Heuristics for type error
discovery and recovery
(revised revised)

Jurriaan Hage

Bastiaan Heeren

Department of Information and Computing Sciences,
Utrecht University

Technical Report UU-CS-2006-054

WWW.cS.uu.nl
ISSN: 0924-3275

Abstract. Type error messages that are reported for incorrect functional pro-
grams can be difficult to understand. The reason for this is that most type infer-
ence algorithms proceed in a mechanical, syntax-directed way, and are unaware
of inference techniques used by experts to explain type inconsistencies. We for-
mulate type inference as a constraint problem, and analyze the collected con-
straints to improve the error messages (and, as a result, programming efficiency).
A special data structure, the type graph, is used to detect global properties of
a program, and furthermore enables us to uniformly describe a large collection
of heuristics which embed expert knowledge in explaining type errors. Some of
these also suggest corrections to the programmer. Our work has been fully im-
plemented and is used in practical situations, showing that it scales up well. We
include a number of statistics from actual use of the compiler showing us the
frequency with which heuristics are used, and the kind and number of suggested
corrections.

1 Introduction

Type inference algorithms for Hindley-Milner type systems typically proceed in a syntax-
directed way. The main disadvantage of such a rigid and local approach is that the type
error messages that are reported not always reflect the actual problem.

The need for precise type error messages is most apparent when teaching a course
on functional programming to students. Over the last five years we have developed the
Topr framework to support flexible and customizable type inference. This framework
has been used to build the Helium compiler [7], which implements almost the entire
Haskell 98 standard, and which is especially designed for learning the programming
language. This compiler, and thus the type graph and heuristics that drive its type infer-
ence process, have been used with good results in an educational setting since 2002. It
is freely available for download [7].

We follow a constraint-based approach: a set of constraints is collected by travers-
ing the abstract syntax tree of a program, which is then passed to a constraint solver.
This approach gives us the usual benefit of decoupling specification and computing a
solution, which tends to simplify both. Because many program analyses share the same
kinds of constraints, it also allows us to reuse our solvers.

A remaining issue is that the order in which the solver considers the constraints
strongly influences at which point an inconsistency is detected. In existing compilers
(which tend to solve constraints as they go), this has the disadvantage that a bias exists
for finding errors towards the end of a program. Although oapiramework provides
various ways of ordering type constraints (see [3]), in this paper we discuss a constraint
solver that uses type graphs, a data structure that allows a global analysis of the types
in a program. More importantly, type graphs naturally support heuristics, which embed
expert knowledge in explaining type errors.

Some of these heuristics correspond closely to earlier proposals for improving er-
ror messages, such as determining the most likely source of a type error by counting
pieces of evidence [14]. In addition, we have defined a number of heuristics of our
own. For example, there are heuristics which can discover commonly made mistakes
(like confusing string and character literals, or confusing additioand appendH-),
and a sophisticated heuristic which considers function applications in detail to discover
incorrectly ordered, missing, or superfluous arguments.

A number of these heuristics are tried in parallel, and a voting mechanism decides
which constraints will be blamed for the inconsistency. These constraints are then re-
moved from the type graph, and each of them results in a type error message reported
back to the programmer. The use of type graphs thus leads naturally to reporting multi-
ple, possibly independent type error messages.

The contributions we make in this paper are the following: we have integrated a
large collection of heuristics into a comprehensive and extensible framework. Although
some of these are known from the literature, this is the first time, to our knowledge,
that they have been integrated into a full working system. In addition, we have defined
a number of new heuristics based on our experiences as teachers of Haskell. Our work
has been fully implemented into the Helium compiler which shows that it scales to a full
programming language. Helium has been used in three complete courses of functional
programming at Universiteit Utrecht comprising several hundreds of students. Further-

more, we have applied the compiler to a collection of 11,256 programs collected in
2005, which yields statistics on how often heuristics contribute to finding a mistake,
and the number and kind of probable fixes suggested by the compiler. Many examples
in this paper are taken from this collection of programs.

This paper is organized as follows. In the next section we set the scene and introduce
the constraints we will use. Then we introduce each heuristic in turn in Section 3. In
Section 5 we show how the heuristics are put together in the Helium compiler, and
Section 6 gives statistical information about the usage of heuristics based on a large
collection of programs compiled by first-year students. Section 4 considers the type
graph data structure on which the heuristics are all defined. In Section 7 we consider
related work, after which we conclude. The appendix includes a sample trace of the
compiler, which has been included only to simplify the task of reviewers.

2 Constraints

In this paper we consider only sets of equality constraints. Naturally, polymorphism is
part of the language, but it is used only between binding groups, to communicate the
polymorphic type of a definition to its use sites. For every such use, the polymorphic
type will be replaced by a fresh instance of that type. The major consequence of this
approach is that definitions from previous binding groups are considered given and can
not be blamed for a type error, only their use can. Due to space restrictions, we refer the
reader to [5] for more details of this process.

For the purposes of this paper, we can thus simply assume that constraints are
of the formr; = 75, in which 7; and, are monomorphic types, either type vari-
ablesvq, v, ..., type constants (such ast and —), or the application of a type
to another. For example, the type of functions from integers to booleans is written
(((—) Int) Bool). Type application is left-associative, and we omit parentheses where
allowed. We often write the function constructor infix, resultinglitt — Bool. We
assume the types are well-kinded: types liké Bool do not occur.

3 Heuristics

In principle, all the constraints that contribute to an error are candidates for removal.
However, some constraints are better candidates for removal than others. To select the
“best” candidate for removal, we use a number of heuristics. These heuristics are usually
based on common techniques used by experts to explain type errors. In addition to
selecting what is reported, heuristics can specialize error messages, for instance by
including hints and probable fixes. For each removed constraint, we create a single type
error message using the constraint information stored with that constraint. The approach
naturally leads to multiple, independent type error messages being reported.

Many of our heuristics are considered in parallel, so we need some facility to co-
ordinate the interaction between them. The Helium compiler uses a voting mechanism
based on weights attached to the heuristics, and the “confidence” that a heuristic has
in its choice. Some heuristics, the tie-breakers, are only considered if none of the other
heuristics came up with a suggestion.

A consideration is how to present the errors to a user, taking into consideration the
limitations imposed by the used output format. In this paper we restrict ourselves to
simple textual error messages.

In the following we shall consider a number of heuristics, a subset of what is cur-
rently available in Helium. Heuristics available in Helium have been omitted for vari-
ous reasons: some of the heuristics are still in their experimental stages (e.g., the repair
heuristics developed as part of a Master Thesis project by Langebaerd [8]), some have
been considered elsewhere (e.g., the type inference directives [6]), and some deal with
overloading, an issue we do not address in this paper.

We have grouped the heuristics into three major groups: the general heuristics that
apply to constraint solving in general, the language dependent heuristics that are specific
for functional programming languages and Haskell in particular, and finally we consider
a number of program correcting heuristics that include a probable fix as part of the type
error message.

We illustrate the heuristics by means of examples. Many of these are taken from a
collection of11, 256 actual compiles made by students in the course year 2004/2005.
They can be recognized by the fact that they are followed by an error message. For
reasons of brevity we only include the parts of the program that are involved in the
error, and in some cases have translated identifier names to English and removed some
unimportant aspects of the code, for reasons of clarity.

3.1 General heuristics

The heuristics in this section are not restricted to type inference, but they can be used
for other constraint satisfaction problems as well.

Participation ratio heuristic Our first heuristic applies some common sense reason-
ing: if a constraint is involved in more than one conflict, then it is a better candidate for
removal. The set of candidates is thus reduced to the constraints that occur most often
in conflicts. This heuristic is driven by a ratiqtypically at least 95%): only constraints

that occur in at least percent of the conflicts are retained as candidates. This percent-
age is computed relative to the maximum number of conflicts any of the constraints in
the set was involved in.

Note that this heuristic also helps to decrease the number of reported error messages,
as multiple conflicts are resolved by removing a single constraint. However, it does not
guarantee that the compiler returns the minimum number of error messages.

The participation-ratio heuristic implements the approach suggested by Johnson and
Walz [14]: if we have three pieces of evidence that a value should havdri;pend
only one for typeBool, then we should focus on the latter.

First come, first blamed heuristic The next heuristic we present is used as a final tie-
breaker since it always reduces the number of candidates to one. This is an important
task: without such a selection criteria, it would be unclear (even worse: arbitrary) what is
reported. We propose a tie-breaker heuristic which considers the position of a constraint
in the constraint list.

In [3] we address how to flatten an abstract syntax tree decorated with constraints
into a constraint list... Although the order of the constraints is irrelevant while con-
structing the type graph, we store it in the constraint information, and use it for this
particular heuristic: for each error path, we take the constraint which completes the
path —i.e., which comdatestin L. This results in a list of constraints that complete an
error path, and out of these constraints we pick the one that fiesthia L.

3.2 Language dependent heuristics

The second class of heuristics involves those that are driven by domain knowledge.
Although the instances we give depend to some extent on the language under consider-
ation, it is likely that other programming languages allow similarly styled heuristics.

Trust factor heuristic The trust factor heuristic computes a trust factor for each con-
straint, which reflects the level of trust we have in the validity of a constraint. Obvi-
ously, we prefer to report constraints with a low trust factor. We discuss four cases that
we found to be useful.

(1) Some constraints are introducpeb forma they trivially hold. An example is
the constraint expressing that the type of a let-expression equals the type of its body.
Reporting such a constraint as incorrect would be highly inappropriate. Thus, we make
this constraint highly trusted. The following definition is ill-typed because the type
signature declared fafquares does not match with the type of the body of the let-
expression.

squares :: Int
squares =let f i =i x4
in map f [1..10]

Dropping the constraint that the type of the let-expression equals the type of the body
would remove the type inconsistency. However, the high trust factor of this constraint
prevents us from doing so. In this case, we select a different constraint, and report, for
instance, the incompatibility between the typesgfares and its right-hand side.

(2) The type of a function imported from the standard Prelude, that comes with
the compiler, should not be questioned. Ordinarily such a function can onlsdst
incorrectly.

(3) Although not mandatory, type annotations provided by a programmer can guide
the type inference process. In particular, they can play an important role in the reporting
of error messages. These type annotations reflect the types expected by a programmer,
and are a significant clue where the actual types of a program differ from his perception.
We can decide to trust the types that are provided by a user. In this way, we can mimic a
type inference algorithm that pushes a type signature into its definition. Practice shows,
however, that one should not rely too much on type information supplied by a novice
programmer: these annotations are frequently in error themselves.

(4) A final consideration for the trust factor of a constraint is in which part of the
program the error is reported. Not only types of expressions are constrained, but errors

can also occur in patterns, declarations, and so on. Hence, patterns and declarations
can be reported as the source of a type conflict. Whenever possible, we report an error
for an expression. In the definition afcrement, the patterr(_: z) (z must be a list)
contradicts with the expressian+ 1 (z must be of typént).

increment (—:z) =z + 1

We prefer to report the expression, and not the pattern. If a type signature supports the
assumption that must be of typdnt, then the pattern can still be reported as being
erroneous.

Avoid folklore constraints heuristic Some of the constraints restrict the type of a sub-
term (e.g., the condition of a conditional expression must be of Bpa), whereas
others constrain the type of the complete expression at hand (e.g., the type of a pair is a
tuple type). These two classes of constraints correspond very neatly to the unifications
that are performed by algorithiy and algorithmM [9] respectively. We refer to con-
straints corresponding t®1 asfolklore constraints. Often, we can choose between two
constraints — one which is folklore, and one which is not. In the following definition,
the condition should be of typBool, but is of typeString.

test :: Bool — String
test b =if "b" then "yes!" else "no!"

Algorithm W detects the inconsistency at the conditional, when the type inferred for
"b" is unified with Bool. As a consequence it mentions the entire conditional and
complains that the type of the condition$¢ring instead ofBool. Algorithm M, on

the other hand, pushes down the expected #pa to the literal"b" , which leads to

a similar error report, but now only the literdd" will be mentioned. The former gives
more context information, and is thus easier to understand for novice programmers. For
this reason we prefer not to blame folklore constraints for an inconsistency.

Avoid application constraints heuristic This heuristic is surprising in the sense that
we only found out that we needed it after using our compiler, and discovering that some
programs gave counterintuitive error messages. Consider the following fragment

if plus 1 2 then ... else ...

in which plus has typelnt — Int — Int.

The application heuristic (a program correcting heuristic discussed in Section 3.3)
finds that the arguments dus indeed fit the type of the function. However, the result
of the application does not match the expechzd! for the condition. In this situation,
algorithm»V would put the blame on the condition, whilet would blame the use of
plus. There is (unfortunately) another possibility: the application itself is blamed. How-
ever, given that the arguments do fit, it is quite unlikely that the application as a whole
is at fault, and such an error message becomes unnatural. The task of this heuristic is to
remove these constraints from the candidate set. There is a similar heuristic for nega-
tions, which is necessary in Haskell, because negation is part of the language and not
just another function.

Unifier vertex heuristic At this point, the reader may have the impression that heuris-
tics always put the blame on a single location. If we have only two locations that con-
tradict, however, then preferring one over another introduces a bias. Our last heuristic
illustrates that we can also design heuristics to restore balance and symmetry in er-
ror messages, by reporting multiple program locations with contradicting types. This
technique is comparable to the approach suggested by Yang [15].

The design of our type rules (Chapter 6 of [5]) accommodates such a heuristic:
at several locations, a fresh type variable is introduced to unify two or more types,
e.g., the types of the elements in a list. We call such a type variabtéfiar. In our
heuristic, we use unifiers in the following way: we remove the edges from and to a
unifier type variable. Then, we try to determine the types of the program fragments that
were equated via this unifier. With these types we create a specialized error message. In
the following example, the type of the context is also a determining factor.

All the elements of a list should be of the same type, which is not the cage in
definition.

fry=|z,yid,"\n"]

In the absence of a type signature forwe choose to ignore the element&ndy in

the error message, because their types are unconstrained. We repgft tiaith has

a function type, cannot appear in the same list as the styirig . By considering how

f is applied in the program, we could obtain information about the typesaofdy. In

our system, however, we never let the type of a function depend on the way it is used.
In the following definition, the branches have different types.

test ¢ = if ¢ then [1..10] else "abc"

Neither of the two branches is more likely to contain the error. Therefore, we report
both branches without indicating which should be changed.

(1,10): Type error in branches of conditional

expression : if ¢ then [1..10] else "abc"
then branch: [1..10]

type o [Int]
else branch : "abc"

type 1 String

An example from the collection of logged programs is the following.
simplify :: Prop — Prop
simplify = (...)
simplifyAnd :: [Prop] — [Prop]
simplifyAnd (p : ps) = [simplify p, simplifyAnd ps]
yields the error message
(5,22): Type error in list (elements have different types)
expression [simplify p, simplifyAnd ps]
1st element : simplify p

type > Prop
2nd element : simplifyAnd ps
type . [Prop]
which simply lists all the participating uses and the types inferred for these uses and
leaves putting the blame in the hands of the programmer.
Without the unifier heuristic, Helium returns the following message

(5,22): Type error in element of list

expression : [simplify p, simplifyAnd ps)
term . simplifyAnd ps

type . [Prop]

does not match : Prop

which puts the blame squarely on the second element in the list.

Our last example shows that even if we want to put blame on one of the cases, we
can still use the other cases for justification.

The following definition contains a type error.

mazxOfList :: [Int] — Int

maxOfList [] = error "empty list"
mazOfList [z] =u

mazOfList (z,zs) = x ‘max* maxOfList xs

A considerable amount of evidence supports the assumption that the pattesn

in maxOfList’s third function binding is in error: the first two bindings both have a
list as their first argument, and the explicit type expresses that the first argument of
mazOfList should be of typgInt]. In a special hint we enumerate the locations (1,14),
(2,11), (3,11), that support this assumption. Each location consists of a line number,
followed by the position on that line.

Lastly, observe that the type variables used to instantiate a type scheme serve the
same purpose as a unifier. Hence, we could apply the same techniques to improve error
reporting for a polymorphic function. For instance, consider the ope#atawhich has
type[a] — [a] — [a]. If two operands of4 cannot agree upon the type of the elements
of the list, we could report+ and its type, together with the two candidate types for the
type variablea.

3.3 Program correcting heuristics

A different direction in error reporting is trying to discover what a user was trying to ex-
press, and how the program could be corrected accordingly. Given a number of possible
edit actions, we can start searching for the closest well-typed program. An advantage
of this approach is that we can report locations with more confidence. Additionally, we
can equip our error messages with hints how the program might be corrected. However,
this approach has a disadvantage too: suggesting program fixes is potentially harmful
since there is no guarantee that the proposed correction is the semantically intended
one (although we can guarantee that the correction will result in a well-typed program).

Furthermore, it is not immediately clear when to stop searching for a correction, nor
how we could present a complicated correction to a programmer.

An approach to automatically correcting ill-typed programs is that of type iso-
morphisms [11]. Two types are considered isomorphic if they are equivalent under
(un)currying and permutation of arguments. Such an isomorphism is withessed by two
morphisms: expressions that transform a function of one type to a function of the other
type, in both directions. For each ill-typed application, one may search for an isomor-
phism between the type of the function and the type expected by the arguments and the
context of that function. The heuristics described in this section elaborate on this idea.

The application heuristic Function applications are often involved in type inconsis-
tencies. Hence, we introduce a special heuristic to improve error messages involving
applications. It is advantageous to halkethe arguments of a function available when
analyzing such a type inconsistency. Although mapping n-ary applications to a num-
ber of binary ones simplifies type inference, it does not correspond to the way most
programmers view their programs.

The heuristic behaves as follows. First, we try to determine the type of the func-
tion. We can do this by inspecting the type graph after having removed the constraint
created for the application. In some cases, we can determine the maximum number
of arguments that a function can consume. However, if the function is polymorphic
in its result, then it can receive infinitely many arguments (since a type variable can
always be instantiated to a function type). For instance, every constant has zero argu-
ments, the functionnap :: (e — b) — [a] — [b] has two, and the functiofoldr :

(a = b—b) — b — [a] — bapossibly infinite number.

If the number of arguments passed to a function exceeds the maximum, then we
can report that too many arguments are given — without considering the types of the
arguments. In the special case that the maximum number of arguments is zero, we
report thait is not a function

To conclude the opposite, namely that not enough arguments have been supplied,
we do not only need the type of the function, but also the type that the context of the
application is expecting. An example follows.

The following definition is ill-typed:map should be given more arguments (a@r
should be removed from the left-hand side).

doubleList :: [Int] — [Int]
doubleList xs = map (*2)

At most two arguments can be givermt@ap only one is supplied. The type signature for
doubleListprovides an expected type for the result of the application, whi¢his.

Note that the firs{/nt] from the type signature belongs to the left-hand side pattern
xs We may report that not enough arguments are supplietkip but we can do even
better. If we are able to determine the types inferred for the arguments (this is not always
the case), then we can determine at which position we have to insert an argument, or
which argument should be removed. We achieve this by unificationheids First, we

have to establish the type ofags only argument{(x2) has typelnt — Int. Because

we are one argument short, we insert one heetq indicate a forgotten argument.

(Similarly, for each superfluous argument, we would insert one hole in the function
type.) This gives us the two configurations depicted in Figure 1.

configuration 1 :
function (a—b) — [a] — [b]
arguments + context . — (Int — Int) — [Int]

configuration 2 :
function (a—b) — [a] — [b]
arguments + context (Int — Int) — o — [Int]

Fig. 1. Two configurations for column-wise unification

Configuration 1 does not work out, since column-wise unification fails. The second
configuration, on the other hand, gives us the substitutioa [a := Int, b := Int].

This informs us that our functionr(ap requires a second argument, and that this argu-
ment should be of typ§([a]) = [Int] (see also Appendix A).

The final technique we discuss attempts to blame one argument of a function appli-
cation in particular, because there is reason to believe that the other arguments are all
right. If such an argument exists, then we put extra emphasis on this argument in the
reported error message.

evaluate :: Prop — [String] — Bool
evaluate (And [p: q]) zs = all [p | p — 5]

(2,27): Type error in application

expression : all [p | p «— xs]
term ©ooall
type . (a— Bool) — [a] — Bool
does not match : [String] — Bool
probable fix . insert a first argument

The tuple heuristic Many of the considerations for the application heuristic also ap-
ply to tuples. As a result, this heuristic can suggest that elements of a tuple should be
permuted, or that some component(s) should be inserted or removed.

The permutation heuristic A mistake that is often made is the simple exchange of
one or more arguments to a function. The permutation heuristics considers applications
which are type incorrect, and tries to determine whether theresisghe permutation

that makes the application correct. For this to work, we need the type of the application
expected by the context, and the types of the arguments (if any of these cannot be
typed, then it makes no sense to apply this heuristic). By local changes to the type
graph, the compiler then determines how many permutations result in a correctly typed

application. If there is only one, then a fix to the program is suggested (in addition to
the usual error message). If there are more, then we deem it impossible to suggest a
probable fix, and no additional hint is given.

zero :: (Float — Float) — Float — Float
zero f y0 = until (Ab — b — f b /. diff f b)
(Ab — f b <.0.000001) y0

with the following error message as a result
(2,13): Type error in application

expression : until Ab—=b—fb/...)(Ab—..)y0
term D until

type : (a— Bool) = (a—a)—a—a

does not match : (Float — Float) — (Float — Bool) — Float — Float
probable fix . re-order arguments

The sibling function heuristic Novice students often have problems distinguishing
between specific functions, e.g., concatenate two(ligtsand insert an item at the front

of alist (;). We call such functionsiblings If we encounter an error in an application in
which the function that is applied has a sibling, then we can try to replace it by its sibling
to see if this solves the problem (naturally only at the type level). This can be done quite
easily and efficiently on type graphs by a local modification of the type graph. The main
benefit is that the error message may include a hint suggesting to replace the function
with its sibling. (Helium allows programmers to add new pairs of siblings, which the
compiler then takes into account [6].)

concat :: [a] — [a]
concat [| =]
concat [a] = head [a] H concat (tail [a])

with the following error message as a result

(3,22): Type error in variable

expression : +H

type © [a] = [a] — [a]

expected type : b—[b] — [b]
because . unification would give infinite type
probable fix . use : instead

The sibling literal heuristic A similar kind of confusion that students have is that
they mix floating points numbers with integers (in Helium we distinguish the two), and
characters with strings. This gives rise to a heuristic that may replace a string literal
"c" with a character literdt’ if that resolves the inconsistency.

writeRow :: [[String]] — Int — String
writeRow tab n = if n == (length tab 4+ 3) then ™
else replicate (columnWidth tab n) " " +H" " + ...

results in

(3,61): Type error in literal

expression
type o String
expected type : Char
probable fix : use a char literal instead

4 Type graphs

The heuristics of the previous sections share the characteristic that they have all been
implemented in Helium as functions that work on type graphs. Essentially, a type graph
represents a set of constraints, and as such is similar to a substitution. The main differ-
ence is that type graphs can also represent inconsistent sets of constraints.

The type graphs resemble the path graphs that were proposed by Port [12], and
which can be used to find the cause of non-unifiability for a set of equations. However,
we follow a more effective approach in dealing with derived equalities (i.e., equalities
obtained by decomposing terms, and by taking the transitive closure).

McAdam has also used graphs to represent type information [10]. In his case parts
of the graph are duplicated to handle let-constructs, which implies a lot of duplication
of effort, and, worse, it can give rise to duplication of errors if the duplicated parts
themselves are inconsistent. We avoid this complication by first handling the definitions
of a let (which gives us the complete types of those definitions), before continuing with
the let body. This implies that in case of a mismatch between the definition and the use
of an identifier, the blame is always on the latter.

Due to lack of space we only try to convey the essential ideas, intuitions, and fea-
tures of type graphs and how they may be used. For a complete description we refer the
reader to Chapter 7 of the PhD thesis of the second author [5].

In this section we consider a set of equality constraints as a running example and
show how type graphs may be used to determine which constraints should be removed
to make the set of constraints consistent, resulting in a consistent set of constraints that
can then be converted into a substitution (the usual outcome of the type inference pro-
cess). As explained in Section 2, we may assume that we deal with equality constraints
exclusively: polymorphism is handled at a different level.

Consider the following set of equality constraints.

0 1 2 3
{v1 £ Vg — Vg, V1 = vy — U3, Vg = Int, vg = Bool}

Annotations like#0 . . . are used for reference purpose only. For each left and right hand
side of a constraint we construct a term graph, which reflects the hierarchical structure
of type terms. These term graphs consist of vertices and directed edges, as shown on
the left and right hand side of Figure 2. Recall that the type— v, is represented

by a binary type applicatiof(—) vg) vo, and it is this type that is used in type graph
construction. For readability, we continue to refepgo— vy in the text.

Bool

Int

Fig. 2. An inconsistent type graph

The equality constraints between terms is reflected in the introduction of undirected
edges in the type graph. Thus each constraint results in a single undirected edge (with
its number as a label), called an initial edge. When we equate two structured types,
we implicitly equate the subtypes of these types. In the exampleand v, become
equated, because through vy — vy andvy — v3 become equated. This gives rise to
the derived edges, occurring as dashed edges in Figure 2. The connected components
that arise when considering all vertices that are connected via an initial or derived edge,
are called equivalence groups. Clearly, each vertex in an equivalence groups should
represent the same type. This is not the case in Figure 2, befauaed Bool end up
in the same equivalence group. The paths between such clashing constants are called
error paths, which may contain both initial and derived edges. When we encounter such
an error path, we unfold the derived edges until we end up with a path that consists
solely of initial edges (remember that these relate directly to the constraints from which
the type graph was built).

The example type graph has only a single error path, but can in principle contain
many. The task of the type graph solver is to dissolve all error paths and it may do
so by selecting a constraint from each error path. This is exactly where the heuristics
discussed earlier in this paper come in: they operationalize what are the best places to
cut. After a set of constraints is selected the removal of which dissolves all error paths,
then we can use the resulting type graph to construct a substitution as the end result of
the solving process.

In the example, there are a number of possibilities to dissolve the error path. This is
generally the case, and the place where the heuristics play a role in selecting the most
likely candidate for removal. We can choose to remove any of the four constraints to
make the type graph consistent, each choice leading to a substitution obtained from the
remaining type graph. For example, if we rema¥6, then the resulting substitution
mapsv; to Int — Bool, vs to Int, andvs to Bool. If we choose to removg3 instead,
then the substitution mapsg, v andwvs to Int, andv; to Int — Int. In our imple-
mentation, the constraint is provided with enough information to be able to generate a
precise error message that tells the user why it was removed, in terms of types computed

from the remainder type graph. For example, in the latter case it will contrast the type
it expected fows which is Int with the type it found fors, which is Bool.

Thus far, we have explained rather informally how type graphs are built and handled,
but in practice there are a number of complications: The number of vertices in a type
graph grows quickly, as does the number of derived edges. The number of error paths
in any given type graph can be very large, even when one disregards error paths that
may be considered superfluous. Furthermore, how can one effectively deal with infinite
types, which occur as a result of constraints such;ass vy — Int? How does one
deal with type synonyms, that introduce new type constants as abbreviations for existing
types? Detailed descriptions of solutions to these complications can be found in [5].

5 Putting it all together

The Helium compiler includes all the heuristics we have discussed (and more), and has
been used for a number of years to teach students to program in Haskell. Reactions in
the first year were very promising (some of these students had used Hugs before and
indicated that the quality of error messages was much improved). Since then we have
improved the compiler in many ways, adding new language features and new heuris-
tics. Unfortunately, the students who currently do the course have never encountered
any other system for programming in Haskell and thus cannot compare their expe-
riences. For completeness, we have included a sample trace of the execution of the
Helium compiler in Appendix A (with highly verbose output concerning the type in-
ference process). It shows in detail what the effect is of applying the various heuristics.
The Helium compiler itself is available for download to anyone interested in further
experimentation [7].

Another issue we would like to address here is that of efficiency of the compiler.
We have constructed a special kind of solver that partitions the program into a number
of relatively independent chunks (in a first approximation every top level definition is
a chunk), applies a fast greedy solver to each, and only when it finds a type error in
one of the chunks, does it apply the slower but more sophisticated type graph solver
to this erroneous chunk (buibt to the foregoing chunks). This means that the type
graph solver is only used when a type error is encountered, and only on a small part
of the program. Additionally, there is a maximum to the number of error paths that the
type graph solver will consider in a single compile. Still, constructing and inspecting a
type graph involves additional overhead, which slows down the inference process. In a
practical setting (teaching Haskell to students), we have experienced that the extra time
spent on type inference does not hinder programming productivity.

To give the reader some idea how the ideas of the previous section take form in an
actual compiler, we have included the functigstOfHeuristics in Figure 3. It takes a
(partially user specified) list of siblings [6] to generate the list of available heuristics for
this compilation.

Each heuristic can be categorized as either a filtering heuristic or a selector heuris-
tic. The avoid TrustedConstraints is an example of the former: it filters out all the
constraints from the candidate set that have a high trust value, thus making sure that
these are never reported. Note thabidForbidden Constraints avoids constraints of

listOfHeuristics siblings path =
[avoidForbiddenConstraints
, highParticipation 0.95 path
, Heuristic (Voting
[siblingFunctions siblings
, similarNegation
, stblingLiterals
, applicationHeuristic
, variable Function
, tupleHeuristic
, foHasTooManyArguments|)
, avoidApplicationConstraints
, avoidNegationConstraints
, avoid TrustedConstraints
, avoidFolkloreConstraints
, firstComeFirstBlamed]

Fig. 3. The list of heuristics taken from the Helium compiler

the sort described under (1) of the trust factor heuristic, only (3) and (4) are part of
avoid TrustedConstraints (case (2) is already taken care of by our choice that the use
of an identifier can never influence its type). It is easy to make the distinction between
selectors and filters itistOfHeuristics: all the heuristics that are part of tHéting
construct in the middle are selectors, the others are filters.

A voting heuristic is built out of a number of subsidiary heuristics, each of which
looks to see whether it can suggest a constraint likely to be responsible for the type
inconsistency. Each voting heuristic also returns a value that gives a measure of trust the
heuristic has in its suggestion. Based on these measures the combined voting heuristic
will decide which constraint to select, if any.

Most of the heuristics in Figure 3 are connected directly with heuristics discussed
in the paper. There are a few special cases, howewxgiuble Function has largely
the same functionality as thepplicationHeuristic, but the latter is only triggered on
applications (a function followed by at least one argument). Insteadgble Function
is triggered on identifiers that have a function type, but that do not have arguments at
all. It may for instance suggest to insert certain arguments to make the program type
correct. Another thing to remark is that the permutation of arguments in applications is
implemented as part of thevplication Heuristic as well.

The heuristisimilarNegation provides the same functionality aélingFunctions,
but specifically for the negation function, which is a syntactic construct in Haskell and
must be treated somewhat differently. The heuriti€as Too ManyArguments tries to
discover whether the type inconsistency can be explained by a discrepancy between the
number of formal arguments, and the expected number of arguments derived from the
function’s explicit type signature.

The heuristics in the final block, starting withvoidA pplicationConstraints are
low priority heuristics that are used as tie-breakers. For these, it should be noted that
avoidNegation Constraints provides the same functionality asoid A pplication Constraints,

but specifically for negation (which, as explained before, is not a function in Haskell,
but a syntactic construct).

The function that applies the list of heuristics starts with a set of constraints that lie
on an error path. It considers the heuristic&#mOfHeuristics in sequence. A filtering
heuristic may remove any number of candidates from the set, but never all. If a con-
straint is selected by a selector heuristic, all other constraints will be removed from the
set of candidates leaving only the selected constraint.

6 Validation and statistics

The existence of an actual implementation of our work immediately raises another is-
sue: by means of this implementation it should be possible to establish whether the
implemented heuristics are effective. Indeed, the “quality” of a type error message is
not likely to get a precise definition any time soon, which means that the usability of
Helium can only be verified empirically. However, to perform such experiments is a
difficult problem in itself and beyond the scope of this paper. Note though that we have
initiated this particular path of research, of which the first results can be found in a
technical report [4].

In this paper we take a different approach and present a number of statistics com-
puted from programs collected by logging Helium compilations in a first year program-
ming course. Each logging corresponds to a uniqgue compile performed by a student in
the student network: this allows us to reconstruct the compile exactly. More information
about the logging process can be found in a technical report [2]. We use the data sets
collected for the course year 2004-2005, which include a totall o256 loggings of
which 3, 448 resulted in one or more type errors. In total, the type incorrect programs
produceds, 890 type error messages.

For the heuristics described in the previous sections, Figure 4 shows how often
each contributed to eliminating candidate constraints, and in how many cases it not
only contributed, but was decisive in bringing the number of candidates down to one.
In other words, it was responsible for selecting the constraint to be removed and as
such strongly influences the error message reported to the programmer. Note that the
contributing count includes the deciding count. One thing that can be noted from the
results is that the tuple heuristic and the special heuristics for negation are hardly used.
The reason for this is that the programming assignments in 2004/2005 did not call for
heavy use of tuples and negation.

Figure 5 focuses on the type of probable fixes given to the programmer. Of the
5,890 error messages, a total of 1,116 actually gave such a probable fix (in addition to
the standard error message). The table is more detailed in the sense that for example
the application heuristic in Figure 4 may result in a variety of probable fixes: re-order
arguments, insert missing argument and so on. On the other hand, some of the fixes
suggested by the variable function heuristic are the same as those of the application
heuristic. As explained before, the variable function heuristic is conceptually the same
as the application heuristic. For reasons of brevity, we have kept the table compact,
lumping a number of similar probable fixes of lesser frequency together, for example
“insert a first and second argument” falls into the category of “insert a first/second/...

heuristic type|contributingdeciding
Avoid forbidden constraints filter 3756 22
Participation ratio (ratio=0.95) filter 3791 202
Function siblings selector 479 433
Similar negation selectof 0 0
Literal siblings selector 196 145
Application heuristic selector 2229 1891
Variable function selector 123 111
Tuple heuristic selector 5 5
Function binding has too many argumestdector 35 35
Avoid application constraints filter 726 15
Avoid negation constraints filter 0 0
Avoid trusted constraints filter 2371 1146
Avoid folklore constraints filter 1298 922
First come, first blamed filter 963 963

Fig. 4. The frequency of heuristics

argument”. We do make the distinction between “insert a first argument” and “insert
one argument”. In the former case, the compiler was able to conclude unambiguously
that the first argument was missing.

After running the experiments with the above results, we includedsbyger Heuristic,
which has been an experimental option in Helium for some time. The implemented in-
stance of theunifierHeuristic considers only the situation in which a unifier was used
to unify two different types, with the result that the error message obtains a neutral,
unbiased error message.

7 Related work

There is quite a large body of work on improving type error messages for polymorphic,
higher-order functional programming languages such as Haskell, cf. [14, 12, 10, 11, 15].
The drawback of these papers is that they have not led to full scale implementations and
in many cases disregard issues such as efficiency and scalability. Since we refer to the
articles who have influenced our choice of heuristic where we discuss the heuristic,
we shall consider only some of the more current approaches in the remainder of this
section.

In recent years, there is a trend towards implementation. One of these systems is
Chameleon [13] which is an interactive system for type-debugging Haskell. The view-
point here is that no static type inference process will come up with a good message in
every possible situation. For this reason, they prefer to support an interactive dialogue
to find the source of the error. A disadvantage of such a system is that is not very easy
to use by novice programmers, and more time consuming as well. An advantage is that
the process itself may give the programmer insight into the process of type inferenc-
ing, helping him to avoid repeating the mistake. As far as we know, Chameleon has not
been used on groups of (non-expert) programmers. The approach taken in Chameleon,

probable fix generated byfrequency
insert a first/second/... argument |application/variableFunctian 142
insert one/two/three/... argument(s) |application/variableFunction 107
remove a first/second/... argument application 139
swap the two arguments application 57
re-order arguments application 56
re-order elements of tuple tuple 3
use a char/int/float/string literal instead sibling literalg 154
use ++ instead sibling function 100
use : instead instead sibling functions 142
use concatMap instead sibling functiong 62
use eqString instead sibling functiong 45
other sibling fixes sibling functiong 109

Fig. 5. Probable fix frequency for the loggings of 2004/2005

to consider sets of minimal corresponds closely to the error slicing approach of Haack
and Wells [1].

Ideally, a compiler provides a combination of feedback and interaction: if the pro-
vided heuristics are reasonably sure that they have located the source of error, then a
type error message may suffice, otherwise an interactive session can be used to examine
the situation in detail. Our unifier heuristic occupies a middle point: it makes no judg-
ment on who is to blame, but only describes which types clash and where they arise
from. It only applies if there is no overwhelming amount of evidence against one of the
candidates for removal (for a particular choice of “overwhelming”).

Finally, our focus on expert knowledge was inspired by work of Jun, Michaelson,
and Trinder [16]. Their idea of interviewing experts has appeal, but a drawback of their
work is that the resulting algorithi¥ is very incomplete (onlyl0 out of 40 rules are
given), and we have not been able to find an implementation.

8 Conclusion and future work

We have discussed heuristics for the discovery of and the recovery from type errors in
Haskell. Knowledge of our problem domain allows us to define special purpose heuris-
tics that can suggest how to change parts of the source program so that they become
type correct. Although there is no guarantee that the hints always reflect what the pro-
grammer intended, we do think that they help in many cases. Moreover, we have shown
that it is possible to integrate various heuristics known from the literature with our own
resulting in a full scale, practical system that can be easily extended with new heuristics
as the need arises. We have applied our compiler to a large body of programs that have
been compiled by students during a first year functional programming course, resulting
in information about the frequency of hints and particular heuristics. Many of the ex-
amples in the paper are taken from this body of programs, lending additional strength
to our work.

We are currently proceeding along several lines: the first is doing a quantitative
analysis of the effect of hints on program productivity (based on programming ses-
sions logged by the compiler) [4]. A second project continues the work on rearranging
abstract syntax trees so that they become type correct [8].

References

1. Christian Haack and J. B. Wells. Type error slicing in implicitly typed higher-order lan-
guages. IrProceedings of the 12th European Symposium on Programmpagges 284—-301,
April 2003.

2. J. Hage. The Helium logging facility. Technical Report UU-CS-2005-055, Institute of Infor-
mation and Computing Sciences, Utrecht University, 2005.

3. J. Hage and B. Heeren. Ordering type constraints: A structured approach. Technical Re-
port UU-CS-2005-0186, Institute of Information and Computing Science, Utrecht University,
Netherlands, April 2005. Technical Report.

4. J. Hage and P. van Keeken. Mining for Helium. Technical Report UU-CS-2006-047, Institute
of Information and Computing Sciences, Utrecht University, 2006.

5. B. Heeren.Top Quality Type Error MessageRhD thesis, Universiteit Utrecht, The Nether-
lands, 2005 http://www.cs.uu.nl/people/bastiaan/phdthesis

6. B. Heeren, J. Hage, and S. D. Swierstra. Scripting the type inference proceEsghth
ACM Sigplan International Conference on Functional Programmipages 3 — 13, New
York, 2003. ACM Press.

7. B. Heeren, D. Leijen, and A. van IJzendoorn. Helium, for learning HaskeAdM Sigplan
2003 Haskell Workshgages 62 — 71, New York, 2003. ACM Press.

8. A. Langebaerd. Repair systems, automatic correction of type errors in functional programs.
http://www.cs.uu.nl/wiki/Top/Publications

9. O. Lee and K. Yi. Proofs about a folklore let- polymorphlc type inference algoritA@M
Transanctions on Programming Languages and Syst2@{d):707—723, July 1998.

10. B. J. McAdam. Generalising techniques for type debugging. In P. Trinder, G. Michaelson,
and H-W. Loidl, editorsTrends in Functional Programmingolume 1, pages 50-59, Bristol,
UK, 2000. Intellect.

11. B. J. McAdam. How to repair type errors automatically. In Kevin Hammond and Sharon
Curtis, editors,Trends in Functional Programmingolume 3, pages 87-98, Bristol, UK,
2002. Intellect.

12. G. S. Port. A simple approach to finding the cause of non-unifiability. In Robert A. Kowal-
ski and Kenneth A. Bowen, editorBroceedings of the Fifth International Conference and
Symposium on Logic Programmirgages 651-665, Seatle, 1988. The MIT Press.

13. P. J. Stuckey, M. Sulzmann, and J. Wazny. Interactive type debugging in Haskell. In
Haskell’'03: Proceedings of the ACM SIGPLAN Workshop on Hasgaties 72—-83, New
York, 2003. ACM Press.

14. J. A.Walz and G. F. Johnson. A maximum flow approach to anomaly isolation in unification-
based incremental type inference Gonference Record of the 13th Annual ACM Symposium
on Principles of Programming Languaggsges 44-57, St. Petersburg, FL, January 1986.

15. J. Yang. Explaining type errors by finding the sources of type conflicts. In Greg Michaelson,
Phil Trindler, and Hans-Wolfgang Loidl, editorfiends in Functional Programmingages
58-66. Intellect Books, 2000.

16. J. Yang, G. Michaelson, and P. Trinder. Explaining polymorphic typ&@ae Computer
Journal 45(4):436-452, 2002.

A A sample trace of the compiler

The following information can be easily obtained from a simple run of the Helium
compiler downloadable from the website. We give it here to simplify the task of the

reviewers. It is not intended for publication.

We are now ready to give a sample run of our compiler on the program

doubleList :: [Int] — [Int]
doubleList xs = map (*2)

The result of runnindpelium -d DoubleList.h&he-d flag is responsible for the very
verbose output which shows what is happening under the hood of the type inference

process) is:

Compiling DoubleList.hs
(2,12): Warning: Variable "xs" is not used

Constraints
v0 == v2 -> vl : {function bindings, #0}
MakeConsistent
v0 := Skolemize([], [Int] -> [Int]) :
{explicitly typed binding, #1}
v3 == v2 . {pattern of function binding, #2}
v5 := Inst(forall a b . (a -> b) -> [a] -> [b]) :
{variable, #3}
v9 = Inst(Int -> Int -> Int) : {variable, #4}
Int == v10 . {literal, #5}
v9 == v8 -> v10 -> v7 : {infix application, #6}
v8 -> v7 == v6 : {left section, #7}
v5 == v6 -> v4 : {application, #8}
v4 == vl : {right-hand side, #9}
(11 constraints, 0 errors, 0 checks)

CombinationSolver:
GreedySolver: found 1 errors
Switching to second solver

Error path found with constraints:
(#1, #0, #9, #8, #3)

After filtering out the forbidden constraints:
["#1" "H9" "H#3" "#8")

cnr edge ratio info

#1x (0-22) 100% {explicitly typed binding}
#9x (1-4) 100% {right-hand side}

#3* (5-37) 100% {variable}

#8+ (5-59) 100% {application}

Participation ratio [ratio=0.95] (filter)
{"#1","#9","#3","#8"}
Highest phase number (filter)
{"#1","#9","#3" "#8"}
Voting with 7 heuristics
- Sibling functions (selector)
- Sibling literals (selector)
- Application heuristics (selector)
not enough arguments are given.
Two were expected, one was given.
Selected #8, {"(5-59)"} with priority 4.

- Tuple heuristics (selector)

- Function binding heuristics (selector)
- Variable function (selector)

- Unification vertex (selector)

#+ Selected with priority 4:
constraint #8 / edge {"(5-59)"}

Avoid application constraints (filter)

{'#8"}
Avoid negation edge (filter)
{#8")
Avoid trusted constraints (filter)
{'#8")
Avoid folklore constraints (filter)
{'#8"}
First come, first blamed (filter)
{48}
#+ The selected constraint: #8 ok

(2,17): Type error in application

expression cmap (*x 2)
term : map
type @ ->b)->[a] ->[b]
does not match : (Int -> Int) -> [Int]
probable fix : insert a second argument

Compilation failed with 1 error

The first thing to notice is the effect of using a combined solver: first a greedy solver
is tried. This results in the discovery of a type inconsistency, after which the same set of
constraints is submitted to the type graph solver. It builds the type graph, discovers the
error path, sets the candidate set equal to the constraints on the error path, after which
it applies the heuristics.

In the example#0 is the only forbidden constraint, and therefore it is removed
from the candidate set.

Then the patrtipication ratio filter leaves only those constraints that occur in a large
enough percentage of error paths (usually we take this value equal or very close to
100%). In this case, all constraints participate in every error path, so all are kept.

Subsequently, the voting process is initiated, in which seven heuristics are used.
Only the application heuristic of Section 3.2 leads to a constraint being selégged,
which labels the edge from nodeto 59 in the type graph. The reason is that it could
determine that not enough arguments were givem&p. Because a single constraint
could be selected, the other candidates are removed from the candidate set. The sub-
sequent filtering heuristics are considered, but they do not change the candidate set.
Finally, an error message is displayed that indeed reflects the facuthaexpects a
second argument. This fact is stressed by the 'probable fix’ appended at the end of the
message.

