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M6ssbauer spectroscopy between 4.2 and 300 K combined with crystal-field calculations on Fe 2+ have yielded information on 
the tetragonal crystal field and the spin-orbit coupling in the related structures K2FeF 4 and K3Fe2F 7. Below T N the 
electric-field gradient is asymmetric due to noncollinearity of the tetragonal and magnetic axes. 

M6ssbauer experiments and crystalline-field 
calculations are reported on the two-dimensional 
quadratic-layer antiferromagnets K2FeF 4 [T N = 
(62.7 _+ 0.6)K] and K3Fe2F 7 ( T  N ~ 93 K). K2FeF 4 
is a member of the well-known K2NiF 4 family; 
K3Fe2F 7 has a magnetic double-layer structure iso- 
morphous with K3Mn2F 7. In both structures Fe 2+ 
is surrounded by an octahedron of F -  ions, slightly 
elongated along the tetragonal axis. From a recent 
neutron study of K2FeF 4 [1] it appeared that below 
T N the anisotropy forces the spins along the crys- 
tallographic [110] axis. From earlier M6ssbauer 
experiments below T N [2] the quadrupole coupling 
parameter eQVzz was found to be positive, while 
the asymmetry parameter 7/ = (Vxx - Vrr)  / Vzz 
is nonzero. On the other hand, with regard to the 
crystal structure neutron diffraction [1] did not 
detect any deviations from perfectly tetragonal 
symmetry in the entire temperature regime studied 
(4.2-300 K). The nonzero 7/ is therefore a direct 
manifestation of the noncollinearity of the mag- 
netic and tetragonal axes. More complete data on 
eQVzz and 7/, including the temperature depen- 
dence, are presented here. 

The M6ssbauer spectra below T N were analyzed 
by least-squares fitting with the hyperfine field Hhr, 
the quadrupole coupling constant eQVzz, and the 
asymmetry parameter ~/ as adjustable parameters; 
above T N only eQVzz is to be adjusted. In fig. 1 we 
display the results of eQVzz in the temperature 
range 4.2-300 K. Below T N, eQVzz is virtually 
constant in K2FeF 4, whereas it falls by ~ 20% in 
K3Fe2F 7. At any temperature, eQVzz is smaller in 
the double layer. At the lowest temperatures, 7/ = 
0.07 for K2FeF4, gradually falling to zero toward 
T N (fig. 2). The asymmetry in K3Fe2F 7 starts off at 
a higher level, ~7 = 0.17, and also vanishes at T N. 

The Hamiltonian of the Fe 2+ ion (L -- 2, S -- 
2) may be written as 

0 0 504 ' )  + B ° o  ° m B 4 ( O  4 + 

+ AL.S + gl~BHex.S, (1) 

where the O's denote the standard crystal-field 
operators. The dominant term is the cubic crystal 
field; the second term, representing the tetragonal 
distortion, and the spin-orbi t  coupling (~kfree ion = 

- 140 K) are of about equal importance. 
We have ignored the fourth-order tetragonal 

field, whose effects are nearly indistinguishable 
from those of the second-order term. The exchange 
term of course disappears above the transition 
in zero field. Below TN, we treat the exchange 
in a molecular-field scheme, i.e., we solve 
self-consistently eq. (1) and the relation g#aHex = 
- J ( S x )  "r, with J the exchange constant. Note 
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Fig. I. The quadrupole interaction eQVzz obtained from 
M6ssbauer spectroscopy versus temperature. The solid lines 

represent the results of crystal field calculations. 
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Fig. 2. The asymmetry parameter ~1 versus temperature. The 
solid lines represent crystal field calculations including a molec- 
ular exchange field, but are scaled to the low-temperature data. 

that the exchange-field is directed along the mag- 
netic x-axis, which is the crystallographic [110] axis 
according to neutron diffraction [1]. 

The complete 25 x 25 Hamilton matrix was di- 
agonalized numerically for various combinations of 
B °, X and J. The cubic splitting was set at 12000 K, 
noting that variation of B4 ° only minutely affects 
the results. Additionally, expectation values of the 
quadrupole interaction and the spin were calcu- 
lated. The temperature dependence of e Q V z z  was 
subsequently evaluated by Boltzmann averaging. 

In the paramagnetic regime, excellent fits to 
experiment could be obtained (solid curves in fig. 
1) for B ° = ( - 6 0 _ _ _  5) K and ( - 2 0 + _  5) K 
in K2FeF 4 and K3Fe2F7, respectively; in both 

cases we find A = ( - 1 0 0 + _  10) K. Below T N, 
the fitting has been done with reference to 
supplementary results on Hhf, not detailed here, 
adopting the paramagnetic B ° and A. This yields 
J = ( - 3 7  ___ 4) K and ( - 5 2 _  6) K for K2FeF 4 
and K3Fe2F 7, respectively, the ratio of which re- 
flects the difference in magnetic coordinations. All 
parameters being determined, it is now possible to 
calculate the electric-field gradients below T N. 
Then, we indeed obtain an increment of e Q V z z  for 
K3Fe2FT, when going to lower T (solid curve in fig. 
1). In addition, we find an exchange-field induced 
asymmetry *1 which is substantially larger for 
K3Fe2F 7 than for K2FeF 4 (fig. 2). Thirdly, the 
calculated variation of 7/ with temperature agrees 
well with experiment, although there remains a 
factor of about 3 in the absolute magnitudes. 

In summary, the simple approach of eq. (1) 
produces excellent results for the field gradient 
above T~. Below T N the agreement between calcu- 
lation and experiment is poor quantitatively, but at 
least the salient features are reproduced correctly. 
It is finally worth pointing out that the in-plane 
anisotropy parameter E in the spin Hamiltonian 
term E ( S  2 - S 2 )  as derived from neutron scatter- 
ing [1], follows the same variation with temperature 
as 77. 
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