3) output 

h![Pj!xl] = hs - &(((~(a$, i, j>, is(s))). 

We get a tree with one arc to be called an output node. 

<s(x),i,j> 

S 

The subtree labeled s indicates that output has no side effect, and the output value 
will have to be matched by 9I to an input arc in the tree corresponding to Pi . 

(4) Assignment 

&l[x := e] = Xs. ifV(e, s) = fud then f&Z 

else idshd). 

V(e, s) is an auxiliary function which computes the value of an expression e in state s. 
We assume V(e, s) = fail if e is undefined. We do not consider recursive functions 
here, so the evaluation of expressions always terminates, and yields fail in cases like 
division by 0. The meaning of assignment is to update the state s. Note that it does 
not create any new arcs in the tree. 

(5) Skipping 

A[skip] = As * is(s). Obvious. 

(6) Sequential composition 

For a given state s, we first apply A![SJ to s, obtaining a tree, say T, . Then, we apply 
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the replacement operator 9 to T, and the function .&I[&$ This reflects the fact that 
the operation of S, depends upon the final state of J&Q, which it continues. 

Note that ~Yl[S,~(fuz7) = fuiZ by assumption (case (I)), and R may therefore be 
applied with JI as an argument. Also, if S, has a nonterminating computation, JQSJ(s) 
will have an infinite path, which will not be affected by 9. 

(7) Boolean selection. We treat here the case of two guards only. The extension 
to any number of guards should be clear. We assume guards are always defined. 

where 

.M[[B, -+ S,OB, --+ S,]j = As - T, , 

T, = cue <+‘I4 , 4, W& ,s)) of 
<ff,ff>: W4; 
c.15 w: 4sdw; 
wtf): -4ww 

In case both guards are false, computation is aborted. In case exactly one guard is true, 
then JZ of the corresponding guarded statement is applied to s. 

In case both guards are true, a local node is created, reflecting in its two unlabeled 
subtrees the two independent continuations, thus recording local nondeterminism, 
which will cause independent binding of each subtree. 

The picture for this case is: 

(8) i/o directed seZection. Again, we shall describe the semantics of a particular 
case, involving only two guards, both being input guards. The description of M for 
more (or less) than two guards, and for output guards, should be clear. 

where 

An input can be accepted from either Pj or from Pk , and then the corresponding 
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guarded statement will be executed. The decision as to which continuation to take is 
postponed to the binding time, when the state of Pj and P, will be available, thus 
reflecting the global nondeterminism. 

The picture corresponding to this case is: 

The fail subtree will be used if both Pi and Pk have terminated, a fact to be noticed 
at binding. 

Since all the auxiliary functions applied so far are continuous, the definition of ,&Z 
for loops by means of least fixed points is justified. 

(9) Boolean repetition 

If both guards are false, the loop is exited. In case exactly one guard is true, the corre- 
sponding guarded statement is executed and the whole guarded command is attempted 
again. 

In case both guards are true, a local node is created, and both continuations are recorded 
as subtrees of this node. 

(10) i/o directed repetition 

where 

&l[*[P, ?x + S,OP, ?y + S,]j = &IF . As . T,), 
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If both processes end, the loop is exited. Otherwise an input is selected (again, postponing 
the decision from which process), the corresponding statement S executed, and the 
whole loop attempted again. 

This completes the definition on &‘[PJ by means of semantic equations. As a simple 
example, reconsider the program presented in the Introduction. 

Let s E S, , s’ E S, be two initial local states. 

n~o,l,2> . . . . . s 

Anticipating the binding function, one can see intuitively that the second program 
can never fail, since it will choose that alternative in PI which will match Pz (i.e., the first). 
On the other hand, the first program may fail, if Pi chooses its second guard as a “wrong” 
independent choice, thereby causing deadlock. 

III. THE BINDING OPERATOR ~49 

1. The purpose of the binding operator is to attach a joint meaning to a concurrent 
command P::[P, j/ ... (1 Pn] in an initial state (si ,..., s,) by using the history trees 

~lI~Jl(%)~~~ * > -4IPnnhl)~ 

We restrict ourselves to “closed” concurrent commands since the semantics for, 
and the proper restrictions to be imposed upon, nonclosed concurrent commands are 
still under scrutiny; cf. Hoare [9]. (By “closed” we mean that no component Pi of P 
communicates with any process not among P, ,..., Pi_1, Pi+l ,..., P, .) 
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The computation of P starts in (si ,..., s,) and may produce a set of such n-tuples 
as final states. While binding, all the histories of communication are “forgotten” and 
only final states are left; cf. also Milne and Milner [13]. Any occurrence of an infinite 
computation in any process Pi is recorded by a single formal value J_ standing for the 
“undefined” n-tuple. We also include two other states, deadlock, which records a deadlock 
situation, and fail, which records abortion in any component. The meaning of P is given 
by L%(JY[P,@,),..., A’[P&)). 

In Milne and Milner [13], a binary binding of processes is introduced. Thus, 
[P, 1 P, ~ P,] is interpreted as, e.g., [(PI jj PJ 11 PJ, where “( , )” correspond to the 
binary binding. The binary binding is associative. This operation leads to intermediate 
trees which describe a mixture of global and local nondeterminism on the same level. 
This mixture arises from internalization of communication between the bound processes. 
Consider the following example: 

where 

P::[P, 11 P2 ii P3], 

P1::[P2 ?x + P3 ?ynP, ?y ---t Pz ?x], 

P,::P,!z, 

P,::P,!u. 

Then, [(PI :I Pz) jl PJ is equivalent to 

[[true - x := z; P,?ynP,?y + x := z] // Pl!u]. 

Such mixed trees introduce subtleties, which on the level of program constructs, as 
seen from the above example, introduce guarded commands with a mixture of Boolean 
and i/o guards. These subtleties are our reason for excluding such mixtures from the 
present paper, and considering instead n-ary binding of closed commands, which avoids 
the introduction of such trees. 

1.1. On the Egli-Milner Order 

Before defining the binding operator 22 we first need to introduce the concept of the 
Egli-Milner order to describe the value domain of @--a certain collection of subsets 
of S, x ... Y: S, v (1, fail, deadlock) and its underlying structure (since L8 is defined 
recursively, J’s existence follows from the usual continuity considerations with respect 
to this order). 

The concept of the Egli-Milner order (Egli [6], Plotkin [16]) dates back to 1975, 
and constituted a breakthrough in the semantics of nondeterminism, and a fortiori, 
of concurrency; its application in de Roever [17] resulted in the first comprehensive 
model-i.e., including a characterization of nondeterminism-of Dijkstra’s predicate 
transformer; and it is based on a powerful intuition which is best explained in Egli’s 
unpublished paper, extensively cited in, e.g., de Bakker [l]. 
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Let D denote any nonempty set with J_ $ D. PB_&D u {I}) denotes the collection C 
of all nonempty subsets V of D U {I} satisfying: If v E C and P is infinite, then 
J_ E I’. Order P,_,(D u {I}) as follows: For I’, , V, E P&D u {I}). 

vl CE-M V, iff either 1 E VI and VI - {I} 2 V, 

(set-theoretical containment) 

or I$ VI and VI = V, . 

(PE-M(D u 029, &L-M) is a complete partial order, called the Egli-Mimer order. 
We shall use the property that if Vi E PE_&D u {I}) and Vi EE_M ViaI , for i E N, 

then y E I.u.b+ Vi iff 3j . y E Vi . This concept is related to nondeterminism in that 
functions with values in PE_+,(D U {I}), such as 97, describe nondeterministic program 
behavior. The extension of this concept to subsets of any complete partial order 
(L, Ed) has been described by Plotkin [16]. Smyth [20] provides a masterful account 
how this order can be more simply described for the general case. 

1.2. The DeJnition of 29 

The functionality of 5? for any n > 2 is given by 

b%F~ x “’ x yn + PE_M((& x *.. x S,) u {I, fail, deadlock)). 

First, we give a recursive definition of B(T, ,..., T,) accompanied by an informal 
explanation of the role of each clause in the definition. We shall number the successive 
clauses in the margin, for convenience. 

g(7-1 ,..., T,) = {J_ / 3i (1 < i ,< n). Ti = I>. (1) 

{ JJ is the bottom element of PE_M mentioned above, and denotes undefined informa- 
tion. A i-node in z is used to describe approximations to elements in < , and will 
appear in the approximations to the a priori semantics of loops within Pi . This clause 
is needed for the continuity of 9. 

(For all subsequent clauses, assume Vi (1 < i ,< n). Ti # I.) 

u {fail 1 3i (1 < i < n). Ti = is(fail)}. (2) 

Fail is a formal value denoting some machine-detectable error, such as a selection 
with false guards only, etc. It is preserved under the a priori semantics (see clause 1 
in the definition of A), and could be used to issue an error message (Goguen [8]). Once 
such an error occurs within any A’IIPt](si), it will be reflected in the value of 9. Note 
that 1 r fail. 

(For all subsequent clauses, assume Vi (1 < i < n). Ti # is (fail).) 

u KS1 ,a.., s,J ] Vi (1 < i < n). Ti = si E is(&)). (3) 
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This is the case of successful termination of all Pi’s, each reaching a final state Si E Si . 
Then we add the tuple (sr ,..., s,) to the set of final values of a. 

u g’(T, ,..., Ti-1 9 Ti(Tj j. I),..., Tj-r > Tj 4 2>..., Tn) 

if Ti E ir([&i --f 9J) and Tj E io(Zji x &). (4) 

This is the case of successful communication, where Ti contains an input node 
(from Pj) and Ti contains a corresponding output node (to Pi), with matching roc’s. 
Then, Ti is replaced by the subtree corresponding to this matching rot, which is obtained 
by applying Ti , which is a function, to this rot, and Ti is replaced by its (unique) 
subtree; then 39 is called recursively. 

u {fail 1 Ti E il([Zji -9J) and Tj eiS(Sj), or Ti E io(Zij x q) and Tj E &(Sj)} (5) 

This is the case of unsuccessful communication, where Ti is an input node or an 
output node, and Tj E Sj is a final state of Pj , meaning that Pj has already terminated. 
A communication attempt with a terminated process is interpreted as failure, and the 
value is {f&Z). 

u .B(T, ,..., T,_, , Ti',..., T,) if Ti = (Til,..., Tim) E iL(&+), 1 <j < m, (6) 

This is the case of local nondeterminism in Pi involving selection with Boolean guards. 
As already noted, the meaning is that any of the subtrees of Ti can be chosen, and bound 
to the other Ti's. Thus, we pick an arbitraryj, 1 < j < m, and replace Ti by its subtree 
Tij in the recursive call. Since the union is taken over all possibilities, each T,j will be 
considered. 

0 ia(T, ,..., Ti_, , Tii,..., Tj_l , Tj ,..., T,) 

if Ti = (<(k,, Til>, (k,, Ti'>,..., (km, Ti">,s), 

and (7) 

or Tii~ io(2$ x Fi) and T~,E iI([ZF+Fkjl), for 1 <j<m, 

This is a case of global nondeterminism in Pi . Ti is a global node, with subtrees corre- 
sponding to communication with Pk, ,..., Pk . For some j, 1 < j < m, Tij is an input 
node (corresponding to an input guard), addressing P,, , and Tk is an output node 
addressing Pi . Thus the global nondeterminism can de successfully resolved. Note 
that this binding step does not reflect the establishment of the corresponding com- 
munication. This communication will be detected at the next level of recursion, when 
the input node Tij is confronted with the output node Tk, . A similar case arises if T,j 
is an output node (to 4,) and Tkj is an input node. 
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GY(T, ,..., Ti_l , Tip ,..., T,_, , Ti” ,..., T,) 

if Ti = <<<k, TA,..., <km, Tim>>, s>, 
Tj = <<<h > Th..., (6, Tj’>>, 0 

and for some p, q, k, = j, 1, = i, and 
(8) 

either Tip E iI([Zii + 9J), Ti* E i,(Zt x Tj), 

or Tip E io(&j x &), Tf E iI( [&j + S,]) . 

This is another case of resolvable global nondeterminism in both Pi and Pi . Each of 
them has an i/o guard addressing the other with matching roc’s. Again, the actual com- 
munication will be detected at the next recursive call. 

(9) 

This is the case of unresolvable global nondeterminism in Pi , and then Ti is replaced 
by the “escape” state S, which accompanies the guards. The state s is a proper state 
if this node was generated in an i/o directed loop (clause 10 in the definition of A) 
or equals fail in case of selection (clause 7 in the definition of A). The global nondeter- 
minism is unresolvable only if all addressed processes Pk, ,..., Pk, have terminated. 

u {deadlock 1 if none of the other clauses is applicable}. (10) 

This case arises when a group of processes are involved in some cyclic communication, 
while all the rest have terminated. This is a deadlock state, and is recorded as such 
in the value of SY. 

Note that we are able to detect a nondeterministically possible deadlock state. Compare 
Milne and Milner [ 131. 

In the example at the end of the last section, one would get 

~(.4i[p,Tl(s), JWan(~‘)) = K(G 9 01 

whereas 

&h’[P;~(s), A[PJ(s’)) = {((s): , s’), deadlock}. 

2. The first thing that has to be done is to show that if the equation is written 
as SY = T(GQ the functional T is continuous in g. Let <SF)& be a sequence of partial 
functions from Fr x -1. x Ya to PE_&S1 x *** x S, u (1, fail, deadlock}), G&, 5 
a1 E *-* E 9Yi E *a*, and SP = I.u.b.,S; then 7(gm)(Tl ,..., T,) is obtained by 
replacing all occurrences of 9 in r by .W; from go E SYr 5 me* E aS E ... it follows 
that .?W(T,’ ,..., Ti) = 1.u.b.i #(T; ,..., Ti) for arbitrary Ti ; by continuity of u one 
obtains @P)(Tr ,..., T,) = l.u.b., +@)(Tl ,..., T,). 
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One of the cardinal principles of denotational semantics being that all semantically 
meaningful functions are continuous, one would like to show next that 9 is continuous 
in its arguments. 8 being the least upper bound of the sequence Q c T(B) E 

+Y ... E +(Q) ... (where Q is the completely undefined function), it is enough to 
show that +(Q) is continuous for every i; it suffices to show that if A is continuous 
then so is 7(/l) since Q is obviously continuous. 

The first step is to see that if A is monotone then T(A) is monotone. Suppose Z’i c Ti : 
Then case analysis shows that if a E (S, x ... x 8,) u {fd, deadock} and a E T(A)(T, , 
T 2 ,--.> T,), then a E T(A)(T; , T2 ,..., T,) and if 1 E +4)(T; , T, ,..., T,) then J_ E 

M)(T, , T, ,..a, Z’,); the case analysis is tedious but standard, and therefore omitted. 
The last step is to show that if A is continuous and Tlo E T,l E .. . 5 Tli E ... is an 
ascending sequence whose 1.u.b. is T,” then, if a E (S, x ... x S,) u {fud, deadlock} 
and a E T(A)(T,~, T, ,..., T,) then there are a, i such that a E 7(A)(Tli, T, ,..., T,,) and 
that if for every i, 1 E T(A)(T~$, T, ,..., T,) then J_ E 7(A)(Tlm, T2 ,..., T,). Both 
properties are checked by case analysis. 

We give a detailed proof of one case. 
Assume A is continuous, and let T,O E Tll E ... c T: E ..., T,” = l.u.b.,(Tii). 

Let y E 7(A)(Tlm, T2 ,..., T,), where y = (si ,..., s,). We want to show that 3 i s.t. y E 

+A)(Tii, T, ,..., T,). From the form of T’S definition, there are six clauses due to which 
this y could be generated ( y is a tuple of final states!). These are clauses 3, 4, 6, 7, 8, 9. 
Since, by assumption, A is continuous in its arguments (and application and projection 
are continuous as well), we have that 

AU-,“, T, ,..., T,) = 1.u.b. A(Tli, T, ,..., T,). 

By a property of PE_-M of a flat domain D, d E l.u.b., Vi implies that 3 j. d E Vi , for 
Vi E PE_-M(D). This implies the claim for clauses 4, 6, 7, 8,9. 

For clause 3, we have that 

T,” = s1 (S, has no I!), and therefore 3 i. Tli = s1 ; again the claim follows. 

Similar arguments can be given for the remaining arguments ‘I; ,..., T, . 

A Semantic Variant 

According to the semantics presented, a possible outcome of a program is the set 
{l,fuiZ}. This represents a nondeterministic situation, where there is a nonending 
computation and a failing computation. This could be interpreted operationally as 
terminating (actually aborting) the whole concurrent program once a local failure is 
detected. 

An alternate semantics could be that in the presence of nontermination the result 
is {I}, and any failure is disregarded. In order to achieve this semantics, one has to 
restrict the application of the “negative” clauses 2 and 5 only if no other, “positive” 
clause, is applicable. 
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