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Abstract

The Haskell type system has been designed in such a way that all allowed types can be inferred automatically;
any explicit type specification only serves as a means of documentation and safeguarding. Consequently, a pro-
grammer is free to omit any type signature, and the program will still type check. The price to be paid for this
convenience is limited expressiveness of the type system: even if a programmer is willing to explicitly provide
higher-ranked types with polymorphic arguments, this is not allowed. In an effort to obtain the same expressive-
ness as System F, the use of universally quantified types on higher ranked positions in types in particular has
received much attention in recent years. Because type inference for such types in general is not possible, much
work has been done to investigate which limitations on higher ranked types still allow type inference. In this
paper we explore an alternative, algorithmic, approach to this problem, which does not limit expressiveness: we
propagate explicitly specified type information to all program locations where this information provides starting
information for a standard Hindley-Milner type inference algorithm.

1 Introduction

The literature abounds with examples of the usefulness of higher ranked types [21, 23, 2, 13]; here we restrict
ourselves to show a typical example [13]:

gmapT :: Ya.Term a = a — a) > (Vb.Term b = b — b)

Common to examples like this is the abstraction achieved by using a function that constructs one parametric
polymorphic function from another; higher ranked types are essential for such functions.

Unfortunately type inference for higher ranked types is impossible [24], but standard Hindley-Milner type
inferencing can be easily extended to cope with such higher ranked types, provided they are all given explicitly.
Type inference for rank-2 types is possible [11, 12], but has not found its way into practical systems, most likely
because of its complexity and unclear interaction with other language features.

So, we are stuck with the obligation to specify higher ranked types ourselves. From a pragmatic and general
perspective this is not a bad thing. As programs become more complex we want more expressive types in order to
specify this complexity, and we cannot expect an implementation for a type system to infer arbitrarily complex types
for us. The best we can hope for is that a language exploits any information that is provided by the programmer to
the utmost. These observations are summarized by the following design starting points underlying this report:

e A programmer can use type annotations to embed all system F typeable programs in our type system.

o If a programmer is required to provide type annotations, the language minimizes the amount of such required
type annotations by exploiting the provided type annotations as well as possible.

Type annotations have already been put to work locally (in terms of program text) [16, 23]; in this report we
exploit type annotations globally.

We note that other strategies for minimizing the amount of required type annotations exist. For example, in the
context of the EH project [6, 7] partial type signatures are allowed as well. We do not explore this in this report,
neither do we explore other closely related topics such as impredicativity. However, EH’s type system, of which
the type rules in Section 5 are an extract, do support these features.



The problem and our approach Our motivation comes from the following example, denoted using the Haskell
like example language used in the remainder of this report:

Example 1

let g :: (Va.a—a) — Int

=Af > f3

iid =Ax > x
f =Ah—>letx; =h3
;X =h’x’
5y =gh

in x

in fid

In Haskell98, this program fragment does not type check. We need to specify a type signature for f, just as we
did for g, to make Haskell accept the program fragment. On the other hand, in its scope in f, the parameter 4 is
used polymorphically twice, and also passed to g where it is required to be a polymorphic function. Our approach
is to use & polymorphically for the two applications to an Inf and a Char, because passing & to g tells us that . has
to be of type VYa.a — a.

The reason why this is not accepted in Haskell is that the language is designed to use Hindley-Milner (HM)
type inference, in particular algorithm W, with the following consequences:

e Types for function parameters are restricted to be monomorphic types, that is, without quantifiers inside.

e The standard HM type inference algorithm W [15] is order sensitive, so if we would waive the above re-
striction, then the order in which type inference takes place forces type inference to make decisions about
polymorphism too early. For example, if the application of g to 2 would be encountered first, we might have
concluded that & :: Va.a — a. But if we encounter this information “too late”, then the type variable for 4 is
bound “too early” to a monomorphic type.

With this in mind, we therefore exploit type signatures in the following ways:

e Required type. Specified type signatures are used as the known, or required, type of the expression for which
the type signature is specified. For example, the body of g is type checked under the constraint that g’s type
must be (VYa.a — a) — Int. Our approach here resembles local type inference combined with subsumption
(e.g. [23, 18, 17]). We call this local quantifier propagation because the constraint enforced by the type
signature propagates locally, from outside an expression to its components inside.

e Argument occurrence. The application of a function with a known type (as specified by a type signature)
constrains the type of its argument.

o Transitivity As the example demonstrates, a constraint resulting from an argument occurrence also influ-
ences other occurrences of (parts of) the argument, and also their arguments. We call this global quantifier
propagation because the effect is not locally restricted to the argument expression.

The main problem tackled in this report therefore is how to propagate type signatures globally while still using
algorithm W. We stick to algorithm W because it has proven itself over the years. Our approach uses a two variants
of algorithm W, applied in two stages. The first stage constructs a description of all encountered instantiations for
type variables. If a quantified type is present in these type alternatives, we extract and propagate this for further use
by the second stage.

Our contribution



e We show how to exploit type signatures by focussing on a two-stage algorithm for type inference: one to
extract type signature information related to quantified type fragments, and a second one which does normal
HM type inference in the presence of type specifications. Because we use two stages with different HM
variants, in particular algorithm W, we avoid the complexity of a one-phase type inference in which types
have a more complex structure. The inherent complexity of the problem of course does not disappear, but we
isolate it in a separate stage.

o A related consequence is that we do not limit the expressiveness of type signatures in order to enable some
sophisticated type inference algorithm tailored for such a limitation. Ultimately we allow the same expres-
siveness as System F, but rely on type signature propagation for inventing most of the explicit type arguments
associated with System F. We therefore avoid the necessity to characterize our type system relative to Sys-
tem F, but have to characterize what the effect of the propagation is. Although we do not prove this, we
claim that the notion of “touched by” in the sense of “somewhere in an argument position” is a sufficient
characterization. We make this more precise in the remainder of this report.

e An accompanying prototype for this report is available electronically [6]'. A more extensive version of the
prototype is described and implemented as part of the Essential Haskell project [7, 6].

e Both the type rules and their implementation for the expression language used in this report are generated
from common source code by means of the Ruler system [8], thereby providing the consistency guarantee
that what the type rules specify is what you get in the implementation.

It is our experience that once higher ranked types are introduced, one has to provide quite some type annotations.
Our proposal seeks to minimise the number of annotations and to infer as much as possible. As a consequence we
do not have to change annotations all over the program once a type changes due to further program adaptation.

Outline of this paper In the remainder of this report we first discuss our solution by examples (Section 2), where
each example is accompanied with a transformed variant which includes the type annotation our solution com-
putes. We then demonstrate again by example both how algorithm W fails and our algorithm succeeds (Section 3),
followed by standard HM algorithm W type inference machinery (Section 4) upon which our algorithm is build
(Section 5). The required notation is introduced at the beginning of these sections. We conclude with discussion
and related work (Section 6).

2 Solution by transformation

Before we proceed with the technical discussion of our approach, we informally describe our solution by means of
a series of examples. Each example consists of a small program fragment together with additional type annotations
for some of the identifiers that lack an explicit type annotation. The additional type annotations correspond to the
type annotations that are inferred by global quantifier propagation(see Section 5).

The examples are described in terms of an expression language (see Fig. 4, Section 4 and Section 5), a subset
of Haskell focussed on type annotations and higher-ranked types. We will use this expression language later when
discussing the technical part of our approach. In order to express the intentions of our solution, we use the following
additional type constructors in type expressions:

o Partial type expression: ... denotes the unspecified part of a type expression.

e Type alternatives: t; A t, and #; V t, denote a type alternative. In the examples from this section A is used at
rank-2 positions; the resulting types then correspond to rank-2 intersection types [1]: #; A £, has both type #
and t,. We postpone the discussion of #; V t, until required.

The notation “...” in a type which makes that part explicit that is not to be inferred by global quantifier propa-
gation.

'Under the name ‘infer2pass’.



The intent of global quantifier propagation is to infer type annotations for identifiers which are introduced
without a type annotation. For example, the following program fragment lacks a type annotation for f:

Example 2
let g :: (Va.a—a) — Int
=Af > f3
iid =Ax > x
f =Adh>lety=gh
in y

in fid

Without an explicit type annotation for f — which would be the same as for g — this program fragment is not
accepted as correct Haskell. However, & is used inside the body of f, as an argument to g, so we may conclude
that the type expected by g is also a good choice for the type of 4. Our transformed variant expresses this choice
as a partial type annotation for f, which only specifies the type fragment corresponding to 4. The remaining parts

w2

denoted by “...” are to be inferred in the second stage:

letf:: (VYaa—a) — ..
=dh—>lety=gh
in y
in fid

As with HM type inference, we infer a type for an identifier from the use of such an identifier. However, the
difference is that we allow the recovery of quantified types whenever the identifier occurs in a context expecting the
identifier to have a quantified type. We say the identifier is “touched by” a quantified type.

Choosing the type of & becomes more difficult when # is used more than once:

Example 3
letf=Ah —>let x; =h3
iy =8gh
in X1

in f id

For brevity we have omitted the definition for g. In following examples we will omit definitions for previously
introduced identifiers, such as id, as well.

The first use of & requires the argument of % to be of type Int, whereas the second use requires % to be of type
Va.a — a. This is where we encounter two problems with HM type inference:

e Function argument types are assumed to be monomorphic.

o If we allow function argument types to be polymorphic nevertheless, HM is order biased, that is, it will
prematurely conclude that 4 has a monomorphic type based on the expression £ 3.

These problems are circumvented by two subsequent transformations, which together express the delay until
later of conclusions with respect to the instantiation of quantified types. First we represent all the different ways &
is used in f’s type signature by the following transformation:

letf :: (Int - .. AVaa—a) — ..
=Ah—>letx; =h3
5y =gh
in x;

in fid



Function /4 has both type Ya.a — a and Int — ... . We proceed by choosing Ya.a — a to be the type which can
be instantiated to both Va.a — a and Int — ... . In general, we choose the type with the quantifier, according to the
following rewrite rule for types, where we ignore nested quantifiers in either type and assume monotypes ¢; and 7,
match on their structure (that is, they unify) for simplicity:

Ya.ty A¥bt, = Va.t

Yati Nty = VYa.n
HAL =
nHA. =

The type annotation is transformed correspondingly:

letf: Vaa—a) —..
=Ah—>letx; =h3
3y =gh
m x;
in fid

These two transformation steps correspond to the two main steps of our algorithm: gathering type alternatives,
followed by extracting quantified type fragments from these type alternatives.

In our approach it is essential that a quantified type fragment appears in at least one of a type’s alternatives:
we extract this information, we do not invent it. The following example illustrates this necessity. Function A
additionally is passed a value of type Char instead of only a value of type Int:

Example 4
letf=Ah —>let x; =h3
ixp=h'’'x’
3y =gh
in X1

in fid

If the call g & had not occurred in Example 3 there would not have been a problem since in that case & would be
monomorphic. This is not anymore the case in Example 4, because £ is used polymorphically. Its corresponding
transformation is the following, leading to the same type annotation as for Example 3:

let f :: (Int — ... A Char - ... AY a.a - a) — ...
=Ah—>letx;=h3

ixo=h’x’
3y =gh
in X1

in fid

Quantified type fragments can also appear at rank-3 positions. In the following, somewhat contrived example,
h accepts an identity function.

Example 5
let id = Ix - x
v Int — Int
=lx—x
;81 (Y a.a— a) — Int) - Int
=Af >fid

;82 2 ((Unt — Int) — Int) — Int



=Af > fii
f =Ah—>letx; =g h

;xo =g h
shy=hid
in ]’l]

in f(li—i3)

However, g; gets passed h as f and assumes it can pass a polymorphic identity function Ya.a — a to f. On
the other hand, g, assumes that it can pass a monomorphic Int — Int to its f. This is expressed by the following
transformation, in which the quantified type fragment appears at a contravariant position:

let f :: ( (Int — Int) > Int  --from g2 h
AN Yaa—a)— Int --fromglh

AN Vaa—a) — .. --fromhid
)—> ..
=/1h—>letx1:g1h
;X2 =ga h
shy =hid
in h]

in f (A — hid)

In the previous examples the quantified type fragment appears at a rank-2 covariant position as a type alternative.
We thus chose the most general type, because it can always be instantiated to the other monomorphic types of A.
However, with quantified types on a contravariant position, this is no longer the case, as the role of type alternatives
(with quantified types) in a contravariant position switches from describing the type ¢ by “# must be instantiatable
to all alternatives” to “all alternatives must be instantiatable to #’. We no longer can choose ¢ = Ya.a — a because
Int — Int cannot be instantiated to Ya.a — a; instead we choose t = Int — Int.

‘We informally describe this behaviour in terms of a type alternative union type t; V t,, the dual of an intersection
type, which is defined by the rewrite rule for type alternatives:

(a1 = r1) A(az > 1) (a1 vV ax) = (r Ar)

Yaty Vi, = b

We only use V in this section to describe our approach, the actual type rules tackle this situation differently. By
applying this rewrite rule we first arrive at:

letf :: (Int > IntvVYaa—aVV¥aa—a) — ..

) — ...
=Ah—letx; =g h
;X2 =g h
hy=hid
in h]

in f (Ah > hid)

For Int — Int vV Ya.a — a we choose the least general type Int — Int. This leads to the following type
annotation for f, which specifies type (Int — Int) — ... for h in accordance with the above discussion:

letf :: ((Int —» Int) — ...) — ...
=/lh—>letx1 =41 h

;X2 =ga h
shi=hid
in /’l]

in f(li—i3)



The basic strategy for recovering type annotations is to gather type alternatives and subsequently choose the
most (or least) general from these alternatives. Although we will not discuss this further, our approach also allows
the combination of type alternatives, instead of only a choice between those type alternatives. For example, the
following fragment specifies polymorphism in two independent parts of a tuple:

Example 6

let g; :: (VY a.(Int,a) — (Int,a)) — Int
382 2 (Y b.(b, Int) — (b, Int)) — Int

jid = Ax —> x
;f =/lh—>lety1=g1h
y2=8h
m y,
in fid

This leads to two alternatives, neither of which is a generalisation of the other:

letf :: ( V a.(Int,a) — (Int,a)
AVY b.(b, Int) — (b, Int)

) —> ..
=/lh—>lety1 =g1]’l
y2=8h
m y;
in fid

However, type Ya.Vb.(b,a) — (b, a) can be instantiated to both VYa.(Int,a) — (Int,a) and Vb.(b, Int) — (b, Int):

letf :: (Y aV b.(b,a) > (b,a)) — ...
=Ah—lety;=g1 h
y2=8h
m y;
in fid

Such a merge of two types cannot be described by the informal rewrite rules presented in this section, but can
be handled by the system described in Section 5.

3 Global quantifier propagation overview

We demonstrate our approach using Example 1. First we show how the standard algorithm W fails (Fig. 1), then
we show how our two phase approach fixes this (Fig. 2, Fig. 3).

Algorithm W We assume the reader is familiar with algorithm W, in particular the use of type variables vy, vy, ...
for representing yet unknown types 7, constraints (or substitutions) C = v:t for representing more precise type
information about type variables as a result of unification, and an environment I" = i:o- holding bindings for program
variables. The calligraphic 7 and C denote Int and Char type respectively. The type of g is abbreviated by o, =
0,—71 where o, =V a.a—a.

The abstract syntax tree (Fig. 1) for the body of f from Example 1 is decorated with values for attributes
representing the type 7 of an expression, the environment I" in which such an expression has type 7, and under which
constraints C this holds. Constraints C are threaded through the abstract syntax tree; that is, known constraints are
provided as context, extended with new constraints and returned as a result. Both the form of the abstract syntax
tree and its attribute decoration correspond to their judgement form in algorithmically formulated type rules. We
also assume this is obvious to the reader, and refer to the technical report for type rules.



Fig. 1 highlights the problematic issues addressed in this report, but omits the parts which are irrelevant for
an understanding of the problem and the design of our solution for it, either indicated by dots or absence of tree
decoration. The painful part for algorithm W occurs after having dealt with the application / 3 at tree node @, at
h ’x’ attree node @,. Attree node @; we find that the type variable v bound to % stands for type 7 —vs. However,
as a consequence of this premature choice for a monomorphic type, inherent to algorithm W, we have a conflict
with the application of & to ’x’ in @, where we require & to have a type of the form C— ... Furthermore, in tree
node @3, h is even required to be polymorphic as argument to g; algorithm W cannot deal with such a situation, so
we have omitted the corresponding attribution of the tree.

let

/\

X1 let
(e 7 [V3 Tovs / \
Lhivs s X2 let
,X1:v4]
@y 'zl / | \
@5 X1

e o O s )
RN N

I—Ws

Figure 1: Flow of computation for HM Algorithm W

Quantifier Propagation, phase 1 Fig. 2 shows the first phase of the two phase type inference. The key idea is
to delay the choice for a particular type, and gather the alternatives for such a choice instead. These choices are
grouped together with the type variable for which these alternatives were found in the form of a type alternative,
denoted by [0} A 03 A ...] where o is a possibly quantified type. Type alternatives for a type variable are gathered
in a constraint C. An expression may have a type alternative as its type o.

Both C and o are denoted in a different font to emphasize the possible presence of type alternatives, and to
make clear that these represent constraints and types used for the first phase only. The tree decoration for C and
o in Fig. 2 shows that at the application @; of & to 3 the first alternative is found: vz may be 7—vs. Similarly,
the second alternative C—vg is found at @,, and finally at @3 the polymorphic type 0, = Ya.a—a is found from
g:0,—71 which lives inT.

Gathering type alternatives for a type variable is complete when the type variable can no longer be referred
to. This is similar to the generalization step in algorithm W’s let bound polymorphism: a type variable may be
generalized if not occurring free in its context. For gathered type alternatives we do the same, also for the same
reason: no additional constraints for a type variable can be found when the type variable can not be referred to any
further. In our example, for vs, this is the case at the let binding for f, because no references to A and thus its type
variable v3 can occur. For v3 we compute the binding v3:0,, which is propagated to the next phase.

Quantifier Propagation, phase 2 Phase two of our type inference is rather similar to normal HM type inference.
The resulting bindings for type variables of phase one are simply used in phase two. No type alternatives occur
in this phase. For example, in Fig. 3, inside application @, as well as @, /4 is bound to type o, = Ya.a—a, via
type variable vs. In both applications the type is instantiated with fresh type variables, and type inference proceeds
normally.

Although the key idea demonstrated by the given example is fairly simple (if one type inference is not enough
do it twice) the algorithmic type rules in the accompanying technical report also have to deal with additional
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Figure 2: Flow of computation for Quantifier Propagation, phase 1
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complexities:
¢ In the above example we have ignored co- and contravariance.

e Type variables act as references to types for which we find more precise type information in two separate
phases. The actual substition usually immediately performed as part of algorithm W thus has to be delayed.

e The type rules become more complex as a result of a joint presentation of the two phases. It would be best
to view the two phases as two different aspects which interact only at places where program identifiers are
introduced, and split up the type rules accordingly.

4 Hindley-Milner type inference
When referring to Hindley-Milner (HM) in this report we distinguish between:

e HM type system, with rank-1 types, polytypes in environments, expressions are of a monotype.

e HM type inference, the classical inference, also known as algorithm W [15, 4]. Other algorithms exist, but
we do not explore these in the context of this report.

e HM local type system + inference, with higher ranked types, HM type inference in which type checking and
type inference are combined [23] by employing a type system which encodes checking/inference mode in its
types (see also [17]).

e HM strong local type inference, HM local type inference without checking/inference mode encoded in types
[18, 7].

e HM quantifier propagation type inference, to be discussed in this report.

We describe HM type inference in this section as the starting point for the following sections, which describes
HM strong local type inference preceded by quantifier propagation. We start with notation.

Terms (Fig. 4) and type language (Fig. 5) are standard. We introduce the full expression language used in this
report; here we ignore let expressions with a type annotation for the introduced identifier as these only become
meaningful when we deal with their propagation. Sequences of let expressions are more concisely denoted by a
single let expression in which definitions are separated by a semicolon.

Value expressions:

e »=int | char literals
| i program variable
| ee application
| leti=cine local value definition
| leti::r=eine local type annotated value definition
| Ai—e abstraction

Type expressions:

t == Int | Char type constants
| t—>¢ function type
| i type variable
| Vit universal quantification

Figure 4: Expression language
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Types are either monomorphic, denoted by 7, or polymorphic, denoted by o~. Sequences are denoted by overline
notation =. We use environments, denoted by I', to bind program identifiers to types: i = . We allow the use of
elements of such binding sequences by referring to the elements with an overline, for example o. Its use in the
context of type rules implies that their sizes and ordering are equal to the size and ordering of the corresponding
binding sequence. We use constraints, denoted by C, to bind type variables to types: v — o. We liberally mix list
notation and overline notation, for example [v = o ] denotes a constraint consisting of a single binding. Constraints
as used by HM only bind to monotypes 7. In this report, constraints are used in the same way as substitutions
usually are. Constraints are applied to types (denoted by juxtapositioning) and other constraints, thereby replacing
occurrences of type variables with their binding: [..,v — o,..] (..v...) = (...0...). A comma °," is used to denote
concatenation. The function ftv returns all free type variables in a type o; ftv is extended to sequences, environments
and constraints to return the union of ftv (o), where o is type part of the elements of those sequences, environments
and constraints.

Type rules in this report are grouped and presented in figures (like Fig. 6). The structure or scheme of each type
rule is shown boxed at the top. The conclusion of each rule matches the scheme of the figure. Each rule is labeled
with a name which by convention is suffixed with the version of the rule. In this report we have a Hindley-Milner
version, denoted by HM, and a quantifier propagation version, denoted by? 12. Whenever rules overlap the most
specialised version takes precedence; by convention such a rule comes first in the normal top-to-bottom left-to-right
reading order of a figure with rules. We have omitted rules related to Char as these are similar to those for Int;
however, we still use Char in our examples.

By convention typing judgements have the form ¢ + x : r ~ 7. Contextual information ¢ appears at the left
of the turnstyle , the construct x about which we want to express some fact r at the right, followed by ~» and
additional conclusions 7. In case of multiple contexts or results a semicolon ‘;’ separates these.

In type rules a type variable v is called fresh when it does not occur as a free type variable in contextual
information ¢, and when relevant, in the construct x: v ¢ ftv(c, x). In algorithmic terms this means that we assume
that an infinite supply of unique values is threaded through the rules, from which the freshness condition takes as
many as necessary. The function inst instantiates a quantified type by removing the quantifiers and replacing the
quantified type variables with fresh ones.

Types:
7 = Int | Char literals
| v variable
| T—> 1 abstraction
oI=T type scheme
| Vvt universally quantified type, abbreviated by Yv.7

Figure 5: Type language for HM type inference

The type rules for HM type inference (Fig. 6) are standard as well. Monomorphic types 7 (see Fig. 5) participate
in type inference, whereas polymorphic types o are bound to identifiers in the environment I'. Monomorphic types
are generalized in a let expression when bound to an identifier (rule £.LET); Polymorphic types are instantiated with
fresh type variables whenever the identifier to which the type is bound occurs in an expression (rule E.VAR).

The algorithmic rules for HM type inference are explicit in their use of constraints. In the type rule scheme
of Fig. 6 constraints are threaded through all rules, C* refers to the constraints gathered so far, C refers to new
constraints combined with those from C*. We will use this pattern throughout the remainder of this report for all
type inferencing stages.

Type matching, or unification (Fig. 7) is straightforward as well; we have omitted the rules for comparing type
constants.

2By convention I2 = 2nd version of impredicativity inference (impredicativity not discussed here).
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5 Global quantifier propagation

In our approach types for expressions become known through the following routes:

o A type signature was explicitly specified for the name to which the expression in a type annotated let expres-
sion is bound. This type then acts as the expected, or known type; the actual type of the expression must be
subsumed by this known type.

e The expression is an identifier. Its known type is the type of the expression in its declaration or its annotation.

e The expression is an application, the argument part of the function type is the known type for the argument
expression.

e The expression is an abstraction, the known type of the argument is the argument type of the known type for
the abstraction.

With the known types of these expressions we adhere to the following strategy:

e Types participate in type inference without instantiation. If we instantiate a type (as in rule E.var) we would
lose polymorphism. The consequence of this design decision is that we allow impredicativity, that is, type
variables may bind to quantified types. This behavior differs from Haskell, but is dealt with in the extended
version of our approach [7]. We come back to this later (Section 6).

e For each expression, its actual type must be subsumed by its known type. Both of these types can either be a
type variable or be a more specific type. We either do not know anything, or we do know something and use
subsumption to find out more about both. This part of our strategy is relatively straightforward to describe.

e In preparation of an adapted version of Hindley-Milner type inference we construct for each expression
a description of all possible types it can have. These type alternatives are gathered by a Hindley-Milner
like type inference process using a special subsumption relation. Normally, a subsumption relation #; < 1,
between two types #; and 7, states that a value of type #; can be used in a context where a #, is expected. In
our algorithmic subsumption relation (Fig. 10 and onwards) this holds under constraint C, which not only
binds type variables to plain types but also to type alternatives, depending on the context < is used. From
these type alternatives a most (or least) general type will be computed, to be used as a known type in the
subsequent type inference stage.

It is the latter part of this strategy which requires additional machinery, and we will start looking at some
examples, followed with describing of the required administration.

From the use of a value as an argument for a particular function we can derive type information for that argu-
ment based on the (argument) type of the function. Thus we can infer type information, available for global use.
Example 1, Example 2, Example 3 and Example 4 illustrate this. From the application ‘g 4’ we can conclude that
h must have at most the following type:

h:VYaa— a

A less general type would not be accepted by g. At A’s call sites we now can use this inferred type for A to
correctly type the applications ‘4 3’ and ‘4 'x’’, and to infer the higher-ranked type for f. The idea behind the
approach in this report is:

If a type for an identifier ¢ has been “touched by”, either directly or indirectly, polymorphic type
information, then this type information can be used at use sites of «.

More precisely, the “touched by” relation is induced by:

e Direct touching: An identifier occurring in a position where a polymorphic type is expected. In particular,
argument positions in function applications are used to detect this.
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e Indirect touching: An identifier having a type which comes from another touched identifier.

So, in our example, & is touched by type “Va.a — a”. If the application ‘g h’ were removed, no touching
would take place and the applications ‘4 3* and ‘A ’x’’ would result in an error: we propagate polymorphic type
information, we do not invent it.

Choosing the most general type For the following example also % :: Ya.a — a is inferred. It differs from the
previous example in that 4 is expected to be used in two different ways (instead of one), because it is passed to both
g1 and g».

Example 7

let g; :: (Y a.a — a) — Int

=Af ->f3
;82 1 (Int — Int) — Int

=Af -f3

iid = Ax > x
f =Ah—>letx; =g h
;X2 =g h
in x;

in fid

Function 4 is expected to be used as “Ya.a — a” and “Int — Int”. The most general of these types, that is
“Ya.a — a”, is bound to h. The relation “more general” is < (Fig. 10).

Contravariance Contravariance, that is, the reversal of < for the arguments of a function type, implies that “more
general” means “less general” for arguments. Example 5 demonstrates the necessity of this notion of “less general”.
Function & now is expected to be used as “(Va.a — a) — Int” but also as “(Int — Int) — Int”. This means that &
is passed a “Ya.a — a” in g;’s context, so it can use the passed function polymorphically as far as the context is
concerned. In g;’s context a “Int — Int” is passed; g, expects this function to be used on values of type Int only.
Hence we have to choose the least general type for the type of the function which is passed to the argument of g;
and g, that is, the argument of A:

h: (Int - Int) — Int
f i (Unt — Int) — Int) — Int

Because of the contravariance of function arguments, the least general type for the function passed to the
argument of g; and g, coincides with the most general type for f’s argument /.

5.1 Design overview

We now make our design more precise:

¢ Quantifier propagation is the first stage of our two stage process. Fresh type variables are created once, in the
first stage, and retained for use in the following stage, so type variables act as placeholders for inferred types.

e For type variables which represent possibly polymorphic types, we gather all bindings to the types they are
expected to have. This is encoded by means of a type holding type alternatives and constraint variants. These
types and constraints are computed by a variation of normal HM type inference. Type alternatives resemble
intersection and union types [1]. However, our type alternatives are used only internally and are not available
to a programmer as a (type) language construct.
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e For each introduced identifier we compute the most (or least, depending on variance) general type based
on its type alternatives. This results in constraints for type variables. For this to work, it is essential that
all possible type alternatives are grouped together, including the type information extracted from explicitly
specified type signatures.

e The computation of most/least general types is based on the lattice induced by subsumption < (Fig. 10). We
propagate the result of this computation if the type alternatives used to compute the most/least general type
contains a type with a quantifier. Otherwise there is no quantifier related information to propagate.

We call the resulting strategy global quantifier propagation.

5.2 Finding possible quantifiers

The first step in our strategy for global quantifier propagation is to find for a type variable not just one type, but all
types it can be matched with. Remember that the reason for this report’s problem is a too early binding of a type
variable to a type. We need to delay that decision by gathering all possible bindings, and extract a polymorphic
type from them, if it exists. Actually, we also need to find out whether polymorphism needs to be inhibited. This is
a consequence of the contravariance of function arguments.

For instance, in Example 7, page 14 we conclude:

h:Yaa— a

This is based on the following type matches:

The approach is to bind v; to one of the righthand sides of <. Here we delay this binding by binding the type
variable v; the tuple of v; and its binding alternatives, denoted by v; [alfernatives]. We use type alternatives to
represent this (see Fig. 8 and Fig. 9):

o=
| o type alternatives
o :=v[@] type variable with alternatives
We denote types o which contain type alternatives by o. Types o only participate in quantifier propagation.
For example, the type annotation for / in Section 2, as part of the type annotation for f, is:

h:Va.a— a A Int — Int
In our quantifier propagation this is represented by:

h v
vi > vy [Ya.a —a::Hg /N, Int — Int:: Hg / N, ]

For each alternative additional notation is used to keep track of the side of the subsumption relationship on
which the type variable v; occurs. We write N, if v; occurs at the left side and is required to be o: v; < o,
N, otherwise, for example in the contravariant example from Example 5, page 5 where we did find the following
annotation for /4 (as part of f’s annotation):

h::(NYaa— aV Int — Int) — ...
Subsumption gives:

h vy — Int
Ya.a— a<v;
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Int = Int <
This is represented by type alternatives which are marked by N,:

h vy > Int
vo > vy [Va.a — a::Hg / Ny, Int — Int - Hg / N, |

By default all type alternatives are marked with Hy, a second boolean indicating whether a type not containing
quantifiers can be forgotten during our type alternative elimination algorithm (Fig. 17). H; indicates it can be
forgotten, H;, indicates it can not be forgotten. This will only occur for types which are a result of the type
alternative elimination process as a consequence of contravariance. For example, in Example 5, page 5 it can
not be forgotten that v, +— Int — Int, eventually leading to:

h:: (Int - Int) — Int

Although these examples suggest A (resp. V) corresponds to N, (N,), this is not so. N, and N, track at which
side of < a type variable occurs, whether an alternative is A or V is determined by the type alternative elimination
algorithm which keeps track of variance associated with A and V: the position in the type determines the variance.
Why then are N, and N, required? Alternatives with either N, or N, may occur grouped together as a result of type
variable occurring at either side of <. However, for A we are only interested in upperbounds in terms of <, so only
the alternatives marked with N, are then used. For V only those alternatives marked with N, are used.

Notation Meaning

o) o for quantifier propagation
oqQ o with a quantifier

fogie) o without a quantifier

C C for quantifier propagation

meet of two types

join of two types

type match, with specialisations <, A and v

type alternative hardness (hard or soft)

n hard type alternative

soft type alternative

type alternative need/context (offered or required)
offered type alternative

required type alternative

type alternative

S

S

SZZZITTTN QD>

Figure 8: Notation for quantifier propagation

Collecting these constraints is relatively straightforward: if a type variable is to be bound to a type during type
matching, we bind it to a type alternative.

5.3 Subsumption

Instead of giving separate rules for subsumption, called fit, we generalise the matching rules by parameterising them
with four boolean options (), (<), (A), and (v) (Fig. 12), grouped together and passed throughout the rules as a
record of booleans. An option being true or false is denoted by a superscript + or — like (—*) or (A™). Occurrence
of such a boolean value in type rule means that either a reference or update is made to the boolean.

Of the options (<), (A), and (V) exactly one must be true, as these specialise the generalised matching relation
=~ into the three different variants of type matching. A rule for type matching is may be valid for all variants; in
that case such a rule superscripts the turnstyle + with = and has = between the two matching types. Alternatively, a

16



Types:
o = Int | Char literals

| v variable

| o> 0 abstraction

| Yv.o universally quantified type

| f (fresh) type constant (a.k.a. fixed type variable)

Types for quantifier propagation:
o=
| © type alternatives
o=V [g] type variable with alternatives

Types for computing meet/join:
o=
| v=0 both
| O absence of type information

Type alternative:
pui=0:H/N type alternative

N =N, ‘offered’ need
| N, ‘required’ need
H :=H, ‘hard’ alternative
| Hg ‘soft’ alternative

Figure 9: Type language for quantifier propagation
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rule may be valid for a subset of {(<),(A),(V)}, the subset, usually just a singleton, is then used instead of =. For
example, the rules in Fig. 11 are valid only for (<), that is, when (<*).

Now we can define the subsumption relation < by passing the option (<*) to the generalised matching relation
=, in Fig. 10. The other three options will be used later. If a matching rule is used for all its variants, = is used in
the concluding judgement. If a matching rule is only used for a particular variant, then the particular variant is used
in the conclusion, for example the rules in Fig. 11 are only valid for <. The additional notational complexity pays
off because we use matching for different purposes.

Additionally, matching also yields a result type which equals o in 0y < 0, except for the quantified type
variables in o, which are left instantiated. We require this type when we need to check o < 0, a second time (in
the second inferencing stage).

o;CH17 <111y~ C

(< 0;C+*Coy=2Co,:0p~C
0:Cro<o, 05~ C

FIT

Figure 10: Fitting of types (12)

The rules for subsumption of quantified types are asymmetric (Fig. 11), but standard [23]. A type Ya.o| can be
subsumed by o, if we can instantiate a with some type so that o; < o (rule m.ForALL.L). This is accomplished by
instantiating a with a fresh type variable v which subsequently may be constrained further.

On the other hand, o} can only be subsumed by Va.o if 0| can be generalized to Va.o. (rule M.ForALL.R). To
accomplish this, Ya.o is instantiated with fresh type constants. Fresh type constants f differ from type variables
in that they cannot be constrained and bound to another type. In this way we simulate that corresponding type
variables in o must match with all possible types.

oro=0,:0~C

0 =Cu01, Co =a > v, vfresh 0 =Cu0, Co=amf, ]7 fresh

o+rSoi<0op:0~C o+rSo1<0oi:o~C
M.FORALL.L}»

M.FORALL.R >

or<Ya.o; <or:0~C orS o <Va.op:Coy~C

Figure 11: Type matching (related to V) (I2)

Options to type matching are also used to trigger the construction of type alternatives. This behavior is enabled
by () (Fig. 12 ). For example, binding to a type alternative is enabled in rule m.var.L3 (Fig. 14). New bindings
for type alternatives are combined, for example in rule M.ALT and rule m.ALT.L1.

This mechanism is used by quantifier propagation, preceding normal type inference. We next discuss the
computation of most/least general types, and postpone the use of these mechanisms until later (in Fig. 21).

5.4 Computing actual quantifiers

After the gathering of type alternatives, we compute most/least general types based on these type alternatives. The
result of this computation are constraints on type variables. We compute either a most general (polymorphic) type
or a least general (usually non-polymorphic) type. These constraints are used by type checking and inferencing,
representing additional assumptions for some types.

18



Option  meaning default

() bind as type alternative (")
(<) fit (<"
(A) meet (A7)
(V) join (v

Figure 12: Options to fit

Combination  options (relative to default) context

Ogtr strong (default)
Omeet < A+ > meet
0 join < vt > J oin

Figure 13: Option combinations

o+t o =0,:0~C

o=vilop i Hy /N,] o=wlop i Hy /N, ]
C=lvi o] C=lv, 0]
oy E _[_] o1 # _[-]
(), €0 3 (), €0 3
o += VIEO'Z:O"\»CM'VAR'L PR Evz:O"\»CM'VAR'R 12
o =wnlel, ] o=viloy i Hy /N, o1
C=lviov o] C=lvi o]

M.ALT}) M.ALT.L1p

orsvilgrl <wlgl:oc~C orsviprl< oo~ C
o =wnlorHy /Ny, @2

C=[vy 0]

o <nlgplio~C

M.ALT.R1 >
oS

Figure 14: Type alternative related matching (finding possible quantified types) (12)
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We need the combination of the following mechanisms:

e The computation of type meet’s and type join’s for types, using the ordering on types defined by < and its
induced lattice [5].

o The elimination of type alternatives in a type, and the simultaneous extraction of bindings for type variables
to quantified types.

These mechanisms are mutually recursive, because type alternative elimination uses meet/join computation to
find (and combine) quantifier information, and meet/join computation may combine (deeper nested) type alterna-
tives.

Meet and join of types The rype meet, denoted by A, and type join, denoted by v, of two types o and o, are
defined by [5]:

o1 Aoy =max{o | o
o Vo, =min{o | oy

The relation < on types is assymetrical due to the presence of a universal quantifier V in a type. We have
Vv.o; < o if we can instantiate v to some type for which oy < 0. In case of absence of a quantifier in o7 < 0,
both types must match: o = 0. Therefore oy A o, represents the target type which can be instantiated to both
o1 and 03; 0 V 0 represents the least type which is an instantiation of both 07| and 0.

The following use of meet and join constitutes a key part of our algorithm. The type meet A is used to extract
“Ya.a — a” from the following example constraint:

vi v [VYaa > a:Hg /N, Int — Int:: Hg / N,]

The type variable v, represents a type which must fit (because tagged by N,) into both “VYa.a — a” and “Int —
Int”. The type for v (from Example 7, page 14) must be the most general of these two types so it can be instantiated
to both the required types. This type for v; becomes:

Ya.a —» a=Va.a — a A Int - Int

On the other hand, for v, (from Example 5, page 5) we know it represents a type of a value in which both a
value with type “VYa.a — a” and “Int — Int” will flow.

Vo > vy [VYa.a - a::Hg /Ny, Int — Int - Hg / N, |

The type for v, must be the least general of these two types so both contexts can coerce their value to a value of
type va:

Int — Int =Va.a — a v Int — Int

The implementation of fit <, meet A, and join v are much alike, so we define their implementation as variations
on type matching =. The rules in Fig. 10, Fig. 15, and Fig. 16 dispatch to =, and pass the variant at hand by means
of additional (mutually exclusive) flags: (<*), (A™), and (v*). When the rules for = are meant to be used only by a
particular variant we either require the presence of the corresponding flag or we use the corresponding denotation
(<, A, v, or any of the latter two as AV) in the rules, as is done in the rules dealing with the meet and join of V
quantified types in Fig. 18.

Type alternative elimination The computation of the most/least general type from type alternatives, presented
in Fig. 17, may look overwhelming at first, but basically selects specific subsets from a set of type alternatives
and combines their types by meeting or joining, where the choice between meet and join depends on the (con-
tra)variance. The computation is described by rule Ty.AE.ALTs; the remaining rules deal with default cases. In
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o;Crratitp~C

(A*),0C=Coy=Co,i0r~C
o;Crojao0, 07~ C

MEET>

Figure 15: Meet of types (12)

o;CH vty ~C

(v),0C+=Coy=2Cor:0r~C
o;CHoyvoriop~C

JOIN»

Figure 16: Join of types (I12)

rule TY.AE.ALTS we slightly stretch the notation for matching (=) by allowing a sequence of types to be matched:
o = ¢o". This means “foldr (=) 0" 0.

Rule TY.AE.ALTS starts with extracting type alternatives: type alternatives with a quantifier (o), without a quan-
tifier (o'w,), and those marked as hard (o,). These sets are further restricted by their need N, selecting N, in a
meet context (flag (A*)), selecting N, otherwise. Only when quantified or hard types are present we first compute
their meet (or join), so we obtain all quantifier related information. Then we combine the result with the remaining
types. The result may still contain type alternatives, because we only eliminate the top level type alternatives. We
recursively eliminate these nested type alternatives and finally bind the result to the type variable for this set of type
alternatives.

We walk through Example 1(or Example 4). Our implementation finds the following information for 4 (the
fragments are edited bits of internal administration):

h:v

Vi =V
[Va.(a —a):Hy /N,
s ((VZ [[I’lt - [Hs / No]) - V3) - [HS / Nr
s ((va [Char::H; [Ny — vs) i Hy /N,
]

Function 4 is used in three different contexts, of which one requires 4 to be polymorphic, and the remaining two
require & to be a function which can accept an Int and a Char argument respectively. Because the type of 4 must be
the most general type we eliminate type alternatives in a (A*) context. Rule Tv.AE.ALTS then extracts type alternative
subsets:

oq =[VYa.(a —a)l

0@=[ (mnt:Hg/N) —wv3)
» ((v4 [Char::H; [ N, 1) — vs)
]

o, =[]

The solution Ya.a — a does not contain nested type alternatives, so we end with the constraint:

vi > Yaa —a
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P __pelim
0;C5v, + 0:0o~C

N =if (A") € 0 then N, else N,
vipl=o
g =log|(cq:Hy/N) « @]
op, = o] (o Hy /N) « @]
o+ (On,,0@) =0:op, ~ C,
o, =[0-q | (0-g::Hy [ N) « ]
o+ ChFH:EO'[Hhio'[HX'\»,

k __gpelim
0;C% v+ o, i~ C,

C=[ve o]

|op,.0q | >0 vi_]l=o
VéEvg vEvg
- TY.AE.ALTS]2 . TY.AE.VAR 2
X __gelim X __pelim
0;C%v, + o:0o~CC, 0;C5ve F oivo[]

0, =if 0 = (o) then (V") else (A")

__gelim

0;CHV; Tk 0,10, Cy
_ pelim
0;C5v, e, i0,~>C
- TY.AE.TY]> . TY.AE.ARROW >
k. — @ elim k. — @ elim
0;C5vy + oo~ ] 0;C5v, + 04— 0,104, = 0~ CiCy

Figure 17: Type alternative elimination (12)
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In the remainder of the type inference process we can now use i polymorphically.

Meet/join computation The computation of the meet A and join v of two types is similar to the introduction and
elimination of type alternatives:

¢ Quantified type variables are instantiated with type variables v which remember both the type variable and
the type o (if any) bound (by matching) to the type variable:

v=g- both

o=
|
| O absence of type information

The instantiation with these types is (for example) done as part of Rule m.ForarL.L2 (Fig. 18).

e After instantation and further matching (Fig. 19) we end with a type which encodes both a type variable and
its binding. We then either forget or use these bindings, depending on the context (meet or join).

oro=0,:0~C

__ =elim
V= F opio~ 0,

0 = Cohoy, Cy = a > (v==0), V= fresh
orr o A0 0~ Cp

— — M.FORALL.L2 )
o+ Ya.oy A oy Yv=.0 ~ C.Cpp

=elim

Ve b Opio~ _;C,
0; = Cooy, Cy = a > (v==0), v- fresh o=viloy i Hy /Ny o]
OF 0;Voy:0,~> Cy C=[vi—o]
o+t Ya.oy Vv o : Yv=.Coo ~ C.Cpp MFORALL.L31> ot vi[grlaor:o~C M.ALTL;2

O'EVI[U-Z o [Hh/n\‘ma]
C=lvi o]

— ML.ALT.L3j,
o' vilg1] Vo0~ C

Figure 18: Type meet/join (12)
For example, in rule m.ForALL.L2 (Fig. 18) the meet of

Ya.a — a
Int — Int

gives o,
a=Int — a=Int
The rules in Fig. 20 then split this type into a type with type variables, and constraints for those type variables:

o =a—>a
C.=av Int
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or o200~ C

or¥ o1 VN 03 0~ Cyy
C=[vi,va > n=0] C=[ve v=0]

M.BOTH[3
o+rY vi=o| N vy=0p i va=0 ~> C Cpp

orY oy VN 0y 0~ Cp,
C=[ve v=r]

M.BOTH.L2 >
orY v=o| &V 05 i v=0~ CCp

orY v=O NV 0 i v=0 ~ C

M.BOTH.L1 >

Figure 19: Type matching (= on =) (12)

In case of a meet A the constraints C, are forgotten for the result type. The constraints C, are still propa-
gated, because other type variables may still be further constrained as a ‘side effect’ of the meet A. For a join v

(rule m.FORALL.L3) the constraints are not forgotten but applied to 0.

Finally, rule m.ar1.L2 and rule m.ALT.L3 (Fig. 18) add a type computed by a meet or join as a hard H;, type to
type alternatives. For types with quantifiers this does not make a difference, but for types without (like Int — Int)
it does. Being marked as hard H,, we ensure the triggering of type alternative elimination (rule TY.AE.ALTs) and
subsequent propagation of the resulting type. If a type variable is bound by this process to a (non-polymorphic)

type we effectively inhibit its further binding to a polymorphic type.

=elim
bv v 0=:0~0,C

v € by
=elim
v € by bv v op:0~>v,;C
. TY.EB.ANY 2 .
=elim =elim
bv + v=O:v~v;[] bv v v=o,:v~ov[ve > v]C
v € by
=elim
bv v op:0~0,;C
TY.EB.TY[)

=elim
bv + v=opiv~>os[ve o] C

TY.EB.VAR )

Figure 20: Type ‘both’ elimination (12)

5.5 Quantifier propagation and type inference

Quantifier propagation uses type alternatives and their elimination to respectively gather and extract polymorphism,
to be used by subsequent normal type inference. The algorithm (Fig. 21) uses two constraint threads. The first
constraint thread, denoted by C, gathers type alternatives, and the second, denoted by C, participates in normal
type inference. Both inference stages return a type>. The type returned by quantifier propagation may contain type
alternatives and is therefore denoted by o; the type returned by normal inference is denoted by o~. We focus on

quantifier propagation and its integration with normal type inference:

3In the final version the type of the normal type inference stage will be removed as it is not used.
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e The complete inference process is split in two stages: quantifier propagation and (normal) type inference.

¢ Bindings for value identifiers are gathered and propagated via environments. Each binding binds to a type
variable, a placeholder for type information, about which specific type information is stored in constraints C.
We separate placeholders and actual type information because the two inference stages infer different types
for a type variable.

o Constraints for the first stage are denoted by C, for the second stage by C.

e Only the result of type alternative elimination is propagated to the second stage.

Quantifier propagation in isolation follows a similar strategy as Hindley-Milner type inference in that we gather
and match type information, partially bottom-up, partially top-down:

e Known types are used, but their matching is done at those places in the AST where we expect the need for
type alternatives: rule e.app and rule E.LAM.

e We fix type alternatives by type alternative elimination (and extraction of polymorphism) in a manner similar
to Hindley-Milner generalization, that is, whenever a scope for an identifier starts. We only fix a type variable
with its alternatives if no more global references to the type variable exist.

For example, in rule E.aApp we match the impredicative function type oy with v — o*, with the flag (—*)
passed to <. Any known information about the function’s argument is thus bound as a type alternative to v. The
argument type is matched similarly, so we end up with all information about the argument bound to v as a set of
type alternatives.

Fixing type information is done at two places: at the introduction of identifiers in let-bindings and A-bindings.
Similar to the generalisation of HM type inference, these places limit the scope of an identifier. If a type variable
is not accessed outside this boundary, we can close the reasoning about such a type by eliminating type alternatives
(or quantify, in the case of HM type inference).

The intricacy of rule .LaM is caused by the combination of the following:

o Type variables act as placeholders for (future) type information. Hence we must take care to avoid inconsis-
tencies between constraints. Inconsistencies arise as the result of double instantiation (during each inference
stage), and instantiated type variables are not constrained to be equal when the semantics require this. An-
other example is the option fi;,, not discussed earlier, to make type matching prefer binding type variables
from the left type.

e We assume that all known type information is available during the first inference stage, so we can include
this information into type alternatives.

Future work will address these hairy details further.

Rule E.LaM first extracts possibly polymorphic information from the known type o*, which may contain type
alternatives (introduced as part of rule .app). The resulting type o is used to extract the possible polymorphic
(higher ranked) type of the argument. We need this type to ensure the invariant that all available known type
information is used as part of the first stage, and becomes bound in a type alternative.

6 Discussion and related work

Extensions Our approach extends to existential types and also combines quantifier information from different
types (Example 6). We show typical examples taken from the EH project [7, 6] for existential types.

Existential types are the dual of universally quantified types in the type lattice induced by subsumption <. Only
a few additional rules where meet and join are swapped are required to support the following example. We show
this because the use of meet and join is general enough to also infer f :: (Int, Int — Int) — Int in:

let g, :: (A a.(a,a — Int)) — Int
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CCh T 0 H e o371~ C;C

i—oel
05, Ck s Int <ot : _~ C 04 Ck o<t _~C
Ck,Ck,T; 0% v¢ int : Int; Int ~ CK;C C* EINT72 CE.CF:T.0f ¥ i : 0. 0% ~> CF.C CF E.VARp2
v, v, fresh
CYChiTsv, » d* Fo fiops 1~ Cpi Cy
<'_)+>7 Oszr;Cf "< Of SV >0 I _~> CF

CrCr:CriTsvy H at 04570 ~ Cui Gy
<}—>+>, Ostr;(]:a "< Oy S Vg: "~ CA
ChCET 0" o fa: oF; 0% ~ C4C,: Cy

E.APP)

v, v, fresh

Vg = fiv ()
@ elim
Lk k. k
Omeet; C5Vg  F 0 i0g ~> _
05, CF-sv > v, <ok iop~ Cr
CFCk;CfCA(CFCk) Cr;(i>v),Iv,. + b:op; 1 ~ Cp; Cp
__wpelim
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Figure 21: Expression type rules (12)
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g2 i (Int, Int — Int) — Int
f = Ah — let x; =81 h
X=gh
in 3
in 3

Formalization The approach taken in this report is to tackle the problem of the use of type annotations in the
context of type inference by doing type inference twice, once to extract type annotations, and a second time to do
normal type inference. As we have taken an algorithmic approach, we obviously have not formalized this in the
sense of providing a characterizing type system for which properties like completeness can be proven. Because
we do not place restrictions on type annotations, and the programmer can achieve full system F expressiveness by
type annotating all values, we feel that proving properties relative to system F is not the real issue. Instead the
formalization problem shifts to making precise the following:

e Predictability. Under what condition is a type annotation required, and when can our algorithm infer this
by propagating type annotations from other locations of a program? Currently we use the informal notion of
“touched by” (see Section 1) to characterize this.

e Minimal type annotation. Said slightly differently, what is the minimal type annotation required for a
program using higher-ranked types? Is this unique, does some notion of principality exist, in the sense that
there is exactly one place where a type annotation should be added in case the second type inference phase
fails?

¢ Characterizing type system. Is it nevertheless possible to construct a characterizing type system, like boxy
types [23] (see also discussion below), that captures these issues?

e Error reporting. Both phases can produce errors, some of which overlap. For example, two given type
annotations for a value cannot be unified, in which phase is this reported?

These topics require further study.

Literature Higher-ranked types have received a fair amount of attention. Type inference for higher-ranked types
in general is undecidable [24]; type inference for rank-2 types is possible, but complex [11]. The combination of
intersection types [1] and higher-rankedness [12, 10] appears to be implementable [3, 10].

In practice, requiring a programmer to provide type annotations for higher-ranked types for use by a compiler
turns out to be a feasible approach [16] with many practical applications [21, 14, 9]. Some form of distribution of
known type information is usually employed [18, 17, 23]. Our implementation distributes type information in a
top-down manner, and, additionally, distributes type information non-locally.

Boxy types, impredicativity In work by Vytiniotis, Weirich and Peyton Jones [23] boxy types represent a com-
bination of explicitly specified and inferred type information:

e A type consists of an explicitly specified part with holes inside, called boxy types, of which the content is
inferred.

e No boxy types nor explicitly specified type information may exist inside a boxy type.

These restrictions on the type structure allow a precise description of how known type information propagates and
is used to enable impredicativity. However, the second restriction also inhibits the presence of known type infor-
mation inside inferred parts of a type, which makes it difficult, if not impossible, to specify partial type annotations
like Ya.a — ... —» VYb.b — (a,b,...) where boxy and non-boxy parts alternate, a much wanted feature when one
is obliged to specify a full signature when only a small part requires explicit specification. Their design decision
to hardcode into the type system when impredicativity is allowed, avoids non-determinism of the type inference
algorithm, but also requires additional ‘smart’ type rules for application to circumvent non-reversable switching
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between boxy and non-boxy types. MLF [2] solves this by representing the non-deterministic choice for impredica-
tivity in the type language, but another solution is to let the programmer specify this choice explicity [7], which is
the approach described in this report.

Quantifier propagation Our approach relies on explicitly provided type annotations, and the propagation of this
type information. Internally, our implementation uses type alternatives, similar to intersection types. We rely on
‘classical’ style type inference, with types which can incorporate constraints, and are applied as greedily as possible.

The quantifier propagation described in this chapter is algorithmic of nature. Recent work by Pottier and
Rémy [19, 20] takes a similar approach (although in a constraint based setting), calling the propagations process
elaboration. Their and our approach share the two-pass nature in which the first pass infers missing type annotations.

We make no claims about the correctness of our algorithm; we present it as an experiment in the extension of
‘classic’ HM type inference to accomodate new language constructs and a richer type language. However, having
said this, on the positive side we notice that quantifier propagation only propagates information which is already
available in the first place, thus being true to our conservative “don’t invent polymorphism” design starting point.
Furthermore, quantifier propagation preprocesses a type derivation by filling in known types and then lets HM
type inference do its job. Although no substitute for formal proofs, these observations give us confidence that
our separation of concern is a viable solution to the problem of the use of higher-rank types. Our system avoids
complex types during HM type inference, at the cost of complexity in the quantifier propagation phase and the
injection of its results into HM type inference. Whatever the approach taken, the availability of higher-ranked
types in a programming language complicates the implementation; this is the price to pay for a bit of System F
expressivity.

Future work Finally, this report reflects an experiment which has been implemented and will be integrated into
the final of our series of compilers [7, 6]. The combination with a class system requires further investigation. The
use of subsumption as our type matching mechanism is also bound to run into problems with datatypes, where we
need to know how a datatype behaves with respect to co- and contravariance [22] (in our extended version [7, 6]
we currently take the same approach as [23] by falling back to type equivalence inside arbitrary type constructors).
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