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We summarize our previous results on cumulant expansions for linear stochastic differential 
equations with correlated multipliclative and additive noise. The application of the general formulas 
to equations with statistically independent multiplicative and additive noise is reconsidered in detail, 
because our earlier results for this case are only valid in special situations. Moreover, a second partially 
time ordered cumulant is introduced, which is appropriate for the calculation of multi-time averages 
of the solution process and which differs slightly from the one to be used for single-time averages. By 
the two supplements just mentioned we complete our earlier investigations on the subject. 

1. Introduction 

In two earlier papers, henceforth referred to as I’) and II’), we discussed the 
cumulant expansion for linear inhomogeneous stochastic differential equations 
with correlated multiplicative and additive noise. Results for single-‘) and 
multi-time2) averages were obtained. To deal with inhomogeneous equations a 
partially time-ordered cumulant (p-cumulant) was introduced in I. This p- 
cumulant has some peculiar properties which have not completely been recognized 
before. As a consequence our discussion in section 6.1 of I is not fully correct 
(except in special cases; the problem of an harmonic oscillator with a delta- 
correlated stochastic frequency, which we discussed in subsection 6.2 of I, 
constitutes such a case; see subsection 2.2). The general results of section 4 of I 
remain correct, however. 

Moreover, in the case of multi-time averages the partially time-ordered 
cumulant has to be interpreted slightly differently from the p-cumulant in the case 
of single-time averages. Therefore we introduce a new partially time-ordered 
cumulant, abbreviated as p-cumulant, thus providing the correct interpretation of 
the cumulants as used in II. 

We would like to stress here that all our previous results up to second order in 
the multiplicative and/or additive noise are unaffected by the two modifications 
just mentioned. We treat the cases of single- and multi-time averages in two 
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different sections 2 and 3, respectively. For the sake of clarity, each section is 
subdivided in a subsection which summarizes the (corrected) results, and a 
subsequent subsection which contains a discussion of the modifications in these 
results as compared to our earlier treatments I and II. New derivations, if 
necessary, are delegated to a number of appendices. 

2. The cumulant expansion for single-time averages 

In this section we discuss the inhomogeneous equation 

i(t) = (A, + M(O}W +S(t) 9 (2.la) 

u(&J = uo, (2.lb) 

where u is a vector, A0 a deterministic and A,(t) a stochastic matrix, andf(t) a 
stochastic vector. All quantities A,, f and u. are not only random, but also 
mutually correlated. The central assumption which underlies the cumulant 
expansion is that the autocorrelation time of A,(t) and the cross correlation times 
of A,(t) with f (t) and with u,, are all finite with maximum 7,. The expansion then 
proceeds in powers of arc. For the validity of the expansion one has to require 
that the condition ar, & 1 is satisfied. 

As usual we transform (2.1) to the interaction representation by defining 

u(t) = ed-rO)AOu(t), (2.2a) 

v(t)= ~1 ~~~r~b~~O~,(~)~~r~rO~aO, g(t)= e-('-fO)AOf(t)~ (2.2b) 

Then (2.1) transforms to 

G(t) = W)u(c) + g(t) 3 (2.3a) 

V(fo) = uo > (2.3b) 

where I’(t) is now of order ~1. In the rest of this paper we mainly discuss eq. (2.3). 
For results in the original representation we refer to I and II. 

2.1. Results and discussion 

2.1.1. Results 
As shown in I the average of u(t) obeys the equation 

; (W> = KMo)(W) + F&/to) + Z&/to) 9 (2.4) 
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where 

ZWlGJ = ( Uf):QY(f/fO):)p 3 (2.5a) 

Fdtl4J = (g(O) + s ds( W):Qv(W&)), , (2.5b) 

'0 

ZV(O,) = ( w)(u, - (uO))) + 
s 

ds(I/(t):eV(t/s):[V(s)(u, - (uO))DP. (2.5~) 

'0 

Here we use the short hand notation introduced in II. That is, for an arbitrary 
matrix V(t) we define 

Qv(t/t') = F exp 

, 

s 1 ds V(s) (t b 2’)) (2.6) 

where Fdenotes time ordering (latest times to the left). The colons in (2.5) indicate 
that one should first expand the expressions between these colons in powers of V 
and subsequently calculate the p-cumulant (. . .), for each term. The definition 
of the p-cumulant is given in appendix A. 

The utility of eq. (2.4) rests upon the fact that KV and F,, are independent of 
t,,, while I, vanishes, if t - t,, & 7,. 

Note that the results (2.4) and (2.5) are exactly the same as in section 4 of I. 

2.1.2. Discussion 
In section 3.3 of I we asserted that Fv in (2.5b) reduces to (g(t)) in the case 

that V and g in (2.3) are statistically independent, because joint cumulants of V 
with g were assumed to vanish. This however is not true in general. For this reason 
eq. (1.2) of I is in general also incorrect (for the correct formula, see appendix B). 

To see how this comes about, consider the cumulants of V with g, assuming that 
V and g are statistically independent. The second order cumulant indeed vanishes, 

(W&?(G), = ( Wg(t,)) - W(O>(g(~,)) = 0 3 

but the third order cumulant does not, 

(2.7) 

(w)wJgw), = (w)wl)b%)), - (wM~*))t(g(4)) 
= - ( w>w*))t(g(4)) * (2.8) 

Here we used the decomposition of the p-cumulant in products of t-cumulants 
according to the rules in appendix A of I. Note that any t-cumulant with a terminal 
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vector g and any number of matrices V in front does vanish, 

( V(t) V(t,) . . Uf,n - JsM)t = 0 (2.9) 

For, in terms of the averaging operator 9. . . = (. . .), the t-cumulant equals 

(V(t). . . V(L M4?J)t = (V(t)(l - 9) . . V(L 1x1 - ~la#)) 
= (V(f)(l - 9) . . . V(L ML)) - (V(t)tl - 9) . V(f,- ,>>(gt4A> = 0 1 

since V and g are statistically independent. Also any t-cumulant with an initial 
factor A(t) independent of any number of subsequent quantities B(.) vanishes, 

(A tr)B(~). . . NJ), = 0, (2.10) 

but in general (due to the noncommutativity of the quantities involved) 

(B(t). . . WhJA(h+,M~,+,). . . ~kn)), Z 0. (2.11) 

Although (2.10) also holds for p-cumulants (expressed in products of t-cumulants 
there is always a factor of the form (2.10) with m 2 1 in front), the property (2.9) 
apparently does not hold for p-cumulants. However, if (g(t)) = 0, p-cumulants 
and t-cumulants with matrices V and only one vector g vanish, because one can 
first average over the fluctuations in g which have zero average. 

Hence, if g is statistically independent of V and (g(t)) = 0, F,(t/t,,) as given by 
(2.5b) vanishes identically. By the same argument, Zv(t/r,,) = 0 in (2.5~) if u,, is 
nonrandom or statistically independent of V (because (u,, - (uO)) = 0 too). 

Remark. The usefulness of the p-cumulants (A,(t)A,(t,) . . A,(t,J), (where A, is 
a matrix or vector) follows from the fact that they vanish if there is a gap between 
any two successive time-variables t, and ti+, which is large compared to z,. Here 
it is essential that the times are ordered, t > t, b . . . 2 t,, so that for arbitrary k 
and f all quantities Ak(tp) are statistically independent of A,($) if fP 2 t, and 

t, G 1, + I. This implies that the p-cumulant in (2.8) does vanish if 1 - t, 9 z, or if 
t, - t2 9 7,. So for z, one should really use the maximum of the autocorrelation 
time T, of V and the crosscorrelation time z,~ of V with g (rug is zero if V and 
g are statistically independent, as in (2.8)). The cumulant in (2.8) vanishes if not 
only A(t) and A(t,) are independent off(?,), but also A(t) is independent of A(?,); 
hence t, - t, P t, = z, is required. 

2.2. Second moments 

In section 6.1 of I we studied the second moments of the solution to (2.1) by 
introducing the vector 
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where @ denotes a Kronecker product. This vector obeys the equation* 

O(t) = {A& + LZW}U(t) + s(t), (2.12) 

where 

(2.13) 

Here we define for an arbitrary vector or matrix C, 

C’=C@1, C” =li@C, C=c’+c”. (2.14) 

Here f denotes a unit matrix of the same dimension as C. 
Since (2.12) is of the same form as (2.1), the general results of subsection 2.1.1 

are immediately applicable. The result is that the average of U(t) obeys 

; P(O) = W/WW> + W/G 9 (2.15) 

where the contributions to Dd and lF up to second order are given by eqs. (6.6), 
(6.8) and (6.9) of I. In general higher order cumulants involving A, and S are 
nonzero, even if A, and f are independent (see subsection 2.1.2). Therefore the 
formula (6.11) of I is in general incorrect. However, it is shown in appendix B, 
that in the special case that A, and f in (2.1) are statistically independent, and 
moreover A, has delta-correlated cumulants, i.e. 

(Mt,)) = Ml) 7 (2.16a) 

(NJ. . .4(L)) = &WO, - b). . . W,-, - LJ, Cm 2 21, (2.16b) 

where D,(t) is a (time-dependent) matrix, the matrix ll6 and the vector IF in (2.15) 
are given by the exact expressions 

(2.17) 

(f (0) 
, 

W/f,) = s ds e(‘-‘“)~o((~(~>{(Q,<~/~>>g(s)) . 
(2.18) 

‘0 

The matrix K is given by 

K(t/t,) = A, + e(r-‘o)AOKy(t/f,J e-(t-‘o)Ao, (2.19) 

*With 0 we indicate a null-matrix or null-vector. 
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where V and K, are defined in (2.2b) and (2Sa), respectively. R is obtained from 
K by the prescription (2.14) and g is defined in (2.2b). Using the results of section 
2 of I we can also write 

(2.20) 

Remark. For the case of the harmonic oscillator problem studied in section 6.2 
of I, the formulas (2.17) and (2.18) do apply, since the frequency fluctuations were 
assumed to be delta-correlated and independent of the additive fluctuations. Since 
we found by explicit calculation that for this model K&‘/s) = 0, i.e. 
(Qv(t/s)) = 1, the formulas (2.17) and (2.18) reduce to those in (6.11) of I. This 
explains why application of the latter formula (although in general incorrect) 
nevertheless yielded the correct answer in section 6.2 of I. 

3. The cumulant expansion for multi-time averages 

In this section we state and discuss the results of the cumulant expansion for 
multi-time averages. 

3.1. The homogeneous case 

3.1.1. Results 
The correlation function C,(t, t + z) = (u(t) @ u(t + z)) of the solution of (2.3) 

with g = 0 obeys the differential equation 

; C,(t, t + z) = M,(t + r; t/tlJC,(t, t + 7) ) (3.1) 

with 

M,(t + 2; t/to) = (Y”(t + T>:Q,(t + z/t)Qp(t/t,,):), . (3.2) 

Here the suffix p denotes a modified partially time-ordered cumulant, which differs 
from a p-cumulant only by the fact that matrices themselves are permuted, and 
not only their time variables. The precise definition of p- and j-cumulants is given 
in appendix A. If only one type of matrix (say I”‘) is involved, both kinds of 
ordered cumulants are identical, but in general a difference between them becomes 
apparent in third or higher order cumulants. The necessity of using p-cumulants 
to compute M, is explained in appendix C. There we also rederive the second 
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equation for C,, which reads 
c 

; C”(4 t + 7) = [M,(t + z; t/t,) + NY(f + z; t/zcJ]C,(t, t + 2), 

where M, is the same as (3.2) and N, is given by 

31.5 

(3.3) 

N,(t + z; t/t,) = (V"(t):Q& + ~/t)Qp(t/t,,):)~ . (3.4) 

Note that compared to eq. (2.30~) of II not only p-cumulants have been changed 
into @cumulants in (3.4) (for the same reason as in (3.2)), but also the matrix V’(t) 
has been shifted to the initial position in the cumulant. Again this affects only third 
and higher order cumulants. 

To conclude we can summarize the situation by saying that all p-cumulants 
in sections 2, 3, 6, 7 and appendix A of II should be replaced by &cumulants (the 
inhomogeneous case of section 4 of II is discussed in subsection 3.2 below). 

3.1.2. Discussion 
The replacement of p-cumulants by IScumulants does not lead to qualitatively 

different conclusions w.r.t. cluster property, long-time estimates etc. Therefore the 
estimates (3.la) and (3.lb) of II are still valid. However the different position of 
V’(t) in (3.4) implies that the estimate (3.2b) of II is no longer valid (except in 
the commutative case, where A(t) and A(t’) commute for all t and t’). It is still 
true that 

N,(t+z;t/t,)1:N,(t+z;t/-co), ift-tO%rz,, (3.5) 

but not that* 

N,(t + r; t/z,) N N,(co; t/t,), if r S r, . (3.6) 

To see why this is the case consider a typical term of NV as in section 3 of II, 

. . . s dt,( I”(t) V”(s,) . . . Y”(s,,) P(t,) . . . P(t,,,)), . 

If t - t, 9 r,, then because of the ordering of times, any matrix in the group 

( W), v”(%), . . . , V”(SJ} is statistically independent of any matrix in the group 

( W,), . . . 3 WI)}, so the l+cumulant vanishes. The same is true when ti - r2 % r,; 

* Hence in the noncommutative case the second estimate of (3.5) of II can only be guaranteed for 
?I =o. 



316 J.B.T.M. ROERDINK 

etc. Hence (3.5) follows. However ifs, - t B r, the cumulant does not necessarily 
vanish, although all matrices in the group { V”(.s’), . . . , V”(s,)) are independent of 
those in the group {V’(t), P(l,), . . . , P(Q) (compare (2.1 l)), except when the 
matrices V commute at different times. 

Conclusion. Secular terms as t --) co are avoided by both equations (3.1) and (3.3) 
but secular terms as z + co only by (3.1) (except for the commutative case in which 
both expansions are valid). To get results which avoid both kinds of secular terms 
one should preferably solve (3.1) with initial condition C,(t, t) and calculate 
C,(t, t) itself by using the cumulant expansion for single-time averages (section 2). 

Remark. The operators &(t’) in formula (7.7b) of II and A’“‘(t,) in (A.13) of II 
have to be shifted to the first position within the fi-cumulant for the same reason 
as in N, above (eq. (3.4)). 

3.2. The inhomogeneous case 

The replacement of p-cumulants by fi-cumulants in the preceding subsection 
makes it necessary to modify the results for the inhomogeneous case in section 
4.1 of II accordingly. 

3.2.1. Results 
The correlation function C&t, t + z) of the solution to the inhomogeneous 

equation (2.3) (fixed uO) satisfies 

-$,(t,r+r)=G (‘*‘)C,(t, t + t) + G’*,“(u(t + 7)) + G(‘,2+(t)) + G(2,2), 

(3.7) 
where 

G(‘*‘) = MY(f + z; t/to) + N,(t + r; t/to) (3.8) 

is the same as in (3.3). The quantities G(2*1), G(‘y2) and G(*,” can be obtained by the 
following prescription*. Expand Gus’) in the joint moments or t-cumulants (but not 
just in fi-cumulants) of V’ and V”; to obtain G(2,‘), replace the last matrix V’ in 
each moment or t-cumulant contributing to G(‘s’) by g’; to obtain G(‘p2) replace 
the last matrix V” in each moment or t-cumulant by g”; and to obtain G(2,2’, make 
both replacements. If a term in the expansion of G(‘,‘) contains no matrix V’ (or 
V”), there is no corresponding contribution to G(2,‘) and G(2,2’ (or G(‘,2) and G(2,2), 
respectively). Finally, the proviso has to be kept in mind that any matrix C’ or 

* Note that we do not define p-cumulants containing the vector g. 
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C” (where C is a matrix V or vector g) succeeding a matrix g’ or g” is replaced 
by C (examples are given in the next subsection). 

Results to second order in V and/or g are given by the formulas (4.12a-d) of 
II which are still correct. The equation for (a/&)C,(t, t + z) is the same as (3.7) 
but with N, in (3.8) omitted (and also the corresponding contributions to G(**‘), 
etc.). 

3.2.2. Discussion 
The prescription to obtain the contributions Gg*‘). . . Gf2*2) from G(‘*‘), as given 

in the preceding subsection, can be derived by the same method as in II, section 
4 (a more extensive rederivation has been given for the case of stochastic difference 
equations)4). The result we found there was essentially the same, except that the 
replacements V’+g’ and V”+g” could be made in the p-cumulant itself, because 
no matrices are interchanged when the p-cumulant is expanded in moments or 
t-cumulants. But since we have in fact to use fi-cumulants in G(‘q’), one has to 
expand @-cumulants in G (*J) first in moments or t-cumulants before making the 
replacements mentioned above *. For example, the following cumulant occurring 
in G(‘,‘): 

( V”(t + T) V’(t*) V’(t& = ( V’(t + z) V’(t,) V’(t2))t 

- ( v”(t + 7) v’(t,)>,( V’l(t,)) , 

yields the following contribution to Gc2,‘), etc.: 

to G’+ ( W + W”(W(t2))t - (V(t + efO2))t( WJ) 9 

to G(‘s2): ( w + w’wY~2))t - (v”(t + W’(f2))t(d’(4)) , 

to G(2.2): 
( wt + .rk%lg(t2))t - (wt + W(f2))t(g(f1)) . 

Here we made use of the fact that for any matrix V and vectors f and g, 

,f @ V = V’Y’ = f'V; V@f= V'f"=f"V; f@g=f'g=g"f. 

The contribution N, to G(lJ) and the corresponding contributions to G(‘,” etc. 
in general contain secular terms as T + co (the contributions to G(2,2) can be secular 
even in the commutative case, see subsection 3.3). In particular, to obtain the 
equilibrium correlation function lim,,, C,(t, t + z) (assuming it exists) without 
secular terms in r, one cannot use the equation (3.7) with the 1.h.s. equal to zero 
and solve the resulting matrix equation, where the quantities G(lJ), . . . , Gc2g2) are 
expanded up to a certain order in V. That (3.7) could be used in the example of 
section 6 of II was because in that case we could evaluate G(‘*‘). . . Gc2s2) exactIy 
(next subsection). So in general the equation for (LJ/&)C, has to be used3). 

*The expression which then results can in general neither be written as a p-cumulant nor as a 
p-cumulant. 
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To obtain the contribution G(2,2) corresponding to M, in (3.8) one has always 
to replace at least one matrix V’(s), originating from a matrix p(s) in Qp(t/t,J 
(formula (3.2)), by a vector g’(s) with s < t. So all these contributions are transient 
if r becomes large, i.e. G(2,2) N 0 if r $= r,. 

3.2.3. Statistical independence 
If V and g in (2.3) are statistically independent the formula (4.13) of II (with 

A replaced by V and f by g) is generally spoken again incorrect (see section 2). 
However in the special case that A, in (2.1) is delta-correlated as in (2.16) and 
statistically independent off, the general result (3.7) reduces to the exact equation 
(the derivation is completely analogous to that in appendix B) 

; C,(t, t + z) = G(‘%,(t, t + z) + (g’(t>)(u<t + T)) + (g”(t + ~))(u(t>) 

ItI 
r 

+ J ds((g’(O{(Qv(t + ~/s))gW})) 
‘0 

+ s ds+k”(t + d{(Q& + +))g(s)})) . (3.9) 

Here G(‘J) is given by (3.8) and the brackets ((. . .)) denote an ordinary second 
order cumulant. 

Remarks : 

(i) In the example of the harmonic oscillator treated in section 6 of II, KV = 0 
and (QV(r + r/s)) = 1 (compare subsection 2.2). Hence (3.9) indeed reduces to eq. 
(4.13) of II, which explains again why we got the correct results in section 6 of II. 

(ii) The third and fourth lines of the r.h.s. of eq. (3.9) correspond to N, and 
MV, respectively. If t % z,, g”(t + r) in the last line becomes independent of g(s) 
(since s < t), so this term vanishes. But no such argument exists for the third line. 
In the limiting case that g is also delta-correlated, the last line vanishes (r > 0), 
but the third line yields ( QV (t + r/t )). This term in general produces secular terms 
in r when expanded in powers of V. (In the harmonic oscillator problem this term 
turned out to be exactly equal to 1, so no problems with secular terms arose.) 
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Appendix A 

Dejinition of the partially time ordered cumulants 
We give here the difinition of the p-cumulant (introduced in I) and the 

p-cumulant (introduced in section 3 of this paper). 

Dejinition. To obtain a p- or fi-cumulant of m (noncommuting) matrices A,(t,), 

A&,)> . . .,A,_,(t,_J where t,2.* * > t, _ I use the following rules: 
(i) Write a sequence of m dots, 

(ii) partition them into subsequences (. . .) (denoting moments) by inserting 
angular brackets in all possible ways (excluding empty subsequences); 

(iii) for each partition consisting of p subsequences supply a factor (-)*-‘; 
(iv) for each partition, write a zero on the first dot and any permutation of the 

numerals 1,2, . . . , m - 1 on the remaining dots, subject to the condition that in 
each subsequence they must not decrease. Add all terms. 

Finally use one of the following prescriptions: 
(pu) Replace each numeral n on the kth dot by Ak_ ,(t,,): this yields 

(A&) . . . Am - An - I>>, 
or 

(pv) Replace each numeral n by A,(&): this yields (A,,(@ . . . A,,,_ l(tm _ J& 

From this it follows that the two types of cumulants have the same time 
ordering, but a different matrix ordering. In a p-cumulant also vectors may occur 
(see I), as long as the expressions involved make sense as matrix products, but in 
a l%cumulant this is in general impossible. Since the rules (Q-o-(v) are the same for 
both cumulants, the decomposition in t-cumulants is the same as in appendix A 
of I, with rule (A.v) replaced by (pv) or (fiv), respectively. In particular the cluster 
property still holds for both cumulants*. If all matrices Ai, i = 0, 1, . . . , m - 1 
commute for all times, the l5-cumulant reduces to the ordinary cumulant in the 
many variable case4), but the p-cumulant does not (in contrast to our assertion 
in subsection 2.1 of I). If all matrices are the same functions of time 
A,=.. . = A, _ ,) the p- and @-cumulants are identical. Moreover, the difference 
becomes only apparent in third or higher order cumulants. 

Appendix B 

In this appendix we derive the result (2.17), (2.18) for the case that A,(t) in (2.1) 
has delta-correlated cumulants, i.e. 

* Provided that all time-variables occur in decreasing order. 
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(M,). . 4kJ)p = &(4)~(4 - t*) 1 . . h(L-, - a, m 2 2, 

(M,)) = WI). 

Consider again the equation (2.3) in the interaction representation 

C(t) = W)u(t) +$7(t) 7 4&J = uo 3 

where 

v(t) = a e-('-'O)AOA,(t)e(r-'O)AO, g(t) = e-('-'OMOf(t) . 

(B.1) 

03.2) 

The formal solution of (B.2) is 

u(f) = Qv@/toh + s dsQv(tlsl&) 3 

‘0 

where as before for any matrix C(t) 

Qc(t/to) = T exp 
s 

dsC(s) . (B.4) 

*0 

Average (B.3) and use the statistical independence of V and g, 

(W) = (QvWo>>~o + s ds(QvW))(&)) . 

(B.3) 

(B.5) 

'0 

Inserting (2.20) in (B.5) and differentiating it we find* 

(W> = Jwl~o)(~(~)) + (g(O) 
L 

'0 s 

This equation is the general result for the case of statistically independent 
multiplicative and additive noise with fixed initial condition. The second and third 
term in the r.h.s. of (B.6) can also be found by expanding F, in (2.5b), using that 
V and g are independent. 

Now a p-cumulant of m V-matrices has the form 

(V(t)V(t,) . . . V(t,_,)), = ~~e-(‘-‘o)~OD,(t) e(‘-‘o)AO 

x s(t - t,) . . . s(h?-* - L*). 

*This equation replaces eq. (1.2) of I. 
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so 
, ‘In - I 

&(t/t’) = (V(t)) + 5 
s s 

dt, . . . dc,,( W)J’(Q . . . Wm)), 
tfl=l 

4l ‘0 

=e -(I- bMoD(t) e(’ - rO)a0 , 

where 

D(t) = f ED, . 
m=l * 

(B.7) 

(B.8) 

Note that K,(t/t’) is independent oft’. So in (B-6) we have &(t/s) = K,(t/t,) and 
in the original representation (B.6) results in the equation 

(W) = W/44(40) + (S(0) 3 

where 

K(t/t,) = A0 + e(‘-‘@~K,(t/t,) e-cr-fo)Ao = A, + D(t). (B.9) 

This proves the validity of (2.17), (2.18) for the first n components. 
Next we calculate the second moment (u(t) @ u(t)) of the solution v(t) of (B.2). 

From (B.3) one finds the following expression for the correlation function 

C”(l) = (4t) 0 W): 

G(t) = (QV(WQV(W)%@ uo 
I 

+ ds{(Q~(t/to)Qr(t/s))(u,~ (g(d)) 
s 

+ ~Qv~ris)Qr~rif~~~~g(S)) 0 %>> 

, I 

+ ds ds’(Q~(tls)Qy.(tls’))(g(s)Og(s’)) 3 
s s 

(B.lO) 

‘0 ‘0 

where we define for an arbitrary matrix or vector C, 

C’=C@I, C=I@C, C=c’+c”. (B.11) 

Here f denotes the unit matrix of the same dimension as C. Using the fact that 
V’(t) and V”(f) commute for all t and t’, we can write 

Qr(tlOQr(tlt’) = Qdtlt') . (B. 12) 

Furthermore, the following factorization property holds, due to (B.l) 

(@{V(.r),t,>,s 2t,}Y(V(s),t,as 2 t3})=(@)(Y), (B.13) 
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where Qi and Y are arbitrary functionals of V (or V’, V”, 9). For example, 
consider the average (Qv(t,/t2)Qv(12/t3), t, > tz > t,. Defining the characteristic 
functional of V for an arbitrary test function k(t) with finite support by 

m 

G,[k] = (F exp 
s 

dW)W)), 

we find from (B.l) and the cumulant expansion (compare (B.7)) 
co 

G,[k] = f exp 
s 

dsL(s) , 

-02 

where 

L(s) = e-(s-rO)AO 

i 

mz, 2 k”(s)D,(s)) eO-fO)Ao. 

So by choosing k(s) = 13(t, - s)O(s - t3), where e(.) denotes the Heaviside step 
function, we have 

=[ 
= (Qvttllt2))(Qvtt2/t~)) . 

12 ‘3 

Applying (B.13) to (B.lO) and using (B.12) one gets 

Here we made use of the fact that for any matrix V and vectors f and g, 

f@V= V'lf'=f'V; V@f= vff"=f"V; f@g=f'g=g"f. 

Using (2.20) we find from (B.14) 

C,(t) = Kp(t/to)Cvt~) + (dt~))(QvWo))uo 
I 

+ ds(g(t)(Qvttls))gts)) 9 s 
‘a 

(B.15) 
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since again Kp(t/t,,) = &(t/s) due to (B.l). If (B.5) is inserted in (B.15) there 
results 

to:(t) = KP(~/W,(~) + (iW>>(uW> + I d~((~(~>((~v(~l~>>g<s))) 4 03.16) 
t0 

If we transform back to the original representation we finally arrive at the results 
(2.19, (2.17) and (2.18) for (u(t)@u(t)). 

Appendix C 

In this appendix we rederive the equations (3.1~(3.4). In II, section 2.2, the 
following expression for the correlation function C&t, I + z) = (u(t)@ u(t + r)) 
of the solution v(t) to (2.3) in the homogeneous case (g(t) = 0) was found 

(Cl) 

'0 

KB is defined as in (2Sa) and 

i 

@) 7 tl),<s ,< t, 

B(s)= v”(s), t<s<t+z, (C.2) 

0, otherwise , 

where P and V” are defined by (2.14). We then proceeded to express K&/t,) in 
terms of the p-cumulants of V’ and V”. However, the definition given in I (and 
appendix A of this paper) of the p-cumulant is not quite applicable here. This can 
easily be demonstrated by considering the third order cumulant 

(~(~l)~(~2)~(~3))p, with 6 > t2 > t3. Using the decomposition in t-cumulants 
(appendix A of I) we find 

(m,M~2Pw3)), = (w*Mf2P(f3))f - (44M~3)),@(~2)) ' (C.3) 

Since each t-cumulant is a sum of terms which all have the same order of the time 
variables occurring in them, we use (C.2) to write (C.3) as 

(B(fl)B(f2)B(t3))p = (v"k)v"(t,)f(~,)), - (VN(fl)~(t3))t(VN(t2)) * (C.4) 

Now (C.4) cannot be written as ( V”(t,)V”(f2)~(t3)),,,. since in the second term on 
the r.h.s. of (C.4) not only the time variables tz and t3 are interchanged (compared 
to the first term), but also the matrices V” and P themselves, contrary to the 
definition of the p-cumulant. Therefore, we introduce the j5-cumulant as defined 
in appendix A, so that (C.4) can be written as (v”(t,)vl’(t,)9(1,)),. 
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By similar arguments one can convince onself that all p-cumulants of matrices 
B occurring in (C.l) can be written as fi-cumulants of Y,, and I? Therefore, 
we conclude that 

4s (s/to) = M&; t/to), 

i 

JMSlGJ 9 t,<s <t, 

t<s<t+z, (C.5) 

0, otherwise. 

Here KP is defined in (2.3b) (since only matrices P are involved one ,may use p- 
or I$cumulants), whereas M, is defined by 

M,(s; t/t,,) = (v”ts):Q~,(s/t)Qp(tlto):)~. (C.6) 

From (C.l) and (C.5) eq. (3.1) immediately follows. 
We now give also a new derivation of the equation for (a/&)C,(t, t + z), since 

that in II, section 2.3, is strictly spoken only correct in the commutative case 
([V(t), V(t’)] = 0 for all t and t’). The reason is that the ?= operator has been 
defined so as to order the matrices 444s; t/t,) for s > t, but this does not 
necessarily imply that it also orders the matrices iV,(s; t/t,,) as defined in II. 
However the argument can be corrected as follows. For C, we have the following 
expression by direct integration of (2.3): 

Gtt. t + z)= (Qvtt + ~/t)Qp(t/t,))~oO u, . (C.7) 

Differentiating (C.7) w.r.t. the variable z and eliminating u, @ u,, from the result 
by means of (C.7) one finds 

4 C,(t, t + z) = YC,(t, t + 7)) 

where 

2 = (v”<t + z)Qvtt + ~/t)QvWto))(Q,tt + WQ&/t,))-' 9 (C.8) 

which obviously has to be identified with MY(t + z; t/to) in (3.2). This can be 
checked by expanding all Q-matrices in (C.8) in powers of I”’ or p, collecting all 
terms with a certain number of matrices I”’ or p and writing the result as an 
ordered integration, 

,+7 bn -2 

1 ds, . . . j- ds,_, /dtm ]dt.,l. . .5’ dt,[. . .], 

I I ‘0 ‘0 ‘0 

which then agrees with the expression obtained by expanding the IScumulant (3.2) 
to the same order. 
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Differentiation of (C.7) w.r.t. the variable t yields 

~c”(f,r+~)=(~+~,)c~(t,f+i), 

where LZ is the same as (C.8) and $P’ is given by 

(C-9) 

Here we have used that V’ and V” commute to shift V’(t) to the first position 
in the first factor of 2’. Now we can apply the same procedure as above 
(expanding in powers of V” and p, writing the results as an ordered integration) 
to find the (n)th order contribution to (C.9). The only difference with _!Z is that 
each term of the nth order contribution contains a matrix V’(t) instead of 
V”(t + r) on the first position of the product of joint moments of which each term 
consists. Hence (C.9) can be identified with (3.2) where V”(t + r) is replaced by 
V’(t). This yields (3.4). 
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