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1. INTRODUCTION 

Let k = F, be a finite field, of characteristic p. If G is a linear algebraic group 
defined over k, we denote by G its group G(k) of k-rational points. If RUG is 
the unipotent radical of G we write RUG = RUG(k). Moreover, qd(G) denotes 
the order of a p-Sylow subgroup of G/RUG. 

Assume G connected and reductive. Let B be a Bore1 subgroup of G, and 
T C B a maximal torus, both defined over k. If N is the normalizer of T in G, 
there is a Tits system (G, B, N), with Weyl group W = N/T. 

The parabolic subgroups PT) B (in the sense of the theory of Tits systems) 
are the k-rational points of the parabolic subgroups P 3 B of G, and P deter- 
mines P uniquely (see [l , p. 921). We denote by s(P) the semisimple k-rank of P. 

Let V be the unipotent variety of G, i.e., the set of its unipotent elements. 
By a result of Steinberg [9, p. 981 the number of elements of the set of its k- 
rational points I’ = V(k) is q2d(C). One also knows that now d(G) = dimG/B. 

Theorem 1 gives a formula which expresses the characteristic function E” of 
VC G as a linear combination of induced characters. If H is a subgroup of G 
and f a class function on H, we denote by IndHG( f) the induced class function 
on G. Also, lH denotes the constant function 1 on H. If S is a finite set, denote 
by 1 S 1 its cardinal. 

We can now state Theorem 1. 

THEOREM 1. We have 

<” = qd(G) LB (--l)“(‘) I P I-lInd&(lR,P). (1) 
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2. PROOF OF THE THEOREM 

Denote by ( , jH the standard hermitian form on the 
functions on H: 

space of complex valued 

(f, i?)H = I ff l--l 2 f(x) gw XEH 
By Steinberg’s result, quoted before, we have 

<cv, cv)G = 1 G 1-l q2”‘“‘. 

Let 7 be the right-hand side of (1). Then 

<CV, 7)~ = 8’) C (-I)‘(‘) I P I-“(Ev, Indi&(lR,P))G 
P3B 

= (f(G) ,cB (-1)8(P) 1 p i-1, 

by Frobenius duality. By another result of Steinberg [9, p. 141 the last sum 
equals qdcG) / G l-l, whence 

<ev , 7)G = qzdfG’ 1 G j-l x (?, ?jG . 

The burden of the proof is to show that also 

(7, r))G = p2d(G) [ G 1-l. (2) 

If (2) has been established, we have (eV - 7, cy - T)c = 0, and (1) follows. 

It follows immediately from Mackey’s formula that 

(7, +G = q2d’G’ 
P.c,B (-‘I 

s(p)+s(o) 1 P 1-l IQ 1-l I R,P\G/R,Q I. (3) 

Before dealing with the right-hand side of (3) we introduce some more notation. 
Let R be the (relative) root system of G with respect to T, let D be the basis of R 
defined by B, and denote by R+ the corresponding set of positive roots. There is a 
unique bijection S H P, of subsets of D onto parabolic subgroups containing B, 
such that s(Ps) = j S 1. Let L, denote the Levi subgroup of P, containing T. 

W can be identified with the Weyl group of R. If W, is the parabolic subgroup 
of W defined by S, then W, is the Weyl group of L, . 

If S, S, C D, denote by W;,s, the “distinguished set of double coset re- 
presentatives” for W,\ W/ Ws, : 

(see [2, p. 371). 

W;,sl = {w E W I w-IS C Ri+, wS, C R+; 
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By a general property of Tits systems [2, p. 281 there is a bijection 

Ps\W’s, ---f Ws\V Ws, 9 

whence a surjective map 

v: W’,\W,P, - Wi,sl . 

The results of the next lemma will allow us to compute the numbers 
j R,,P\G/RU 0 1 figuring in (3). 

LEMMA 1. LetwEWis ’ 1’ 

(i) P = (P, n wPS,w-l)R, P, is a parabok subgroup of G which contains 
T and lies in Ps . Aforeover, Lsnws, is the Levi subgroup of P containing S; 

(ii) 1 y-lw 1 = q--d(G)+d(LSnwS1) j P,,, 1-l 1 Ps / I Pr I. 

(i) is a recollection of known results. The first statement is proved in 
[I, p. 861. Let R, C R be the root system contained in R, with basis S. The root 
system of the Levi subgroup L of P containing T then is R, n wRsl , as one 
readily sees. Now if 01 E R, n wRsl , the corresponding reflection s, E W lies 
in W, n wWs,w-l. By a result of Kilmoyer (for a proof see [4, p. 1261) the 
latter group is WsnwS, , whence iy E Rsnzos, . This implies that L = Ls,,sl , 
as asserted. 

To prove (ii), observe that each element of v-iw is represented by an element 
of L, WL, . If xwxi , X’WX~ (x, x’ EL, , x1, XI EL, ) lie in the same double coset, 
then x-?x’~G P n L, , which is the parabolic subgr&p of L, defined by S n wS, . 
Moreover, if xwxr and xwx; lie in the same double coset, then WXT’ x’w-l 
lies in L,, 1 n wRsPUw-l, which is the unipotent radical of the parabolic subgroup 

of LJS defined by S n wS, . The formula of (ii) readily follows from these 
observitions. 

Using Lemma 1, we deduce from (3) that 

(7, q)G = qdcG) s FcD (-l)‘s’+ls~l 1 I Psnu,s, I”-1qd(Lsn4 
WE rY,s, 

If w E IV, let D(w) = D i L-lRi-. We can rewrite this formula as 

<q, rl)G = p c c (-l)‘A’+‘+ I PA I-lqd(LA) ( 2 
WEW S,SICD(W) scD(w-l)-w-‘s, (+I . 

ACwS,n D 

The sum in brackets is 0, unless D(w-l) C wS, C wD(w), by a standard com- 
binatorial fact. 

To finish the proof of (2), we need another lemma. If SC D we denote by 
we(S) the element of maximal length in W, . We put w. = w,,(D). 
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LEMMA 2. (i) 1j w E W is such that D(w-1) C WD then there is SC D such 
that w = wO(S)w, . 

(ii) 1jw = w,,(S)w, then D(w-1) = wD(w) = S. 

Assume that W is as in (i) and put S = D(w-l). We then have w-lR,+ = Rfwls . 
LetorERf-RRs.Then 

(y. = s~Jy%B + c %YY 
70s 

where the integers m, , 12, are > 0, and at least one of the m, is nonzero. 
IfflED-S,then 

w-‘p = c hs 6, 
BED 

where the h, are < 0, and at least one of the h, with 6 # w-lS is nonzero (other- 
wise we had w-l/3 E -RLels = -w-lR,+). It follows that w-l(R+ - Rs) C -R+, 
whence 

w-%,,(S)(R+ - R,) = w-l(R+ - R,) C -R+. 

Since also w-lws(S) Rs = -w-lRs C - Rf, we must have w-lws(S) = w,, . 
This proves (i). The easy proof of (ii) is omitted. 

Using Lemma 2, we conclude from (4) that 

(%71)G = qdCG) s;D(-l)‘s’ (&(-l)T’ I pT i-lP”‘Ld) * 

The inner sum equals j Ps 1-l [9, p. 141, whence 

(rl, 7)G = pd’G’ c (-l)lsl 1 Ps 1-l = q2d’G’ 1 G I-l, 
SCD 

by [lot. cit.]. This proves (2), and finishes the proof of Theorem 1. 

COROLLARY 1. Let j be a class junction on G. Then 

p(X) = & (- lYP’ I G/P I pdtP’ (@Z pf(JC)) * 

u 

The left-hand side equals j G I(j, cV)c , which can be computed from (l), 
using Frobenius duality, giving the formula of this corollary. Clearly, the 
formula is equivalent to (1). 

Recall that a complex valued function j on G is parabokc (or is a cusp form) 
if for any proper parabolic subgroup P of G and any x E G we have 
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COROLLARY 2. If f is a parabolic class function on G then 

*TV f (x) = (- l)scG~qd(G’f(e). 

This is a direct consequence of Corollary 1. It applies, in particular, in the case 
that f is the character of an irreducible parabolic (or discrete series) representa- 
tion of G. This confirms, in that case, a conjecture of I. G. Macdonald, according 
to which we should have, for any irreducible character x of G, that 

4x> = XW C x(x) 
ZEV 

is, up to sign, a power of q. 
The argument used here can also be used to confirm the conjecture in the case 

that x = Ind,G$, where P is a parabolic subgroup of G and 4 a parabolic 
character of PIR,P, lifted to P. See also note added in proof. 

For certain other irreducible characters, the conjecture is true by a formula 
of Kawanaka [6, p. 5411. 

3. GEOMETRIC APPLICATIONS 

We shall next give a more geometric formulation of the result of Theorem 1. 
If P is a parabolic k-subgroup of G, denote by X(P) the k-variety G/P. For 

any unipotent x E G put 

X(P), = {gP E X(P) 1 g-‘xg E R,P:. 

Ifs E G, then X(P), is defined over iz. Let X(P), be the set of its K-rational points. 

THEOREM 2. For any unipotent x E V we have 

LB (- 1)“‘P’qd’P’ 1 X(P), 1 = 1. (5) 

Let Z be the centralizer of x E V in G and C its conjugacy class. Applying 
C’orollary 1 to the characteristic function of C, we obtain 

& (- I)8’P’qd’P) 1 P 1-l / 2 1 ( C n R,P 1 = 1. 

As is well-known, the points of X(P)(k) are represented by the gP with g E G. 
We identify X(P) (K) with G/P, and then we have 

X(P), = (gP E G/P I g-lx E R,P}. 
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Hence 

Inserting this in the previous formula we obtain (5). It is readily seen that (1) is 
a consequence of (5) (for all x E V). If x = e, formula (5) reduces to the formula 
of Steinberg [9, p. 141, used before. If 3c E G is a regular unipotent element, we 
have j X(P), 1 = 0 if P is not a Bore1 group and 1 X(B), / = 1, and (5) is clear. 
In the other cases, (5) is a nontrivial result. 

The cohomological determination of the number of K-rational points of an 
algebraic variety over k, reveals that relations like (5), between numbers of 
rational points of several k-varieties, may be a reflection of geometric facts, 
relating these varieties (compare [3, p. 175, 1.11, 1.121). I do not know a geometric 
explanation of (5), along these lines. 

However, in the particular case G = G&,(K), we can draw geometric con- 
clusions from (5). They are given in the next theorem. Assume now that G = 
GL, . All unipotent classes of G are then represented by elements of G. We 
denote by bi(P, x) the ith Betti number (in the sense of I-adic cohomology, 
with 1 1 p) of the variety X(P), . 

THEOREM 3. Let G = GL, , let x E I;. 

(i) We have bi(P, x) = 0 if i is odd. 

(ii) For each d > 0, we have 

& (-l)~‘P’b,i(P, x) = 0, 

d(P)+i=d 

moreover b,(B, x) = 1. 

(iii) The assertions of(i) and (ii), for some x E V, imply (5). 

It was proved by Shimomura [7] ( see also [5, No. 21) that for G = GL, the 
variety of fixed points in X(P) of x E V can be partitioned into a finite union of 
locally closed subspaces, each of which is isomorphic to an affine space. It 
follows readily from the proof given in [5] that the subspaces of the partition 
are defined over k, and are K-isomorphic to an affine space. It also follows readily 
that our X(P), have the same properties. It follows that (i) holds and that the 
Frobenius endomorphism acts as multiplication by $ on the cohomology group 
H2i(X(P),). By Grothendieck’s formula for numbers of K-rational points we 
then have 

I X(P), I = c 4ib2,(p, 4. 
$20 

Inserting this into (5), we obtain the results stated in (ii). That (iii) holds follows 
by reversing the argument. 
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Remarks. (a) That b,(B, X) = I simply means that the variety of fixed 
points of x in G/B is connected, which is a known fact (see [S]). Theorem 3 
shows that this geometric fact is hidden in (5) (if G = GL,). 

(b) From the results of [7], one could extract a combinatorial description 
(in terms of tableaus) of the Betti numbers b&P, x). The relations of (ii) thus 
can be given a combinatorial interpretation (which, however, does not appear to 
be very illuminating). 

(c) The comparison theorem of I-adic cohomology implies that over @ 
statement similar to those of Theorem 3(i) and (ii) are also true. 

Note ad&d in proof. Using Theorem 1, D. Alvis has recently obtained further results 
on Macdonald’s conjecture, mentioned at the end of no. 2 (see D. Alvis, The duality 
operation in the character ring of a finite Chevalley group, Bull. Amer. Math. Sot., 
New Series, 1 (1979), 907-911). 
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