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TO NATHAN JACOBSON ON HIS 70TH BIRTHDAY 

In his book (“Lie Algebras,” Interscience, 1962) Jacobson proves the 
Campbell-Hausdorff formula for formal power series in Lie algebras. In this 
short note we shall prove it for finite-dimensional Lie groups making use of parts 
of Jacobson’s proof. 

1. Let G be a real or complex Lie group, g its Lie algebra. For A and B 
in g and for sufficiently small S, 

log(exp(s&4) exp(sB)) = $ s”F, = F(s), 
7Z=l 

a convergent series with F, = F,(A, B) homogeneous of degree n in the 
coordinates of A and B. Differentiating the relation 

exp(si2) exp(sB) = exp( F(s)) 

with respect to s yields 

Ad exp(--sB) 0 d exp(si2)B + d exp(sB)B = d exp( F(s)) F’(s). 

Since Ad exp X = ~~=, (n!)-l(ad X)” and d exp = CIz, (- l)“((n + l)!)-l 
(ad YIJn, 

one gets 

go (- I)n(n!)-lsn(ad B)“A + B 

= ia (- I)“((i + I)!)-l(ad F(s))l f jF,sd-l 
1-l 
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Comparing the terms with sn on either side one finds 

Fl = A+ B, 

F n+l = (-l)“((n + l)!)-l(ad B)“A 

t- i,,...z=n+l (-l)pW(~ + l)F (“ii adF,,)Fi=. 

9>"2 
j=l 

This formula shows that each F, is a homogeneous Lie polynomial of degree n 
in A and B with rational coefficients which are independent of G and g. Although 
convenient for computation of F, for small values of 11, it is not suitable for 
deriving a general formula for F,( as a Lie polynomial in A and B. 

2. In the free associative algebra % generated by two elements X 
and Y (see [I]) we have the set & of the homogeneous elements of degree i. 
Define the ideal & = @z,m E and the truncated free associative algebra 
Fern) = g/9m. Since the free Lie algebra %z is spanned by its homogeneous 
parts 99 n e , we also have the truncated free Lie algebra 

The projection of $ onto .Fm) induces a linear isomorphism between XL, 4 
and Ffm), and similarly for FFm). It is easily seen that the Specht-Wever 
theorem [l, Theorem 8, p. 1691 is still valid in Fcm) for homogeneous elements 
of degree n < m. 

3. The invertible elements of 9 cm) form a Lie group whose Lie algebra 
is FL@, the Lie algebra obtained from F fnz) by taking as Lie product [u, V] = 
UZJ - VU. The exponential mapping and the logarithm are given by the usual 
power series ending with terms of degree m. Hence the same computations 
as in [l, p. 1731 yield the result for n < m: 

FrSX> Y> 

c (-I)“-‘(p,! ql! ... p,! &.! kn)-lD(XPlY”1 ... XQ-YQ), 
P1+Q1+“.+Pk+Qk=n 

all i7t+q2>o 

where 

D(Z,Z, ... 2,) = ad Z,o ad Z,o ... 0 ad .Z-,(Z,) 

= [Zl , [Z, >‘.., [Zt-1 > &I . ..I1 
for Z, = X or Y. 
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